xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision d40d48e1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/i915_drm.h>
7 
8 #include "i915_drv.h"
9 #include "intel_breadcrumbs.h"
10 #include "intel_gt.h"
11 #include "intel_gt_clock_utils.h"
12 #include "intel_gt_irq.h"
13 #include "intel_gt_pm_irq.h"
14 #include "intel_pcode.h"
15 #include "intel_rps.h"
16 #include "vlv_sideband.h"
17 #include "../../../platform/x86/intel_ips.h"
18 
19 #define BUSY_MAX_EI	20u /* ms */
20 
21 /*
22  * Lock protecting IPS related data structures
23  */
24 static DEFINE_SPINLOCK(mchdev_lock);
25 
26 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
27 {
28 	return container_of(rps, struct intel_gt, rps);
29 }
30 
31 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
32 {
33 	return rps_to_gt(rps)->i915;
34 }
35 
36 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
37 {
38 	return rps_to_gt(rps)->uncore;
39 }
40 
41 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
42 {
43 	struct intel_gt *gt = rps_to_gt(rps);
44 
45 	return &gt->uc.guc.slpc;
46 }
47 
48 static bool rps_uses_slpc(struct intel_rps *rps)
49 {
50 	struct intel_gt *gt = rps_to_gt(rps);
51 
52 	return intel_uc_uses_guc_slpc(&gt->uc);
53 }
54 
55 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
56 {
57 	return mask & ~rps->pm_intrmsk_mbz;
58 }
59 
60 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
61 {
62 	intel_uncore_write_fw(uncore, reg, val);
63 }
64 
65 static void rps_timer(struct timer_list *t)
66 {
67 	struct intel_rps *rps = from_timer(rps, t, timer);
68 	struct intel_engine_cs *engine;
69 	ktime_t dt, last, timestamp;
70 	enum intel_engine_id id;
71 	s64 max_busy[3] = {};
72 
73 	timestamp = 0;
74 	for_each_engine(engine, rps_to_gt(rps), id) {
75 		s64 busy;
76 		int i;
77 
78 		dt = intel_engine_get_busy_time(engine, &timestamp);
79 		last = engine->stats.rps;
80 		engine->stats.rps = dt;
81 
82 		busy = ktime_to_ns(ktime_sub(dt, last));
83 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
84 			if (busy > max_busy[i])
85 				swap(busy, max_busy[i]);
86 		}
87 	}
88 	last = rps->pm_timestamp;
89 	rps->pm_timestamp = timestamp;
90 
91 	if (intel_rps_is_active(rps)) {
92 		s64 busy;
93 		int i;
94 
95 		dt = ktime_sub(timestamp, last);
96 
97 		/*
98 		 * Our goal is to evaluate each engine independently, so we run
99 		 * at the lowest clocks required to sustain the heaviest
100 		 * workload. However, a task may be split into sequential
101 		 * dependent operations across a set of engines, such that
102 		 * the independent contributions do not account for high load,
103 		 * but overall the task is GPU bound. For example, consider
104 		 * video decode on vcs followed by colour post-processing
105 		 * on vecs, followed by general post-processing on rcs.
106 		 * Since multi-engines being active does imply a single
107 		 * continuous workload across all engines, we hedge our
108 		 * bets by only contributing a factor of the distributed
109 		 * load into our busyness calculation.
110 		 */
111 		busy = max_busy[0];
112 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
113 			if (!max_busy[i])
114 				break;
115 
116 			busy += div_u64(max_busy[i], 1 << i);
117 		}
118 		GT_TRACE(rps_to_gt(rps),
119 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
120 			 busy, (int)div64_u64(100 * busy, dt),
121 			 max_busy[0], max_busy[1], max_busy[2],
122 			 rps->pm_interval);
123 
124 		if (100 * busy > rps->power.up_threshold * dt &&
125 		    rps->cur_freq < rps->max_freq_softlimit) {
126 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
127 			rps->pm_interval = 1;
128 			schedule_work(&rps->work);
129 		} else if (100 * busy < rps->power.down_threshold * dt &&
130 			   rps->cur_freq > rps->min_freq_softlimit) {
131 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
132 			rps->pm_interval = 1;
133 			schedule_work(&rps->work);
134 		} else {
135 			rps->last_adj = 0;
136 		}
137 
138 		mod_timer(&rps->timer,
139 			  jiffies + msecs_to_jiffies(rps->pm_interval));
140 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
141 	}
142 }
143 
144 static void rps_start_timer(struct intel_rps *rps)
145 {
146 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
147 	rps->pm_interval = 1;
148 	mod_timer(&rps->timer, jiffies + 1);
149 }
150 
151 static void rps_stop_timer(struct intel_rps *rps)
152 {
153 	del_timer_sync(&rps->timer);
154 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
155 	cancel_work_sync(&rps->work);
156 }
157 
158 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
159 {
160 	u32 mask = 0;
161 
162 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
163 	if (val > rps->min_freq_softlimit)
164 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
165 			 GEN6_PM_RP_DOWN_THRESHOLD |
166 			 GEN6_PM_RP_DOWN_TIMEOUT);
167 
168 	if (val < rps->max_freq_softlimit)
169 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
170 
171 	mask &= rps->pm_events;
172 
173 	return rps_pm_sanitize_mask(rps, ~mask);
174 }
175 
176 static void rps_reset_ei(struct intel_rps *rps)
177 {
178 	memset(&rps->ei, 0, sizeof(rps->ei));
179 }
180 
181 static void rps_enable_interrupts(struct intel_rps *rps)
182 {
183 	struct intel_gt *gt = rps_to_gt(rps);
184 
185 	GEM_BUG_ON(rps_uses_slpc(rps));
186 
187 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
188 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
189 
190 	rps_reset_ei(rps);
191 
192 	spin_lock_irq(&gt->irq_lock);
193 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
194 	spin_unlock_irq(&gt->irq_lock);
195 
196 	intel_uncore_write(gt->uncore,
197 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
198 }
199 
200 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
201 {
202 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
203 }
204 
205 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
206 {
207 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
208 		;
209 }
210 
211 static void rps_reset_interrupts(struct intel_rps *rps)
212 {
213 	struct intel_gt *gt = rps_to_gt(rps);
214 
215 	spin_lock_irq(&gt->irq_lock);
216 	if (GRAPHICS_VER(gt->i915) >= 11)
217 		gen11_rps_reset_interrupts(rps);
218 	else
219 		gen6_rps_reset_interrupts(rps);
220 
221 	rps->pm_iir = 0;
222 	spin_unlock_irq(&gt->irq_lock);
223 }
224 
225 static void rps_disable_interrupts(struct intel_rps *rps)
226 {
227 	struct intel_gt *gt = rps_to_gt(rps);
228 
229 	intel_uncore_write(gt->uncore,
230 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
231 
232 	spin_lock_irq(&gt->irq_lock);
233 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
234 	spin_unlock_irq(&gt->irq_lock);
235 
236 	intel_synchronize_irq(gt->i915);
237 
238 	/*
239 	 * Now that we will not be generating any more work, flush any
240 	 * outstanding tasks. As we are called on the RPS idle path,
241 	 * we will reset the GPU to minimum frequencies, so the current
242 	 * state of the worker can be discarded.
243 	 */
244 	cancel_work_sync(&rps->work);
245 
246 	rps_reset_interrupts(rps);
247 	GT_TRACE(gt, "interrupts:off\n");
248 }
249 
250 static const struct cparams {
251 	u16 i;
252 	u16 t;
253 	u16 m;
254 	u16 c;
255 } cparams[] = {
256 	{ 1, 1333, 301, 28664 },
257 	{ 1, 1066, 294, 24460 },
258 	{ 1, 800, 294, 25192 },
259 	{ 0, 1333, 276, 27605 },
260 	{ 0, 1066, 276, 27605 },
261 	{ 0, 800, 231, 23784 },
262 };
263 
264 static void gen5_rps_init(struct intel_rps *rps)
265 {
266 	struct drm_i915_private *i915 = rps_to_i915(rps);
267 	struct intel_uncore *uncore = rps_to_uncore(rps);
268 	u8 fmax, fmin, fstart;
269 	u32 rgvmodectl;
270 	int c_m, i;
271 
272 	if (i915->fsb_freq <= 3200)
273 		c_m = 0;
274 	else if (i915->fsb_freq <= 4800)
275 		c_m = 1;
276 	else
277 		c_m = 2;
278 
279 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
280 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
281 			rps->ips.m = cparams[i].m;
282 			rps->ips.c = cparams[i].c;
283 			break;
284 		}
285 	}
286 
287 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
288 
289 	/* Set up min, max, and cur for interrupt handling */
290 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
291 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
292 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
293 		MEMMODE_FSTART_SHIFT;
294 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
295 		fmax, fmin, fstart);
296 
297 	rps->min_freq = fmax;
298 	rps->efficient_freq = fstart;
299 	rps->max_freq = fmin;
300 }
301 
302 static unsigned long
303 __ips_chipset_val(struct intel_ips *ips)
304 {
305 	struct intel_uncore *uncore =
306 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
307 	unsigned long now = jiffies_to_msecs(jiffies), dt;
308 	unsigned long result;
309 	u64 total, delta;
310 
311 	lockdep_assert_held(&mchdev_lock);
312 
313 	/*
314 	 * Prevent division-by-zero if we are asking too fast.
315 	 * Also, we don't get interesting results if we are polling
316 	 * faster than once in 10ms, so just return the saved value
317 	 * in such cases.
318 	 */
319 	dt = now - ips->last_time1;
320 	if (dt <= 10)
321 		return ips->chipset_power;
322 
323 	/* FIXME: handle per-counter overflow */
324 	total = intel_uncore_read(uncore, DMIEC);
325 	total += intel_uncore_read(uncore, DDREC);
326 	total += intel_uncore_read(uncore, CSIEC);
327 
328 	delta = total - ips->last_count1;
329 
330 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
331 
332 	ips->last_count1 = total;
333 	ips->last_time1 = now;
334 
335 	ips->chipset_power = result;
336 
337 	return result;
338 }
339 
340 static unsigned long ips_mch_val(struct intel_uncore *uncore)
341 {
342 	unsigned int m, x, b;
343 	u32 tsfs;
344 
345 	tsfs = intel_uncore_read(uncore, TSFS);
346 	x = intel_uncore_read8(uncore, TR1);
347 
348 	b = tsfs & TSFS_INTR_MASK;
349 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
350 
351 	return m * x / 127 - b;
352 }
353 
354 static int _pxvid_to_vd(u8 pxvid)
355 {
356 	if (pxvid == 0)
357 		return 0;
358 
359 	if (pxvid >= 8 && pxvid < 31)
360 		pxvid = 31;
361 
362 	return (pxvid + 2) * 125;
363 }
364 
365 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
366 {
367 	const int vd = _pxvid_to_vd(pxvid);
368 
369 	if (INTEL_INFO(i915)->is_mobile)
370 		return max(vd - 1125, 0);
371 
372 	return vd;
373 }
374 
375 static void __gen5_ips_update(struct intel_ips *ips)
376 {
377 	struct intel_uncore *uncore =
378 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
379 	u64 now, delta, dt;
380 	u32 count;
381 
382 	lockdep_assert_held(&mchdev_lock);
383 
384 	now = ktime_get_raw_ns();
385 	dt = now - ips->last_time2;
386 	do_div(dt, NSEC_PER_MSEC);
387 
388 	/* Don't divide by 0 */
389 	if (dt <= 10)
390 		return;
391 
392 	count = intel_uncore_read(uncore, GFXEC);
393 	delta = count - ips->last_count2;
394 
395 	ips->last_count2 = count;
396 	ips->last_time2 = now;
397 
398 	/* More magic constants... */
399 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
400 }
401 
402 static void gen5_rps_update(struct intel_rps *rps)
403 {
404 	spin_lock_irq(&mchdev_lock);
405 	__gen5_ips_update(&rps->ips);
406 	spin_unlock_irq(&mchdev_lock);
407 }
408 
409 static unsigned int gen5_invert_freq(struct intel_rps *rps,
410 				     unsigned int val)
411 {
412 	/* Invert the frequency bin into an ips delay */
413 	val = rps->max_freq - val;
414 	val = rps->min_freq + val;
415 
416 	return val;
417 }
418 
419 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
420 {
421 	struct intel_uncore *uncore = rps_to_uncore(rps);
422 	u16 rgvswctl;
423 
424 	lockdep_assert_held(&mchdev_lock);
425 
426 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
427 	if (rgvswctl & MEMCTL_CMD_STS) {
428 		DRM_DEBUG("gpu busy, RCS change rejected\n");
429 		return -EBUSY; /* still busy with another command */
430 	}
431 
432 	/* Invert the frequency bin into an ips delay */
433 	val = gen5_invert_freq(rps, val);
434 
435 	rgvswctl =
436 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
437 		(val << MEMCTL_FREQ_SHIFT) |
438 		MEMCTL_SFCAVM;
439 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
440 	intel_uncore_posting_read16(uncore, MEMSWCTL);
441 
442 	rgvswctl |= MEMCTL_CMD_STS;
443 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
444 
445 	return 0;
446 }
447 
448 static int gen5_rps_set(struct intel_rps *rps, u8 val)
449 {
450 	int err;
451 
452 	spin_lock_irq(&mchdev_lock);
453 	err = __gen5_rps_set(rps, val);
454 	spin_unlock_irq(&mchdev_lock);
455 
456 	return err;
457 }
458 
459 static unsigned long intel_pxfreq(u32 vidfreq)
460 {
461 	int div = (vidfreq & 0x3f0000) >> 16;
462 	int post = (vidfreq & 0x3000) >> 12;
463 	int pre = (vidfreq & 0x7);
464 
465 	if (!pre)
466 		return 0;
467 
468 	return div * 133333 / (pre << post);
469 }
470 
471 static unsigned int init_emon(struct intel_uncore *uncore)
472 {
473 	u8 pxw[16];
474 	int i;
475 
476 	/* Disable to program */
477 	intel_uncore_write(uncore, ECR, 0);
478 	intel_uncore_posting_read(uncore, ECR);
479 
480 	/* Program energy weights for various events */
481 	intel_uncore_write(uncore, SDEW, 0x15040d00);
482 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
483 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
484 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
485 
486 	for (i = 0; i < 5; i++)
487 		intel_uncore_write(uncore, PEW(i), 0);
488 	for (i = 0; i < 3; i++)
489 		intel_uncore_write(uncore, DEW(i), 0);
490 
491 	/* Program P-state weights to account for frequency power adjustment */
492 	for (i = 0; i < 16; i++) {
493 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
494 		unsigned int freq = intel_pxfreq(pxvidfreq);
495 		unsigned int vid =
496 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
497 		unsigned int val;
498 
499 		val = vid * vid * freq / 1000 * 255;
500 		val /= 127 * 127 * 900;
501 
502 		pxw[i] = val;
503 	}
504 	/* Render standby states get 0 weight */
505 	pxw[14] = 0;
506 	pxw[15] = 0;
507 
508 	for (i = 0; i < 4; i++) {
509 		intel_uncore_write(uncore, PXW(i),
510 				   pxw[i * 4 + 0] << 24 |
511 				   pxw[i * 4 + 1] << 16 |
512 				   pxw[i * 4 + 2] <<  8 |
513 				   pxw[i * 4 + 3] <<  0);
514 	}
515 
516 	/* Adjust magic regs to magic values (more experimental results) */
517 	intel_uncore_write(uncore, OGW0, 0);
518 	intel_uncore_write(uncore, OGW1, 0);
519 	intel_uncore_write(uncore, EG0, 0x00007f00);
520 	intel_uncore_write(uncore, EG1, 0x0000000e);
521 	intel_uncore_write(uncore, EG2, 0x000e0000);
522 	intel_uncore_write(uncore, EG3, 0x68000300);
523 	intel_uncore_write(uncore, EG4, 0x42000000);
524 	intel_uncore_write(uncore, EG5, 0x00140031);
525 	intel_uncore_write(uncore, EG6, 0);
526 	intel_uncore_write(uncore, EG7, 0);
527 
528 	for (i = 0; i < 8; i++)
529 		intel_uncore_write(uncore, PXWL(i), 0);
530 
531 	/* Enable PMON + select events */
532 	intel_uncore_write(uncore, ECR, 0x80000019);
533 
534 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
535 }
536 
537 static bool gen5_rps_enable(struct intel_rps *rps)
538 {
539 	struct drm_i915_private *i915 = rps_to_i915(rps);
540 	struct intel_uncore *uncore = rps_to_uncore(rps);
541 	u8 fstart, vstart;
542 	u32 rgvmodectl;
543 
544 	spin_lock_irq(&mchdev_lock);
545 
546 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
547 
548 	/* Enable temp reporting */
549 	intel_uncore_write16(uncore, PMMISC,
550 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
551 	intel_uncore_write16(uncore, TSC1,
552 			     intel_uncore_read16(uncore, TSC1) | TSE);
553 
554 	/* 100ms RC evaluation intervals */
555 	intel_uncore_write(uncore, RCUPEI, 100000);
556 	intel_uncore_write(uncore, RCDNEI, 100000);
557 
558 	/* Set max/min thresholds to 90ms and 80ms respectively */
559 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
560 	intel_uncore_write(uncore, RCBMINAVG, 80000);
561 
562 	intel_uncore_write(uncore, MEMIHYST, 1);
563 
564 	/* Set up min, max, and cur for interrupt handling */
565 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
566 		MEMMODE_FSTART_SHIFT;
567 
568 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
569 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
570 
571 	intel_uncore_write(uncore,
572 			   MEMINTREN,
573 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
574 
575 	intel_uncore_write(uncore, VIDSTART, vstart);
576 	intel_uncore_posting_read(uncore, VIDSTART);
577 
578 	rgvmodectl |= MEMMODE_SWMODE_EN;
579 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
580 
581 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
582 			     MEMCTL_CMD_STS) == 0, 10))
583 		drm_err(&uncore->i915->drm,
584 			"stuck trying to change perf mode\n");
585 	mdelay(1);
586 
587 	__gen5_rps_set(rps, rps->cur_freq);
588 
589 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
590 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
591 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
592 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
593 
594 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
595 	rps->ips.last_time2 = ktime_get_raw_ns();
596 
597 	spin_lock(&i915->irq_lock);
598 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
599 	spin_unlock(&i915->irq_lock);
600 
601 	spin_unlock_irq(&mchdev_lock);
602 
603 	rps->ips.corr = init_emon(uncore);
604 
605 	return true;
606 }
607 
608 static void gen5_rps_disable(struct intel_rps *rps)
609 {
610 	struct drm_i915_private *i915 = rps_to_i915(rps);
611 	struct intel_uncore *uncore = rps_to_uncore(rps);
612 	u16 rgvswctl;
613 
614 	spin_lock_irq(&mchdev_lock);
615 
616 	spin_lock(&i915->irq_lock);
617 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
618 	spin_unlock(&i915->irq_lock);
619 
620 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
621 
622 	/* Ack interrupts, disable EFC interrupt */
623 	intel_uncore_write(uncore, MEMINTREN,
624 			   intel_uncore_read(uncore, MEMINTREN) &
625 			   ~MEMINT_EVAL_CHG_EN);
626 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
627 
628 	/* Go back to the starting frequency */
629 	__gen5_rps_set(rps, rps->idle_freq);
630 	mdelay(1);
631 	rgvswctl |= MEMCTL_CMD_STS;
632 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
633 	mdelay(1);
634 
635 	spin_unlock_irq(&mchdev_lock);
636 }
637 
638 static u32 rps_limits(struct intel_rps *rps, u8 val)
639 {
640 	u32 limits;
641 
642 	/*
643 	 * Only set the down limit when we've reached the lowest level to avoid
644 	 * getting more interrupts, otherwise leave this clear. This prevents a
645 	 * race in the hw when coming out of rc6: There's a tiny window where
646 	 * the hw runs at the minimal clock before selecting the desired
647 	 * frequency, if the down threshold expires in that window we will not
648 	 * receive a down interrupt.
649 	 */
650 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
651 		limits = rps->max_freq_softlimit << 23;
652 		if (val <= rps->min_freq_softlimit)
653 			limits |= rps->min_freq_softlimit << 14;
654 	} else {
655 		limits = rps->max_freq_softlimit << 24;
656 		if (val <= rps->min_freq_softlimit)
657 			limits |= rps->min_freq_softlimit << 16;
658 	}
659 
660 	return limits;
661 }
662 
663 static void rps_set_power(struct intel_rps *rps, int new_power)
664 {
665 	struct intel_gt *gt = rps_to_gt(rps);
666 	struct intel_uncore *uncore = gt->uncore;
667 	u32 threshold_up = 0, threshold_down = 0; /* in % */
668 	u32 ei_up = 0, ei_down = 0;
669 
670 	lockdep_assert_held(&rps->power.mutex);
671 
672 	if (new_power == rps->power.mode)
673 		return;
674 
675 	threshold_up = 95;
676 	threshold_down = 85;
677 
678 	/* Note the units here are not exactly 1us, but 1280ns. */
679 	switch (new_power) {
680 	case LOW_POWER:
681 		ei_up = 16000;
682 		ei_down = 32000;
683 		break;
684 
685 	case BETWEEN:
686 		ei_up = 13000;
687 		ei_down = 32000;
688 		break;
689 
690 	case HIGH_POWER:
691 		ei_up = 10000;
692 		ei_down = 32000;
693 		break;
694 	}
695 
696 	/* When byt can survive without system hang with dynamic
697 	 * sw freq adjustments, this restriction can be lifted.
698 	 */
699 	if (IS_VALLEYVIEW(gt->i915))
700 		goto skip_hw_write;
701 
702 	GT_TRACE(gt,
703 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
704 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
705 
706 	set(uncore, GEN6_RP_UP_EI,
707 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
708 	set(uncore, GEN6_RP_UP_THRESHOLD,
709 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
710 
711 	set(uncore, GEN6_RP_DOWN_EI,
712 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
713 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
714 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
715 
716 	set(uncore, GEN6_RP_CONTROL,
717 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
718 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
719 	    GEN6_RP_MEDIA_IS_GFX |
720 	    GEN6_RP_ENABLE |
721 	    GEN6_RP_UP_BUSY_AVG |
722 	    GEN6_RP_DOWN_IDLE_AVG);
723 
724 skip_hw_write:
725 	rps->power.mode = new_power;
726 	rps->power.up_threshold = threshold_up;
727 	rps->power.down_threshold = threshold_down;
728 }
729 
730 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
731 {
732 	int new_power;
733 
734 	new_power = rps->power.mode;
735 	switch (rps->power.mode) {
736 	case LOW_POWER:
737 		if (val > rps->efficient_freq + 1 &&
738 		    val > rps->cur_freq)
739 			new_power = BETWEEN;
740 		break;
741 
742 	case BETWEEN:
743 		if (val <= rps->efficient_freq &&
744 		    val < rps->cur_freq)
745 			new_power = LOW_POWER;
746 		else if (val >= rps->rp0_freq &&
747 			 val > rps->cur_freq)
748 			new_power = HIGH_POWER;
749 		break;
750 
751 	case HIGH_POWER:
752 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
753 		    val < rps->cur_freq)
754 			new_power = BETWEEN;
755 		break;
756 	}
757 	/* Max/min bins are special */
758 	if (val <= rps->min_freq_softlimit)
759 		new_power = LOW_POWER;
760 	if (val >= rps->max_freq_softlimit)
761 		new_power = HIGH_POWER;
762 
763 	mutex_lock(&rps->power.mutex);
764 	if (rps->power.interactive)
765 		new_power = HIGH_POWER;
766 	rps_set_power(rps, new_power);
767 	mutex_unlock(&rps->power.mutex);
768 }
769 
770 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
771 {
772 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
773 
774 	mutex_lock(&rps->power.mutex);
775 	if (interactive) {
776 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
777 			rps_set_power(rps, HIGH_POWER);
778 	} else {
779 		GEM_BUG_ON(!rps->power.interactive);
780 		rps->power.interactive--;
781 	}
782 	mutex_unlock(&rps->power.mutex);
783 }
784 
785 static int gen6_rps_set(struct intel_rps *rps, u8 val)
786 {
787 	struct intel_uncore *uncore = rps_to_uncore(rps);
788 	struct drm_i915_private *i915 = rps_to_i915(rps);
789 	u32 swreq;
790 
791 	GEM_BUG_ON(rps_uses_slpc(rps));
792 
793 	if (GRAPHICS_VER(i915) >= 9)
794 		swreq = GEN9_FREQUENCY(val);
795 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
796 		swreq = HSW_FREQUENCY(val);
797 	else
798 		swreq = (GEN6_FREQUENCY(val) |
799 			 GEN6_OFFSET(0) |
800 			 GEN6_AGGRESSIVE_TURBO);
801 	set(uncore, GEN6_RPNSWREQ, swreq);
802 
803 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
804 		 val, intel_gpu_freq(rps, val), swreq);
805 
806 	return 0;
807 }
808 
809 static int vlv_rps_set(struct intel_rps *rps, u8 val)
810 {
811 	struct drm_i915_private *i915 = rps_to_i915(rps);
812 	int err;
813 
814 	vlv_punit_get(i915);
815 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
816 	vlv_punit_put(i915);
817 
818 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
819 		 val, intel_gpu_freq(rps, val));
820 
821 	return err;
822 }
823 
824 static int rps_set(struct intel_rps *rps, u8 val, bool update)
825 {
826 	struct drm_i915_private *i915 = rps_to_i915(rps);
827 	int err;
828 
829 	if (val == rps->last_freq)
830 		return 0;
831 
832 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
833 		err = vlv_rps_set(rps, val);
834 	else if (GRAPHICS_VER(i915) >= 6)
835 		err = gen6_rps_set(rps, val);
836 	else
837 		err = gen5_rps_set(rps, val);
838 	if (err)
839 		return err;
840 
841 	if (update && GRAPHICS_VER(i915) >= 6)
842 		gen6_rps_set_thresholds(rps, val);
843 	rps->last_freq = val;
844 
845 	return 0;
846 }
847 
848 void intel_rps_unpark(struct intel_rps *rps)
849 {
850 	if (!intel_rps_is_enabled(rps))
851 		return;
852 
853 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
854 
855 	/*
856 	 * Use the user's desired frequency as a guide, but for better
857 	 * performance, jump directly to RPe as our starting frequency.
858 	 */
859 	mutex_lock(&rps->lock);
860 
861 	intel_rps_set_active(rps);
862 	intel_rps_set(rps,
863 		      clamp(rps->cur_freq,
864 			    rps->min_freq_softlimit,
865 			    rps->max_freq_softlimit));
866 
867 	mutex_unlock(&rps->lock);
868 
869 	rps->pm_iir = 0;
870 	if (intel_rps_has_interrupts(rps))
871 		rps_enable_interrupts(rps);
872 	if (intel_rps_uses_timer(rps))
873 		rps_start_timer(rps);
874 
875 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
876 		gen5_rps_update(rps);
877 }
878 
879 void intel_rps_park(struct intel_rps *rps)
880 {
881 	int adj;
882 
883 	if (!intel_rps_is_enabled(rps))
884 		return;
885 
886 	if (!intel_rps_clear_active(rps))
887 		return;
888 
889 	if (intel_rps_uses_timer(rps))
890 		rps_stop_timer(rps);
891 	if (intel_rps_has_interrupts(rps))
892 		rps_disable_interrupts(rps);
893 
894 	if (rps->last_freq <= rps->idle_freq)
895 		return;
896 
897 	/*
898 	 * The punit delays the write of the frequency and voltage until it
899 	 * determines the GPU is awake. During normal usage we don't want to
900 	 * waste power changing the frequency if the GPU is sleeping (rc6).
901 	 * However, the GPU and driver is now idle and we do not want to delay
902 	 * switching to minimum voltage (reducing power whilst idle) as we do
903 	 * not expect to be woken in the near future and so must flush the
904 	 * change by waking the device.
905 	 *
906 	 * We choose to take the media powerwell (either would do to trick the
907 	 * punit into committing the voltage change) as that takes a lot less
908 	 * power than the render powerwell.
909 	 */
910 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
911 	rps_set(rps, rps->idle_freq, false);
912 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
913 
914 	/*
915 	 * Since we will try and restart from the previously requested
916 	 * frequency on unparking, treat this idle point as a downclock
917 	 * interrupt and reduce the frequency for resume. If we park/unpark
918 	 * more frequently than the rps worker can run, we will not respond
919 	 * to any EI and never see a change in frequency.
920 	 *
921 	 * (Note we accommodate Cherryview's limitation of only using an
922 	 * even bin by applying it to all.)
923 	 */
924 	adj = rps->last_adj;
925 	if (adj < 0)
926 		adj *= 2;
927 	else /* CHV needs even encode values */
928 		adj = -2;
929 	rps->last_adj = adj;
930 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
931 	if (rps->cur_freq < rps->efficient_freq) {
932 		rps->cur_freq = rps->efficient_freq;
933 		rps->last_adj = 0;
934 	}
935 
936 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
937 }
938 
939 void intel_rps_boost(struct i915_request *rq)
940 {
941 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
942 		return;
943 
944 	/* Serializes with i915_request_retire() */
945 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
946 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
947 
948 		if (atomic_fetch_inc(&rps->num_waiters))
949 			return;
950 
951 		if (!intel_rps_is_active(rps))
952 			return;
953 
954 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
955 			 rq->fence.context, rq->fence.seqno);
956 
957 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
958 			schedule_work(&rps->work);
959 
960 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
961 	}
962 }
963 
964 int intel_rps_set(struct intel_rps *rps, u8 val)
965 {
966 	int err;
967 
968 	lockdep_assert_held(&rps->lock);
969 	GEM_BUG_ON(val > rps->max_freq);
970 	GEM_BUG_ON(val < rps->min_freq);
971 
972 	if (intel_rps_is_active(rps)) {
973 		err = rps_set(rps, val, true);
974 		if (err)
975 			return err;
976 
977 		/*
978 		 * Make sure we continue to get interrupts
979 		 * until we hit the minimum or maximum frequencies.
980 		 */
981 		if (intel_rps_has_interrupts(rps)) {
982 			struct intel_uncore *uncore = rps_to_uncore(rps);
983 
984 			set(uncore,
985 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
986 
987 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
988 		}
989 	}
990 
991 	rps->cur_freq = val;
992 	return 0;
993 }
994 
995 static void gen6_rps_init(struct intel_rps *rps)
996 {
997 	struct drm_i915_private *i915 = rps_to_i915(rps);
998 	u32 rp_state_cap = intel_rps_read_state_cap(rps);
999 
1000 	/* All of these values are in units of 50MHz */
1001 
1002 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1003 	if (IS_GEN9_LP(i915)) {
1004 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1005 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1006 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
1007 	} else {
1008 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1009 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1010 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
1011 	}
1012 
1013 	/* hw_max = RP0 until we check for overclocking */
1014 	rps->max_freq = rps->rp0_freq;
1015 
1016 	rps->efficient_freq = rps->rp1_freq;
1017 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1018 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1019 		u32 ddcc_status = 0;
1020 
1021 		if (sandybridge_pcode_read(i915,
1022 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1023 					   &ddcc_status, NULL) == 0)
1024 			rps->efficient_freq =
1025 				clamp_t(u8,
1026 					(ddcc_status >> 8) & 0xff,
1027 					rps->min_freq,
1028 					rps->max_freq);
1029 	}
1030 
1031 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1032 		/* Store the frequency values in 16.66 MHZ units, which is
1033 		 * the natural hardware unit for SKL
1034 		 */
1035 		rps->rp0_freq *= GEN9_FREQ_SCALER;
1036 		rps->rp1_freq *= GEN9_FREQ_SCALER;
1037 		rps->min_freq *= GEN9_FREQ_SCALER;
1038 		rps->max_freq *= GEN9_FREQ_SCALER;
1039 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1040 	}
1041 }
1042 
1043 static bool rps_reset(struct intel_rps *rps)
1044 {
1045 	struct drm_i915_private *i915 = rps_to_i915(rps);
1046 
1047 	/* force a reset */
1048 	rps->power.mode = -1;
1049 	rps->last_freq = -1;
1050 
1051 	if (rps_set(rps, rps->min_freq, true)) {
1052 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1053 		return false;
1054 	}
1055 
1056 	rps->cur_freq = rps->min_freq;
1057 	return true;
1058 }
1059 
1060 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1061 static bool gen9_rps_enable(struct intel_rps *rps)
1062 {
1063 	struct intel_gt *gt = rps_to_gt(rps);
1064 	struct intel_uncore *uncore = gt->uncore;
1065 
1066 	/* Program defaults and thresholds for RPS */
1067 	if (GRAPHICS_VER(gt->i915) == 9)
1068 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1069 				      GEN9_FREQUENCY(rps->rp1_freq));
1070 
1071 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1072 
1073 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1074 
1075 	return rps_reset(rps);
1076 }
1077 
1078 static bool gen8_rps_enable(struct intel_rps *rps)
1079 {
1080 	struct intel_uncore *uncore = rps_to_uncore(rps);
1081 
1082 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1083 			      HSW_FREQUENCY(rps->rp1_freq));
1084 
1085 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1086 
1087 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1088 
1089 	return rps_reset(rps);
1090 }
1091 
1092 static bool gen6_rps_enable(struct intel_rps *rps)
1093 {
1094 	struct intel_uncore *uncore = rps_to_uncore(rps);
1095 
1096 	/* Power down if completely idle for over 50ms */
1097 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1098 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1099 
1100 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1101 			  GEN6_PM_RP_DOWN_THRESHOLD |
1102 			  GEN6_PM_RP_DOWN_TIMEOUT);
1103 
1104 	return rps_reset(rps);
1105 }
1106 
1107 static int chv_rps_max_freq(struct intel_rps *rps)
1108 {
1109 	struct drm_i915_private *i915 = rps_to_i915(rps);
1110 	struct intel_gt *gt = rps_to_gt(rps);
1111 	u32 val;
1112 
1113 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1114 
1115 	switch (gt->info.sseu.eu_total) {
1116 	case 8:
1117 		/* (2 * 4) config */
1118 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1119 		break;
1120 	case 12:
1121 		/* (2 * 6) config */
1122 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1123 		break;
1124 	case 16:
1125 		/* (2 * 8) config */
1126 	default:
1127 		/* Setting (2 * 8) Min RP0 for any other combination */
1128 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1129 		break;
1130 	}
1131 
1132 	return val & FB_GFX_FREQ_FUSE_MASK;
1133 }
1134 
1135 static int chv_rps_rpe_freq(struct intel_rps *rps)
1136 {
1137 	struct drm_i915_private *i915 = rps_to_i915(rps);
1138 	u32 val;
1139 
1140 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1141 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1142 
1143 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1144 }
1145 
1146 static int chv_rps_guar_freq(struct intel_rps *rps)
1147 {
1148 	struct drm_i915_private *i915 = rps_to_i915(rps);
1149 	u32 val;
1150 
1151 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1152 
1153 	return val & FB_GFX_FREQ_FUSE_MASK;
1154 }
1155 
1156 static u32 chv_rps_min_freq(struct intel_rps *rps)
1157 {
1158 	struct drm_i915_private *i915 = rps_to_i915(rps);
1159 	u32 val;
1160 
1161 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1162 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1163 
1164 	return val & FB_GFX_FREQ_FUSE_MASK;
1165 }
1166 
1167 static bool chv_rps_enable(struct intel_rps *rps)
1168 {
1169 	struct intel_uncore *uncore = rps_to_uncore(rps);
1170 	struct drm_i915_private *i915 = rps_to_i915(rps);
1171 	u32 val;
1172 
1173 	/* 1: Program defaults and thresholds for RPS*/
1174 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1175 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1176 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1177 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1178 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1179 
1180 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1181 
1182 	/* 2: Enable RPS */
1183 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1184 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1185 			      GEN6_RP_MEDIA_IS_GFX |
1186 			      GEN6_RP_ENABLE |
1187 			      GEN6_RP_UP_BUSY_AVG |
1188 			      GEN6_RP_DOWN_IDLE_AVG);
1189 
1190 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1191 			  GEN6_PM_RP_DOWN_THRESHOLD |
1192 			  GEN6_PM_RP_DOWN_TIMEOUT);
1193 
1194 	/* Setting Fixed Bias */
1195 	vlv_punit_get(i915);
1196 
1197 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1198 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1199 
1200 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1201 
1202 	vlv_punit_put(i915);
1203 
1204 	/* RPS code assumes GPLL is used */
1205 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1206 		      "GPLL not enabled\n");
1207 
1208 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1209 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1210 
1211 	return rps_reset(rps);
1212 }
1213 
1214 static int vlv_rps_guar_freq(struct intel_rps *rps)
1215 {
1216 	struct drm_i915_private *i915 = rps_to_i915(rps);
1217 	u32 val, rp1;
1218 
1219 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1220 
1221 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1222 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1223 
1224 	return rp1;
1225 }
1226 
1227 static int vlv_rps_max_freq(struct intel_rps *rps)
1228 {
1229 	struct drm_i915_private *i915 = rps_to_i915(rps);
1230 	u32 val, rp0;
1231 
1232 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1233 
1234 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1235 	/* Clamp to max */
1236 	rp0 = min_t(u32, rp0, 0xea);
1237 
1238 	return rp0;
1239 }
1240 
1241 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1242 {
1243 	struct drm_i915_private *i915 = rps_to_i915(rps);
1244 	u32 val, rpe;
1245 
1246 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1247 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1248 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1249 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1250 
1251 	return rpe;
1252 }
1253 
1254 static int vlv_rps_min_freq(struct intel_rps *rps)
1255 {
1256 	struct drm_i915_private *i915 = rps_to_i915(rps);
1257 	u32 val;
1258 
1259 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1260 	/*
1261 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1262 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1263 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1264 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1265 	 * to make sure it matches what Punit accepts.
1266 	 */
1267 	return max_t(u32, val, 0xc0);
1268 }
1269 
1270 static bool vlv_rps_enable(struct intel_rps *rps)
1271 {
1272 	struct intel_uncore *uncore = rps_to_uncore(rps);
1273 	struct drm_i915_private *i915 = rps_to_i915(rps);
1274 	u32 val;
1275 
1276 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1277 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1278 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1279 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1280 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1281 
1282 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1283 
1284 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1285 			      GEN6_RP_MEDIA_TURBO |
1286 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1287 			      GEN6_RP_MEDIA_IS_GFX |
1288 			      GEN6_RP_ENABLE |
1289 			      GEN6_RP_UP_BUSY_AVG |
1290 			      GEN6_RP_DOWN_IDLE_CONT);
1291 
1292 	/* WaGsvRC0ResidencyMethod:vlv */
1293 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1294 
1295 	vlv_punit_get(i915);
1296 
1297 	/* Setting Fixed Bias */
1298 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1299 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1300 
1301 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1302 
1303 	vlv_punit_put(i915);
1304 
1305 	/* RPS code assumes GPLL is used */
1306 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1307 		      "GPLL not enabled\n");
1308 
1309 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1310 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1311 
1312 	return rps_reset(rps);
1313 }
1314 
1315 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1316 {
1317 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1318 	struct intel_uncore *uncore = rps_to_uncore(rps);
1319 	unsigned int t, state1, state2;
1320 	u32 pxvid, ext_v;
1321 	u64 corr, corr2;
1322 
1323 	lockdep_assert_held(&mchdev_lock);
1324 
1325 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1326 	pxvid = (pxvid >> 24) & 0x7f;
1327 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1328 
1329 	state1 = ext_v;
1330 
1331 	/* Revel in the empirically derived constants */
1332 
1333 	/* Correction factor in 1/100000 units */
1334 	t = ips_mch_val(uncore);
1335 	if (t > 80)
1336 		corr = t * 2349 + 135940;
1337 	else if (t >= 50)
1338 		corr = t * 964 + 29317;
1339 	else /* < 50 */
1340 		corr = t * 301 + 1004;
1341 
1342 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1343 	corr2 = div_u64(corr, 100000) * ips->corr;
1344 
1345 	state2 = div_u64(corr2 * state1, 10000);
1346 	state2 /= 100; /* convert to mW */
1347 
1348 	__gen5_ips_update(ips);
1349 
1350 	return ips->gfx_power + state2;
1351 }
1352 
1353 static bool has_busy_stats(struct intel_rps *rps)
1354 {
1355 	struct intel_engine_cs *engine;
1356 	enum intel_engine_id id;
1357 
1358 	for_each_engine(engine, rps_to_gt(rps), id) {
1359 		if (!intel_engine_supports_stats(engine))
1360 			return false;
1361 	}
1362 
1363 	return true;
1364 }
1365 
1366 void intel_rps_enable(struct intel_rps *rps)
1367 {
1368 	struct drm_i915_private *i915 = rps_to_i915(rps);
1369 	struct intel_uncore *uncore = rps_to_uncore(rps);
1370 	bool enabled = false;
1371 
1372 	if (!HAS_RPS(i915))
1373 		return;
1374 
1375 	if (rps_uses_slpc(rps))
1376 		return;
1377 
1378 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1379 
1380 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1381 	if (rps->max_freq <= rps->min_freq)
1382 		/* leave disabled, no room for dynamic reclocking */;
1383 	else if (IS_CHERRYVIEW(i915))
1384 		enabled = chv_rps_enable(rps);
1385 	else if (IS_VALLEYVIEW(i915))
1386 		enabled = vlv_rps_enable(rps);
1387 	else if (GRAPHICS_VER(i915) >= 9)
1388 		enabled = gen9_rps_enable(rps);
1389 	else if (GRAPHICS_VER(i915) >= 8)
1390 		enabled = gen8_rps_enable(rps);
1391 	else if (GRAPHICS_VER(i915) >= 6)
1392 		enabled = gen6_rps_enable(rps);
1393 	else if (IS_IRONLAKE_M(i915))
1394 		enabled = gen5_rps_enable(rps);
1395 	else
1396 		MISSING_CASE(GRAPHICS_VER(i915));
1397 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1398 	if (!enabled)
1399 		return;
1400 
1401 	GT_TRACE(rps_to_gt(rps),
1402 		 "min:%x, max:%x, freq:[%d, %d]\n",
1403 		 rps->min_freq, rps->max_freq,
1404 		 intel_gpu_freq(rps, rps->min_freq),
1405 		 intel_gpu_freq(rps, rps->max_freq));
1406 
1407 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1408 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1409 
1410 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1411 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1412 
1413 	if (has_busy_stats(rps))
1414 		intel_rps_set_timer(rps);
1415 	else if (GRAPHICS_VER(i915) >= 6)
1416 		intel_rps_set_interrupts(rps);
1417 	else
1418 		/* Ironlake currently uses intel_ips.ko */ {}
1419 
1420 	intel_rps_set_enabled(rps);
1421 }
1422 
1423 static void gen6_rps_disable(struct intel_rps *rps)
1424 {
1425 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1426 }
1427 
1428 void intel_rps_disable(struct intel_rps *rps)
1429 {
1430 	struct drm_i915_private *i915 = rps_to_i915(rps);
1431 
1432 	intel_rps_clear_enabled(rps);
1433 	intel_rps_clear_interrupts(rps);
1434 	intel_rps_clear_timer(rps);
1435 
1436 	if (GRAPHICS_VER(i915) >= 6)
1437 		gen6_rps_disable(rps);
1438 	else if (IS_IRONLAKE_M(i915))
1439 		gen5_rps_disable(rps);
1440 }
1441 
1442 static int byt_gpu_freq(struct intel_rps *rps, int val)
1443 {
1444 	/*
1445 	 * N = val - 0xb7
1446 	 * Slow = Fast = GPLL ref * N
1447 	 */
1448 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1449 }
1450 
1451 static int byt_freq_opcode(struct intel_rps *rps, int val)
1452 {
1453 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1454 }
1455 
1456 static int chv_gpu_freq(struct intel_rps *rps, int val)
1457 {
1458 	/*
1459 	 * N = val / 2
1460 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1461 	 */
1462 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1463 }
1464 
1465 static int chv_freq_opcode(struct intel_rps *rps, int val)
1466 {
1467 	/* CHV needs even values */
1468 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1469 }
1470 
1471 int intel_gpu_freq(struct intel_rps *rps, int val)
1472 {
1473 	struct drm_i915_private *i915 = rps_to_i915(rps);
1474 
1475 	if (GRAPHICS_VER(i915) >= 9)
1476 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1477 					 GEN9_FREQ_SCALER);
1478 	else if (IS_CHERRYVIEW(i915))
1479 		return chv_gpu_freq(rps, val);
1480 	else if (IS_VALLEYVIEW(i915))
1481 		return byt_gpu_freq(rps, val);
1482 	else if (GRAPHICS_VER(i915) >= 6)
1483 		return val * GT_FREQUENCY_MULTIPLIER;
1484 	else
1485 		return val;
1486 }
1487 
1488 int intel_freq_opcode(struct intel_rps *rps, int val)
1489 {
1490 	struct drm_i915_private *i915 = rps_to_i915(rps);
1491 
1492 	if (GRAPHICS_VER(i915) >= 9)
1493 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1494 					 GT_FREQUENCY_MULTIPLIER);
1495 	else if (IS_CHERRYVIEW(i915))
1496 		return chv_freq_opcode(rps, val);
1497 	else if (IS_VALLEYVIEW(i915))
1498 		return byt_freq_opcode(rps, val);
1499 	else if (GRAPHICS_VER(i915) >= 6)
1500 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1501 	else
1502 		return val;
1503 }
1504 
1505 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1506 {
1507 	struct drm_i915_private *i915 = rps_to_i915(rps);
1508 
1509 	rps->gpll_ref_freq =
1510 		vlv_get_cck_clock(i915, "GPLL ref",
1511 				  CCK_GPLL_CLOCK_CONTROL,
1512 				  i915->czclk_freq);
1513 
1514 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1515 		rps->gpll_ref_freq);
1516 }
1517 
1518 static void vlv_rps_init(struct intel_rps *rps)
1519 {
1520 	struct drm_i915_private *i915 = rps_to_i915(rps);
1521 	u32 val;
1522 
1523 	vlv_iosf_sb_get(i915,
1524 			BIT(VLV_IOSF_SB_PUNIT) |
1525 			BIT(VLV_IOSF_SB_NC) |
1526 			BIT(VLV_IOSF_SB_CCK));
1527 
1528 	vlv_init_gpll_ref_freq(rps);
1529 
1530 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1531 	switch ((val >> 6) & 3) {
1532 	case 0:
1533 	case 1:
1534 		i915->mem_freq = 800;
1535 		break;
1536 	case 2:
1537 		i915->mem_freq = 1066;
1538 		break;
1539 	case 3:
1540 		i915->mem_freq = 1333;
1541 		break;
1542 	}
1543 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1544 
1545 	rps->max_freq = vlv_rps_max_freq(rps);
1546 	rps->rp0_freq = rps->max_freq;
1547 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1548 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1549 
1550 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1551 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1552 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1553 
1554 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1555 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1556 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1557 
1558 	rps->min_freq = vlv_rps_min_freq(rps);
1559 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1560 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1561 
1562 	vlv_iosf_sb_put(i915,
1563 			BIT(VLV_IOSF_SB_PUNIT) |
1564 			BIT(VLV_IOSF_SB_NC) |
1565 			BIT(VLV_IOSF_SB_CCK));
1566 }
1567 
1568 static void chv_rps_init(struct intel_rps *rps)
1569 {
1570 	struct drm_i915_private *i915 = rps_to_i915(rps);
1571 	u32 val;
1572 
1573 	vlv_iosf_sb_get(i915,
1574 			BIT(VLV_IOSF_SB_PUNIT) |
1575 			BIT(VLV_IOSF_SB_NC) |
1576 			BIT(VLV_IOSF_SB_CCK));
1577 
1578 	vlv_init_gpll_ref_freq(rps);
1579 
1580 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1581 
1582 	switch ((val >> 2) & 0x7) {
1583 	case 3:
1584 		i915->mem_freq = 2000;
1585 		break;
1586 	default:
1587 		i915->mem_freq = 1600;
1588 		break;
1589 	}
1590 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1591 
1592 	rps->max_freq = chv_rps_max_freq(rps);
1593 	rps->rp0_freq = rps->max_freq;
1594 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1595 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1596 
1597 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1598 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1599 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1600 
1601 	rps->rp1_freq = chv_rps_guar_freq(rps);
1602 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1603 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1604 
1605 	rps->min_freq = chv_rps_min_freq(rps);
1606 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1607 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1608 
1609 	vlv_iosf_sb_put(i915,
1610 			BIT(VLV_IOSF_SB_PUNIT) |
1611 			BIT(VLV_IOSF_SB_NC) |
1612 			BIT(VLV_IOSF_SB_CCK));
1613 
1614 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1615 				   rps->rp1_freq | rps->min_freq) & 1,
1616 		      "Odd GPU freq values\n");
1617 }
1618 
1619 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1620 {
1621 	ei->ktime = ktime_get_raw();
1622 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1623 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1624 }
1625 
1626 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1627 {
1628 	struct intel_uncore *uncore = rps_to_uncore(rps);
1629 	const struct intel_rps_ei *prev = &rps->ei;
1630 	struct intel_rps_ei now;
1631 	u32 events = 0;
1632 
1633 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1634 		return 0;
1635 
1636 	vlv_c0_read(uncore, &now);
1637 
1638 	if (prev->ktime) {
1639 		u64 time, c0;
1640 		u32 render, media;
1641 
1642 		time = ktime_us_delta(now.ktime, prev->ktime);
1643 
1644 		time *= rps_to_i915(rps)->czclk_freq;
1645 
1646 		/* Workload can be split between render + media,
1647 		 * e.g. SwapBuffers being blitted in X after being rendered in
1648 		 * mesa. To account for this we need to combine both engines
1649 		 * into our activity counter.
1650 		 */
1651 		render = now.render_c0 - prev->render_c0;
1652 		media = now.media_c0 - prev->media_c0;
1653 		c0 = max(render, media);
1654 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1655 
1656 		if (c0 > time * rps->power.up_threshold)
1657 			events = GEN6_PM_RP_UP_THRESHOLD;
1658 		else if (c0 < time * rps->power.down_threshold)
1659 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1660 	}
1661 
1662 	rps->ei = now;
1663 	return events;
1664 }
1665 
1666 static void rps_work(struct work_struct *work)
1667 {
1668 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1669 	struct intel_gt *gt = rps_to_gt(rps);
1670 	struct drm_i915_private *i915 = rps_to_i915(rps);
1671 	bool client_boost = false;
1672 	int new_freq, adj, min, max;
1673 	u32 pm_iir = 0;
1674 
1675 	spin_lock_irq(&gt->irq_lock);
1676 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1677 	client_boost = atomic_read(&rps->num_waiters);
1678 	spin_unlock_irq(&gt->irq_lock);
1679 
1680 	/* Make sure we didn't queue anything we're not going to process. */
1681 	if (!pm_iir && !client_boost)
1682 		goto out;
1683 
1684 	mutex_lock(&rps->lock);
1685 	if (!intel_rps_is_active(rps)) {
1686 		mutex_unlock(&rps->lock);
1687 		return;
1688 	}
1689 
1690 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1691 
1692 	adj = rps->last_adj;
1693 	new_freq = rps->cur_freq;
1694 	min = rps->min_freq_softlimit;
1695 	max = rps->max_freq_softlimit;
1696 	if (client_boost)
1697 		max = rps->max_freq;
1698 
1699 	GT_TRACE(gt,
1700 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1701 		 pm_iir, yesno(client_boost),
1702 		 adj, new_freq, min, max);
1703 
1704 	if (client_boost && new_freq < rps->boost_freq) {
1705 		new_freq = rps->boost_freq;
1706 		adj = 0;
1707 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1708 		if (adj > 0)
1709 			adj *= 2;
1710 		else /* CHV needs even encode values */
1711 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1712 
1713 		if (new_freq >= rps->max_freq_softlimit)
1714 			adj = 0;
1715 	} else if (client_boost) {
1716 		adj = 0;
1717 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1718 		if (rps->cur_freq > rps->efficient_freq)
1719 			new_freq = rps->efficient_freq;
1720 		else if (rps->cur_freq > rps->min_freq_softlimit)
1721 			new_freq = rps->min_freq_softlimit;
1722 		adj = 0;
1723 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1724 		if (adj < 0)
1725 			adj *= 2;
1726 		else /* CHV needs even encode values */
1727 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1728 
1729 		if (new_freq <= rps->min_freq_softlimit)
1730 			adj = 0;
1731 	} else { /* unknown event */
1732 		adj = 0;
1733 	}
1734 
1735 	/*
1736 	 * sysfs frequency limits may have snuck in while
1737 	 * servicing the interrupt
1738 	 */
1739 	new_freq += adj;
1740 	new_freq = clamp_t(int, new_freq, min, max);
1741 
1742 	if (intel_rps_set(rps, new_freq)) {
1743 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1744 		adj = 0;
1745 	}
1746 	rps->last_adj = adj;
1747 
1748 	mutex_unlock(&rps->lock);
1749 
1750 out:
1751 	spin_lock_irq(&gt->irq_lock);
1752 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1753 	spin_unlock_irq(&gt->irq_lock);
1754 }
1755 
1756 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1757 {
1758 	struct intel_gt *gt = rps_to_gt(rps);
1759 	const u32 events = rps->pm_events & pm_iir;
1760 
1761 	lockdep_assert_held(&gt->irq_lock);
1762 
1763 	if (unlikely(!events))
1764 		return;
1765 
1766 	GT_TRACE(gt, "irq events:%x\n", events);
1767 
1768 	gen6_gt_pm_mask_irq(gt, events);
1769 
1770 	rps->pm_iir |= events;
1771 	schedule_work(&rps->work);
1772 }
1773 
1774 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1775 {
1776 	struct intel_gt *gt = rps_to_gt(rps);
1777 	u32 events;
1778 
1779 	events = pm_iir & rps->pm_events;
1780 	if (events) {
1781 		spin_lock(&gt->irq_lock);
1782 
1783 		GT_TRACE(gt, "irq events:%x\n", events);
1784 
1785 		gen6_gt_pm_mask_irq(gt, events);
1786 		rps->pm_iir |= events;
1787 
1788 		schedule_work(&rps->work);
1789 		spin_unlock(&gt->irq_lock);
1790 	}
1791 
1792 	if (GRAPHICS_VER(gt->i915) >= 8)
1793 		return;
1794 
1795 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1796 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1797 
1798 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1799 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1800 }
1801 
1802 void gen5_rps_irq_handler(struct intel_rps *rps)
1803 {
1804 	struct intel_uncore *uncore = rps_to_uncore(rps);
1805 	u32 busy_up, busy_down, max_avg, min_avg;
1806 	u8 new_freq;
1807 
1808 	spin_lock(&mchdev_lock);
1809 
1810 	intel_uncore_write16(uncore,
1811 			     MEMINTRSTS,
1812 			     intel_uncore_read(uncore, MEMINTRSTS));
1813 
1814 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1815 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1816 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1817 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1818 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1819 
1820 	/* Handle RCS change request from hw */
1821 	new_freq = rps->cur_freq;
1822 	if (busy_up > max_avg)
1823 		new_freq++;
1824 	else if (busy_down < min_avg)
1825 		new_freq--;
1826 	new_freq = clamp(new_freq,
1827 			 rps->min_freq_softlimit,
1828 			 rps->max_freq_softlimit);
1829 
1830 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1831 		rps->cur_freq = new_freq;
1832 
1833 	spin_unlock(&mchdev_lock);
1834 }
1835 
1836 void intel_rps_init_early(struct intel_rps *rps)
1837 {
1838 	mutex_init(&rps->lock);
1839 	mutex_init(&rps->power.mutex);
1840 
1841 	INIT_WORK(&rps->work, rps_work);
1842 	timer_setup(&rps->timer, rps_timer, 0);
1843 
1844 	atomic_set(&rps->num_waiters, 0);
1845 }
1846 
1847 void intel_rps_init(struct intel_rps *rps)
1848 {
1849 	struct drm_i915_private *i915 = rps_to_i915(rps);
1850 
1851 	if (rps_uses_slpc(rps))
1852 		return;
1853 
1854 	if (IS_CHERRYVIEW(i915))
1855 		chv_rps_init(rps);
1856 	else if (IS_VALLEYVIEW(i915))
1857 		vlv_rps_init(rps);
1858 	else if (GRAPHICS_VER(i915) >= 6)
1859 		gen6_rps_init(rps);
1860 	else if (IS_IRONLAKE_M(i915))
1861 		gen5_rps_init(rps);
1862 
1863 	/* Derive initial user preferences/limits from the hardware limits */
1864 	rps->max_freq_softlimit = rps->max_freq;
1865 	rps->min_freq_softlimit = rps->min_freq;
1866 
1867 	/* After setting max-softlimit, find the overclock max freq */
1868 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1869 		u32 params = 0;
1870 
1871 		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1872 				       &params, NULL);
1873 		if (params & BIT(31)) { /* OC supported */
1874 			drm_dbg(&i915->drm,
1875 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1876 				(rps->max_freq & 0xff) * 50,
1877 				(params & 0xff) * 50);
1878 			rps->max_freq = params & 0xff;
1879 		}
1880 	}
1881 
1882 	/* Finally allow us to boost to max by default */
1883 	rps->boost_freq = rps->max_freq;
1884 	rps->idle_freq = rps->min_freq;
1885 
1886 	/* Start in the middle, from here we will autotune based on workload */
1887 	rps->cur_freq = rps->efficient_freq;
1888 
1889 	rps->pm_intrmsk_mbz = 0;
1890 
1891 	/*
1892 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1893 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1894 	 *
1895 	 * TODO: verify if this can be reproduced on VLV,CHV.
1896 	 */
1897 	if (GRAPHICS_VER(i915) <= 7)
1898 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1899 
1900 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
1901 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1902 
1903 	/* GuC needs ARAT expired interrupt unmasked */
1904 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
1905 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1906 }
1907 
1908 void intel_rps_sanitize(struct intel_rps *rps)
1909 {
1910 	if (rps_uses_slpc(rps))
1911 		return;
1912 
1913 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
1914 		rps_disable_interrupts(rps);
1915 }
1916 
1917 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1918 {
1919 	struct drm_i915_private *i915 = rps_to_i915(rps);
1920 	u32 cagf;
1921 
1922 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1923 		cagf = (rpstat >> 8) & 0xff;
1924 	else if (GRAPHICS_VER(i915) >= 9)
1925 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1926 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1927 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1928 	else if (GRAPHICS_VER(i915) >= 6)
1929 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1930 	else
1931 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
1932 					MEMSTAT_PSTATE_SHIFT);
1933 
1934 	return cagf;
1935 }
1936 
1937 static u32 read_cagf(struct intel_rps *rps)
1938 {
1939 	struct drm_i915_private *i915 = rps_to_i915(rps);
1940 	struct intel_uncore *uncore = rps_to_uncore(rps);
1941 	u32 freq;
1942 
1943 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1944 		vlv_punit_get(i915);
1945 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1946 		vlv_punit_put(i915);
1947 	} else if (GRAPHICS_VER(i915) >= 6) {
1948 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
1949 	} else {
1950 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
1951 	}
1952 
1953 	return intel_rps_get_cagf(rps, freq);
1954 }
1955 
1956 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1957 {
1958 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1959 	intel_wakeref_t wakeref;
1960 	u32 freq = 0;
1961 
1962 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1963 		freq = intel_gpu_freq(rps, read_cagf(rps));
1964 
1965 	return freq;
1966 }
1967 
1968 u32 intel_rps_read_punit_req(struct intel_rps *rps)
1969 {
1970 	struct intel_uncore *uncore = rps_to_uncore(rps);
1971 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1972 	intel_wakeref_t wakeref;
1973 	u32 freq = 0;
1974 
1975 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1976 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
1977 
1978 	return freq;
1979 }
1980 
1981 static u32 intel_rps_get_req(u32 pureq)
1982 {
1983 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
1984 
1985 	return req;
1986 }
1987 
1988 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
1989 {
1990 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
1991 
1992 	return intel_gpu_freq(rps, freq);
1993 }
1994 
1995 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
1996 {
1997 	if (rps_uses_slpc(rps))
1998 		return intel_rps_read_punit_req_frequency(rps);
1999 	else
2000 		return intel_gpu_freq(rps, rps->cur_freq);
2001 }
2002 
2003 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2004 {
2005 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2006 
2007 	if (rps_uses_slpc(rps))
2008 		return slpc->max_freq_softlimit;
2009 	else
2010 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2011 }
2012 
2013 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2014 {
2015 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2016 
2017 	if (rps_uses_slpc(rps))
2018 		return slpc->rp0_freq;
2019 	else
2020 		return intel_gpu_freq(rps, rps->rp0_freq);
2021 }
2022 
2023 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2024 {
2025 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2026 
2027 	if (rps_uses_slpc(rps))
2028 		return slpc->rp1_freq;
2029 	else
2030 		return intel_gpu_freq(rps, rps->rp1_freq);
2031 }
2032 
2033 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2034 {
2035 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2036 
2037 	if (rps_uses_slpc(rps))
2038 		return slpc->min_freq;
2039 	else
2040 		return intel_gpu_freq(rps, rps->min_freq);
2041 }
2042 
2043 static int set_max_freq(struct intel_rps *rps, u32 val)
2044 {
2045 	struct drm_i915_private *i915 = rps_to_i915(rps);
2046 	int ret = 0;
2047 
2048 	mutex_lock(&rps->lock);
2049 
2050 	val = intel_freq_opcode(rps, val);
2051 	if (val < rps->min_freq ||
2052 	    val > rps->max_freq ||
2053 	    val < rps->min_freq_softlimit) {
2054 		ret = -EINVAL;
2055 		goto unlock;
2056 	}
2057 
2058 	if (val > rps->rp0_freq)
2059 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2060 			intel_gpu_freq(rps, val));
2061 
2062 	rps->max_freq_softlimit = val;
2063 
2064 	val = clamp_t(int, rps->cur_freq,
2065 		      rps->min_freq_softlimit,
2066 		      rps->max_freq_softlimit);
2067 
2068 	/*
2069 	 * We still need *_set_rps to process the new max_delay and
2070 	 * update the interrupt limits and PMINTRMSK even though
2071 	 * frequency request may be unchanged.
2072 	 */
2073 	intel_rps_set(rps, val);
2074 
2075 unlock:
2076 	mutex_unlock(&rps->lock);
2077 
2078 	return ret;
2079 }
2080 
2081 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2082 {
2083 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2084 
2085 	if (rps_uses_slpc(rps))
2086 		return intel_guc_slpc_set_max_freq(slpc, val);
2087 	else
2088 		return set_max_freq(rps, val);
2089 }
2090 
2091 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2092 {
2093 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2094 
2095 	if (rps_uses_slpc(rps))
2096 		return slpc->min_freq_softlimit;
2097 	else
2098 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2099 }
2100 
2101 static int set_min_freq(struct intel_rps *rps, u32 val)
2102 {
2103 	int ret = 0;
2104 
2105 	mutex_lock(&rps->lock);
2106 
2107 	val = intel_freq_opcode(rps, val);
2108 	if (val < rps->min_freq ||
2109 	    val > rps->max_freq ||
2110 	    val > rps->max_freq_softlimit) {
2111 		ret = -EINVAL;
2112 		goto unlock;
2113 	}
2114 
2115 	rps->min_freq_softlimit = val;
2116 
2117 	val = clamp_t(int, rps->cur_freq,
2118 		      rps->min_freq_softlimit,
2119 		      rps->max_freq_softlimit);
2120 
2121 	/*
2122 	 * We still need *_set_rps to process the new min_delay and
2123 	 * update the interrupt limits and PMINTRMSK even though
2124 	 * frequency request may be unchanged.
2125 	 */
2126 	intel_rps_set(rps, val);
2127 
2128 unlock:
2129 	mutex_unlock(&rps->lock);
2130 
2131 	return ret;
2132 }
2133 
2134 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2135 {
2136 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2137 
2138 	if (rps_uses_slpc(rps))
2139 		return intel_guc_slpc_set_min_freq(slpc, val);
2140 	else
2141 		return set_min_freq(rps, val);
2142 }
2143 
2144 u32 intel_rps_read_state_cap(struct intel_rps *rps)
2145 {
2146 	struct drm_i915_private *i915 = rps_to_i915(rps);
2147 	struct intel_uncore *uncore = rps_to_uncore(rps);
2148 
2149 	if (IS_XEHPSDV(i915))
2150 		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
2151 	else if (IS_GEN9_LP(i915))
2152 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
2153 	else
2154 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
2155 }
2156 
2157 /* External interface for intel_ips.ko */
2158 
2159 static struct drm_i915_private __rcu *ips_mchdev;
2160 
2161 /**
2162  * Tells the intel_ips driver that the i915 driver is now loaded, if
2163  * IPS got loaded first.
2164  *
2165  * This awkward dance is so that neither module has to depend on the
2166  * other in order for IPS to do the appropriate communication of
2167  * GPU turbo limits to i915.
2168  */
2169 static void
2170 ips_ping_for_i915_load(void)
2171 {
2172 	void (*link)(void);
2173 
2174 	link = symbol_get(ips_link_to_i915_driver);
2175 	if (link) {
2176 		link();
2177 		symbol_put(ips_link_to_i915_driver);
2178 	}
2179 }
2180 
2181 void intel_rps_driver_register(struct intel_rps *rps)
2182 {
2183 	struct intel_gt *gt = rps_to_gt(rps);
2184 
2185 	/*
2186 	 * We only register the i915 ips part with intel-ips once everything is
2187 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2188 	 */
2189 	if (GRAPHICS_VER(gt->i915) == 5) {
2190 		GEM_BUG_ON(ips_mchdev);
2191 		rcu_assign_pointer(ips_mchdev, gt->i915);
2192 		ips_ping_for_i915_load();
2193 	}
2194 }
2195 
2196 void intel_rps_driver_unregister(struct intel_rps *rps)
2197 {
2198 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2199 		rcu_assign_pointer(ips_mchdev, NULL);
2200 }
2201 
2202 static struct drm_i915_private *mchdev_get(void)
2203 {
2204 	struct drm_i915_private *i915;
2205 
2206 	rcu_read_lock();
2207 	i915 = rcu_dereference(ips_mchdev);
2208 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2209 		i915 = NULL;
2210 	rcu_read_unlock();
2211 
2212 	return i915;
2213 }
2214 
2215 /**
2216  * i915_read_mch_val - return value for IPS use
2217  *
2218  * Calculate and return a value for the IPS driver to use when deciding whether
2219  * we have thermal and power headroom to increase CPU or GPU power budget.
2220  */
2221 unsigned long i915_read_mch_val(void)
2222 {
2223 	struct drm_i915_private *i915;
2224 	unsigned long chipset_val = 0;
2225 	unsigned long graphics_val = 0;
2226 	intel_wakeref_t wakeref;
2227 
2228 	i915 = mchdev_get();
2229 	if (!i915)
2230 		return 0;
2231 
2232 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2233 		struct intel_ips *ips = &i915->gt.rps.ips;
2234 
2235 		spin_lock_irq(&mchdev_lock);
2236 		chipset_val = __ips_chipset_val(ips);
2237 		graphics_val = __ips_gfx_val(ips);
2238 		spin_unlock_irq(&mchdev_lock);
2239 	}
2240 
2241 	drm_dev_put(&i915->drm);
2242 	return chipset_val + graphics_val;
2243 }
2244 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2245 
2246 /**
2247  * i915_gpu_raise - raise GPU frequency limit
2248  *
2249  * Raise the limit; IPS indicates we have thermal headroom.
2250  */
2251 bool i915_gpu_raise(void)
2252 {
2253 	struct drm_i915_private *i915;
2254 	struct intel_rps *rps;
2255 
2256 	i915 = mchdev_get();
2257 	if (!i915)
2258 		return false;
2259 
2260 	rps = &i915->gt.rps;
2261 
2262 	spin_lock_irq(&mchdev_lock);
2263 	if (rps->max_freq_softlimit < rps->max_freq)
2264 		rps->max_freq_softlimit++;
2265 	spin_unlock_irq(&mchdev_lock);
2266 
2267 	drm_dev_put(&i915->drm);
2268 	return true;
2269 }
2270 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2271 
2272 /**
2273  * i915_gpu_lower - lower GPU frequency limit
2274  *
2275  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2276  * frequency maximum.
2277  */
2278 bool i915_gpu_lower(void)
2279 {
2280 	struct drm_i915_private *i915;
2281 	struct intel_rps *rps;
2282 
2283 	i915 = mchdev_get();
2284 	if (!i915)
2285 		return false;
2286 
2287 	rps = &i915->gt.rps;
2288 
2289 	spin_lock_irq(&mchdev_lock);
2290 	if (rps->max_freq_softlimit > rps->min_freq)
2291 		rps->max_freq_softlimit--;
2292 	spin_unlock_irq(&mchdev_lock);
2293 
2294 	drm_dev_put(&i915->drm);
2295 	return true;
2296 }
2297 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2298 
2299 /**
2300  * i915_gpu_busy - indicate GPU business to IPS
2301  *
2302  * Tell the IPS driver whether or not the GPU is busy.
2303  */
2304 bool i915_gpu_busy(void)
2305 {
2306 	struct drm_i915_private *i915;
2307 	bool ret;
2308 
2309 	i915 = mchdev_get();
2310 	if (!i915)
2311 		return false;
2312 
2313 	ret = i915->gt.awake;
2314 
2315 	drm_dev_put(&i915->drm);
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2319 
2320 /**
2321  * i915_gpu_turbo_disable - disable graphics turbo
2322  *
2323  * Disable graphics turbo by resetting the max frequency and setting the
2324  * current frequency to the default.
2325  */
2326 bool i915_gpu_turbo_disable(void)
2327 {
2328 	struct drm_i915_private *i915;
2329 	struct intel_rps *rps;
2330 	bool ret;
2331 
2332 	i915 = mchdev_get();
2333 	if (!i915)
2334 		return false;
2335 
2336 	rps = &i915->gt.rps;
2337 
2338 	spin_lock_irq(&mchdev_lock);
2339 	rps->max_freq_softlimit = rps->min_freq;
2340 	ret = !__gen5_rps_set(&i915->gt.rps, rps->min_freq);
2341 	spin_unlock_irq(&mchdev_lock);
2342 
2343 	drm_dev_put(&i915->drm);
2344 	return ret;
2345 }
2346 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2347 
2348 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2349 #include "selftest_rps.c"
2350 #include "selftest_slpc.c"
2351 #endif
2352