xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision f2219745)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <drm/i915_drm.h>
8 
9 #include "i915_drv.h"
10 #include "intel_breadcrumbs.h"
11 #include "intel_gt.h"
12 #include "intel_gt_clock_utils.h"
13 #include "intel_gt_irq.h"
14 #include "intel_gt_pm_irq.h"
15 #include "intel_rps.h"
16 #include "intel_sideband.h"
17 #include "../../../platform/x86/intel_ips.h"
18 
19 #define BUSY_MAX_EI	20u /* ms */
20 
21 /*
22  * Lock protecting IPS related data structures
23  */
24 static DEFINE_SPINLOCK(mchdev_lock);
25 
26 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
27 {
28 	return container_of(rps, struct intel_gt, rps);
29 }
30 
31 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
32 {
33 	return rps_to_gt(rps)->i915;
34 }
35 
36 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
37 {
38 	return rps_to_gt(rps)->uncore;
39 }
40 
41 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
42 {
43 	return mask & ~rps->pm_intrmsk_mbz;
44 }
45 
46 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
47 {
48 	intel_uncore_write_fw(uncore, reg, val);
49 }
50 
51 static void rps_timer(struct timer_list *t)
52 {
53 	struct intel_rps *rps = from_timer(rps, t, timer);
54 	struct intel_engine_cs *engine;
55 	ktime_t dt, last, timestamp;
56 	enum intel_engine_id id;
57 	s64 max_busy[3] = {};
58 
59 	timestamp = 0;
60 	for_each_engine(engine, rps_to_gt(rps), id) {
61 		s64 busy;
62 		int i;
63 
64 		dt = intel_engine_get_busy_time(engine, &timestamp);
65 		last = engine->stats.rps;
66 		engine->stats.rps = dt;
67 
68 		busy = ktime_to_ns(ktime_sub(dt, last));
69 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
70 			if (busy > max_busy[i])
71 				swap(busy, max_busy[i]);
72 		}
73 	}
74 	last = rps->pm_timestamp;
75 	rps->pm_timestamp = timestamp;
76 
77 	if (intel_rps_is_active(rps)) {
78 		s64 busy;
79 		int i;
80 
81 		dt = ktime_sub(timestamp, last);
82 
83 		/*
84 		 * Our goal is to evaluate each engine independently, so we run
85 		 * at the lowest clocks required to sustain the heaviest
86 		 * workload. However, a task may be split into sequential
87 		 * dependent operations across a set of engines, such that
88 		 * the independent contributions do not account for high load,
89 		 * but overall the task is GPU bound. For example, consider
90 		 * video decode on vcs followed by colour post-processing
91 		 * on vecs, followed by general post-processing on rcs.
92 		 * Since multi-engines being active does imply a single
93 		 * continuous workload across all engines, we hedge our
94 		 * bets by only contributing a factor of the distributed
95 		 * load into our busyness calculation.
96 		 */
97 		busy = max_busy[0];
98 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
99 			if (!max_busy[i])
100 				break;
101 
102 			busy += div_u64(max_busy[i], 1 << i);
103 		}
104 		GT_TRACE(rps_to_gt(rps),
105 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
106 			 busy, (int)div64_u64(100 * busy, dt),
107 			 max_busy[0], max_busy[1], max_busy[2],
108 			 rps->pm_interval);
109 
110 		if (100 * busy > rps->power.up_threshold * dt &&
111 		    rps->cur_freq < rps->max_freq_softlimit) {
112 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
113 			rps->pm_interval = 1;
114 			schedule_work(&rps->work);
115 		} else if (100 * busy < rps->power.down_threshold * dt &&
116 			   rps->cur_freq > rps->min_freq_softlimit) {
117 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
118 			rps->pm_interval = 1;
119 			schedule_work(&rps->work);
120 		} else {
121 			rps->last_adj = 0;
122 		}
123 
124 		mod_timer(&rps->timer,
125 			  jiffies + msecs_to_jiffies(rps->pm_interval));
126 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
127 	}
128 }
129 
130 static void rps_start_timer(struct intel_rps *rps)
131 {
132 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
133 	rps->pm_interval = 1;
134 	mod_timer(&rps->timer, jiffies + 1);
135 }
136 
137 static void rps_stop_timer(struct intel_rps *rps)
138 {
139 	del_timer_sync(&rps->timer);
140 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
141 	cancel_work_sync(&rps->work);
142 }
143 
144 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
145 {
146 	u32 mask = 0;
147 
148 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
149 	if (val > rps->min_freq_softlimit)
150 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
151 			 GEN6_PM_RP_DOWN_THRESHOLD |
152 			 GEN6_PM_RP_DOWN_TIMEOUT);
153 
154 	if (val < rps->max_freq_softlimit)
155 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
156 
157 	mask &= rps->pm_events;
158 
159 	return rps_pm_sanitize_mask(rps, ~mask);
160 }
161 
162 static void rps_reset_ei(struct intel_rps *rps)
163 {
164 	memset(&rps->ei, 0, sizeof(rps->ei));
165 }
166 
167 static void rps_enable_interrupts(struct intel_rps *rps)
168 {
169 	struct intel_gt *gt = rps_to_gt(rps);
170 
171 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
172 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
173 
174 	rps_reset_ei(rps);
175 
176 	spin_lock_irq(&gt->irq_lock);
177 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
178 	spin_unlock_irq(&gt->irq_lock);
179 
180 	intel_uncore_write(gt->uncore,
181 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
182 }
183 
184 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
185 {
186 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
187 }
188 
189 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
190 {
191 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
192 		;
193 }
194 
195 static void rps_reset_interrupts(struct intel_rps *rps)
196 {
197 	struct intel_gt *gt = rps_to_gt(rps);
198 
199 	spin_lock_irq(&gt->irq_lock);
200 	if (INTEL_GEN(gt->i915) >= 11)
201 		gen11_rps_reset_interrupts(rps);
202 	else
203 		gen6_rps_reset_interrupts(rps);
204 
205 	rps->pm_iir = 0;
206 	spin_unlock_irq(&gt->irq_lock);
207 }
208 
209 static void rps_disable_interrupts(struct intel_rps *rps)
210 {
211 	struct intel_gt *gt = rps_to_gt(rps);
212 
213 	intel_uncore_write(gt->uncore,
214 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
215 
216 	spin_lock_irq(&gt->irq_lock);
217 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
218 	spin_unlock_irq(&gt->irq_lock);
219 
220 	intel_synchronize_irq(gt->i915);
221 
222 	/*
223 	 * Now that we will not be generating any more work, flush any
224 	 * outstanding tasks. As we are called on the RPS idle path,
225 	 * we will reset the GPU to minimum frequencies, so the current
226 	 * state of the worker can be discarded.
227 	 */
228 	cancel_work_sync(&rps->work);
229 
230 	rps_reset_interrupts(rps);
231 	GT_TRACE(gt, "interrupts:off\n");
232 }
233 
234 static const struct cparams {
235 	u16 i;
236 	u16 t;
237 	u16 m;
238 	u16 c;
239 } cparams[] = {
240 	{ 1, 1333, 301, 28664 },
241 	{ 1, 1066, 294, 24460 },
242 	{ 1, 800, 294, 25192 },
243 	{ 0, 1333, 276, 27605 },
244 	{ 0, 1066, 276, 27605 },
245 	{ 0, 800, 231, 23784 },
246 };
247 
248 static void gen5_rps_init(struct intel_rps *rps)
249 {
250 	struct drm_i915_private *i915 = rps_to_i915(rps);
251 	struct intel_uncore *uncore = rps_to_uncore(rps);
252 	u8 fmax, fmin, fstart;
253 	u32 rgvmodectl;
254 	int c_m, i;
255 
256 	if (i915->fsb_freq <= 3200)
257 		c_m = 0;
258 	else if (i915->fsb_freq <= 4800)
259 		c_m = 1;
260 	else
261 		c_m = 2;
262 
263 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
264 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
265 			rps->ips.m = cparams[i].m;
266 			rps->ips.c = cparams[i].c;
267 			break;
268 		}
269 	}
270 
271 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
272 
273 	/* Set up min, max, and cur for interrupt handling */
274 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
275 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
276 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
277 		MEMMODE_FSTART_SHIFT;
278 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
279 		fmax, fmin, fstart);
280 
281 	rps->min_freq = fmax;
282 	rps->efficient_freq = fstart;
283 	rps->max_freq = fmin;
284 }
285 
286 static unsigned long
287 __ips_chipset_val(struct intel_ips *ips)
288 {
289 	struct intel_uncore *uncore =
290 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
291 	unsigned long now = jiffies_to_msecs(jiffies), dt;
292 	unsigned long result;
293 	u64 total, delta;
294 
295 	lockdep_assert_held(&mchdev_lock);
296 
297 	/*
298 	 * Prevent division-by-zero if we are asking too fast.
299 	 * Also, we don't get interesting results if we are polling
300 	 * faster than once in 10ms, so just return the saved value
301 	 * in such cases.
302 	 */
303 	dt = now - ips->last_time1;
304 	if (dt <= 10)
305 		return ips->chipset_power;
306 
307 	/* FIXME: handle per-counter overflow */
308 	total = intel_uncore_read(uncore, DMIEC);
309 	total += intel_uncore_read(uncore, DDREC);
310 	total += intel_uncore_read(uncore, CSIEC);
311 
312 	delta = total - ips->last_count1;
313 
314 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
315 
316 	ips->last_count1 = total;
317 	ips->last_time1 = now;
318 
319 	ips->chipset_power = result;
320 
321 	return result;
322 }
323 
324 static unsigned long ips_mch_val(struct intel_uncore *uncore)
325 {
326 	unsigned int m, x, b;
327 	u32 tsfs;
328 
329 	tsfs = intel_uncore_read(uncore, TSFS);
330 	x = intel_uncore_read8(uncore, TR1);
331 
332 	b = tsfs & TSFS_INTR_MASK;
333 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
334 
335 	return m * x / 127 - b;
336 }
337 
338 static int _pxvid_to_vd(u8 pxvid)
339 {
340 	if (pxvid == 0)
341 		return 0;
342 
343 	if (pxvid >= 8 && pxvid < 31)
344 		pxvid = 31;
345 
346 	return (pxvid + 2) * 125;
347 }
348 
349 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
350 {
351 	const int vd = _pxvid_to_vd(pxvid);
352 
353 	if (INTEL_INFO(i915)->is_mobile)
354 		return max(vd - 1125, 0);
355 
356 	return vd;
357 }
358 
359 static void __gen5_ips_update(struct intel_ips *ips)
360 {
361 	struct intel_uncore *uncore =
362 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
363 	u64 now, delta, dt;
364 	u32 count;
365 
366 	lockdep_assert_held(&mchdev_lock);
367 
368 	now = ktime_get_raw_ns();
369 	dt = now - ips->last_time2;
370 	do_div(dt, NSEC_PER_MSEC);
371 
372 	/* Don't divide by 0 */
373 	if (dt <= 10)
374 		return;
375 
376 	count = intel_uncore_read(uncore, GFXEC);
377 	delta = count - ips->last_count2;
378 
379 	ips->last_count2 = count;
380 	ips->last_time2 = now;
381 
382 	/* More magic constants... */
383 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
384 }
385 
386 static void gen5_rps_update(struct intel_rps *rps)
387 {
388 	spin_lock_irq(&mchdev_lock);
389 	__gen5_ips_update(&rps->ips);
390 	spin_unlock_irq(&mchdev_lock);
391 }
392 
393 static unsigned int gen5_invert_freq(struct intel_rps *rps,
394 				     unsigned int val)
395 {
396 	/* Invert the frequency bin into an ips delay */
397 	val = rps->max_freq - val;
398 	val = rps->min_freq + val;
399 
400 	return val;
401 }
402 
403 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
404 {
405 	struct intel_uncore *uncore = rps_to_uncore(rps);
406 	u16 rgvswctl;
407 
408 	lockdep_assert_held(&mchdev_lock);
409 
410 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
411 	if (rgvswctl & MEMCTL_CMD_STS) {
412 		DRM_DEBUG("gpu busy, RCS change rejected\n");
413 		return -EBUSY; /* still busy with another command */
414 	}
415 
416 	/* Invert the frequency bin into an ips delay */
417 	val = gen5_invert_freq(rps, val);
418 
419 	rgvswctl =
420 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
421 		(val << MEMCTL_FREQ_SHIFT) |
422 		MEMCTL_SFCAVM;
423 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
424 	intel_uncore_posting_read16(uncore, MEMSWCTL);
425 
426 	rgvswctl |= MEMCTL_CMD_STS;
427 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
428 
429 	return 0;
430 }
431 
432 static int gen5_rps_set(struct intel_rps *rps, u8 val)
433 {
434 	int err;
435 
436 	spin_lock_irq(&mchdev_lock);
437 	err = __gen5_rps_set(rps, val);
438 	spin_unlock_irq(&mchdev_lock);
439 
440 	return err;
441 }
442 
443 static unsigned long intel_pxfreq(u32 vidfreq)
444 {
445 	int div = (vidfreq & 0x3f0000) >> 16;
446 	int post = (vidfreq & 0x3000) >> 12;
447 	int pre = (vidfreq & 0x7);
448 
449 	if (!pre)
450 		return 0;
451 
452 	return div * 133333 / (pre << post);
453 }
454 
455 static unsigned int init_emon(struct intel_uncore *uncore)
456 {
457 	u8 pxw[16];
458 	int i;
459 
460 	/* Disable to program */
461 	intel_uncore_write(uncore, ECR, 0);
462 	intel_uncore_posting_read(uncore, ECR);
463 
464 	/* Program energy weights for various events */
465 	intel_uncore_write(uncore, SDEW, 0x15040d00);
466 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
467 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
468 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
469 
470 	for (i = 0; i < 5; i++)
471 		intel_uncore_write(uncore, PEW(i), 0);
472 	for (i = 0; i < 3; i++)
473 		intel_uncore_write(uncore, DEW(i), 0);
474 
475 	/* Program P-state weights to account for frequency power adjustment */
476 	for (i = 0; i < 16; i++) {
477 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
478 		unsigned int freq = intel_pxfreq(pxvidfreq);
479 		unsigned int vid =
480 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
481 		unsigned int val;
482 
483 		val = vid * vid * freq / 1000 * 255;
484 		val /= 127 * 127 * 900;
485 
486 		pxw[i] = val;
487 	}
488 	/* Render standby states get 0 weight */
489 	pxw[14] = 0;
490 	pxw[15] = 0;
491 
492 	for (i = 0; i < 4; i++) {
493 		intel_uncore_write(uncore, PXW(i),
494 				   pxw[i * 4 + 0] << 24 |
495 				   pxw[i * 4 + 1] << 16 |
496 				   pxw[i * 4 + 2] <<  8 |
497 				   pxw[i * 4 + 3] <<  0);
498 	}
499 
500 	/* Adjust magic regs to magic values (more experimental results) */
501 	intel_uncore_write(uncore, OGW0, 0);
502 	intel_uncore_write(uncore, OGW1, 0);
503 	intel_uncore_write(uncore, EG0, 0x00007f00);
504 	intel_uncore_write(uncore, EG1, 0x0000000e);
505 	intel_uncore_write(uncore, EG2, 0x000e0000);
506 	intel_uncore_write(uncore, EG3, 0x68000300);
507 	intel_uncore_write(uncore, EG4, 0x42000000);
508 	intel_uncore_write(uncore, EG5, 0x00140031);
509 	intel_uncore_write(uncore, EG6, 0);
510 	intel_uncore_write(uncore, EG7, 0);
511 
512 	for (i = 0; i < 8; i++)
513 		intel_uncore_write(uncore, PXWL(i), 0);
514 
515 	/* Enable PMON + select events */
516 	intel_uncore_write(uncore, ECR, 0x80000019);
517 
518 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
519 }
520 
521 static bool gen5_rps_enable(struct intel_rps *rps)
522 {
523 	struct drm_i915_private *i915 = rps_to_i915(rps);
524 	struct intel_uncore *uncore = rps_to_uncore(rps);
525 	u8 fstart, vstart;
526 	u32 rgvmodectl;
527 
528 	spin_lock_irq(&mchdev_lock);
529 
530 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
531 
532 	/* Enable temp reporting */
533 	intel_uncore_write16(uncore, PMMISC,
534 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
535 	intel_uncore_write16(uncore, TSC1,
536 			     intel_uncore_read16(uncore, TSC1) | TSE);
537 
538 	/* 100ms RC evaluation intervals */
539 	intel_uncore_write(uncore, RCUPEI, 100000);
540 	intel_uncore_write(uncore, RCDNEI, 100000);
541 
542 	/* Set max/min thresholds to 90ms and 80ms respectively */
543 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
544 	intel_uncore_write(uncore, RCBMINAVG, 80000);
545 
546 	intel_uncore_write(uncore, MEMIHYST, 1);
547 
548 	/* Set up min, max, and cur for interrupt handling */
549 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
550 		MEMMODE_FSTART_SHIFT;
551 
552 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
553 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
554 
555 	intel_uncore_write(uncore,
556 			   MEMINTREN,
557 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
558 
559 	intel_uncore_write(uncore, VIDSTART, vstart);
560 	intel_uncore_posting_read(uncore, VIDSTART);
561 
562 	rgvmodectl |= MEMMODE_SWMODE_EN;
563 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
564 
565 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
566 			     MEMCTL_CMD_STS) == 0, 10))
567 		drm_err(&uncore->i915->drm,
568 			"stuck trying to change perf mode\n");
569 	mdelay(1);
570 
571 	__gen5_rps_set(rps, rps->cur_freq);
572 
573 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
574 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
575 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
576 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
577 
578 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
579 	rps->ips.last_time2 = ktime_get_raw_ns();
580 
581 	spin_lock(&i915->irq_lock);
582 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
583 	spin_unlock(&i915->irq_lock);
584 
585 	spin_unlock_irq(&mchdev_lock);
586 
587 	rps->ips.corr = init_emon(uncore);
588 
589 	return true;
590 }
591 
592 static void gen5_rps_disable(struct intel_rps *rps)
593 {
594 	struct drm_i915_private *i915 = rps_to_i915(rps);
595 	struct intel_uncore *uncore = rps_to_uncore(rps);
596 	u16 rgvswctl;
597 
598 	spin_lock_irq(&mchdev_lock);
599 
600 	spin_lock(&i915->irq_lock);
601 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
602 	spin_unlock(&i915->irq_lock);
603 
604 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
605 
606 	/* Ack interrupts, disable EFC interrupt */
607 	intel_uncore_write(uncore, MEMINTREN,
608 			   intel_uncore_read(uncore, MEMINTREN) &
609 			   ~MEMINT_EVAL_CHG_EN);
610 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
611 
612 	/* Go back to the starting frequency */
613 	__gen5_rps_set(rps, rps->idle_freq);
614 	mdelay(1);
615 	rgvswctl |= MEMCTL_CMD_STS;
616 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
617 	mdelay(1);
618 
619 	spin_unlock_irq(&mchdev_lock);
620 }
621 
622 static u32 rps_limits(struct intel_rps *rps, u8 val)
623 {
624 	u32 limits;
625 
626 	/*
627 	 * Only set the down limit when we've reached the lowest level to avoid
628 	 * getting more interrupts, otherwise leave this clear. This prevents a
629 	 * race in the hw when coming out of rc6: There's a tiny window where
630 	 * the hw runs at the minimal clock before selecting the desired
631 	 * frequency, if the down threshold expires in that window we will not
632 	 * receive a down interrupt.
633 	 */
634 	if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
635 		limits = rps->max_freq_softlimit << 23;
636 		if (val <= rps->min_freq_softlimit)
637 			limits |= rps->min_freq_softlimit << 14;
638 	} else {
639 		limits = rps->max_freq_softlimit << 24;
640 		if (val <= rps->min_freq_softlimit)
641 			limits |= rps->min_freq_softlimit << 16;
642 	}
643 
644 	return limits;
645 }
646 
647 static void rps_set_power(struct intel_rps *rps, int new_power)
648 {
649 	struct intel_gt *gt = rps_to_gt(rps);
650 	struct intel_uncore *uncore = gt->uncore;
651 	u32 threshold_up = 0, threshold_down = 0; /* in % */
652 	u32 ei_up = 0, ei_down = 0;
653 
654 	lockdep_assert_held(&rps->power.mutex);
655 
656 	if (new_power == rps->power.mode)
657 		return;
658 
659 	threshold_up = 95;
660 	threshold_down = 85;
661 
662 	/* Note the units here are not exactly 1us, but 1280ns. */
663 	switch (new_power) {
664 	case LOW_POWER:
665 		ei_up = 16000;
666 		ei_down = 32000;
667 		break;
668 
669 	case BETWEEN:
670 		ei_up = 13000;
671 		ei_down = 32000;
672 		break;
673 
674 	case HIGH_POWER:
675 		ei_up = 10000;
676 		ei_down = 32000;
677 		break;
678 	}
679 
680 	/* When byt can survive without system hang with dynamic
681 	 * sw freq adjustments, this restriction can be lifted.
682 	 */
683 	if (IS_VALLEYVIEW(gt->i915))
684 		goto skip_hw_write;
685 
686 	GT_TRACE(gt,
687 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
688 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
689 
690 	set(uncore, GEN6_RP_UP_EI,
691 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
692 	set(uncore, GEN6_RP_UP_THRESHOLD,
693 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
694 
695 	set(uncore, GEN6_RP_DOWN_EI,
696 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
697 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
698 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
699 
700 	set(uncore, GEN6_RP_CONTROL,
701 	    (INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
702 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
703 	    GEN6_RP_MEDIA_IS_GFX |
704 	    GEN6_RP_ENABLE |
705 	    GEN6_RP_UP_BUSY_AVG |
706 	    GEN6_RP_DOWN_IDLE_AVG);
707 
708 skip_hw_write:
709 	rps->power.mode = new_power;
710 	rps->power.up_threshold = threshold_up;
711 	rps->power.down_threshold = threshold_down;
712 }
713 
714 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
715 {
716 	int new_power;
717 
718 	new_power = rps->power.mode;
719 	switch (rps->power.mode) {
720 	case LOW_POWER:
721 		if (val > rps->efficient_freq + 1 &&
722 		    val > rps->cur_freq)
723 			new_power = BETWEEN;
724 		break;
725 
726 	case BETWEEN:
727 		if (val <= rps->efficient_freq &&
728 		    val < rps->cur_freq)
729 			new_power = LOW_POWER;
730 		else if (val >= rps->rp0_freq &&
731 			 val > rps->cur_freq)
732 			new_power = HIGH_POWER;
733 		break;
734 
735 	case HIGH_POWER:
736 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
737 		    val < rps->cur_freq)
738 			new_power = BETWEEN;
739 		break;
740 	}
741 	/* Max/min bins are special */
742 	if (val <= rps->min_freq_softlimit)
743 		new_power = LOW_POWER;
744 	if (val >= rps->max_freq_softlimit)
745 		new_power = HIGH_POWER;
746 
747 	mutex_lock(&rps->power.mutex);
748 	if (rps->power.interactive)
749 		new_power = HIGH_POWER;
750 	rps_set_power(rps, new_power);
751 	mutex_unlock(&rps->power.mutex);
752 }
753 
754 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
755 {
756 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
757 
758 	mutex_lock(&rps->power.mutex);
759 	if (interactive) {
760 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
761 			rps_set_power(rps, HIGH_POWER);
762 	} else {
763 		GEM_BUG_ON(!rps->power.interactive);
764 		rps->power.interactive--;
765 	}
766 	mutex_unlock(&rps->power.mutex);
767 }
768 
769 static int gen6_rps_set(struct intel_rps *rps, u8 val)
770 {
771 	struct intel_uncore *uncore = rps_to_uncore(rps);
772 	struct drm_i915_private *i915 = rps_to_i915(rps);
773 	u32 swreq;
774 
775 	if (INTEL_GEN(i915) >= 9)
776 		swreq = GEN9_FREQUENCY(val);
777 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
778 		swreq = HSW_FREQUENCY(val);
779 	else
780 		swreq = (GEN6_FREQUENCY(val) |
781 			 GEN6_OFFSET(0) |
782 			 GEN6_AGGRESSIVE_TURBO);
783 	set(uncore, GEN6_RPNSWREQ, swreq);
784 
785 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
786 		 val, intel_gpu_freq(rps, val), swreq);
787 
788 	return 0;
789 }
790 
791 static int vlv_rps_set(struct intel_rps *rps, u8 val)
792 {
793 	struct drm_i915_private *i915 = rps_to_i915(rps);
794 	int err;
795 
796 	vlv_punit_get(i915);
797 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
798 	vlv_punit_put(i915);
799 
800 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
801 		 val, intel_gpu_freq(rps, val));
802 
803 	return err;
804 }
805 
806 static int rps_set(struct intel_rps *rps, u8 val, bool update)
807 {
808 	struct drm_i915_private *i915 = rps_to_i915(rps);
809 	int err;
810 
811 	if (val == rps->last_freq)
812 		return 0;
813 
814 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
815 		err = vlv_rps_set(rps, val);
816 	else if (INTEL_GEN(i915) >= 6)
817 		err = gen6_rps_set(rps, val);
818 	else
819 		err = gen5_rps_set(rps, val);
820 	if (err)
821 		return err;
822 
823 	if (update && INTEL_GEN(i915) >= 6)
824 		gen6_rps_set_thresholds(rps, val);
825 	rps->last_freq = val;
826 
827 	return 0;
828 }
829 
830 void intel_rps_unpark(struct intel_rps *rps)
831 {
832 	if (!intel_rps_is_enabled(rps))
833 		return;
834 
835 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
836 
837 	/*
838 	 * Use the user's desired frequency as a guide, but for better
839 	 * performance, jump directly to RPe as our starting frequency.
840 	 */
841 	mutex_lock(&rps->lock);
842 
843 	intel_rps_set_active(rps);
844 	intel_rps_set(rps,
845 		      clamp(rps->cur_freq,
846 			    rps->min_freq_softlimit,
847 			    rps->max_freq_softlimit));
848 
849 	mutex_unlock(&rps->lock);
850 
851 	rps->pm_iir = 0;
852 	if (intel_rps_has_interrupts(rps))
853 		rps_enable_interrupts(rps);
854 	if (intel_rps_uses_timer(rps))
855 		rps_start_timer(rps);
856 
857 	if (IS_GEN(rps_to_i915(rps), 5))
858 		gen5_rps_update(rps);
859 }
860 
861 void intel_rps_park(struct intel_rps *rps)
862 {
863 	int adj;
864 
865 	GEM_BUG_ON(atomic_read(&rps->num_waiters));
866 
867 	if (!intel_rps_clear_active(rps))
868 		return;
869 
870 	if (intel_rps_uses_timer(rps))
871 		rps_stop_timer(rps);
872 	if (intel_rps_has_interrupts(rps))
873 		rps_disable_interrupts(rps);
874 
875 	if (rps->last_freq <= rps->idle_freq)
876 		return;
877 
878 	/*
879 	 * The punit delays the write of the frequency and voltage until it
880 	 * determines the GPU is awake. During normal usage we don't want to
881 	 * waste power changing the frequency if the GPU is sleeping (rc6).
882 	 * However, the GPU and driver is now idle and we do not want to delay
883 	 * switching to minimum voltage (reducing power whilst idle) as we do
884 	 * not expect to be woken in the near future and so must flush the
885 	 * change by waking the device.
886 	 *
887 	 * We choose to take the media powerwell (either would do to trick the
888 	 * punit into committing the voltage change) as that takes a lot less
889 	 * power than the render powerwell.
890 	 */
891 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
892 	rps_set(rps, rps->idle_freq, false);
893 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
894 
895 	/*
896 	 * Since we will try and restart from the previously requested
897 	 * frequency on unparking, treat this idle point as a downclock
898 	 * interrupt and reduce the frequency for resume. If we park/unpark
899 	 * more frequently than the rps worker can run, we will not respond
900 	 * to any EI and never see a change in frequency.
901 	 *
902 	 * (Note we accommodate Cherryview's limitation of only using an
903 	 * even bin by applying it to all.)
904 	 */
905 	adj = rps->last_adj;
906 	if (adj < 0)
907 		adj *= 2;
908 	else /* CHV needs even encode values */
909 		adj = -2;
910 	rps->last_adj = adj;
911 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
912 	if (rps->cur_freq < rps->efficient_freq) {
913 		rps->cur_freq = rps->efficient_freq;
914 		rps->last_adj = 0;
915 	}
916 
917 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
918 }
919 
920 void intel_rps_boost(struct i915_request *rq)
921 {
922 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
923 		return;
924 
925 	/* Serializes with i915_request_retire() */
926 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
927 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
928 
929 		if (atomic_fetch_inc(&rps->num_waiters))
930 			return;
931 
932 		if (!intel_rps_is_active(rps))
933 			return;
934 
935 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
936 			 rq->fence.context, rq->fence.seqno);
937 
938 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
939 			schedule_work(&rps->work);
940 
941 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
942 	}
943 }
944 
945 int intel_rps_set(struct intel_rps *rps, u8 val)
946 {
947 	int err;
948 
949 	lockdep_assert_held(&rps->lock);
950 	GEM_BUG_ON(val > rps->max_freq);
951 	GEM_BUG_ON(val < rps->min_freq);
952 
953 	if (intel_rps_is_active(rps)) {
954 		err = rps_set(rps, val, true);
955 		if (err)
956 			return err;
957 
958 		/*
959 		 * Make sure we continue to get interrupts
960 		 * until we hit the minimum or maximum frequencies.
961 		 */
962 		if (intel_rps_has_interrupts(rps)) {
963 			struct intel_uncore *uncore = rps_to_uncore(rps);
964 
965 			set(uncore,
966 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
967 
968 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
969 		}
970 	}
971 
972 	rps->cur_freq = val;
973 	return 0;
974 }
975 
976 static void gen6_rps_init(struct intel_rps *rps)
977 {
978 	struct drm_i915_private *i915 = rps_to_i915(rps);
979 	struct intel_uncore *uncore = rps_to_uncore(rps);
980 
981 	/* All of these values are in units of 50MHz */
982 
983 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
984 	if (IS_GEN9_LP(i915)) {
985 		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
986 
987 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
988 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
989 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
990 	} else {
991 		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
992 
993 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
994 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
995 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
996 	}
997 
998 	/* hw_max = RP0 until we check for overclocking */
999 	rps->max_freq = rps->rp0_freq;
1000 
1001 	rps->efficient_freq = rps->rp1_freq;
1002 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1003 	    IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
1004 		u32 ddcc_status = 0;
1005 
1006 		if (sandybridge_pcode_read(i915,
1007 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1008 					   &ddcc_status, NULL) == 0)
1009 			rps->efficient_freq =
1010 				clamp_t(u8,
1011 					(ddcc_status >> 8) & 0xff,
1012 					rps->min_freq,
1013 					rps->max_freq);
1014 	}
1015 
1016 	if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
1017 		/* Store the frequency values in 16.66 MHZ units, which is
1018 		 * the natural hardware unit for SKL
1019 		 */
1020 		rps->rp0_freq *= GEN9_FREQ_SCALER;
1021 		rps->rp1_freq *= GEN9_FREQ_SCALER;
1022 		rps->min_freq *= GEN9_FREQ_SCALER;
1023 		rps->max_freq *= GEN9_FREQ_SCALER;
1024 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1025 	}
1026 }
1027 
1028 static bool rps_reset(struct intel_rps *rps)
1029 {
1030 	struct drm_i915_private *i915 = rps_to_i915(rps);
1031 
1032 	/* force a reset */
1033 	rps->power.mode = -1;
1034 	rps->last_freq = -1;
1035 
1036 	if (rps_set(rps, rps->min_freq, true)) {
1037 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1038 		return false;
1039 	}
1040 
1041 	rps->cur_freq = rps->min_freq;
1042 	return true;
1043 }
1044 
1045 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1046 static bool gen9_rps_enable(struct intel_rps *rps)
1047 {
1048 	struct intel_gt *gt = rps_to_gt(rps);
1049 	struct intel_uncore *uncore = gt->uncore;
1050 
1051 	/* Program defaults and thresholds for RPS */
1052 	if (IS_GEN(gt->i915, 9))
1053 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1054 				      GEN9_FREQUENCY(rps->rp1_freq));
1055 
1056 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1057 
1058 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1059 
1060 	return rps_reset(rps);
1061 }
1062 
1063 static bool gen8_rps_enable(struct intel_rps *rps)
1064 {
1065 	struct intel_uncore *uncore = rps_to_uncore(rps);
1066 
1067 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1068 			      HSW_FREQUENCY(rps->rp1_freq));
1069 
1070 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1071 
1072 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1073 
1074 	return rps_reset(rps);
1075 }
1076 
1077 static bool gen6_rps_enable(struct intel_rps *rps)
1078 {
1079 	struct intel_uncore *uncore = rps_to_uncore(rps);
1080 
1081 	/* Power down if completely idle for over 50ms */
1082 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1083 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1084 
1085 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1086 			  GEN6_PM_RP_DOWN_THRESHOLD |
1087 			  GEN6_PM_RP_DOWN_TIMEOUT);
1088 
1089 	return rps_reset(rps);
1090 }
1091 
1092 static int chv_rps_max_freq(struct intel_rps *rps)
1093 {
1094 	struct drm_i915_private *i915 = rps_to_i915(rps);
1095 	struct intel_gt *gt = rps_to_gt(rps);
1096 	u32 val;
1097 
1098 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1099 
1100 	switch (gt->info.sseu.eu_total) {
1101 	case 8:
1102 		/* (2 * 4) config */
1103 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1104 		break;
1105 	case 12:
1106 		/* (2 * 6) config */
1107 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1108 		break;
1109 	case 16:
1110 		/* (2 * 8) config */
1111 	default:
1112 		/* Setting (2 * 8) Min RP0 for any other combination */
1113 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1114 		break;
1115 	}
1116 
1117 	return val & FB_GFX_FREQ_FUSE_MASK;
1118 }
1119 
1120 static int chv_rps_rpe_freq(struct intel_rps *rps)
1121 {
1122 	struct drm_i915_private *i915 = rps_to_i915(rps);
1123 	u32 val;
1124 
1125 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1126 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1127 
1128 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1129 }
1130 
1131 static int chv_rps_guar_freq(struct intel_rps *rps)
1132 {
1133 	struct drm_i915_private *i915 = rps_to_i915(rps);
1134 	u32 val;
1135 
1136 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1137 
1138 	return val & FB_GFX_FREQ_FUSE_MASK;
1139 }
1140 
1141 static u32 chv_rps_min_freq(struct intel_rps *rps)
1142 {
1143 	struct drm_i915_private *i915 = rps_to_i915(rps);
1144 	u32 val;
1145 
1146 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1147 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1148 
1149 	return val & FB_GFX_FREQ_FUSE_MASK;
1150 }
1151 
1152 static bool chv_rps_enable(struct intel_rps *rps)
1153 {
1154 	struct intel_uncore *uncore = rps_to_uncore(rps);
1155 	struct drm_i915_private *i915 = rps_to_i915(rps);
1156 	u32 val;
1157 
1158 	/* 1: Program defaults and thresholds for RPS*/
1159 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1160 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1161 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1162 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1163 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1164 
1165 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1166 
1167 	/* 2: Enable RPS */
1168 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1169 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1170 			      GEN6_RP_MEDIA_IS_GFX |
1171 			      GEN6_RP_ENABLE |
1172 			      GEN6_RP_UP_BUSY_AVG |
1173 			      GEN6_RP_DOWN_IDLE_AVG);
1174 
1175 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1176 			  GEN6_PM_RP_DOWN_THRESHOLD |
1177 			  GEN6_PM_RP_DOWN_TIMEOUT);
1178 
1179 	/* Setting Fixed Bias */
1180 	vlv_punit_get(i915);
1181 
1182 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1183 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1184 
1185 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1186 
1187 	vlv_punit_put(i915);
1188 
1189 	/* RPS code assumes GPLL is used */
1190 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1191 		      "GPLL not enabled\n");
1192 
1193 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1194 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1195 
1196 	return rps_reset(rps);
1197 }
1198 
1199 static int vlv_rps_guar_freq(struct intel_rps *rps)
1200 {
1201 	struct drm_i915_private *i915 = rps_to_i915(rps);
1202 	u32 val, rp1;
1203 
1204 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1205 
1206 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1207 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1208 
1209 	return rp1;
1210 }
1211 
1212 static int vlv_rps_max_freq(struct intel_rps *rps)
1213 {
1214 	struct drm_i915_private *i915 = rps_to_i915(rps);
1215 	u32 val, rp0;
1216 
1217 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1218 
1219 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1220 	/* Clamp to max */
1221 	rp0 = min_t(u32, rp0, 0xea);
1222 
1223 	return rp0;
1224 }
1225 
1226 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1227 {
1228 	struct drm_i915_private *i915 = rps_to_i915(rps);
1229 	u32 val, rpe;
1230 
1231 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1232 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1233 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1234 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1235 
1236 	return rpe;
1237 }
1238 
1239 static int vlv_rps_min_freq(struct intel_rps *rps)
1240 {
1241 	struct drm_i915_private *i915 = rps_to_i915(rps);
1242 	u32 val;
1243 
1244 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1245 	/*
1246 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1247 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1248 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1249 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1250 	 * to make sure it matches what Punit accepts.
1251 	 */
1252 	return max_t(u32, val, 0xc0);
1253 }
1254 
1255 static bool vlv_rps_enable(struct intel_rps *rps)
1256 {
1257 	struct intel_uncore *uncore = rps_to_uncore(rps);
1258 	struct drm_i915_private *i915 = rps_to_i915(rps);
1259 	u32 val;
1260 
1261 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1262 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1263 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1264 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1265 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1266 
1267 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1268 
1269 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1270 			      GEN6_RP_MEDIA_TURBO |
1271 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1272 			      GEN6_RP_MEDIA_IS_GFX |
1273 			      GEN6_RP_ENABLE |
1274 			      GEN6_RP_UP_BUSY_AVG |
1275 			      GEN6_RP_DOWN_IDLE_CONT);
1276 
1277 	/* WaGsvRC0ResidencyMethod:vlv */
1278 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1279 
1280 	vlv_punit_get(i915);
1281 
1282 	/* Setting Fixed Bias */
1283 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1284 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1285 
1286 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1287 
1288 	vlv_punit_put(i915);
1289 
1290 	/* RPS code assumes GPLL is used */
1291 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1292 		      "GPLL not enabled\n");
1293 
1294 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1295 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1296 
1297 	return rps_reset(rps);
1298 }
1299 
1300 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1301 {
1302 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1303 	struct intel_uncore *uncore = rps_to_uncore(rps);
1304 	unsigned int t, state1, state2;
1305 	u32 pxvid, ext_v;
1306 	u64 corr, corr2;
1307 
1308 	lockdep_assert_held(&mchdev_lock);
1309 
1310 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1311 	pxvid = (pxvid >> 24) & 0x7f;
1312 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1313 
1314 	state1 = ext_v;
1315 
1316 	/* Revel in the empirically derived constants */
1317 
1318 	/* Correction factor in 1/100000 units */
1319 	t = ips_mch_val(uncore);
1320 	if (t > 80)
1321 		corr = t * 2349 + 135940;
1322 	else if (t >= 50)
1323 		corr = t * 964 + 29317;
1324 	else /* < 50 */
1325 		corr = t * 301 + 1004;
1326 
1327 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1328 	corr2 = div_u64(corr, 100000) * ips->corr;
1329 
1330 	state2 = div_u64(corr2 * state1, 10000);
1331 	state2 /= 100; /* convert to mW */
1332 
1333 	__gen5_ips_update(ips);
1334 
1335 	return ips->gfx_power + state2;
1336 }
1337 
1338 static bool has_busy_stats(struct intel_rps *rps)
1339 {
1340 	struct intel_engine_cs *engine;
1341 	enum intel_engine_id id;
1342 
1343 	for_each_engine(engine, rps_to_gt(rps), id) {
1344 		if (!intel_engine_supports_stats(engine))
1345 			return false;
1346 	}
1347 
1348 	return true;
1349 }
1350 
1351 void intel_rps_enable(struct intel_rps *rps)
1352 {
1353 	struct drm_i915_private *i915 = rps_to_i915(rps);
1354 	struct intel_uncore *uncore = rps_to_uncore(rps);
1355 	bool enabled = false;
1356 
1357 	if (!HAS_RPS(i915))
1358 		return;
1359 
1360 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1361 
1362 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1363 	if (rps->max_freq <= rps->min_freq)
1364 		/* leave disabled, no room for dynamic reclocking */;
1365 	else if (IS_CHERRYVIEW(i915))
1366 		enabled = chv_rps_enable(rps);
1367 	else if (IS_VALLEYVIEW(i915))
1368 		enabled = vlv_rps_enable(rps);
1369 	else if (INTEL_GEN(i915) >= 9)
1370 		enabled = gen9_rps_enable(rps);
1371 	else if (INTEL_GEN(i915) >= 8)
1372 		enabled = gen8_rps_enable(rps);
1373 	else if (INTEL_GEN(i915) >= 6)
1374 		enabled = gen6_rps_enable(rps);
1375 	else if (IS_IRONLAKE_M(i915))
1376 		enabled = gen5_rps_enable(rps);
1377 	else
1378 		MISSING_CASE(INTEL_GEN(i915));
1379 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1380 	if (!enabled)
1381 		return;
1382 
1383 	GT_TRACE(rps_to_gt(rps),
1384 		 "min:%x, max:%x, freq:[%d, %d]\n",
1385 		 rps->min_freq, rps->max_freq,
1386 		 intel_gpu_freq(rps, rps->min_freq),
1387 		 intel_gpu_freq(rps, rps->max_freq));
1388 
1389 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1390 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1391 
1392 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1393 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1394 
1395 	if (has_busy_stats(rps))
1396 		intel_rps_set_timer(rps);
1397 	else if (INTEL_GEN(i915) >= 6)
1398 		intel_rps_set_interrupts(rps);
1399 	else
1400 		/* Ironlake currently uses intel_ips.ko */ {}
1401 
1402 	intel_rps_set_enabled(rps);
1403 }
1404 
1405 static void gen6_rps_disable(struct intel_rps *rps)
1406 {
1407 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1408 }
1409 
1410 void intel_rps_disable(struct intel_rps *rps)
1411 {
1412 	struct drm_i915_private *i915 = rps_to_i915(rps);
1413 
1414 	intel_rps_clear_enabled(rps);
1415 	intel_rps_clear_interrupts(rps);
1416 	intel_rps_clear_timer(rps);
1417 
1418 	if (INTEL_GEN(i915) >= 6)
1419 		gen6_rps_disable(rps);
1420 	else if (IS_IRONLAKE_M(i915))
1421 		gen5_rps_disable(rps);
1422 }
1423 
1424 static int byt_gpu_freq(struct intel_rps *rps, int val)
1425 {
1426 	/*
1427 	 * N = val - 0xb7
1428 	 * Slow = Fast = GPLL ref * N
1429 	 */
1430 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1431 }
1432 
1433 static int byt_freq_opcode(struct intel_rps *rps, int val)
1434 {
1435 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1436 }
1437 
1438 static int chv_gpu_freq(struct intel_rps *rps, int val)
1439 {
1440 	/*
1441 	 * N = val / 2
1442 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1443 	 */
1444 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1445 }
1446 
1447 static int chv_freq_opcode(struct intel_rps *rps, int val)
1448 {
1449 	/* CHV needs even values */
1450 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1451 }
1452 
1453 int intel_gpu_freq(struct intel_rps *rps, int val)
1454 {
1455 	struct drm_i915_private *i915 = rps_to_i915(rps);
1456 
1457 	if (INTEL_GEN(i915) >= 9)
1458 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1459 					 GEN9_FREQ_SCALER);
1460 	else if (IS_CHERRYVIEW(i915))
1461 		return chv_gpu_freq(rps, val);
1462 	else if (IS_VALLEYVIEW(i915))
1463 		return byt_gpu_freq(rps, val);
1464 	else if (INTEL_GEN(i915) >= 6)
1465 		return val * GT_FREQUENCY_MULTIPLIER;
1466 	else
1467 		return val;
1468 }
1469 
1470 int intel_freq_opcode(struct intel_rps *rps, int val)
1471 {
1472 	struct drm_i915_private *i915 = rps_to_i915(rps);
1473 
1474 	if (INTEL_GEN(i915) >= 9)
1475 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1476 					 GT_FREQUENCY_MULTIPLIER);
1477 	else if (IS_CHERRYVIEW(i915))
1478 		return chv_freq_opcode(rps, val);
1479 	else if (IS_VALLEYVIEW(i915))
1480 		return byt_freq_opcode(rps, val);
1481 	else if (INTEL_GEN(i915) >= 6)
1482 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1483 	else
1484 		return val;
1485 }
1486 
1487 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1488 {
1489 	struct drm_i915_private *i915 = rps_to_i915(rps);
1490 
1491 	rps->gpll_ref_freq =
1492 		vlv_get_cck_clock(i915, "GPLL ref",
1493 				  CCK_GPLL_CLOCK_CONTROL,
1494 				  i915->czclk_freq);
1495 
1496 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1497 		rps->gpll_ref_freq);
1498 }
1499 
1500 static void vlv_rps_init(struct intel_rps *rps)
1501 {
1502 	struct drm_i915_private *i915 = rps_to_i915(rps);
1503 	u32 val;
1504 
1505 	vlv_iosf_sb_get(i915,
1506 			BIT(VLV_IOSF_SB_PUNIT) |
1507 			BIT(VLV_IOSF_SB_NC) |
1508 			BIT(VLV_IOSF_SB_CCK));
1509 
1510 	vlv_init_gpll_ref_freq(rps);
1511 
1512 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1513 	switch ((val >> 6) & 3) {
1514 	case 0:
1515 	case 1:
1516 		i915->mem_freq = 800;
1517 		break;
1518 	case 2:
1519 		i915->mem_freq = 1066;
1520 		break;
1521 	case 3:
1522 		i915->mem_freq = 1333;
1523 		break;
1524 	}
1525 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1526 
1527 	rps->max_freq = vlv_rps_max_freq(rps);
1528 	rps->rp0_freq = rps->max_freq;
1529 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1530 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1531 
1532 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1533 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1534 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1535 
1536 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1537 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1538 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1539 
1540 	rps->min_freq = vlv_rps_min_freq(rps);
1541 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1542 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1543 
1544 	vlv_iosf_sb_put(i915,
1545 			BIT(VLV_IOSF_SB_PUNIT) |
1546 			BIT(VLV_IOSF_SB_NC) |
1547 			BIT(VLV_IOSF_SB_CCK));
1548 }
1549 
1550 static void chv_rps_init(struct intel_rps *rps)
1551 {
1552 	struct drm_i915_private *i915 = rps_to_i915(rps);
1553 	u32 val;
1554 
1555 	vlv_iosf_sb_get(i915,
1556 			BIT(VLV_IOSF_SB_PUNIT) |
1557 			BIT(VLV_IOSF_SB_NC) |
1558 			BIT(VLV_IOSF_SB_CCK));
1559 
1560 	vlv_init_gpll_ref_freq(rps);
1561 
1562 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1563 
1564 	switch ((val >> 2) & 0x7) {
1565 	case 3:
1566 		i915->mem_freq = 2000;
1567 		break;
1568 	default:
1569 		i915->mem_freq = 1600;
1570 		break;
1571 	}
1572 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1573 
1574 	rps->max_freq = chv_rps_max_freq(rps);
1575 	rps->rp0_freq = rps->max_freq;
1576 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1577 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1578 
1579 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1580 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1581 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1582 
1583 	rps->rp1_freq = chv_rps_guar_freq(rps);
1584 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1585 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1586 
1587 	rps->min_freq = chv_rps_min_freq(rps);
1588 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1589 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1590 
1591 	vlv_iosf_sb_put(i915,
1592 			BIT(VLV_IOSF_SB_PUNIT) |
1593 			BIT(VLV_IOSF_SB_NC) |
1594 			BIT(VLV_IOSF_SB_CCK));
1595 
1596 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1597 				   rps->rp1_freq | rps->min_freq) & 1,
1598 		      "Odd GPU freq values\n");
1599 }
1600 
1601 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1602 {
1603 	ei->ktime = ktime_get_raw();
1604 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1605 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1606 }
1607 
1608 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1609 {
1610 	struct intel_uncore *uncore = rps_to_uncore(rps);
1611 	const struct intel_rps_ei *prev = &rps->ei;
1612 	struct intel_rps_ei now;
1613 	u32 events = 0;
1614 
1615 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1616 		return 0;
1617 
1618 	vlv_c0_read(uncore, &now);
1619 
1620 	if (prev->ktime) {
1621 		u64 time, c0;
1622 		u32 render, media;
1623 
1624 		time = ktime_us_delta(now.ktime, prev->ktime);
1625 
1626 		time *= rps_to_i915(rps)->czclk_freq;
1627 
1628 		/* Workload can be split between render + media,
1629 		 * e.g. SwapBuffers being blitted in X after being rendered in
1630 		 * mesa. To account for this we need to combine both engines
1631 		 * into our activity counter.
1632 		 */
1633 		render = now.render_c0 - prev->render_c0;
1634 		media = now.media_c0 - prev->media_c0;
1635 		c0 = max(render, media);
1636 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1637 
1638 		if (c0 > time * rps->power.up_threshold)
1639 			events = GEN6_PM_RP_UP_THRESHOLD;
1640 		else if (c0 < time * rps->power.down_threshold)
1641 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1642 	}
1643 
1644 	rps->ei = now;
1645 	return events;
1646 }
1647 
1648 static void rps_work(struct work_struct *work)
1649 {
1650 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1651 	struct intel_gt *gt = rps_to_gt(rps);
1652 	struct drm_i915_private *i915 = rps_to_i915(rps);
1653 	bool client_boost = false;
1654 	int new_freq, adj, min, max;
1655 	u32 pm_iir = 0;
1656 
1657 	spin_lock_irq(&gt->irq_lock);
1658 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1659 	client_boost = atomic_read(&rps->num_waiters);
1660 	spin_unlock_irq(&gt->irq_lock);
1661 
1662 	/* Make sure we didn't queue anything we're not going to process. */
1663 	if (!pm_iir && !client_boost)
1664 		goto out;
1665 
1666 	mutex_lock(&rps->lock);
1667 	if (!intel_rps_is_active(rps)) {
1668 		mutex_unlock(&rps->lock);
1669 		return;
1670 	}
1671 
1672 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1673 
1674 	adj = rps->last_adj;
1675 	new_freq = rps->cur_freq;
1676 	min = rps->min_freq_softlimit;
1677 	max = rps->max_freq_softlimit;
1678 	if (client_boost)
1679 		max = rps->max_freq;
1680 
1681 	GT_TRACE(gt,
1682 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1683 		 pm_iir, yesno(client_boost),
1684 		 adj, new_freq, min, max);
1685 
1686 	if (client_boost && new_freq < rps->boost_freq) {
1687 		new_freq = rps->boost_freq;
1688 		adj = 0;
1689 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1690 		if (adj > 0)
1691 			adj *= 2;
1692 		else /* CHV needs even encode values */
1693 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1694 
1695 		if (new_freq >= rps->max_freq_softlimit)
1696 			adj = 0;
1697 	} else if (client_boost) {
1698 		adj = 0;
1699 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1700 		if (rps->cur_freq > rps->efficient_freq)
1701 			new_freq = rps->efficient_freq;
1702 		else if (rps->cur_freq > rps->min_freq_softlimit)
1703 			new_freq = rps->min_freq_softlimit;
1704 		adj = 0;
1705 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1706 		if (adj < 0)
1707 			adj *= 2;
1708 		else /* CHV needs even encode values */
1709 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1710 
1711 		if (new_freq <= rps->min_freq_softlimit)
1712 			adj = 0;
1713 	} else { /* unknown event */
1714 		adj = 0;
1715 	}
1716 
1717 	/*
1718 	 * sysfs frequency limits may have snuck in while
1719 	 * servicing the interrupt
1720 	 */
1721 	new_freq += adj;
1722 	new_freq = clamp_t(int, new_freq, min, max);
1723 
1724 	if (intel_rps_set(rps, new_freq)) {
1725 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1726 		adj = 0;
1727 	}
1728 	rps->last_adj = adj;
1729 
1730 	mutex_unlock(&rps->lock);
1731 
1732 out:
1733 	spin_lock_irq(&gt->irq_lock);
1734 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1735 	spin_unlock_irq(&gt->irq_lock);
1736 }
1737 
1738 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1739 {
1740 	struct intel_gt *gt = rps_to_gt(rps);
1741 	const u32 events = rps->pm_events & pm_iir;
1742 
1743 	lockdep_assert_held(&gt->irq_lock);
1744 
1745 	if (unlikely(!events))
1746 		return;
1747 
1748 	GT_TRACE(gt, "irq events:%x\n", events);
1749 
1750 	gen6_gt_pm_mask_irq(gt, events);
1751 
1752 	rps->pm_iir |= events;
1753 	schedule_work(&rps->work);
1754 }
1755 
1756 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1757 {
1758 	struct intel_gt *gt = rps_to_gt(rps);
1759 	u32 events;
1760 
1761 	events = pm_iir & rps->pm_events;
1762 	if (events) {
1763 		spin_lock(&gt->irq_lock);
1764 
1765 		GT_TRACE(gt, "irq events:%x\n", events);
1766 
1767 		gen6_gt_pm_mask_irq(gt, events);
1768 		rps->pm_iir |= events;
1769 
1770 		schedule_work(&rps->work);
1771 		spin_unlock(&gt->irq_lock);
1772 	}
1773 
1774 	if (INTEL_GEN(gt->i915) >= 8)
1775 		return;
1776 
1777 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1778 		intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
1779 
1780 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1781 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1782 }
1783 
1784 void gen5_rps_irq_handler(struct intel_rps *rps)
1785 {
1786 	struct intel_uncore *uncore = rps_to_uncore(rps);
1787 	u32 busy_up, busy_down, max_avg, min_avg;
1788 	u8 new_freq;
1789 
1790 	spin_lock(&mchdev_lock);
1791 
1792 	intel_uncore_write16(uncore,
1793 			     MEMINTRSTS,
1794 			     intel_uncore_read(uncore, MEMINTRSTS));
1795 
1796 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1797 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1798 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1799 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1800 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1801 
1802 	/* Handle RCS change request from hw */
1803 	new_freq = rps->cur_freq;
1804 	if (busy_up > max_avg)
1805 		new_freq++;
1806 	else if (busy_down < min_avg)
1807 		new_freq--;
1808 	new_freq = clamp(new_freq,
1809 			 rps->min_freq_softlimit,
1810 			 rps->max_freq_softlimit);
1811 
1812 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1813 		rps->cur_freq = new_freq;
1814 
1815 	spin_unlock(&mchdev_lock);
1816 }
1817 
1818 void intel_rps_init_early(struct intel_rps *rps)
1819 {
1820 	mutex_init(&rps->lock);
1821 	mutex_init(&rps->power.mutex);
1822 
1823 	INIT_WORK(&rps->work, rps_work);
1824 	timer_setup(&rps->timer, rps_timer, 0);
1825 
1826 	atomic_set(&rps->num_waiters, 0);
1827 }
1828 
1829 void intel_rps_init(struct intel_rps *rps)
1830 {
1831 	struct drm_i915_private *i915 = rps_to_i915(rps);
1832 
1833 	if (IS_CHERRYVIEW(i915))
1834 		chv_rps_init(rps);
1835 	else if (IS_VALLEYVIEW(i915))
1836 		vlv_rps_init(rps);
1837 	else if (INTEL_GEN(i915) >= 6)
1838 		gen6_rps_init(rps);
1839 	else if (IS_IRONLAKE_M(i915))
1840 		gen5_rps_init(rps);
1841 
1842 	/* Derive initial user preferences/limits from the hardware limits */
1843 	rps->max_freq_softlimit = rps->max_freq;
1844 	rps->min_freq_softlimit = rps->min_freq;
1845 
1846 	/* After setting max-softlimit, find the overclock max freq */
1847 	if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1848 		u32 params = 0;
1849 
1850 		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1851 				       &params, NULL);
1852 		if (params & BIT(31)) { /* OC supported */
1853 			drm_dbg(&i915->drm,
1854 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1855 				(rps->max_freq & 0xff) * 50,
1856 				(params & 0xff) * 50);
1857 			rps->max_freq = params & 0xff;
1858 		}
1859 	}
1860 
1861 	/* Finally allow us to boost to max by default */
1862 	rps->boost_freq = rps->max_freq;
1863 	rps->idle_freq = rps->min_freq;
1864 
1865 	/* Start in the middle, from here we will autotune based on workload */
1866 	rps->cur_freq = rps->efficient_freq;
1867 
1868 	rps->pm_intrmsk_mbz = 0;
1869 
1870 	/*
1871 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1872 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1873 	 *
1874 	 * TODO: verify if this can be reproduced on VLV,CHV.
1875 	 */
1876 	if (INTEL_GEN(i915) <= 7)
1877 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1878 
1879 	if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1880 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1881 }
1882 
1883 void intel_rps_sanitize(struct intel_rps *rps)
1884 {
1885 	if (INTEL_GEN(rps_to_i915(rps)) >= 6)
1886 		rps_disable_interrupts(rps);
1887 }
1888 
1889 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1890 {
1891 	struct drm_i915_private *i915 = rps_to_i915(rps);
1892 	u32 cagf;
1893 
1894 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1895 		cagf = (rpstat >> 8) & 0xff;
1896 	else if (INTEL_GEN(i915) >= 9)
1897 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1898 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1899 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1900 	else if (INTEL_GEN(i915) >= 6)
1901 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1902 	else
1903 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
1904 					MEMSTAT_PSTATE_SHIFT);
1905 
1906 	return cagf;
1907 }
1908 
1909 static u32 read_cagf(struct intel_rps *rps)
1910 {
1911 	struct drm_i915_private *i915 = rps_to_i915(rps);
1912 	struct intel_uncore *uncore = rps_to_uncore(rps);
1913 	u32 freq;
1914 
1915 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1916 		vlv_punit_get(i915);
1917 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1918 		vlv_punit_put(i915);
1919 	} else if (INTEL_GEN(i915) >= 6) {
1920 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
1921 	} else {
1922 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
1923 	}
1924 
1925 	return intel_rps_get_cagf(rps, freq);
1926 }
1927 
1928 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1929 {
1930 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1931 	intel_wakeref_t wakeref;
1932 	u32 freq = 0;
1933 
1934 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1935 		freq = intel_gpu_freq(rps, read_cagf(rps));
1936 
1937 	return freq;
1938 }
1939 
1940 /* External interface for intel_ips.ko */
1941 
1942 static struct drm_i915_private __rcu *ips_mchdev;
1943 
1944 /**
1945  * Tells the intel_ips driver that the i915 driver is now loaded, if
1946  * IPS got loaded first.
1947  *
1948  * This awkward dance is so that neither module has to depend on the
1949  * other in order for IPS to do the appropriate communication of
1950  * GPU turbo limits to i915.
1951  */
1952 static void
1953 ips_ping_for_i915_load(void)
1954 {
1955 	void (*link)(void);
1956 
1957 	link = symbol_get(ips_link_to_i915_driver);
1958 	if (link) {
1959 		link();
1960 		symbol_put(ips_link_to_i915_driver);
1961 	}
1962 }
1963 
1964 void intel_rps_driver_register(struct intel_rps *rps)
1965 {
1966 	struct intel_gt *gt = rps_to_gt(rps);
1967 
1968 	/*
1969 	 * We only register the i915 ips part with intel-ips once everything is
1970 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
1971 	 */
1972 	if (IS_GEN(gt->i915, 5)) {
1973 		GEM_BUG_ON(ips_mchdev);
1974 		rcu_assign_pointer(ips_mchdev, gt->i915);
1975 		ips_ping_for_i915_load();
1976 	}
1977 }
1978 
1979 void intel_rps_driver_unregister(struct intel_rps *rps)
1980 {
1981 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1982 		rcu_assign_pointer(ips_mchdev, NULL);
1983 }
1984 
1985 static struct drm_i915_private *mchdev_get(void)
1986 {
1987 	struct drm_i915_private *i915;
1988 
1989 	rcu_read_lock();
1990 	i915 = rcu_dereference(ips_mchdev);
1991 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
1992 		i915 = NULL;
1993 	rcu_read_unlock();
1994 
1995 	return i915;
1996 }
1997 
1998 /**
1999  * i915_read_mch_val - return value for IPS use
2000  *
2001  * Calculate and return a value for the IPS driver to use when deciding whether
2002  * we have thermal and power headroom to increase CPU or GPU power budget.
2003  */
2004 unsigned long i915_read_mch_val(void)
2005 {
2006 	struct drm_i915_private *i915;
2007 	unsigned long chipset_val = 0;
2008 	unsigned long graphics_val = 0;
2009 	intel_wakeref_t wakeref;
2010 
2011 	i915 = mchdev_get();
2012 	if (!i915)
2013 		return 0;
2014 
2015 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2016 		struct intel_ips *ips = &i915->gt.rps.ips;
2017 
2018 		spin_lock_irq(&mchdev_lock);
2019 		chipset_val = __ips_chipset_val(ips);
2020 		graphics_val = __ips_gfx_val(ips);
2021 		spin_unlock_irq(&mchdev_lock);
2022 	}
2023 
2024 	drm_dev_put(&i915->drm);
2025 	return chipset_val + graphics_val;
2026 }
2027 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2028 
2029 /**
2030  * i915_gpu_raise - raise GPU frequency limit
2031  *
2032  * Raise the limit; IPS indicates we have thermal headroom.
2033  */
2034 bool i915_gpu_raise(void)
2035 {
2036 	struct drm_i915_private *i915;
2037 	struct intel_rps *rps;
2038 
2039 	i915 = mchdev_get();
2040 	if (!i915)
2041 		return false;
2042 
2043 	rps = &i915->gt.rps;
2044 
2045 	spin_lock_irq(&mchdev_lock);
2046 	if (rps->max_freq_softlimit < rps->max_freq)
2047 		rps->max_freq_softlimit++;
2048 	spin_unlock_irq(&mchdev_lock);
2049 
2050 	drm_dev_put(&i915->drm);
2051 	return true;
2052 }
2053 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2054 
2055 /**
2056  * i915_gpu_lower - lower GPU frequency limit
2057  *
2058  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2059  * frequency maximum.
2060  */
2061 bool i915_gpu_lower(void)
2062 {
2063 	struct drm_i915_private *i915;
2064 	struct intel_rps *rps;
2065 
2066 	i915 = mchdev_get();
2067 	if (!i915)
2068 		return false;
2069 
2070 	rps = &i915->gt.rps;
2071 
2072 	spin_lock_irq(&mchdev_lock);
2073 	if (rps->max_freq_softlimit > rps->min_freq)
2074 		rps->max_freq_softlimit--;
2075 	spin_unlock_irq(&mchdev_lock);
2076 
2077 	drm_dev_put(&i915->drm);
2078 	return true;
2079 }
2080 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2081 
2082 /**
2083  * i915_gpu_busy - indicate GPU business to IPS
2084  *
2085  * Tell the IPS driver whether or not the GPU is busy.
2086  */
2087 bool i915_gpu_busy(void)
2088 {
2089 	struct drm_i915_private *i915;
2090 	bool ret;
2091 
2092 	i915 = mchdev_get();
2093 	if (!i915)
2094 		return false;
2095 
2096 	ret = i915->gt.awake;
2097 
2098 	drm_dev_put(&i915->drm);
2099 	return ret;
2100 }
2101 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2102 
2103 /**
2104  * i915_gpu_turbo_disable - disable graphics turbo
2105  *
2106  * Disable graphics turbo by resetting the max frequency and setting the
2107  * current frequency to the default.
2108  */
2109 bool i915_gpu_turbo_disable(void)
2110 {
2111 	struct drm_i915_private *i915;
2112 	struct intel_rps *rps;
2113 	bool ret;
2114 
2115 	i915 = mchdev_get();
2116 	if (!i915)
2117 		return false;
2118 
2119 	rps = &i915->gt.rps;
2120 
2121 	spin_lock_irq(&mchdev_lock);
2122 	rps->max_freq_softlimit = rps->min_freq;
2123 	ret = !__gen5_rps_set(&i915->gt.rps, rps->min_freq);
2124 	spin_unlock_irq(&mchdev_lock);
2125 
2126 	drm_dev_put(&i915->drm);
2127 	return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2130 
2131 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2132 #include "selftest_rps.c"
2133 #endif
2134