xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision b58c6630)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <drm/i915_drm.h>
8 
9 #include "i915_drv.h"
10 #include "intel_gt.h"
11 #include "intel_gt_irq.h"
12 #include "intel_gt_pm_irq.h"
13 #include "intel_rps.h"
14 #include "intel_sideband.h"
15 #include "../../../platform/x86/intel_ips.h"
16 
17 /*
18  * Lock protecting IPS related data structures
19  */
20 static DEFINE_SPINLOCK(mchdev_lock);
21 
22 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
23 {
24 	return container_of(rps, struct intel_gt, rps);
25 }
26 
27 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
28 {
29 	return rps_to_gt(rps)->i915;
30 }
31 
32 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
33 {
34 	return rps_to_gt(rps)->uncore;
35 }
36 
37 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
38 {
39 	return mask & ~rps->pm_intrmsk_mbz;
40 }
41 
42 static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
43 {
44 	intel_uncore_write_fw(uncore, reg, val);
45 }
46 
47 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
48 {
49 	u32 mask = 0;
50 
51 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
52 	if (val > rps->min_freq_softlimit)
53 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
54 			 GEN6_PM_RP_DOWN_THRESHOLD |
55 			 GEN6_PM_RP_DOWN_TIMEOUT);
56 
57 	if (val < rps->max_freq_softlimit)
58 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
59 
60 	mask &= READ_ONCE(rps->pm_events);
61 
62 	return rps_pm_sanitize_mask(rps, ~mask);
63 }
64 
65 static void rps_reset_ei(struct intel_rps *rps)
66 {
67 	memset(&rps->ei, 0, sizeof(rps->ei));
68 }
69 
70 static void rps_enable_interrupts(struct intel_rps *rps)
71 {
72 	struct intel_gt *gt = rps_to_gt(rps);
73 	u32 events;
74 
75 	rps_reset_ei(rps);
76 
77 	if (IS_VALLEYVIEW(gt->i915))
78 		/* WaGsvRC0ResidencyMethod:vlv */
79 		events = GEN6_PM_RP_UP_EI_EXPIRED;
80 	else
81 		events = (GEN6_PM_RP_UP_THRESHOLD |
82 			  GEN6_PM_RP_DOWN_THRESHOLD |
83 			  GEN6_PM_RP_DOWN_TIMEOUT);
84 	WRITE_ONCE(rps->pm_events, events);
85 
86 	spin_lock_irq(&gt->irq_lock);
87 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
88 	spin_unlock_irq(&gt->irq_lock);
89 
90 	intel_uncore_write(gt->uncore,
91 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
92 }
93 
94 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
95 {
96 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
97 }
98 
99 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
100 {
101 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
102 		;
103 }
104 
105 static void rps_reset_interrupts(struct intel_rps *rps)
106 {
107 	struct intel_gt *gt = rps_to_gt(rps);
108 
109 	spin_lock_irq(&gt->irq_lock);
110 	if (INTEL_GEN(gt->i915) >= 11)
111 		gen11_rps_reset_interrupts(rps);
112 	else
113 		gen6_rps_reset_interrupts(rps);
114 
115 	rps->pm_iir = 0;
116 	spin_unlock_irq(&gt->irq_lock);
117 }
118 
119 static void rps_disable_interrupts(struct intel_rps *rps)
120 {
121 	struct intel_gt *gt = rps_to_gt(rps);
122 
123 	WRITE_ONCE(rps->pm_events, 0);
124 
125 	intel_uncore_write(gt->uncore,
126 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
127 
128 	spin_lock_irq(&gt->irq_lock);
129 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
130 	spin_unlock_irq(&gt->irq_lock);
131 
132 	intel_synchronize_irq(gt->i915);
133 
134 	/*
135 	 * Now that we will not be generating any more work, flush any
136 	 * outstanding tasks. As we are called on the RPS idle path,
137 	 * we will reset the GPU to minimum frequencies, so the current
138 	 * state of the worker can be discarded.
139 	 */
140 	cancel_work_sync(&rps->work);
141 
142 	rps_reset_interrupts(rps);
143 }
144 
145 static const struct cparams {
146 	u16 i;
147 	u16 t;
148 	u16 m;
149 	u16 c;
150 } cparams[] = {
151 	{ 1, 1333, 301, 28664 },
152 	{ 1, 1066, 294, 24460 },
153 	{ 1, 800, 294, 25192 },
154 	{ 0, 1333, 276, 27605 },
155 	{ 0, 1066, 276, 27605 },
156 	{ 0, 800, 231, 23784 },
157 };
158 
159 static void gen5_rps_init(struct intel_rps *rps)
160 {
161 	struct drm_i915_private *i915 = rps_to_i915(rps);
162 	struct intel_uncore *uncore = rps_to_uncore(rps);
163 	u8 fmax, fmin, fstart;
164 	u32 rgvmodectl;
165 	int c_m, i;
166 
167 	if (i915->fsb_freq <= 3200)
168 		c_m = 0;
169 	else if (i915->fsb_freq <= 4800)
170 		c_m = 1;
171 	else
172 		c_m = 2;
173 
174 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
175 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
176 			rps->ips.m = cparams[i].m;
177 			rps->ips.c = cparams[i].c;
178 			break;
179 		}
180 	}
181 
182 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
183 
184 	/* Set up min, max, and cur for interrupt handling */
185 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
186 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
187 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
188 		MEMMODE_FSTART_SHIFT;
189 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
190 			 fmax, fmin, fstart);
191 
192 	rps->min_freq = fmax;
193 	rps->max_freq = fmin;
194 
195 	rps->idle_freq = rps->min_freq;
196 	rps->cur_freq = rps->idle_freq;
197 }
198 
199 static unsigned long
200 __ips_chipset_val(struct intel_ips *ips)
201 {
202 	struct intel_uncore *uncore =
203 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
204 	unsigned long now = jiffies_to_msecs(jiffies), dt;
205 	unsigned long result;
206 	u64 total, delta;
207 
208 	lockdep_assert_held(&mchdev_lock);
209 
210 	/*
211 	 * Prevent division-by-zero if we are asking too fast.
212 	 * Also, we don't get interesting results if we are polling
213 	 * faster than once in 10ms, so just return the saved value
214 	 * in such cases.
215 	 */
216 	dt = now - ips->last_time1;
217 	if (dt <= 10)
218 		return ips->chipset_power;
219 
220 	/* FIXME: handle per-counter overflow */
221 	total = intel_uncore_read(uncore, DMIEC);
222 	total += intel_uncore_read(uncore, DDREC);
223 	total += intel_uncore_read(uncore, CSIEC);
224 
225 	delta = total - ips->last_count1;
226 
227 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
228 
229 	ips->last_count1 = total;
230 	ips->last_time1 = now;
231 
232 	ips->chipset_power = result;
233 
234 	return result;
235 }
236 
237 static unsigned long ips_mch_val(struct intel_uncore *uncore)
238 {
239 	unsigned int m, x, b;
240 	u32 tsfs;
241 
242 	tsfs = intel_uncore_read(uncore, TSFS);
243 	x = intel_uncore_read8(uncore, TR1);
244 
245 	b = tsfs & TSFS_INTR_MASK;
246 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
247 
248 	return m * x / 127 - b;
249 }
250 
251 static int _pxvid_to_vd(u8 pxvid)
252 {
253 	if (pxvid == 0)
254 		return 0;
255 
256 	if (pxvid >= 8 && pxvid < 31)
257 		pxvid = 31;
258 
259 	return (pxvid + 2) * 125;
260 }
261 
262 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
263 {
264 	const int vd = _pxvid_to_vd(pxvid);
265 
266 	if (INTEL_INFO(i915)->is_mobile)
267 		return max(vd - 1125, 0);
268 
269 	return vd;
270 }
271 
272 static void __gen5_ips_update(struct intel_ips *ips)
273 {
274 	struct intel_uncore *uncore =
275 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
276 	u64 now, delta, dt;
277 	u32 count;
278 
279 	lockdep_assert_held(&mchdev_lock);
280 
281 	now = ktime_get_raw_ns();
282 	dt = now - ips->last_time2;
283 	do_div(dt, NSEC_PER_MSEC);
284 
285 	/* Don't divide by 0 */
286 	if (dt <= 10)
287 		return;
288 
289 	count = intel_uncore_read(uncore, GFXEC);
290 	delta = count - ips->last_count2;
291 
292 	ips->last_count2 = count;
293 	ips->last_time2 = now;
294 
295 	/* More magic constants... */
296 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
297 }
298 
299 static void gen5_rps_update(struct intel_rps *rps)
300 {
301 	spin_lock_irq(&mchdev_lock);
302 	__gen5_ips_update(&rps->ips);
303 	spin_unlock_irq(&mchdev_lock);
304 }
305 
306 static bool gen5_rps_set(struct intel_rps *rps, u8 val)
307 {
308 	struct intel_uncore *uncore = rps_to_uncore(rps);
309 	u16 rgvswctl;
310 
311 	lockdep_assert_held(&mchdev_lock);
312 
313 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
314 	if (rgvswctl & MEMCTL_CMD_STS) {
315 		DRM_DEBUG("gpu busy, RCS change rejected\n");
316 		return false; /* still busy with another command */
317 	}
318 
319 	/* Invert the frequency bin into an ips delay */
320 	val = rps->max_freq - val;
321 	val = rps->min_freq + val;
322 
323 	rgvswctl =
324 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
325 		(val << MEMCTL_FREQ_SHIFT) |
326 		MEMCTL_SFCAVM;
327 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
328 	intel_uncore_posting_read16(uncore, MEMSWCTL);
329 
330 	rgvswctl |= MEMCTL_CMD_STS;
331 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
332 
333 	return true;
334 }
335 
336 static unsigned long intel_pxfreq(u32 vidfreq)
337 {
338 	int div = (vidfreq & 0x3f0000) >> 16;
339 	int post = (vidfreq & 0x3000) >> 12;
340 	int pre = (vidfreq & 0x7);
341 
342 	if (!pre)
343 		return 0;
344 
345 	return div * 133333 / (pre << post);
346 }
347 
348 static unsigned int init_emon(struct intel_uncore *uncore)
349 {
350 	u8 pxw[16];
351 	int i;
352 
353 	/* Disable to program */
354 	intel_uncore_write(uncore, ECR, 0);
355 	intel_uncore_posting_read(uncore, ECR);
356 
357 	/* Program energy weights for various events */
358 	intel_uncore_write(uncore, SDEW, 0x15040d00);
359 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
360 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
361 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
362 
363 	for (i = 0; i < 5; i++)
364 		intel_uncore_write(uncore, PEW(i), 0);
365 	for (i = 0; i < 3; i++)
366 		intel_uncore_write(uncore, DEW(i), 0);
367 
368 	/* Program P-state weights to account for frequency power adjustment */
369 	for (i = 0; i < 16; i++) {
370 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
371 		unsigned int freq = intel_pxfreq(pxvidfreq);
372 		unsigned int vid =
373 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
374 		unsigned int val;
375 
376 		val = vid * vid * freq / 1000 * 255;
377 		val /= 127 * 127 * 900;
378 
379 		pxw[i] = val;
380 	}
381 	/* Render standby states get 0 weight */
382 	pxw[14] = 0;
383 	pxw[15] = 0;
384 
385 	for (i = 0; i < 4; i++) {
386 		intel_uncore_write(uncore, PXW(i),
387 				   pxw[i * 4 + 0] << 24 |
388 				   pxw[i * 4 + 1] << 16 |
389 				   pxw[i * 4 + 2] <<  8 |
390 				   pxw[i * 4 + 3] <<  0);
391 	}
392 
393 	/* Adjust magic regs to magic values (more experimental results) */
394 	intel_uncore_write(uncore, OGW0, 0);
395 	intel_uncore_write(uncore, OGW1, 0);
396 	intel_uncore_write(uncore, EG0, 0x00007f00);
397 	intel_uncore_write(uncore, EG1, 0x0000000e);
398 	intel_uncore_write(uncore, EG2, 0x000e0000);
399 	intel_uncore_write(uncore, EG3, 0x68000300);
400 	intel_uncore_write(uncore, EG4, 0x42000000);
401 	intel_uncore_write(uncore, EG5, 0x00140031);
402 	intel_uncore_write(uncore, EG6, 0);
403 	intel_uncore_write(uncore, EG7, 0);
404 
405 	for (i = 0; i < 8; i++)
406 		intel_uncore_write(uncore, PXWL(i), 0);
407 
408 	/* Enable PMON + select events */
409 	intel_uncore_write(uncore, ECR, 0x80000019);
410 
411 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
412 }
413 
414 static bool gen5_rps_enable(struct intel_rps *rps)
415 {
416 	struct intel_uncore *uncore = rps_to_uncore(rps);
417 	u8 fstart, vstart;
418 	u32 rgvmodectl;
419 
420 	spin_lock_irq(&mchdev_lock);
421 
422 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
423 
424 	/* Enable temp reporting */
425 	intel_uncore_write16(uncore, PMMISC,
426 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
427 	intel_uncore_write16(uncore, TSC1,
428 			     intel_uncore_read16(uncore, TSC1) | TSE);
429 
430 	/* 100ms RC evaluation intervals */
431 	intel_uncore_write(uncore, RCUPEI, 100000);
432 	intel_uncore_write(uncore, RCDNEI, 100000);
433 
434 	/* Set max/min thresholds to 90ms and 80ms respectively */
435 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
436 	intel_uncore_write(uncore, RCBMINAVG, 80000);
437 
438 	intel_uncore_write(uncore, MEMIHYST, 1);
439 
440 	/* Set up min, max, and cur for interrupt handling */
441 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
442 		MEMMODE_FSTART_SHIFT;
443 
444 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
445 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
446 
447 	intel_uncore_write(uncore,
448 			   MEMINTREN,
449 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
450 
451 	intel_uncore_write(uncore, VIDSTART, vstart);
452 	intel_uncore_posting_read(uncore, VIDSTART);
453 
454 	rgvmodectl |= MEMMODE_SWMODE_EN;
455 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
456 
457 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
458 			     MEMCTL_CMD_STS) == 0, 10))
459 		DRM_ERROR("stuck trying to change perf mode\n");
460 	mdelay(1);
461 
462 	gen5_rps_set(rps, rps->cur_freq);
463 
464 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
465 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
466 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
467 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
468 
469 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
470 	rps->ips.last_time2 = ktime_get_raw_ns();
471 
472 	spin_unlock_irq(&mchdev_lock);
473 
474 	rps->ips.corr = init_emon(uncore);
475 
476 	return true;
477 }
478 
479 static void gen5_rps_disable(struct intel_rps *rps)
480 {
481 	struct intel_uncore *uncore = rps_to_uncore(rps);
482 	u16 rgvswctl;
483 
484 	spin_lock_irq(&mchdev_lock);
485 
486 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
487 
488 	/* Ack interrupts, disable EFC interrupt */
489 	intel_uncore_write(uncore, MEMINTREN,
490 			   intel_uncore_read(uncore, MEMINTREN) &
491 			   ~MEMINT_EVAL_CHG_EN);
492 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
493 	intel_uncore_write(uncore, DEIER,
494 			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
495 	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
496 	intel_uncore_write(uncore, DEIMR,
497 			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
498 
499 	/* Go back to the starting frequency */
500 	gen5_rps_set(rps, rps->idle_freq);
501 	mdelay(1);
502 	rgvswctl |= MEMCTL_CMD_STS;
503 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
504 	mdelay(1);
505 
506 	spin_unlock_irq(&mchdev_lock);
507 }
508 
509 static u32 rps_limits(struct intel_rps *rps, u8 val)
510 {
511 	u32 limits;
512 
513 	/*
514 	 * Only set the down limit when we've reached the lowest level to avoid
515 	 * getting more interrupts, otherwise leave this clear. This prevents a
516 	 * race in the hw when coming out of rc6: There's a tiny window where
517 	 * the hw runs at the minimal clock before selecting the desired
518 	 * frequency, if the down threshold expires in that window we will not
519 	 * receive a down interrupt.
520 	 */
521 	if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
522 		limits = rps->max_freq_softlimit << 23;
523 		if (val <= rps->min_freq_softlimit)
524 			limits |= rps->min_freq_softlimit << 14;
525 	} else {
526 		limits = rps->max_freq_softlimit << 24;
527 		if (val <= rps->min_freq_softlimit)
528 			limits |= rps->min_freq_softlimit << 16;
529 	}
530 
531 	return limits;
532 }
533 
534 static void rps_set_power(struct intel_rps *rps, int new_power)
535 {
536 	struct intel_uncore *uncore = rps_to_uncore(rps);
537 	struct drm_i915_private *i915 = rps_to_i915(rps);
538 	u32 threshold_up = 0, threshold_down = 0; /* in % */
539 	u32 ei_up = 0, ei_down = 0;
540 
541 	lockdep_assert_held(&rps->power.mutex);
542 
543 	if (new_power == rps->power.mode)
544 		return;
545 
546 	/* Note the units here are not exactly 1us, but 1280ns. */
547 	switch (new_power) {
548 	case LOW_POWER:
549 		/* Upclock if more than 95% busy over 16ms */
550 		ei_up = 16000;
551 		threshold_up = 95;
552 
553 		/* Downclock if less than 85% busy over 32ms */
554 		ei_down = 32000;
555 		threshold_down = 85;
556 		break;
557 
558 	case BETWEEN:
559 		/* Upclock if more than 90% busy over 13ms */
560 		ei_up = 13000;
561 		threshold_up = 90;
562 
563 		/* Downclock if less than 75% busy over 32ms */
564 		ei_down = 32000;
565 		threshold_down = 75;
566 		break;
567 
568 	case HIGH_POWER:
569 		/* Upclock if more than 85% busy over 10ms */
570 		ei_up = 10000;
571 		threshold_up = 85;
572 
573 		/* Downclock if less than 60% busy over 32ms */
574 		ei_down = 32000;
575 		threshold_down = 60;
576 		break;
577 	}
578 
579 	/* When byt can survive without system hang with dynamic
580 	 * sw freq adjustments, this restriction can be lifted.
581 	 */
582 	if (IS_VALLEYVIEW(i915))
583 		goto skip_hw_write;
584 
585 	set(uncore, GEN6_RP_UP_EI, GT_INTERVAL_FROM_US(i915, ei_up));
586 	set(uncore, GEN6_RP_UP_THRESHOLD,
587 	    GT_INTERVAL_FROM_US(i915, ei_up * threshold_up / 100));
588 
589 	set(uncore, GEN6_RP_DOWN_EI, GT_INTERVAL_FROM_US(i915, ei_down));
590 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
591 	    GT_INTERVAL_FROM_US(i915, ei_down * threshold_down / 100));
592 
593 	set(uncore, GEN6_RP_CONTROL,
594 	    (INTEL_GEN(i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
595 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
596 	    GEN6_RP_MEDIA_IS_GFX |
597 	    GEN6_RP_ENABLE |
598 	    GEN6_RP_UP_BUSY_AVG |
599 	    GEN6_RP_DOWN_IDLE_AVG);
600 
601 skip_hw_write:
602 	rps->power.mode = new_power;
603 	rps->power.up_threshold = threshold_up;
604 	rps->power.down_threshold = threshold_down;
605 }
606 
607 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
608 {
609 	int new_power;
610 
611 	new_power = rps->power.mode;
612 	switch (rps->power.mode) {
613 	case LOW_POWER:
614 		if (val > rps->efficient_freq + 1 &&
615 		    val > rps->cur_freq)
616 			new_power = BETWEEN;
617 		break;
618 
619 	case BETWEEN:
620 		if (val <= rps->efficient_freq &&
621 		    val < rps->cur_freq)
622 			new_power = LOW_POWER;
623 		else if (val >= rps->rp0_freq &&
624 			 val > rps->cur_freq)
625 			new_power = HIGH_POWER;
626 		break;
627 
628 	case HIGH_POWER:
629 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
630 		    val < rps->cur_freq)
631 			new_power = BETWEEN;
632 		break;
633 	}
634 	/* Max/min bins are special */
635 	if (val <= rps->min_freq_softlimit)
636 		new_power = LOW_POWER;
637 	if (val >= rps->max_freq_softlimit)
638 		new_power = HIGH_POWER;
639 
640 	mutex_lock(&rps->power.mutex);
641 	if (rps->power.interactive)
642 		new_power = HIGH_POWER;
643 	rps_set_power(rps, new_power);
644 	mutex_unlock(&rps->power.mutex);
645 }
646 
647 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
648 {
649 	mutex_lock(&rps->power.mutex);
650 	if (interactive) {
651 		if (!rps->power.interactive++ && READ_ONCE(rps->active))
652 			rps_set_power(rps, HIGH_POWER);
653 	} else {
654 		GEM_BUG_ON(!rps->power.interactive);
655 		rps->power.interactive--;
656 	}
657 	mutex_unlock(&rps->power.mutex);
658 }
659 
660 static int gen6_rps_set(struct intel_rps *rps, u8 val)
661 {
662 	struct intel_uncore *uncore = rps_to_uncore(rps);
663 	struct drm_i915_private *i915 = rps_to_i915(rps);
664 	u32 swreq;
665 
666 	if (INTEL_GEN(i915) >= 9)
667 		swreq = GEN9_FREQUENCY(val);
668 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
669 		swreq = HSW_FREQUENCY(val);
670 	else
671 		swreq = (GEN6_FREQUENCY(val) |
672 			 GEN6_OFFSET(0) |
673 			 GEN6_AGGRESSIVE_TURBO);
674 	set(uncore, GEN6_RPNSWREQ, swreq);
675 
676 	return 0;
677 }
678 
679 static int vlv_rps_set(struct intel_rps *rps, u8 val)
680 {
681 	struct drm_i915_private *i915 = rps_to_i915(rps);
682 	int err;
683 
684 	vlv_punit_get(i915);
685 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
686 	vlv_punit_put(i915);
687 
688 	return err;
689 }
690 
691 static int rps_set(struct intel_rps *rps, u8 val, bool update)
692 {
693 	struct drm_i915_private *i915 = rps_to_i915(rps);
694 	int err;
695 
696 	if (INTEL_GEN(i915) < 6)
697 		return 0;
698 
699 	if (val == rps->last_freq)
700 		return 0;
701 
702 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
703 		err = vlv_rps_set(rps, val);
704 	else
705 		err = gen6_rps_set(rps, val);
706 	if (err)
707 		return err;
708 
709 	if (update)
710 		gen6_rps_set_thresholds(rps, val);
711 	rps->last_freq = val;
712 
713 	return 0;
714 }
715 
716 void intel_rps_unpark(struct intel_rps *rps)
717 {
718 	u8 freq;
719 
720 	if (!rps->enabled)
721 		return;
722 
723 	/*
724 	 * Use the user's desired frequency as a guide, but for better
725 	 * performance, jump directly to RPe as our starting frequency.
726 	 */
727 	mutex_lock(&rps->lock);
728 
729 	WRITE_ONCE(rps->active, true);
730 
731 	freq = max(rps->cur_freq, rps->efficient_freq),
732 	freq = clamp(freq, rps->min_freq_softlimit, rps->max_freq_softlimit);
733 	intel_rps_set(rps, freq);
734 
735 	rps->last_adj = 0;
736 
737 	mutex_unlock(&rps->lock);
738 
739 	if (INTEL_GEN(rps_to_i915(rps)) >= 6)
740 		rps_enable_interrupts(rps);
741 
742 	if (IS_GEN(rps_to_i915(rps), 5))
743 		gen5_rps_update(rps);
744 }
745 
746 void intel_rps_park(struct intel_rps *rps)
747 {
748 	struct drm_i915_private *i915 = rps_to_i915(rps);
749 
750 	if (!rps->enabled)
751 		return;
752 
753 	if (INTEL_GEN(i915) >= 6)
754 		rps_disable_interrupts(rps);
755 
756 	WRITE_ONCE(rps->active, false);
757 	if (rps->last_freq <= rps->idle_freq)
758 		return;
759 
760 	/*
761 	 * The punit delays the write of the frequency and voltage until it
762 	 * determines the GPU is awake. During normal usage we don't want to
763 	 * waste power changing the frequency if the GPU is sleeping (rc6).
764 	 * However, the GPU and driver is now idle and we do not want to delay
765 	 * switching to minimum voltage (reducing power whilst idle) as we do
766 	 * not expect to be woken in the near future and so must flush the
767 	 * change by waking the device.
768 	 *
769 	 * We choose to take the media powerwell (either would do to trick the
770 	 * punit into committing the voltage change) as that takes a lot less
771 	 * power than the render powerwell.
772 	 */
773 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
774 	rps_set(rps, rps->idle_freq, false);
775 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
776 
777 	/*
778 	 * Since we will try and restart from the previously requested
779 	 * frequency on unparking, treat this idle point as a downclock
780 	 * interrupt and reduce the frequency for resume. If we park/unpark
781 	 * more frequently than the rps worker can run, we will not respond
782 	 * to any EI and never see a change in frequency.
783 	 *
784 	 * (Note we accommodate Cherryview's limitation of only using an
785 	 * even bin by applying it to all.)
786 	 */
787 	rps->cur_freq =
788 		max_t(int, round_down(rps->cur_freq - 1, 2), rps->min_freq);
789 }
790 
791 void intel_rps_boost(struct i915_request *rq)
792 {
793 	struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
794 	unsigned long flags;
795 
796 	if (i915_request_signaled(rq) || !READ_ONCE(rps->active))
797 		return;
798 
799 	/* Serializes with i915_request_retire() */
800 	spin_lock_irqsave(&rq->lock, flags);
801 	if (!i915_request_has_waitboost(rq) &&
802 	    !dma_fence_is_signaled_locked(&rq->fence)) {
803 		set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
804 
805 		if (!atomic_fetch_inc(&rps->num_waiters) &&
806 		    READ_ONCE(rps->cur_freq) < rps->boost_freq)
807 			schedule_work(&rps->work);
808 
809 		atomic_inc(&rps->boosts);
810 	}
811 	spin_unlock_irqrestore(&rq->lock, flags);
812 }
813 
814 int intel_rps_set(struct intel_rps *rps, u8 val)
815 {
816 	int err;
817 
818 	lockdep_assert_held(&rps->lock);
819 	GEM_BUG_ON(val > rps->max_freq);
820 	GEM_BUG_ON(val < rps->min_freq);
821 
822 	if (rps->active) {
823 		err = rps_set(rps, val, true);
824 		if (err)
825 			return err;
826 
827 		/*
828 		 * Make sure we continue to get interrupts
829 		 * until we hit the minimum or maximum frequencies.
830 		 */
831 		if (INTEL_GEN(rps_to_i915(rps)) >= 6) {
832 			struct intel_uncore *uncore = rps_to_uncore(rps);
833 
834 			set(uncore,
835 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
836 
837 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
838 		}
839 	}
840 
841 	rps->cur_freq = val;
842 	return 0;
843 }
844 
845 static void gen6_rps_init(struct intel_rps *rps)
846 {
847 	struct drm_i915_private *i915 = rps_to_i915(rps);
848 	struct intel_uncore *uncore = rps_to_uncore(rps);
849 
850 	/* All of these values are in units of 50MHz */
851 
852 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
853 	if (IS_GEN9_LP(i915)) {
854 		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
855 
856 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
857 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
858 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
859 	} else {
860 		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
861 
862 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
863 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
864 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
865 	}
866 
867 	/* hw_max = RP0 until we check for overclocking */
868 	rps->max_freq = rps->rp0_freq;
869 
870 	rps->efficient_freq = rps->rp1_freq;
871 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
872 	    IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
873 		u32 ddcc_status = 0;
874 
875 		if (sandybridge_pcode_read(i915,
876 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
877 					   &ddcc_status, NULL) == 0)
878 			rps->efficient_freq =
879 				clamp_t(u8,
880 					(ddcc_status >> 8) & 0xff,
881 					rps->min_freq,
882 					rps->max_freq);
883 	}
884 
885 	if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
886 		/* Store the frequency values in 16.66 MHZ units, which is
887 		 * the natural hardware unit for SKL
888 		 */
889 		rps->rp0_freq *= GEN9_FREQ_SCALER;
890 		rps->rp1_freq *= GEN9_FREQ_SCALER;
891 		rps->min_freq *= GEN9_FREQ_SCALER;
892 		rps->max_freq *= GEN9_FREQ_SCALER;
893 		rps->efficient_freq *= GEN9_FREQ_SCALER;
894 	}
895 }
896 
897 static bool rps_reset(struct intel_rps *rps)
898 {
899 	/* force a reset */
900 	rps->power.mode = -1;
901 	rps->last_freq = -1;
902 
903 	if (rps_set(rps, rps->min_freq, true)) {
904 		DRM_ERROR("Failed to reset RPS to initial values\n");
905 		return false;
906 	}
907 
908 	rps->cur_freq = rps->min_freq;
909 	return true;
910 }
911 
912 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
913 static bool gen9_rps_enable(struct intel_rps *rps)
914 {
915 	struct drm_i915_private *i915 = rps_to_i915(rps);
916 	struct intel_uncore *uncore = rps_to_uncore(rps);
917 
918 	/* Program defaults and thresholds for RPS */
919 	if (IS_GEN(i915, 9))
920 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
921 				      GEN9_FREQUENCY(rps->rp1_freq));
922 
923 	/* 1 second timeout */
924 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT,
925 			      GT_INTERVAL_FROM_US(i915, 1000000));
926 
927 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
928 
929 	return rps_reset(rps);
930 }
931 
932 static bool gen8_rps_enable(struct intel_rps *rps)
933 {
934 	struct intel_uncore *uncore = rps_to_uncore(rps);
935 
936 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
937 			      HSW_FREQUENCY(rps->rp1_freq));
938 
939 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
940 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT,
941 			      100000000 / 128); /* 1 second timeout */
942 
943 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
944 
945 	return rps_reset(rps);
946 }
947 
948 static bool gen6_rps_enable(struct intel_rps *rps)
949 {
950 	struct intel_uncore *uncore = rps_to_uncore(rps);
951 
952 	/* Power down if completely idle for over 50ms */
953 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
954 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
955 
956 	return rps_reset(rps);
957 }
958 
959 static int chv_rps_max_freq(struct intel_rps *rps)
960 {
961 	struct drm_i915_private *i915 = rps_to_i915(rps);
962 	u32 val;
963 
964 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
965 
966 	switch (RUNTIME_INFO(i915)->sseu.eu_total) {
967 	case 8:
968 		/* (2 * 4) config */
969 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
970 		break;
971 	case 12:
972 		/* (2 * 6) config */
973 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
974 		break;
975 	case 16:
976 		/* (2 * 8) config */
977 	default:
978 		/* Setting (2 * 8) Min RP0 for any other combination */
979 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
980 		break;
981 	}
982 
983 	return val & FB_GFX_FREQ_FUSE_MASK;
984 }
985 
986 static int chv_rps_rpe_freq(struct intel_rps *rps)
987 {
988 	struct drm_i915_private *i915 = rps_to_i915(rps);
989 	u32 val;
990 
991 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
992 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
993 
994 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
995 }
996 
997 static int chv_rps_guar_freq(struct intel_rps *rps)
998 {
999 	struct drm_i915_private *i915 = rps_to_i915(rps);
1000 	u32 val;
1001 
1002 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1003 
1004 	return val & FB_GFX_FREQ_FUSE_MASK;
1005 }
1006 
1007 static u32 chv_rps_min_freq(struct intel_rps *rps)
1008 {
1009 	struct drm_i915_private *i915 = rps_to_i915(rps);
1010 	u32 val;
1011 
1012 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1013 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1014 
1015 	return val & FB_GFX_FREQ_FUSE_MASK;
1016 }
1017 
1018 static bool chv_rps_enable(struct intel_rps *rps)
1019 {
1020 	struct intel_uncore *uncore = rps_to_uncore(rps);
1021 	struct drm_i915_private *i915 = rps_to_i915(rps);
1022 	u32 val;
1023 
1024 	/* 1: Program defaults and thresholds for RPS*/
1025 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1026 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1027 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1028 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1029 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1030 
1031 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1032 
1033 	/* 2: Enable RPS */
1034 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1035 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1036 			      GEN6_RP_MEDIA_IS_GFX |
1037 			      GEN6_RP_ENABLE |
1038 			      GEN6_RP_UP_BUSY_AVG |
1039 			      GEN6_RP_DOWN_IDLE_AVG);
1040 
1041 	/* Setting Fixed Bias */
1042 	vlv_punit_get(i915);
1043 
1044 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1045 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1046 
1047 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1048 
1049 	vlv_punit_put(i915);
1050 
1051 	/* RPS code assumes GPLL is used */
1052 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1053 		      "GPLL not enabled\n");
1054 
1055 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1056 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
1057 
1058 	return rps_reset(rps);
1059 }
1060 
1061 static int vlv_rps_guar_freq(struct intel_rps *rps)
1062 {
1063 	struct drm_i915_private *i915 = rps_to_i915(rps);
1064 	u32 val, rp1;
1065 
1066 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1067 
1068 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1069 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1070 
1071 	return rp1;
1072 }
1073 
1074 static int vlv_rps_max_freq(struct intel_rps *rps)
1075 {
1076 	struct drm_i915_private *i915 = rps_to_i915(rps);
1077 	u32 val, rp0;
1078 
1079 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1080 
1081 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1082 	/* Clamp to max */
1083 	rp0 = min_t(u32, rp0, 0xea);
1084 
1085 	return rp0;
1086 }
1087 
1088 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1089 {
1090 	struct drm_i915_private *i915 = rps_to_i915(rps);
1091 	u32 val, rpe;
1092 
1093 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1094 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1095 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1096 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1097 
1098 	return rpe;
1099 }
1100 
1101 static int vlv_rps_min_freq(struct intel_rps *rps)
1102 {
1103 	struct drm_i915_private *i915 = rps_to_i915(rps);
1104 	u32 val;
1105 
1106 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1107 	/*
1108 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1109 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1110 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1111 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1112 	 * to make sure it matches what Punit accepts.
1113 	 */
1114 	return max_t(u32, val, 0xc0);
1115 }
1116 
1117 static bool vlv_rps_enable(struct intel_rps *rps)
1118 {
1119 	struct intel_uncore *uncore = rps_to_uncore(rps);
1120 	struct drm_i915_private *i915 = rps_to_i915(rps);
1121 	u32 val;
1122 
1123 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1124 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1125 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1126 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1127 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1128 
1129 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1130 
1131 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1132 			      GEN6_RP_MEDIA_TURBO |
1133 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1134 			      GEN6_RP_MEDIA_IS_GFX |
1135 			      GEN6_RP_ENABLE |
1136 			      GEN6_RP_UP_BUSY_AVG |
1137 			      GEN6_RP_DOWN_IDLE_CONT);
1138 
1139 	vlv_punit_get(i915);
1140 
1141 	/* Setting Fixed Bias */
1142 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1143 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1144 
1145 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1146 
1147 	vlv_punit_put(i915);
1148 
1149 	/* RPS code assumes GPLL is used */
1150 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1151 		      "GPLL not enabled\n");
1152 
1153 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1154 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
1155 
1156 	return rps_reset(rps);
1157 }
1158 
1159 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1160 {
1161 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1162 	struct intel_uncore *uncore = rps_to_uncore(rps);
1163 	unsigned long t, corr, state1, corr2, state2;
1164 	u32 pxvid, ext_v;
1165 
1166 	lockdep_assert_held(&mchdev_lock);
1167 
1168 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1169 	pxvid = (pxvid >> 24) & 0x7f;
1170 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1171 
1172 	state1 = ext_v;
1173 
1174 	/* Revel in the empirically derived constants */
1175 
1176 	/* Correction factor in 1/100000 units */
1177 	t = ips_mch_val(uncore);
1178 	if (t > 80)
1179 		corr = t * 2349 + 135940;
1180 	else if (t >= 50)
1181 		corr = t * 964 + 29317;
1182 	else /* < 50 */
1183 		corr = t * 301 + 1004;
1184 
1185 	corr = corr * 150142 * state1 / 10000 - 78642;
1186 	corr /= 100000;
1187 	corr2 = corr * ips->corr;
1188 
1189 	state2 = corr2 * state1 / 10000;
1190 	state2 /= 100; /* convert to mW */
1191 
1192 	__gen5_ips_update(ips);
1193 
1194 	return ips->gfx_power + state2;
1195 }
1196 
1197 void intel_rps_enable(struct intel_rps *rps)
1198 {
1199 	struct drm_i915_private *i915 = rps_to_i915(rps);
1200 	struct intel_uncore *uncore = rps_to_uncore(rps);
1201 
1202 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1203 	if (IS_CHERRYVIEW(i915))
1204 		rps->enabled = chv_rps_enable(rps);
1205 	else if (IS_VALLEYVIEW(i915))
1206 		rps->enabled = vlv_rps_enable(rps);
1207 	else if (INTEL_GEN(i915) >= 9)
1208 		rps->enabled = gen9_rps_enable(rps);
1209 	else if (INTEL_GEN(i915) >= 8)
1210 		rps->enabled = gen8_rps_enable(rps);
1211 	else if (INTEL_GEN(i915) >= 6)
1212 		rps->enabled = gen6_rps_enable(rps);
1213 	else if (IS_IRONLAKE_M(i915))
1214 		rps->enabled = gen5_rps_enable(rps);
1215 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1216 	if (!rps->enabled)
1217 		return;
1218 
1219 	drm_WARN_ON(&i915->drm, rps->max_freq < rps->min_freq);
1220 	drm_WARN_ON(&i915->drm, rps->idle_freq > rps->max_freq);
1221 
1222 	drm_WARN_ON(&i915->drm, rps->efficient_freq < rps->min_freq);
1223 	drm_WARN_ON(&i915->drm, rps->efficient_freq > rps->max_freq);
1224 }
1225 
1226 static void gen6_rps_disable(struct intel_rps *rps)
1227 {
1228 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1229 }
1230 
1231 void intel_rps_disable(struct intel_rps *rps)
1232 {
1233 	struct drm_i915_private *i915 = rps_to_i915(rps);
1234 
1235 	rps->enabled = false;
1236 
1237 	if (INTEL_GEN(i915) >= 6)
1238 		gen6_rps_disable(rps);
1239 	else if (IS_IRONLAKE_M(i915))
1240 		gen5_rps_disable(rps);
1241 }
1242 
1243 static int byt_gpu_freq(struct intel_rps *rps, int val)
1244 {
1245 	/*
1246 	 * N = val - 0xb7
1247 	 * Slow = Fast = GPLL ref * N
1248 	 */
1249 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1250 }
1251 
1252 static int byt_freq_opcode(struct intel_rps *rps, int val)
1253 {
1254 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1255 }
1256 
1257 static int chv_gpu_freq(struct intel_rps *rps, int val)
1258 {
1259 	/*
1260 	 * N = val / 2
1261 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1262 	 */
1263 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1264 }
1265 
1266 static int chv_freq_opcode(struct intel_rps *rps, int val)
1267 {
1268 	/* CHV needs even values */
1269 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1270 }
1271 
1272 int intel_gpu_freq(struct intel_rps *rps, int val)
1273 {
1274 	struct drm_i915_private *i915 = rps_to_i915(rps);
1275 
1276 	if (INTEL_GEN(i915) >= 9)
1277 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1278 					 GEN9_FREQ_SCALER);
1279 	else if (IS_CHERRYVIEW(i915))
1280 		return chv_gpu_freq(rps, val);
1281 	else if (IS_VALLEYVIEW(i915))
1282 		return byt_gpu_freq(rps, val);
1283 	else
1284 		return val * GT_FREQUENCY_MULTIPLIER;
1285 }
1286 
1287 int intel_freq_opcode(struct intel_rps *rps, int val)
1288 {
1289 	struct drm_i915_private *i915 = rps_to_i915(rps);
1290 
1291 	if (INTEL_GEN(i915) >= 9)
1292 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1293 					 GT_FREQUENCY_MULTIPLIER);
1294 	else if (IS_CHERRYVIEW(i915))
1295 		return chv_freq_opcode(rps, val);
1296 	else if (IS_VALLEYVIEW(i915))
1297 		return byt_freq_opcode(rps, val);
1298 	else
1299 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1300 }
1301 
1302 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1303 {
1304 	struct drm_i915_private *i915 = rps_to_i915(rps);
1305 
1306 	rps->gpll_ref_freq =
1307 		vlv_get_cck_clock(i915, "GPLL ref",
1308 				  CCK_GPLL_CLOCK_CONTROL,
1309 				  i915->czclk_freq);
1310 
1311 	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n", rps->gpll_ref_freq);
1312 }
1313 
1314 static void vlv_rps_init(struct intel_rps *rps)
1315 {
1316 	struct drm_i915_private *i915 = rps_to_i915(rps);
1317 	u32 val;
1318 
1319 	vlv_iosf_sb_get(i915,
1320 			BIT(VLV_IOSF_SB_PUNIT) |
1321 			BIT(VLV_IOSF_SB_NC) |
1322 			BIT(VLV_IOSF_SB_CCK));
1323 
1324 	vlv_init_gpll_ref_freq(rps);
1325 
1326 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1327 	switch ((val >> 6) & 3) {
1328 	case 0:
1329 	case 1:
1330 		i915->mem_freq = 800;
1331 		break;
1332 	case 2:
1333 		i915->mem_freq = 1066;
1334 		break;
1335 	case 3:
1336 		i915->mem_freq = 1333;
1337 		break;
1338 	}
1339 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", i915->mem_freq);
1340 
1341 	rps->max_freq = vlv_rps_max_freq(rps);
1342 	rps->rp0_freq = rps->max_freq;
1343 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
1344 			 intel_gpu_freq(rps, rps->max_freq),
1345 			 rps->max_freq);
1346 
1347 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1348 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
1349 			 intel_gpu_freq(rps, rps->efficient_freq),
1350 			 rps->efficient_freq);
1351 
1352 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1353 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1354 			 intel_gpu_freq(rps, rps->rp1_freq),
1355 			 rps->rp1_freq);
1356 
1357 	rps->min_freq = vlv_rps_min_freq(rps);
1358 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
1359 			 intel_gpu_freq(rps, rps->min_freq),
1360 			 rps->min_freq);
1361 
1362 	vlv_iosf_sb_put(i915,
1363 			BIT(VLV_IOSF_SB_PUNIT) |
1364 			BIT(VLV_IOSF_SB_NC) |
1365 			BIT(VLV_IOSF_SB_CCK));
1366 }
1367 
1368 static void chv_rps_init(struct intel_rps *rps)
1369 {
1370 	struct drm_i915_private *i915 = rps_to_i915(rps);
1371 	u32 val;
1372 
1373 	vlv_iosf_sb_get(i915,
1374 			BIT(VLV_IOSF_SB_PUNIT) |
1375 			BIT(VLV_IOSF_SB_NC) |
1376 			BIT(VLV_IOSF_SB_CCK));
1377 
1378 	vlv_init_gpll_ref_freq(rps);
1379 
1380 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1381 
1382 	switch ((val >> 2) & 0x7) {
1383 	case 3:
1384 		i915->mem_freq = 2000;
1385 		break;
1386 	default:
1387 		i915->mem_freq = 1600;
1388 		break;
1389 	}
1390 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", i915->mem_freq);
1391 
1392 	rps->max_freq = chv_rps_max_freq(rps);
1393 	rps->rp0_freq = rps->max_freq;
1394 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
1395 			 intel_gpu_freq(rps, rps->max_freq),
1396 			 rps->max_freq);
1397 
1398 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1399 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
1400 			 intel_gpu_freq(rps, rps->efficient_freq),
1401 			 rps->efficient_freq);
1402 
1403 	rps->rp1_freq = chv_rps_guar_freq(rps);
1404 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
1405 			 intel_gpu_freq(rps, rps->rp1_freq),
1406 			 rps->rp1_freq);
1407 
1408 	rps->min_freq = chv_rps_min_freq(rps);
1409 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
1410 			 intel_gpu_freq(rps, rps->min_freq),
1411 			 rps->min_freq);
1412 
1413 	vlv_iosf_sb_put(i915,
1414 			BIT(VLV_IOSF_SB_PUNIT) |
1415 			BIT(VLV_IOSF_SB_NC) |
1416 			BIT(VLV_IOSF_SB_CCK));
1417 
1418 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1419 				   rps->rp1_freq | rps->min_freq) & 1,
1420 		      "Odd GPU freq values\n");
1421 }
1422 
1423 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1424 {
1425 	ei->ktime = ktime_get_raw();
1426 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1427 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1428 }
1429 
1430 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1431 {
1432 	struct intel_uncore *uncore = rps_to_uncore(rps);
1433 	const struct intel_rps_ei *prev = &rps->ei;
1434 	struct intel_rps_ei now;
1435 	u32 events = 0;
1436 
1437 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1438 		return 0;
1439 
1440 	vlv_c0_read(uncore, &now);
1441 
1442 	if (prev->ktime) {
1443 		u64 time, c0;
1444 		u32 render, media;
1445 
1446 		time = ktime_us_delta(now.ktime, prev->ktime);
1447 
1448 		time *= rps_to_i915(rps)->czclk_freq;
1449 
1450 		/* Workload can be split between render + media,
1451 		 * e.g. SwapBuffers being blitted in X after being rendered in
1452 		 * mesa. To account for this we need to combine both engines
1453 		 * into our activity counter.
1454 		 */
1455 		render = now.render_c0 - prev->render_c0;
1456 		media = now.media_c0 - prev->media_c0;
1457 		c0 = max(render, media);
1458 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1459 
1460 		if (c0 > time * rps->power.up_threshold)
1461 			events = GEN6_PM_RP_UP_THRESHOLD;
1462 		else if (c0 < time * rps->power.down_threshold)
1463 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1464 	}
1465 
1466 	rps->ei = now;
1467 	return events;
1468 }
1469 
1470 static void rps_work(struct work_struct *work)
1471 {
1472 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1473 	struct intel_gt *gt = rps_to_gt(rps);
1474 	bool client_boost = false;
1475 	int new_freq, adj, min, max;
1476 	u32 pm_iir = 0;
1477 
1478 	spin_lock_irq(&gt->irq_lock);
1479 	pm_iir = fetch_and_zero(&rps->pm_iir) & READ_ONCE(rps->pm_events);
1480 	client_boost = atomic_read(&rps->num_waiters);
1481 	spin_unlock_irq(&gt->irq_lock);
1482 
1483 	/* Make sure we didn't queue anything we're not going to process. */
1484 	if (!pm_iir && !client_boost)
1485 		goto out;
1486 
1487 	mutex_lock(&rps->lock);
1488 
1489 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1490 
1491 	adj = rps->last_adj;
1492 	new_freq = rps->cur_freq;
1493 	min = rps->min_freq_softlimit;
1494 	max = rps->max_freq_softlimit;
1495 	if (client_boost)
1496 		max = rps->max_freq;
1497 	if (client_boost && new_freq < rps->boost_freq) {
1498 		new_freq = rps->boost_freq;
1499 		adj = 0;
1500 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1501 		if (adj > 0)
1502 			adj *= 2;
1503 		else /* CHV needs even encode values */
1504 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1505 
1506 		if (new_freq >= rps->max_freq_softlimit)
1507 			adj = 0;
1508 	} else if (client_boost) {
1509 		adj = 0;
1510 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1511 		if (rps->cur_freq > rps->efficient_freq)
1512 			new_freq = rps->efficient_freq;
1513 		else if (rps->cur_freq > rps->min_freq_softlimit)
1514 			new_freq = rps->min_freq_softlimit;
1515 		adj = 0;
1516 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1517 		if (adj < 0)
1518 			adj *= 2;
1519 		else /* CHV needs even encode values */
1520 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1521 
1522 		if (new_freq <= rps->min_freq_softlimit)
1523 			adj = 0;
1524 	} else { /* unknown event */
1525 		adj = 0;
1526 	}
1527 
1528 	rps->last_adj = adj;
1529 
1530 	/*
1531 	 * Limit deboosting and boosting to keep ourselves at the extremes
1532 	 * when in the respective power modes (i.e. slowly decrease frequencies
1533 	 * while in the HIGH_POWER zone and slowly increase frequencies while
1534 	 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1535 	 * to the next level quickly, and conversely if busy we expect to
1536 	 * hit a waitboost and rapidly switch into max power.
1537 	 */
1538 	if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1539 	    (adj > 0 && rps->power.mode == LOW_POWER))
1540 		rps->last_adj = 0;
1541 
1542 	/* sysfs frequency interfaces may have snuck in while servicing the
1543 	 * interrupt
1544 	 */
1545 	new_freq += adj;
1546 	new_freq = clamp_t(int, new_freq, min, max);
1547 
1548 	if (intel_rps_set(rps, new_freq)) {
1549 		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1550 		rps->last_adj = 0;
1551 	}
1552 
1553 	mutex_unlock(&rps->lock);
1554 
1555 out:
1556 	spin_lock_irq(&gt->irq_lock);
1557 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1558 	spin_unlock_irq(&gt->irq_lock);
1559 }
1560 
1561 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1562 {
1563 	struct intel_gt *gt = rps_to_gt(rps);
1564 	const u32 events = rps->pm_events & pm_iir;
1565 
1566 	lockdep_assert_held(&gt->irq_lock);
1567 
1568 	if (unlikely(!events))
1569 		return;
1570 
1571 	gen6_gt_pm_mask_irq(gt, events);
1572 
1573 	rps->pm_iir |= events;
1574 	schedule_work(&rps->work);
1575 }
1576 
1577 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1578 {
1579 	struct intel_gt *gt = rps_to_gt(rps);
1580 	u32 events;
1581 
1582 	events = pm_iir & READ_ONCE(rps->pm_events);
1583 	if (events) {
1584 		spin_lock(&gt->irq_lock);
1585 
1586 		gen6_gt_pm_mask_irq(gt, events);
1587 		rps->pm_iir |= events;
1588 
1589 		schedule_work(&rps->work);
1590 		spin_unlock(&gt->irq_lock);
1591 	}
1592 
1593 	if (INTEL_GEN(gt->i915) >= 8)
1594 		return;
1595 
1596 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1597 		intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
1598 
1599 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1600 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1601 }
1602 
1603 void gen5_rps_irq_handler(struct intel_rps *rps)
1604 {
1605 	struct intel_uncore *uncore = rps_to_uncore(rps);
1606 	u32 busy_up, busy_down, max_avg, min_avg;
1607 	u8 new_freq;
1608 
1609 	spin_lock(&mchdev_lock);
1610 
1611 	intel_uncore_write16(uncore,
1612 			     MEMINTRSTS,
1613 			     intel_uncore_read(uncore, MEMINTRSTS));
1614 
1615 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1616 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1617 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1618 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1619 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1620 
1621 	/* Handle RCS change request from hw */
1622 	new_freq = rps->cur_freq;
1623 	if (busy_up > max_avg)
1624 		new_freq++;
1625 	else if (busy_down < min_avg)
1626 		new_freq--;
1627 	new_freq = clamp(new_freq,
1628 			 rps->min_freq_softlimit,
1629 			 rps->max_freq_softlimit);
1630 
1631 	if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq))
1632 		rps->cur_freq = new_freq;
1633 
1634 	spin_unlock(&mchdev_lock);
1635 }
1636 
1637 void intel_rps_init_early(struct intel_rps *rps)
1638 {
1639 	mutex_init(&rps->lock);
1640 	mutex_init(&rps->power.mutex);
1641 
1642 	INIT_WORK(&rps->work, rps_work);
1643 
1644 	atomic_set(&rps->num_waiters, 0);
1645 }
1646 
1647 void intel_rps_init(struct intel_rps *rps)
1648 {
1649 	struct drm_i915_private *i915 = rps_to_i915(rps);
1650 
1651 	if (IS_CHERRYVIEW(i915))
1652 		chv_rps_init(rps);
1653 	else if (IS_VALLEYVIEW(i915))
1654 		vlv_rps_init(rps);
1655 	else if (INTEL_GEN(i915) >= 6)
1656 		gen6_rps_init(rps);
1657 	else if (IS_IRONLAKE_M(i915))
1658 		gen5_rps_init(rps);
1659 
1660 	/* Derive initial user preferences/limits from the hardware limits */
1661 	rps->max_freq_softlimit = rps->max_freq;
1662 	rps->min_freq_softlimit = rps->min_freq;
1663 
1664 	/* After setting max-softlimit, find the overclock max freq */
1665 	if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1666 		u32 params = 0;
1667 
1668 		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1669 				       &params, NULL);
1670 		if (params & BIT(31)) { /* OC supported */
1671 			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1672 					 (rps->max_freq & 0xff) * 50,
1673 					 (params & 0xff) * 50);
1674 			rps->max_freq = params & 0xff;
1675 		}
1676 	}
1677 
1678 	/* Finally allow us to boost to max by default */
1679 	rps->boost_freq = rps->max_freq;
1680 	rps->idle_freq = rps->min_freq;
1681 	rps->cur_freq = rps->idle_freq;
1682 
1683 	rps->pm_intrmsk_mbz = 0;
1684 
1685 	/*
1686 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1687 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1688 	 *
1689 	 * TODO: verify if this can be reproduced on VLV,CHV.
1690 	 */
1691 	if (INTEL_GEN(i915) <= 7)
1692 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1693 
1694 	if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1695 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1696 }
1697 
1698 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1699 {
1700 	struct drm_i915_private *i915 = rps_to_i915(rps);
1701 	u32 cagf;
1702 
1703 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1704 		cagf = (rpstat >> 8) & 0xff;
1705 	else if (INTEL_GEN(i915) >= 9)
1706 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1707 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1708 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1709 	else
1710 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1711 
1712 	return cagf;
1713 }
1714 
1715 static u32 read_cagf(struct intel_rps *rps)
1716 {
1717 	struct drm_i915_private *i915 = rps_to_i915(rps);
1718 	u32 freq;
1719 
1720 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1721 		vlv_punit_get(i915);
1722 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1723 		vlv_punit_put(i915);
1724 	} else {
1725 		freq = intel_uncore_read(rps_to_gt(rps)->uncore, GEN6_RPSTAT1);
1726 	}
1727 
1728 	return intel_rps_get_cagf(rps, freq);
1729 }
1730 
1731 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1732 {
1733 	struct intel_runtime_pm *rpm = rps_to_gt(rps)->uncore->rpm;
1734 	intel_wakeref_t wakeref;
1735 	u32 freq = 0;
1736 
1737 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1738 		freq = intel_gpu_freq(rps, read_cagf(rps));
1739 
1740 	return freq;
1741 }
1742 
1743 /* External interface for intel_ips.ko */
1744 
1745 static struct drm_i915_private __rcu *ips_mchdev;
1746 
1747 /**
1748  * Tells the intel_ips driver that the i915 driver is now loaded, if
1749  * IPS got loaded first.
1750  *
1751  * This awkward dance is so that neither module has to depend on the
1752  * other in order for IPS to do the appropriate communication of
1753  * GPU turbo limits to i915.
1754  */
1755 static void
1756 ips_ping_for_i915_load(void)
1757 {
1758 	void (*link)(void);
1759 
1760 	link = symbol_get(ips_link_to_i915_driver);
1761 	if (link) {
1762 		link();
1763 		symbol_put(ips_link_to_i915_driver);
1764 	}
1765 }
1766 
1767 void intel_rps_driver_register(struct intel_rps *rps)
1768 {
1769 	struct intel_gt *gt = rps_to_gt(rps);
1770 
1771 	/*
1772 	 * We only register the i915 ips part with intel-ips once everything is
1773 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
1774 	 */
1775 	if (IS_GEN(gt->i915, 5)) {
1776 		GEM_BUG_ON(ips_mchdev);
1777 		rcu_assign_pointer(ips_mchdev, gt->i915);
1778 		ips_ping_for_i915_load();
1779 	}
1780 }
1781 
1782 void intel_rps_driver_unregister(struct intel_rps *rps)
1783 {
1784 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1785 		rcu_assign_pointer(ips_mchdev, NULL);
1786 }
1787 
1788 static struct drm_i915_private *mchdev_get(void)
1789 {
1790 	struct drm_i915_private *i915;
1791 
1792 	rcu_read_lock();
1793 	i915 = rcu_dereference(ips_mchdev);
1794 	if (!kref_get_unless_zero(&i915->drm.ref))
1795 		i915 = NULL;
1796 	rcu_read_unlock();
1797 
1798 	return i915;
1799 }
1800 
1801 /**
1802  * i915_read_mch_val - return value for IPS use
1803  *
1804  * Calculate and return a value for the IPS driver to use when deciding whether
1805  * we have thermal and power headroom to increase CPU or GPU power budget.
1806  */
1807 unsigned long i915_read_mch_val(void)
1808 {
1809 	struct drm_i915_private *i915;
1810 	unsigned long chipset_val = 0;
1811 	unsigned long graphics_val = 0;
1812 	intel_wakeref_t wakeref;
1813 
1814 	i915 = mchdev_get();
1815 	if (!i915)
1816 		return 0;
1817 
1818 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
1819 		struct intel_ips *ips = &i915->gt.rps.ips;
1820 
1821 		spin_lock_irq(&mchdev_lock);
1822 		chipset_val = __ips_chipset_val(ips);
1823 		graphics_val = __ips_gfx_val(ips);
1824 		spin_unlock_irq(&mchdev_lock);
1825 	}
1826 
1827 	drm_dev_put(&i915->drm);
1828 	return chipset_val + graphics_val;
1829 }
1830 EXPORT_SYMBOL_GPL(i915_read_mch_val);
1831 
1832 /**
1833  * i915_gpu_raise - raise GPU frequency limit
1834  *
1835  * Raise the limit; IPS indicates we have thermal headroom.
1836  */
1837 bool i915_gpu_raise(void)
1838 {
1839 	struct drm_i915_private *i915;
1840 	struct intel_rps *rps;
1841 
1842 	i915 = mchdev_get();
1843 	if (!i915)
1844 		return false;
1845 
1846 	rps = &i915->gt.rps;
1847 
1848 	spin_lock_irq(&mchdev_lock);
1849 	if (rps->max_freq_softlimit < rps->max_freq)
1850 		rps->max_freq_softlimit++;
1851 	spin_unlock_irq(&mchdev_lock);
1852 
1853 	drm_dev_put(&i915->drm);
1854 	return true;
1855 }
1856 EXPORT_SYMBOL_GPL(i915_gpu_raise);
1857 
1858 /**
1859  * i915_gpu_lower - lower GPU frequency limit
1860  *
1861  * IPS indicates we're close to a thermal limit, so throttle back the GPU
1862  * frequency maximum.
1863  */
1864 bool i915_gpu_lower(void)
1865 {
1866 	struct drm_i915_private *i915;
1867 	struct intel_rps *rps;
1868 
1869 	i915 = mchdev_get();
1870 	if (!i915)
1871 		return false;
1872 
1873 	rps = &i915->gt.rps;
1874 
1875 	spin_lock_irq(&mchdev_lock);
1876 	if (rps->max_freq_softlimit > rps->min_freq)
1877 		rps->max_freq_softlimit--;
1878 	spin_unlock_irq(&mchdev_lock);
1879 
1880 	drm_dev_put(&i915->drm);
1881 	return true;
1882 }
1883 EXPORT_SYMBOL_GPL(i915_gpu_lower);
1884 
1885 /**
1886  * i915_gpu_busy - indicate GPU business to IPS
1887  *
1888  * Tell the IPS driver whether or not the GPU is busy.
1889  */
1890 bool i915_gpu_busy(void)
1891 {
1892 	struct drm_i915_private *i915;
1893 	bool ret;
1894 
1895 	i915 = mchdev_get();
1896 	if (!i915)
1897 		return false;
1898 
1899 	ret = i915->gt.awake;
1900 
1901 	drm_dev_put(&i915->drm);
1902 	return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(i915_gpu_busy);
1905 
1906 /**
1907  * i915_gpu_turbo_disable - disable graphics turbo
1908  *
1909  * Disable graphics turbo by resetting the max frequency and setting the
1910  * current frequency to the default.
1911  */
1912 bool i915_gpu_turbo_disable(void)
1913 {
1914 	struct drm_i915_private *i915;
1915 	struct intel_rps *rps;
1916 	bool ret;
1917 
1918 	i915 = mchdev_get();
1919 	if (!i915)
1920 		return false;
1921 
1922 	rps = &i915->gt.rps;
1923 
1924 	spin_lock_irq(&mchdev_lock);
1925 	rps->max_freq_softlimit = rps->min_freq;
1926 	ret = gen5_rps_set(&i915->gt.rps, rps->min_freq);
1927 	spin_unlock_irq(&mchdev_lock);
1928 
1929 	drm_dev_put(&i915->drm);
1930 	return ret;
1931 }
1932 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
1933