xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 76a4f7cc)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/i915_drm.h>
7 
8 #include "i915_drv.h"
9 #include "intel_breadcrumbs.h"
10 #include "intel_gt.h"
11 #include "intel_gt_clock_utils.h"
12 #include "intel_gt_irq.h"
13 #include "intel_gt_pm_irq.h"
14 #include "intel_rps.h"
15 #include "intel_sideband.h"
16 #include "../../../platform/x86/intel_ips.h"
17 
18 #define BUSY_MAX_EI	20u /* ms */
19 
20 /*
21  * Lock protecting IPS related data structures
22  */
23 static DEFINE_SPINLOCK(mchdev_lock);
24 
25 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
26 {
27 	return container_of(rps, struct intel_gt, rps);
28 }
29 
30 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
31 {
32 	return rps_to_gt(rps)->i915;
33 }
34 
35 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
36 {
37 	return rps_to_gt(rps)->uncore;
38 }
39 
40 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
41 {
42 	struct intel_gt *gt = rps_to_gt(rps);
43 
44 	return &gt->uc.guc.slpc;
45 }
46 
47 static bool rps_uses_slpc(struct intel_rps *rps)
48 {
49 	struct intel_gt *gt = rps_to_gt(rps);
50 
51 	return intel_uc_uses_guc_slpc(&gt->uc);
52 }
53 
54 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
55 {
56 	return mask & ~rps->pm_intrmsk_mbz;
57 }
58 
59 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
60 {
61 	intel_uncore_write_fw(uncore, reg, val);
62 }
63 
64 static void rps_timer(struct timer_list *t)
65 {
66 	struct intel_rps *rps = from_timer(rps, t, timer);
67 	struct intel_engine_cs *engine;
68 	ktime_t dt, last, timestamp;
69 	enum intel_engine_id id;
70 	s64 max_busy[3] = {};
71 
72 	timestamp = 0;
73 	for_each_engine(engine, rps_to_gt(rps), id) {
74 		s64 busy;
75 		int i;
76 
77 		dt = intel_engine_get_busy_time(engine, &timestamp);
78 		last = engine->stats.rps;
79 		engine->stats.rps = dt;
80 
81 		busy = ktime_to_ns(ktime_sub(dt, last));
82 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
83 			if (busy > max_busy[i])
84 				swap(busy, max_busy[i]);
85 		}
86 	}
87 	last = rps->pm_timestamp;
88 	rps->pm_timestamp = timestamp;
89 
90 	if (intel_rps_is_active(rps)) {
91 		s64 busy;
92 		int i;
93 
94 		dt = ktime_sub(timestamp, last);
95 
96 		/*
97 		 * Our goal is to evaluate each engine independently, so we run
98 		 * at the lowest clocks required to sustain the heaviest
99 		 * workload. However, a task may be split into sequential
100 		 * dependent operations across a set of engines, such that
101 		 * the independent contributions do not account for high load,
102 		 * but overall the task is GPU bound. For example, consider
103 		 * video decode on vcs followed by colour post-processing
104 		 * on vecs, followed by general post-processing on rcs.
105 		 * Since multi-engines being active does imply a single
106 		 * continuous workload across all engines, we hedge our
107 		 * bets by only contributing a factor of the distributed
108 		 * load into our busyness calculation.
109 		 */
110 		busy = max_busy[0];
111 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
112 			if (!max_busy[i])
113 				break;
114 
115 			busy += div_u64(max_busy[i], 1 << i);
116 		}
117 		GT_TRACE(rps_to_gt(rps),
118 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
119 			 busy, (int)div64_u64(100 * busy, dt),
120 			 max_busy[0], max_busy[1], max_busy[2],
121 			 rps->pm_interval);
122 
123 		if (100 * busy > rps->power.up_threshold * dt &&
124 		    rps->cur_freq < rps->max_freq_softlimit) {
125 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
126 			rps->pm_interval = 1;
127 			schedule_work(&rps->work);
128 		} else if (100 * busy < rps->power.down_threshold * dt &&
129 			   rps->cur_freq > rps->min_freq_softlimit) {
130 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
131 			rps->pm_interval = 1;
132 			schedule_work(&rps->work);
133 		} else {
134 			rps->last_adj = 0;
135 		}
136 
137 		mod_timer(&rps->timer,
138 			  jiffies + msecs_to_jiffies(rps->pm_interval));
139 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
140 	}
141 }
142 
143 static void rps_start_timer(struct intel_rps *rps)
144 {
145 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
146 	rps->pm_interval = 1;
147 	mod_timer(&rps->timer, jiffies + 1);
148 }
149 
150 static void rps_stop_timer(struct intel_rps *rps)
151 {
152 	del_timer_sync(&rps->timer);
153 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
154 	cancel_work_sync(&rps->work);
155 }
156 
157 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
158 {
159 	u32 mask = 0;
160 
161 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
162 	if (val > rps->min_freq_softlimit)
163 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
164 			 GEN6_PM_RP_DOWN_THRESHOLD |
165 			 GEN6_PM_RP_DOWN_TIMEOUT);
166 
167 	if (val < rps->max_freq_softlimit)
168 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
169 
170 	mask &= rps->pm_events;
171 
172 	return rps_pm_sanitize_mask(rps, ~mask);
173 }
174 
175 static void rps_reset_ei(struct intel_rps *rps)
176 {
177 	memset(&rps->ei, 0, sizeof(rps->ei));
178 }
179 
180 static void rps_enable_interrupts(struct intel_rps *rps)
181 {
182 	struct intel_gt *gt = rps_to_gt(rps);
183 
184 	GEM_BUG_ON(rps_uses_slpc(rps));
185 
186 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
187 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
188 
189 	rps_reset_ei(rps);
190 
191 	spin_lock_irq(&gt->irq_lock);
192 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
193 	spin_unlock_irq(&gt->irq_lock);
194 
195 	intel_uncore_write(gt->uncore,
196 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
197 }
198 
199 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
200 {
201 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
202 }
203 
204 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
205 {
206 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
207 		;
208 }
209 
210 static void rps_reset_interrupts(struct intel_rps *rps)
211 {
212 	struct intel_gt *gt = rps_to_gt(rps);
213 
214 	spin_lock_irq(&gt->irq_lock);
215 	if (GRAPHICS_VER(gt->i915) >= 11)
216 		gen11_rps_reset_interrupts(rps);
217 	else
218 		gen6_rps_reset_interrupts(rps);
219 
220 	rps->pm_iir = 0;
221 	spin_unlock_irq(&gt->irq_lock);
222 }
223 
224 static void rps_disable_interrupts(struct intel_rps *rps)
225 {
226 	struct intel_gt *gt = rps_to_gt(rps);
227 
228 	intel_uncore_write(gt->uncore,
229 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
230 
231 	spin_lock_irq(&gt->irq_lock);
232 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
233 	spin_unlock_irq(&gt->irq_lock);
234 
235 	intel_synchronize_irq(gt->i915);
236 
237 	/*
238 	 * Now that we will not be generating any more work, flush any
239 	 * outstanding tasks. As we are called on the RPS idle path,
240 	 * we will reset the GPU to minimum frequencies, so the current
241 	 * state of the worker can be discarded.
242 	 */
243 	cancel_work_sync(&rps->work);
244 
245 	rps_reset_interrupts(rps);
246 	GT_TRACE(gt, "interrupts:off\n");
247 }
248 
249 static const struct cparams {
250 	u16 i;
251 	u16 t;
252 	u16 m;
253 	u16 c;
254 } cparams[] = {
255 	{ 1, 1333, 301, 28664 },
256 	{ 1, 1066, 294, 24460 },
257 	{ 1, 800, 294, 25192 },
258 	{ 0, 1333, 276, 27605 },
259 	{ 0, 1066, 276, 27605 },
260 	{ 0, 800, 231, 23784 },
261 };
262 
263 static void gen5_rps_init(struct intel_rps *rps)
264 {
265 	struct drm_i915_private *i915 = rps_to_i915(rps);
266 	struct intel_uncore *uncore = rps_to_uncore(rps);
267 	u8 fmax, fmin, fstart;
268 	u32 rgvmodectl;
269 	int c_m, i;
270 
271 	if (i915->fsb_freq <= 3200)
272 		c_m = 0;
273 	else if (i915->fsb_freq <= 4800)
274 		c_m = 1;
275 	else
276 		c_m = 2;
277 
278 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
279 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
280 			rps->ips.m = cparams[i].m;
281 			rps->ips.c = cparams[i].c;
282 			break;
283 		}
284 	}
285 
286 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
287 
288 	/* Set up min, max, and cur for interrupt handling */
289 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
290 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
291 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
292 		MEMMODE_FSTART_SHIFT;
293 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
294 		fmax, fmin, fstart);
295 
296 	rps->min_freq = fmax;
297 	rps->efficient_freq = fstart;
298 	rps->max_freq = fmin;
299 }
300 
301 static unsigned long
302 __ips_chipset_val(struct intel_ips *ips)
303 {
304 	struct intel_uncore *uncore =
305 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
306 	unsigned long now = jiffies_to_msecs(jiffies), dt;
307 	unsigned long result;
308 	u64 total, delta;
309 
310 	lockdep_assert_held(&mchdev_lock);
311 
312 	/*
313 	 * Prevent division-by-zero if we are asking too fast.
314 	 * Also, we don't get interesting results if we are polling
315 	 * faster than once in 10ms, so just return the saved value
316 	 * in such cases.
317 	 */
318 	dt = now - ips->last_time1;
319 	if (dt <= 10)
320 		return ips->chipset_power;
321 
322 	/* FIXME: handle per-counter overflow */
323 	total = intel_uncore_read(uncore, DMIEC);
324 	total += intel_uncore_read(uncore, DDREC);
325 	total += intel_uncore_read(uncore, CSIEC);
326 
327 	delta = total - ips->last_count1;
328 
329 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
330 
331 	ips->last_count1 = total;
332 	ips->last_time1 = now;
333 
334 	ips->chipset_power = result;
335 
336 	return result;
337 }
338 
339 static unsigned long ips_mch_val(struct intel_uncore *uncore)
340 {
341 	unsigned int m, x, b;
342 	u32 tsfs;
343 
344 	tsfs = intel_uncore_read(uncore, TSFS);
345 	x = intel_uncore_read8(uncore, TR1);
346 
347 	b = tsfs & TSFS_INTR_MASK;
348 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
349 
350 	return m * x / 127 - b;
351 }
352 
353 static int _pxvid_to_vd(u8 pxvid)
354 {
355 	if (pxvid == 0)
356 		return 0;
357 
358 	if (pxvid >= 8 && pxvid < 31)
359 		pxvid = 31;
360 
361 	return (pxvid + 2) * 125;
362 }
363 
364 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
365 {
366 	const int vd = _pxvid_to_vd(pxvid);
367 
368 	if (INTEL_INFO(i915)->is_mobile)
369 		return max(vd - 1125, 0);
370 
371 	return vd;
372 }
373 
374 static void __gen5_ips_update(struct intel_ips *ips)
375 {
376 	struct intel_uncore *uncore =
377 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
378 	u64 now, delta, dt;
379 	u32 count;
380 
381 	lockdep_assert_held(&mchdev_lock);
382 
383 	now = ktime_get_raw_ns();
384 	dt = now - ips->last_time2;
385 	do_div(dt, NSEC_PER_MSEC);
386 
387 	/* Don't divide by 0 */
388 	if (dt <= 10)
389 		return;
390 
391 	count = intel_uncore_read(uncore, GFXEC);
392 	delta = count - ips->last_count2;
393 
394 	ips->last_count2 = count;
395 	ips->last_time2 = now;
396 
397 	/* More magic constants... */
398 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
399 }
400 
401 static void gen5_rps_update(struct intel_rps *rps)
402 {
403 	spin_lock_irq(&mchdev_lock);
404 	__gen5_ips_update(&rps->ips);
405 	spin_unlock_irq(&mchdev_lock);
406 }
407 
408 static unsigned int gen5_invert_freq(struct intel_rps *rps,
409 				     unsigned int val)
410 {
411 	/* Invert the frequency bin into an ips delay */
412 	val = rps->max_freq - val;
413 	val = rps->min_freq + val;
414 
415 	return val;
416 }
417 
418 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
419 {
420 	struct intel_uncore *uncore = rps_to_uncore(rps);
421 	u16 rgvswctl;
422 
423 	lockdep_assert_held(&mchdev_lock);
424 
425 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
426 	if (rgvswctl & MEMCTL_CMD_STS) {
427 		DRM_DEBUG("gpu busy, RCS change rejected\n");
428 		return -EBUSY; /* still busy with another command */
429 	}
430 
431 	/* Invert the frequency bin into an ips delay */
432 	val = gen5_invert_freq(rps, val);
433 
434 	rgvswctl =
435 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
436 		(val << MEMCTL_FREQ_SHIFT) |
437 		MEMCTL_SFCAVM;
438 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
439 	intel_uncore_posting_read16(uncore, MEMSWCTL);
440 
441 	rgvswctl |= MEMCTL_CMD_STS;
442 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
443 
444 	return 0;
445 }
446 
447 static int gen5_rps_set(struct intel_rps *rps, u8 val)
448 {
449 	int err;
450 
451 	spin_lock_irq(&mchdev_lock);
452 	err = __gen5_rps_set(rps, val);
453 	spin_unlock_irq(&mchdev_lock);
454 
455 	return err;
456 }
457 
458 static unsigned long intel_pxfreq(u32 vidfreq)
459 {
460 	int div = (vidfreq & 0x3f0000) >> 16;
461 	int post = (vidfreq & 0x3000) >> 12;
462 	int pre = (vidfreq & 0x7);
463 
464 	if (!pre)
465 		return 0;
466 
467 	return div * 133333 / (pre << post);
468 }
469 
470 static unsigned int init_emon(struct intel_uncore *uncore)
471 {
472 	u8 pxw[16];
473 	int i;
474 
475 	/* Disable to program */
476 	intel_uncore_write(uncore, ECR, 0);
477 	intel_uncore_posting_read(uncore, ECR);
478 
479 	/* Program energy weights for various events */
480 	intel_uncore_write(uncore, SDEW, 0x15040d00);
481 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
482 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
483 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
484 
485 	for (i = 0; i < 5; i++)
486 		intel_uncore_write(uncore, PEW(i), 0);
487 	for (i = 0; i < 3; i++)
488 		intel_uncore_write(uncore, DEW(i), 0);
489 
490 	/* Program P-state weights to account for frequency power adjustment */
491 	for (i = 0; i < 16; i++) {
492 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
493 		unsigned int freq = intel_pxfreq(pxvidfreq);
494 		unsigned int vid =
495 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
496 		unsigned int val;
497 
498 		val = vid * vid * freq / 1000 * 255;
499 		val /= 127 * 127 * 900;
500 
501 		pxw[i] = val;
502 	}
503 	/* Render standby states get 0 weight */
504 	pxw[14] = 0;
505 	pxw[15] = 0;
506 
507 	for (i = 0; i < 4; i++) {
508 		intel_uncore_write(uncore, PXW(i),
509 				   pxw[i * 4 + 0] << 24 |
510 				   pxw[i * 4 + 1] << 16 |
511 				   pxw[i * 4 + 2] <<  8 |
512 				   pxw[i * 4 + 3] <<  0);
513 	}
514 
515 	/* Adjust magic regs to magic values (more experimental results) */
516 	intel_uncore_write(uncore, OGW0, 0);
517 	intel_uncore_write(uncore, OGW1, 0);
518 	intel_uncore_write(uncore, EG0, 0x00007f00);
519 	intel_uncore_write(uncore, EG1, 0x0000000e);
520 	intel_uncore_write(uncore, EG2, 0x000e0000);
521 	intel_uncore_write(uncore, EG3, 0x68000300);
522 	intel_uncore_write(uncore, EG4, 0x42000000);
523 	intel_uncore_write(uncore, EG5, 0x00140031);
524 	intel_uncore_write(uncore, EG6, 0);
525 	intel_uncore_write(uncore, EG7, 0);
526 
527 	for (i = 0; i < 8; i++)
528 		intel_uncore_write(uncore, PXWL(i), 0);
529 
530 	/* Enable PMON + select events */
531 	intel_uncore_write(uncore, ECR, 0x80000019);
532 
533 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
534 }
535 
536 static bool gen5_rps_enable(struct intel_rps *rps)
537 {
538 	struct drm_i915_private *i915 = rps_to_i915(rps);
539 	struct intel_uncore *uncore = rps_to_uncore(rps);
540 	u8 fstart, vstart;
541 	u32 rgvmodectl;
542 
543 	spin_lock_irq(&mchdev_lock);
544 
545 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
546 
547 	/* Enable temp reporting */
548 	intel_uncore_write16(uncore, PMMISC,
549 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
550 	intel_uncore_write16(uncore, TSC1,
551 			     intel_uncore_read16(uncore, TSC1) | TSE);
552 
553 	/* 100ms RC evaluation intervals */
554 	intel_uncore_write(uncore, RCUPEI, 100000);
555 	intel_uncore_write(uncore, RCDNEI, 100000);
556 
557 	/* Set max/min thresholds to 90ms and 80ms respectively */
558 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
559 	intel_uncore_write(uncore, RCBMINAVG, 80000);
560 
561 	intel_uncore_write(uncore, MEMIHYST, 1);
562 
563 	/* Set up min, max, and cur for interrupt handling */
564 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
565 		MEMMODE_FSTART_SHIFT;
566 
567 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
568 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
569 
570 	intel_uncore_write(uncore,
571 			   MEMINTREN,
572 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
573 
574 	intel_uncore_write(uncore, VIDSTART, vstart);
575 	intel_uncore_posting_read(uncore, VIDSTART);
576 
577 	rgvmodectl |= MEMMODE_SWMODE_EN;
578 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
579 
580 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
581 			     MEMCTL_CMD_STS) == 0, 10))
582 		drm_err(&uncore->i915->drm,
583 			"stuck trying to change perf mode\n");
584 	mdelay(1);
585 
586 	__gen5_rps_set(rps, rps->cur_freq);
587 
588 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
589 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
590 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
591 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
592 
593 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
594 	rps->ips.last_time2 = ktime_get_raw_ns();
595 
596 	spin_lock(&i915->irq_lock);
597 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
598 	spin_unlock(&i915->irq_lock);
599 
600 	spin_unlock_irq(&mchdev_lock);
601 
602 	rps->ips.corr = init_emon(uncore);
603 
604 	return true;
605 }
606 
607 static void gen5_rps_disable(struct intel_rps *rps)
608 {
609 	struct drm_i915_private *i915 = rps_to_i915(rps);
610 	struct intel_uncore *uncore = rps_to_uncore(rps);
611 	u16 rgvswctl;
612 
613 	spin_lock_irq(&mchdev_lock);
614 
615 	spin_lock(&i915->irq_lock);
616 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
617 	spin_unlock(&i915->irq_lock);
618 
619 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
620 
621 	/* Ack interrupts, disable EFC interrupt */
622 	intel_uncore_write(uncore, MEMINTREN,
623 			   intel_uncore_read(uncore, MEMINTREN) &
624 			   ~MEMINT_EVAL_CHG_EN);
625 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
626 
627 	/* Go back to the starting frequency */
628 	__gen5_rps_set(rps, rps->idle_freq);
629 	mdelay(1);
630 	rgvswctl |= MEMCTL_CMD_STS;
631 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
632 	mdelay(1);
633 
634 	spin_unlock_irq(&mchdev_lock);
635 }
636 
637 static u32 rps_limits(struct intel_rps *rps, u8 val)
638 {
639 	u32 limits;
640 
641 	/*
642 	 * Only set the down limit when we've reached the lowest level to avoid
643 	 * getting more interrupts, otherwise leave this clear. This prevents a
644 	 * race in the hw when coming out of rc6: There's a tiny window where
645 	 * the hw runs at the minimal clock before selecting the desired
646 	 * frequency, if the down threshold expires in that window we will not
647 	 * receive a down interrupt.
648 	 */
649 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
650 		limits = rps->max_freq_softlimit << 23;
651 		if (val <= rps->min_freq_softlimit)
652 			limits |= rps->min_freq_softlimit << 14;
653 	} else {
654 		limits = rps->max_freq_softlimit << 24;
655 		if (val <= rps->min_freq_softlimit)
656 			limits |= rps->min_freq_softlimit << 16;
657 	}
658 
659 	return limits;
660 }
661 
662 static void rps_set_power(struct intel_rps *rps, int new_power)
663 {
664 	struct intel_gt *gt = rps_to_gt(rps);
665 	struct intel_uncore *uncore = gt->uncore;
666 	u32 threshold_up = 0, threshold_down = 0; /* in % */
667 	u32 ei_up = 0, ei_down = 0;
668 
669 	lockdep_assert_held(&rps->power.mutex);
670 
671 	if (new_power == rps->power.mode)
672 		return;
673 
674 	threshold_up = 95;
675 	threshold_down = 85;
676 
677 	/* Note the units here are not exactly 1us, but 1280ns. */
678 	switch (new_power) {
679 	case LOW_POWER:
680 		ei_up = 16000;
681 		ei_down = 32000;
682 		break;
683 
684 	case BETWEEN:
685 		ei_up = 13000;
686 		ei_down = 32000;
687 		break;
688 
689 	case HIGH_POWER:
690 		ei_up = 10000;
691 		ei_down = 32000;
692 		break;
693 	}
694 
695 	/* When byt can survive without system hang with dynamic
696 	 * sw freq adjustments, this restriction can be lifted.
697 	 */
698 	if (IS_VALLEYVIEW(gt->i915))
699 		goto skip_hw_write;
700 
701 	GT_TRACE(gt,
702 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
703 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
704 
705 	set(uncore, GEN6_RP_UP_EI,
706 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
707 	set(uncore, GEN6_RP_UP_THRESHOLD,
708 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
709 
710 	set(uncore, GEN6_RP_DOWN_EI,
711 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
712 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
713 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
714 
715 	set(uncore, GEN6_RP_CONTROL,
716 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
717 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
718 	    GEN6_RP_MEDIA_IS_GFX |
719 	    GEN6_RP_ENABLE |
720 	    GEN6_RP_UP_BUSY_AVG |
721 	    GEN6_RP_DOWN_IDLE_AVG);
722 
723 skip_hw_write:
724 	rps->power.mode = new_power;
725 	rps->power.up_threshold = threshold_up;
726 	rps->power.down_threshold = threshold_down;
727 }
728 
729 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
730 {
731 	int new_power;
732 
733 	new_power = rps->power.mode;
734 	switch (rps->power.mode) {
735 	case LOW_POWER:
736 		if (val > rps->efficient_freq + 1 &&
737 		    val > rps->cur_freq)
738 			new_power = BETWEEN;
739 		break;
740 
741 	case BETWEEN:
742 		if (val <= rps->efficient_freq &&
743 		    val < rps->cur_freq)
744 			new_power = LOW_POWER;
745 		else if (val >= rps->rp0_freq &&
746 			 val > rps->cur_freq)
747 			new_power = HIGH_POWER;
748 		break;
749 
750 	case HIGH_POWER:
751 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
752 		    val < rps->cur_freq)
753 			new_power = BETWEEN;
754 		break;
755 	}
756 	/* Max/min bins are special */
757 	if (val <= rps->min_freq_softlimit)
758 		new_power = LOW_POWER;
759 	if (val >= rps->max_freq_softlimit)
760 		new_power = HIGH_POWER;
761 
762 	mutex_lock(&rps->power.mutex);
763 	if (rps->power.interactive)
764 		new_power = HIGH_POWER;
765 	rps_set_power(rps, new_power);
766 	mutex_unlock(&rps->power.mutex);
767 }
768 
769 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
770 {
771 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
772 
773 	mutex_lock(&rps->power.mutex);
774 	if (interactive) {
775 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
776 			rps_set_power(rps, HIGH_POWER);
777 	} else {
778 		GEM_BUG_ON(!rps->power.interactive);
779 		rps->power.interactive--;
780 	}
781 	mutex_unlock(&rps->power.mutex);
782 }
783 
784 static int gen6_rps_set(struct intel_rps *rps, u8 val)
785 {
786 	struct intel_uncore *uncore = rps_to_uncore(rps);
787 	struct drm_i915_private *i915 = rps_to_i915(rps);
788 	u32 swreq;
789 
790 	GEM_BUG_ON(rps_uses_slpc(rps));
791 
792 	if (GRAPHICS_VER(i915) >= 9)
793 		swreq = GEN9_FREQUENCY(val);
794 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
795 		swreq = HSW_FREQUENCY(val);
796 	else
797 		swreq = (GEN6_FREQUENCY(val) |
798 			 GEN6_OFFSET(0) |
799 			 GEN6_AGGRESSIVE_TURBO);
800 	set(uncore, GEN6_RPNSWREQ, swreq);
801 
802 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
803 		 val, intel_gpu_freq(rps, val), swreq);
804 
805 	return 0;
806 }
807 
808 static int vlv_rps_set(struct intel_rps *rps, u8 val)
809 {
810 	struct drm_i915_private *i915 = rps_to_i915(rps);
811 	int err;
812 
813 	vlv_punit_get(i915);
814 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
815 	vlv_punit_put(i915);
816 
817 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
818 		 val, intel_gpu_freq(rps, val));
819 
820 	return err;
821 }
822 
823 static int rps_set(struct intel_rps *rps, u8 val, bool update)
824 {
825 	struct drm_i915_private *i915 = rps_to_i915(rps);
826 	int err;
827 
828 	if (val == rps->last_freq)
829 		return 0;
830 
831 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
832 		err = vlv_rps_set(rps, val);
833 	else if (GRAPHICS_VER(i915) >= 6)
834 		err = gen6_rps_set(rps, val);
835 	else
836 		err = gen5_rps_set(rps, val);
837 	if (err)
838 		return err;
839 
840 	if (update && GRAPHICS_VER(i915) >= 6)
841 		gen6_rps_set_thresholds(rps, val);
842 	rps->last_freq = val;
843 
844 	return 0;
845 }
846 
847 void intel_rps_unpark(struct intel_rps *rps)
848 {
849 	if (!intel_rps_is_enabled(rps))
850 		return;
851 
852 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
853 
854 	/*
855 	 * Use the user's desired frequency as a guide, but for better
856 	 * performance, jump directly to RPe as our starting frequency.
857 	 */
858 	mutex_lock(&rps->lock);
859 
860 	intel_rps_set_active(rps);
861 	intel_rps_set(rps,
862 		      clamp(rps->cur_freq,
863 			    rps->min_freq_softlimit,
864 			    rps->max_freq_softlimit));
865 
866 	mutex_unlock(&rps->lock);
867 
868 	rps->pm_iir = 0;
869 	if (intel_rps_has_interrupts(rps))
870 		rps_enable_interrupts(rps);
871 	if (intel_rps_uses_timer(rps))
872 		rps_start_timer(rps);
873 
874 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
875 		gen5_rps_update(rps);
876 }
877 
878 void intel_rps_park(struct intel_rps *rps)
879 {
880 	int adj;
881 
882 	if (!intel_rps_is_enabled(rps))
883 		return;
884 
885 	GEM_BUG_ON(atomic_read(&rps->num_waiters));
886 
887 	if (!intel_rps_clear_active(rps))
888 		return;
889 
890 	if (intel_rps_uses_timer(rps))
891 		rps_stop_timer(rps);
892 	if (intel_rps_has_interrupts(rps))
893 		rps_disable_interrupts(rps);
894 
895 	if (rps->last_freq <= rps->idle_freq)
896 		return;
897 
898 	/*
899 	 * The punit delays the write of the frequency and voltage until it
900 	 * determines the GPU is awake. During normal usage we don't want to
901 	 * waste power changing the frequency if the GPU is sleeping (rc6).
902 	 * However, the GPU and driver is now idle and we do not want to delay
903 	 * switching to minimum voltage (reducing power whilst idle) as we do
904 	 * not expect to be woken in the near future and so must flush the
905 	 * change by waking the device.
906 	 *
907 	 * We choose to take the media powerwell (either would do to trick the
908 	 * punit into committing the voltage change) as that takes a lot less
909 	 * power than the render powerwell.
910 	 */
911 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
912 	rps_set(rps, rps->idle_freq, false);
913 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
914 
915 	/*
916 	 * Since we will try and restart from the previously requested
917 	 * frequency on unparking, treat this idle point as a downclock
918 	 * interrupt and reduce the frequency for resume. If we park/unpark
919 	 * more frequently than the rps worker can run, we will not respond
920 	 * to any EI and never see a change in frequency.
921 	 *
922 	 * (Note we accommodate Cherryview's limitation of only using an
923 	 * even bin by applying it to all.)
924 	 */
925 	adj = rps->last_adj;
926 	if (adj < 0)
927 		adj *= 2;
928 	else /* CHV needs even encode values */
929 		adj = -2;
930 	rps->last_adj = adj;
931 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
932 	if (rps->cur_freq < rps->efficient_freq) {
933 		rps->cur_freq = rps->efficient_freq;
934 		rps->last_adj = 0;
935 	}
936 
937 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
938 }
939 
940 void intel_rps_boost(struct i915_request *rq)
941 {
942 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
943 		return;
944 
945 	/* Serializes with i915_request_retire() */
946 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
947 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
948 
949 		if (atomic_fetch_inc(&rps->num_waiters))
950 			return;
951 
952 		if (!intel_rps_is_active(rps))
953 			return;
954 
955 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
956 			 rq->fence.context, rq->fence.seqno);
957 
958 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
959 			schedule_work(&rps->work);
960 
961 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
962 	}
963 }
964 
965 int intel_rps_set(struct intel_rps *rps, u8 val)
966 {
967 	int err;
968 
969 	lockdep_assert_held(&rps->lock);
970 	GEM_BUG_ON(val > rps->max_freq);
971 	GEM_BUG_ON(val < rps->min_freq);
972 
973 	if (intel_rps_is_active(rps)) {
974 		err = rps_set(rps, val, true);
975 		if (err)
976 			return err;
977 
978 		/*
979 		 * Make sure we continue to get interrupts
980 		 * until we hit the minimum or maximum frequencies.
981 		 */
982 		if (intel_rps_has_interrupts(rps)) {
983 			struct intel_uncore *uncore = rps_to_uncore(rps);
984 
985 			set(uncore,
986 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
987 
988 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
989 		}
990 	}
991 
992 	rps->cur_freq = val;
993 	return 0;
994 }
995 
996 static void gen6_rps_init(struct intel_rps *rps)
997 {
998 	struct drm_i915_private *i915 = rps_to_i915(rps);
999 	struct intel_uncore *uncore = rps_to_uncore(rps);
1000 
1001 	/* All of these values are in units of 50MHz */
1002 
1003 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1004 	if (IS_GEN9_LP(i915)) {
1005 		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1006 
1007 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1008 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1009 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
1010 	} else {
1011 		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1012 
1013 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1014 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1015 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
1016 	}
1017 
1018 	/* hw_max = RP0 until we check for overclocking */
1019 	rps->max_freq = rps->rp0_freq;
1020 
1021 	rps->efficient_freq = rps->rp1_freq;
1022 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1023 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1024 		u32 ddcc_status = 0;
1025 
1026 		if (sandybridge_pcode_read(i915,
1027 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1028 					   &ddcc_status, NULL) == 0)
1029 			rps->efficient_freq =
1030 				clamp_t(u8,
1031 					(ddcc_status >> 8) & 0xff,
1032 					rps->min_freq,
1033 					rps->max_freq);
1034 	}
1035 
1036 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1037 		/* Store the frequency values in 16.66 MHZ units, which is
1038 		 * the natural hardware unit for SKL
1039 		 */
1040 		rps->rp0_freq *= GEN9_FREQ_SCALER;
1041 		rps->rp1_freq *= GEN9_FREQ_SCALER;
1042 		rps->min_freq *= GEN9_FREQ_SCALER;
1043 		rps->max_freq *= GEN9_FREQ_SCALER;
1044 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1045 	}
1046 }
1047 
1048 static bool rps_reset(struct intel_rps *rps)
1049 {
1050 	struct drm_i915_private *i915 = rps_to_i915(rps);
1051 
1052 	/* force a reset */
1053 	rps->power.mode = -1;
1054 	rps->last_freq = -1;
1055 
1056 	if (rps_set(rps, rps->min_freq, true)) {
1057 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1058 		return false;
1059 	}
1060 
1061 	rps->cur_freq = rps->min_freq;
1062 	return true;
1063 }
1064 
1065 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1066 static bool gen9_rps_enable(struct intel_rps *rps)
1067 {
1068 	struct intel_gt *gt = rps_to_gt(rps);
1069 	struct intel_uncore *uncore = gt->uncore;
1070 
1071 	/* Program defaults and thresholds for RPS */
1072 	if (GRAPHICS_VER(gt->i915) == 9)
1073 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1074 				      GEN9_FREQUENCY(rps->rp1_freq));
1075 
1076 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1077 
1078 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1079 
1080 	return rps_reset(rps);
1081 }
1082 
1083 static bool gen8_rps_enable(struct intel_rps *rps)
1084 {
1085 	struct intel_uncore *uncore = rps_to_uncore(rps);
1086 
1087 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1088 			      HSW_FREQUENCY(rps->rp1_freq));
1089 
1090 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1091 
1092 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1093 
1094 	return rps_reset(rps);
1095 }
1096 
1097 static bool gen6_rps_enable(struct intel_rps *rps)
1098 {
1099 	struct intel_uncore *uncore = rps_to_uncore(rps);
1100 
1101 	/* Power down if completely idle for over 50ms */
1102 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1103 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1104 
1105 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1106 			  GEN6_PM_RP_DOWN_THRESHOLD |
1107 			  GEN6_PM_RP_DOWN_TIMEOUT);
1108 
1109 	return rps_reset(rps);
1110 }
1111 
1112 static int chv_rps_max_freq(struct intel_rps *rps)
1113 {
1114 	struct drm_i915_private *i915 = rps_to_i915(rps);
1115 	struct intel_gt *gt = rps_to_gt(rps);
1116 	u32 val;
1117 
1118 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1119 
1120 	switch (gt->info.sseu.eu_total) {
1121 	case 8:
1122 		/* (2 * 4) config */
1123 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1124 		break;
1125 	case 12:
1126 		/* (2 * 6) config */
1127 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1128 		break;
1129 	case 16:
1130 		/* (2 * 8) config */
1131 	default:
1132 		/* Setting (2 * 8) Min RP0 for any other combination */
1133 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1134 		break;
1135 	}
1136 
1137 	return val & FB_GFX_FREQ_FUSE_MASK;
1138 }
1139 
1140 static int chv_rps_rpe_freq(struct intel_rps *rps)
1141 {
1142 	struct drm_i915_private *i915 = rps_to_i915(rps);
1143 	u32 val;
1144 
1145 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1146 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1147 
1148 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1149 }
1150 
1151 static int chv_rps_guar_freq(struct intel_rps *rps)
1152 {
1153 	struct drm_i915_private *i915 = rps_to_i915(rps);
1154 	u32 val;
1155 
1156 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1157 
1158 	return val & FB_GFX_FREQ_FUSE_MASK;
1159 }
1160 
1161 static u32 chv_rps_min_freq(struct intel_rps *rps)
1162 {
1163 	struct drm_i915_private *i915 = rps_to_i915(rps);
1164 	u32 val;
1165 
1166 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1167 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1168 
1169 	return val & FB_GFX_FREQ_FUSE_MASK;
1170 }
1171 
1172 static bool chv_rps_enable(struct intel_rps *rps)
1173 {
1174 	struct intel_uncore *uncore = rps_to_uncore(rps);
1175 	struct drm_i915_private *i915 = rps_to_i915(rps);
1176 	u32 val;
1177 
1178 	/* 1: Program defaults and thresholds for RPS*/
1179 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1180 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1181 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1182 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1183 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1184 
1185 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1186 
1187 	/* 2: Enable RPS */
1188 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1189 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1190 			      GEN6_RP_MEDIA_IS_GFX |
1191 			      GEN6_RP_ENABLE |
1192 			      GEN6_RP_UP_BUSY_AVG |
1193 			      GEN6_RP_DOWN_IDLE_AVG);
1194 
1195 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1196 			  GEN6_PM_RP_DOWN_THRESHOLD |
1197 			  GEN6_PM_RP_DOWN_TIMEOUT);
1198 
1199 	/* Setting Fixed Bias */
1200 	vlv_punit_get(i915);
1201 
1202 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1203 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1204 
1205 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1206 
1207 	vlv_punit_put(i915);
1208 
1209 	/* RPS code assumes GPLL is used */
1210 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1211 		      "GPLL not enabled\n");
1212 
1213 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1214 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1215 
1216 	return rps_reset(rps);
1217 }
1218 
1219 static int vlv_rps_guar_freq(struct intel_rps *rps)
1220 {
1221 	struct drm_i915_private *i915 = rps_to_i915(rps);
1222 	u32 val, rp1;
1223 
1224 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1225 
1226 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1227 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1228 
1229 	return rp1;
1230 }
1231 
1232 static int vlv_rps_max_freq(struct intel_rps *rps)
1233 {
1234 	struct drm_i915_private *i915 = rps_to_i915(rps);
1235 	u32 val, rp0;
1236 
1237 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1238 
1239 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1240 	/* Clamp to max */
1241 	rp0 = min_t(u32, rp0, 0xea);
1242 
1243 	return rp0;
1244 }
1245 
1246 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1247 {
1248 	struct drm_i915_private *i915 = rps_to_i915(rps);
1249 	u32 val, rpe;
1250 
1251 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1252 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1253 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1254 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1255 
1256 	return rpe;
1257 }
1258 
1259 static int vlv_rps_min_freq(struct intel_rps *rps)
1260 {
1261 	struct drm_i915_private *i915 = rps_to_i915(rps);
1262 	u32 val;
1263 
1264 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1265 	/*
1266 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1267 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1268 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1269 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1270 	 * to make sure it matches what Punit accepts.
1271 	 */
1272 	return max_t(u32, val, 0xc0);
1273 }
1274 
1275 static bool vlv_rps_enable(struct intel_rps *rps)
1276 {
1277 	struct intel_uncore *uncore = rps_to_uncore(rps);
1278 	struct drm_i915_private *i915 = rps_to_i915(rps);
1279 	u32 val;
1280 
1281 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1282 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1283 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1284 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1285 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1286 
1287 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1288 
1289 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1290 			      GEN6_RP_MEDIA_TURBO |
1291 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1292 			      GEN6_RP_MEDIA_IS_GFX |
1293 			      GEN6_RP_ENABLE |
1294 			      GEN6_RP_UP_BUSY_AVG |
1295 			      GEN6_RP_DOWN_IDLE_CONT);
1296 
1297 	/* WaGsvRC0ResidencyMethod:vlv */
1298 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1299 
1300 	vlv_punit_get(i915);
1301 
1302 	/* Setting Fixed Bias */
1303 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1304 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1305 
1306 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1307 
1308 	vlv_punit_put(i915);
1309 
1310 	/* RPS code assumes GPLL is used */
1311 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1312 		      "GPLL not enabled\n");
1313 
1314 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1315 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1316 
1317 	return rps_reset(rps);
1318 }
1319 
1320 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1321 {
1322 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1323 	struct intel_uncore *uncore = rps_to_uncore(rps);
1324 	unsigned int t, state1, state2;
1325 	u32 pxvid, ext_v;
1326 	u64 corr, corr2;
1327 
1328 	lockdep_assert_held(&mchdev_lock);
1329 
1330 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1331 	pxvid = (pxvid >> 24) & 0x7f;
1332 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1333 
1334 	state1 = ext_v;
1335 
1336 	/* Revel in the empirically derived constants */
1337 
1338 	/* Correction factor in 1/100000 units */
1339 	t = ips_mch_val(uncore);
1340 	if (t > 80)
1341 		corr = t * 2349 + 135940;
1342 	else if (t >= 50)
1343 		corr = t * 964 + 29317;
1344 	else /* < 50 */
1345 		corr = t * 301 + 1004;
1346 
1347 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1348 	corr2 = div_u64(corr, 100000) * ips->corr;
1349 
1350 	state2 = div_u64(corr2 * state1, 10000);
1351 	state2 /= 100; /* convert to mW */
1352 
1353 	__gen5_ips_update(ips);
1354 
1355 	return ips->gfx_power + state2;
1356 }
1357 
1358 static bool has_busy_stats(struct intel_rps *rps)
1359 {
1360 	struct intel_engine_cs *engine;
1361 	enum intel_engine_id id;
1362 
1363 	for_each_engine(engine, rps_to_gt(rps), id) {
1364 		if (!intel_engine_supports_stats(engine))
1365 			return false;
1366 	}
1367 
1368 	return true;
1369 }
1370 
1371 void intel_rps_enable(struct intel_rps *rps)
1372 {
1373 	struct drm_i915_private *i915 = rps_to_i915(rps);
1374 	struct intel_uncore *uncore = rps_to_uncore(rps);
1375 	bool enabled = false;
1376 
1377 	if (!HAS_RPS(i915))
1378 		return;
1379 
1380 	if (rps_uses_slpc(rps))
1381 		return;
1382 
1383 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1384 
1385 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1386 	if (rps->max_freq <= rps->min_freq)
1387 		/* leave disabled, no room for dynamic reclocking */;
1388 	else if (IS_CHERRYVIEW(i915))
1389 		enabled = chv_rps_enable(rps);
1390 	else if (IS_VALLEYVIEW(i915))
1391 		enabled = vlv_rps_enable(rps);
1392 	else if (GRAPHICS_VER(i915) >= 9)
1393 		enabled = gen9_rps_enable(rps);
1394 	else if (GRAPHICS_VER(i915) >= 8)
1395 		enabled = gen8_rps_enable(rps);
1396 	else if (GRAPHICS_VER(i915) >= 6)
1397 		enabled = gen6_rps_enable(rps);
1398 	else if (IS_IRONLAKE_M(i915))
1399 		enabled = gen5_rps_enable(rps);
1400 	else
1401 		MISSING_CASE(GRAPHICS_VER(i915));
1402 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1403 	if (!enabled)
1404 		return;
1405 
1406 	GT_TRACE(rps_to_gt(rps),
1407 		 "min:%x, max:%x, freq:[%d, %d]\n",
1408 		 rps->min_freq, rps->max_freq,
1409 		 intel_gpu_freq(rps, rps->min_freq),
1410 		 intel_gpu_freq(rps, rps->max_freq));
1411 
1412 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1413 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1414 
1415 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1416 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1417 
1418 	if (has_busy_stats(rps))
1419 		intel_rps_set_timer(rps);
1420 	else if (GRAPHICS_VER(i915) >= 6)
1421 		intel_rps_set_interrupts(rps);
1422 	else
1423 		/* Ironlake currently uses intel_ips.ko */ {}
1424 
1425 	intel_rps_set_enabled(rps);
1426 }
1427 
1428 static void gen6_rps_disable(struct intel_rps *rps)
1429 {
1430 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1431 }
1432 
1433 void intel_rps_disable(struct intel_rps *rps)
1434 {
1435 	struct drm_i915_private *i915 = rps_to_i915(rps);
1436 
1437 	intel_rps_clear_enabled(rps);
1438 	intel_rps_clear_interrupts(rps);
1439 	intel_rps_clear_timer(rps);
1440 
1441 	if (GRAPHICS_VER(i915) >= 6)
1442 		gen6_rps_disable(rps);
1443 	else if (IS_IRONLAKE_M(i915))
1444 		gen5_rps_disable(rps);
1445 }
1446 
1447 static int byt_gpu_freq(struct intel_rps *rps, int val)
1448 {
1449 	/*
1450 	 * N = val - 0xb7
1451 	 * Slow = Fast = GPLL ref * N
1452 	 */
1453 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1454 }
1455 
1456 static int byt_freq_opcode(struct intel_rps *rps, int val)
1457 {
1458 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1459 }
1460 
1461 static int chv_gpu_freq(struct intel_rps *rps, int val)
1462 {
1463 	/*
1464 	 * N = val / 2
1465 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1466 	 */
1467 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1468 }
1469 
1470 static int chv_freq_opcode(struct intel_rps *rps, int val)
1471 {
1472 	/* CHV needs even values */
1473 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1474 }
1475 
1476 int intel_gpu_freq(struct intel_rps *rps, int val)
1477 {
1478 	struct drm_i915_private *i915 = rps_to_i915(rps);
1479 
1480 	if (GRAPHICS_VER(i915) >= 9)
1481 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1482 					 GEN9_FREQ_SCALER);
1483 	else if (IS_CHERRYVIEW(i915))
1484 		return chv_gpu_freq(rps, val);
1485 	else if (IS_VALLEYVIEW(i915))
1486 		return byt_gpu_freq(rps, val);
1487 	else if (GRAPHICS_VER(i915) >= 6)
1488 		return val * GT_FREQUENCY_MULTIPLIER;
1489 	else
1490 		return val;
1491 }
1492 
1493 int intel_freq_opcode(struct intel_rps *rps, int val)
1494 {
1495 	struct drm_i915_private *i915 = rps_to_i915(rps);
1496 
1497 	if (GRAPHICS_VER(i915) >= 9)
1498 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1499 					 GT_FREQUENCY_MULTIPLIER);
1500 	else if (IS_CHERRYVIEW(i915))
1501 		return chv_freq_opcode(rps, val);
1502 	else if (IS_VALLEYVIEW(i915))
1503 		return byt_freq_opcode(rps, val);
1504 	else if (GRAPHICS_VER(i915) >= 6)
1505 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1506 	else
1507 		return val;
1508 }
1509 
1510 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1511 {
1512 	struct drm_i915_private *i915 = rps_to_i915(rps);
1513 
1514 	rps->gpll_ref_freq =
1515 		vlv_get_cck_clock(i915, "GPLL ref",
1516 				  CCK_GPLL_CLOCK_CONTROL,
1517 				  i915->czclk_freq);
1518 
1519 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1520 		rps->gpll_ref_freq);
1521 }
1522 
1523 static void vlv_rps_init(struct intel_rps *rps)
1524 {
1525 	struct drm_i915_private *i915 = rps_to_i915(rps);
1526 	u32 val;
1527 
1528 	vlv_iosf_sb_get(i915,
1529 			BIT(VLV_IOSF_SB_PUNIT) |
1530 			BIT(VLV_IOSF_SB_NC) |
1531 			BIT(VLV_IOSF_SB_CCK));
1532 
1533 	vlv_init_gpll_ref_freq(rps);
1534 
1535 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1536 	switch ((val >> 6) & 3) {
1537 	case 0:
1538 	case 1:
1539 		i915->mem_freq = 800;
1540 		break;
1541 	case 2:
1542 		i915->mem_freq = 1066;
1543 		break;
1544 	case 3:
1545 		i915->mem_freq = 1333;
1546 		break;
1547 	}
1548 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1549 
1550 	rps->max_freq = vlv_rps_max_freq(rps);
1551 	rps->rp0_freq = rps->max_freq;
1552 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1553 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1554 
1555 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1556 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1557 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1558 
1559 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1560 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1561 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1562 
1563 	rps->min_freq = vlv_rps_min_freq(rps);
1564 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1565 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1566 
1567 	vlv_iosf_sb_put(i915,
1568 			BIT(VLV_IOSF_SB_PUNIT) |
1569 			BIT(VLV_IOSF_SB_NC) |
1570 			BIT(VLV_IOSF_SB_CCK));
1571 }
1572 
1573 static void chv_rps_init(struct intel_rps *rps)
1574 {
1575 	struct drm_i915_private *i915 = rps_to_i915(rps);
1576 	u32 val;
1577 
1578 	vlv_iosf_sb_get(i915,
1579 			BIT(VLV_IOSF_SB_PUNIT) |
1580 			BIT(VLV_IOSF_SB_NC) |
1581 			BIT(VLV_IOSF_SB_CCK));
1582 
1583 	vlv_init_gpll_ref_freq(rps);
1584 
1585 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1586 
1587 	switch ((val >> 2) & 0x7) {
1588 	case 3:
1589 		i915->mem_freq = 2000;
1590 		break;
1591 	default:
1592 		i915->mem_freq = 1600;
1593 		break;
1594 	}
1595 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1596 
1597 	rps->max_freq = chv_rps_max_freq(rps);
1598 	rps->rp0_freq = rps->max_freq;
1599 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1600 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1601 
1602 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1603 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1604 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1605 
1606 	rps->rp1_freq = chv_rps_guar_freq(rps);
1607 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1608 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1609 
1610 	rps->min_freq = chv_rps_min_freq(rps);
1611 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1612 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1613 
1614 	vlv_iosf_sb_put(i915,
1615 			BIT(VLV_IOSF_SB_PUNIT) |
1616 			BIT(VLV_IOSF_SB_NC) |
1617 			BIT(VLV_IOSF_SB_CCK));
1618 
1619 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1620 				   rps->rp1_freq | rps->min_freq) & 1,
1621 		      "Odd GPU freq values\n");
1622 }
1623 
1624 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1625 {
1626 	ei->ktime = ktime_get_raw();
1627 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1628 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1629 }
1630 
1631 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1632 {
1633 	struct intel_uncore *uncore = rps_to_uncore(rps);
1634 	const struct intel_rps_ei *prev = &rps->ei;
1635 	struct intel_rps_ei now;
1636 	u32 events = 0;
1637 
1638 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1639 		return 0;
1640 
1641 	vlv_c0_read(uncore, &now);
1642 
1643 	if (prev->ktime) {
1644 		u64 time, c0;
1645 		u32 render, media;
1646 
1647 		time = ktime_us_delta(now.ktime, prev->ktime);
1648 
1649 		time *= rps_to_i915(rps)->czclk_freq;
1650 
1651 		/* Workload can be split between render + media,
1652 		 * e.g. SwapBuffers being blitted in X after being rendered in
1653 		 * mesa. To account for this we need to combine both engines
1654 		 * into our activity counter.
1655 		 */
1656 		render = now.render_c0 - prev->render_c0;
1657 		media = now.media_c0 - prev->media_c0;
1658 		c0 = max(render, media);
1659 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1660 
1661 		if (c0 > time * rps->power.up_threshold)
1662 			events = GEN6_PM_RP_UP_THRESHOLD;
1663 		else if (c0 < time * rps->power.down_threshold)
1664 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1665 	}
1666 
1667 	rps->ei = now;
1668 	return events;
1669 }
1670 
1671 static void rps_work(struct work_struct *work)
1672 {
1673 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1674 	struct intel_gt *gt = rps_to_gt(rps);
1675 	struct drm_i915_private *i915 = rps_to_i915(rps);
1676 	bool client_boost = false;
1677 	int new_freq, adj, min, max;
1678 	u32 pm_iir = 0;
1679 
1680 	spin_lock_irq(&gt->irq_lock);
1681 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1682 	client_boost = atomic_read(&rps->num_waiters);
1683 	spin_unlock_irq(&gt->irq_lock);
1684 
1685 	/* Make sure we didn't queue anything we're not going to process. */
1686 	if (!pm_iir && !client_boost)
1687 		goto out;
1688 
1689 	mutex_lock(&rps->lock);
1690 	if (!intel_rps_is_active(rps)) {
1691 		mutex_unlock(&rps->lock);
1692 		return;
1693 	}
1694 
1695 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1696 
1697 	adj = rps->last_adj;
1698 	new_freq = rps->cur_freq;
1699 	min = rps->min_freq_softlimit;
1700 	max = rps->max_freq_softlimit;
1701 	if (client_boost)
1702 		max = rps->max_freq;
1703 
1704 	GT_TRACE(gt,
1705 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1706 		 pm_iir, yesno(client_boost),
1707 		 adj, new_freq, min, max);
1708 
1709 	if (client_boost && new_freq < rps->boost_freq) {
1710 		new_freq = rps->boost_freq;
1711 		adj = 0;
1712 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1713 		if (adj > 0)
1714 			adj *= 2;
1715 		else /* CHV needs even encode values */
1716 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1717 
1718 		if (new_freq >= rps->max_freq_softlimit)
1719 			adj = 0;
1720 	} else if (client_boost) {
1721 		adj = 0;
1722 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1723 		if (rps->cur_freq > rps->efficient_freq)
1724 			new_freq = rps->efficient_freq;
1725 		else if (rps->cur_freq > rps->min_freq_softlimit)
1726 			new_freq = rps->min_freq_softlimit;
1727 		adj = 0;
1728 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1729 		if (adj < 0)
1730 			adj *= 2;
1731 		else /* CHV needs even encode values */
1732 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1733 
1734 		if (new_freq <= rps->min_freq_softlimit)
1735 			adj = 0;
1736 	} else { /* unknown event */
1737 		adj = 0;
1738 	}
1739 
1740 	/*
1741 	 * sysfs frequency limits may have snuck in while
1742 	 * servicing the interrupt
1743 	 */
1744 	new_freq += adj;
1745 	new_freq = clamp_t(int, new_freq, min, max);
1746 
1747 	if (intel_rps_set(rps, new_freq)) {
1748 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1749 		adj = 0;
1750 	}
1751 	rps->last_adj = adj;
1752 
1753 	mutex_unlock(&rps->lock);
1754 
1755 out:
1756 	spin_lock_irq(&gt->irq_lock);
1757 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1758 	spin_unlock_irq(&gt->irq_lock);
1759 }
1760 
1761 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1762 {
1763 	struct intel_gt *gt = rps_to_gt(rps);
1764 	const u32 events = rps->pm_events & pm_iir;
1765 
1766 	lockdep_assert_held(&gt->irq_lock);
1767 
1768 	if (unlikely(!events))
1769 		return;
1770 
1771 	GT_TRACE(gt, "irq events:%x\n", events);
1772 
1773 	gen6_gt_pm_mask_irq(gt, events);
1774 
1775 	rps->pm_iir |= events;
1776 	schedule_work(&rps->work);
1777 }
1778 
1779 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1780 {
1781 	struct intel_gt *gt = rps_to_gt(rps);
1782 	u32 events;
1783 
1784 	events = pm_iir & rps->pm_events;
1785 	if (events) {
1786 		spin_lock(&gt->irq_lock);
1787 
1788 		GT_TRACE(gt, "irq events:%x\n", events);
1789 
1790 		gen6_gt_pm_mask_irq(gt, events);
1791 		rps->pm_iir |= events;
1792 
1793 		schedule_work(&rps->work);
1794 		spin_unlock(&gt->irq_lock);
1795 	}
1796 
1797 	if (GRAPHICS_VER(gt->i915) >= 8)
1798 		return;
1799 
1800 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1801 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1802 
1803 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1804 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1805 }
1806 
1807 void gen5_rps_irq_handler(struct intel_rps *rps)
1808 {
1809 	struct intel_uncore *uncore = rps_to_uncore(rps);
1810 	u32 busy_up, busy_down, max_avg, min_avg;
1811 	u8 new_freq;
1812 
1813 	spin_lock(&mchdev_lock);
1814 
1815 	intel_uncore_write16(uncore,
1816 			     MEMINTRSTS,
1817 			     intel_uncore_read(uncore, MEMINTRSTS));
1818 
1819 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1820 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1821 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1822 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1823 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1824 
1825 	/* Handle RCS change request from hw */
1826 	new_freq = rps->cur_freq;
1827 	if (busy_up > max_avg)
1828 		new_freq++;
1829 	else if (busy_down < min_avg)
1830 		new_freq--;
1831 	new_freq = clamp(new_freq,
1832 			 rps->min_freq_softlimit,
1833 			 rps->max_freq_softlimit);
1834 
1835 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1836 		rps->cur_freq = new_freq;
1837 
1838 	spin_unlock(&mchdev_lock);
1839 }
1840 
1841 void intel_rps_init_early(struct intel_rps *rps)
1842 {
1843 	mutex_init(&rps->lock);
1844 	mutex_init(&rps->power.mutex);
1845 
1846 	INIT_WORK(&rps->work, rps_work);
1847 	timer_setup(&rps->timer, rps_timer, 0);
1848 
1849 	atomic_set(&rps->num_waiters, 0);
1850 }
1851 
1852 void intel_rps_init(struct intel_rps *rps)
1853 {
1854 	struct drm_i915_private *i915 = rps_to_i915(rps);
1855 
1856 	if (rps_uses_slpc(rps))
1857 		return;
1858 
1859 	if (IS_CHERRYVIEW(i915))
1860 		chv_rps_init(rps);
1861 	else if (IS_VALLEYVIEW(i915))
1862 		vlv_rps_init(rps);
1863 	else if (GRAPHICS_VER(i915) >= 6)
1864 		gen6_rps_init(rps);
1865 	else if (IS_IRONLAKE_M(i915))
1866 		gen5_rps_init(rps);
1867 
1868 	/* Derive initial user preferences/limits from the hardware limits */
1869 	rps->max_freq_softlimit = rps->max_freq;
1870 	rps->min_freq_softlimit = rps->min_freq;
1871 
1872 	/* After setting max-softlimit, find the overclock max freq */
1873 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1874 		u32 params = 0;
1875 
1876 		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1877 				       &params, NULL);
1878 		if (params & BIT(31)) { /* OC supported */
1879 			drm_dbg(&i915->drm,
1880 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1881 				(rps->max_freq & 0xff) * 50,
1882 				(params & 0xff) * 50);
1883 			rps->max_freq = params & 0xff;
1884 		}
1885 	}
1886 
1887 	/* Finally allow us to boost to max by default */
1888 	rps->boost_freq = rps->max_freq;
1889 	rps->idle_freq = rps->min_freq;
1890 
1891 	/* Start in the middle, from here we will autotune based on workload */
1892 	rps->cur_freq = rps->efficient_freq;
1893 
1894 	rps->pm_intrmsk_mbz = 0;
1895 
1896 	/*
1897 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1898 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1899 	 *
1900 	 * TODO: verify if this can be reproduced on VLV,CHV.
1901 	 */
1902 	if (GRAPHICS_VER(i915) <= 7)
1903 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1904 
1905 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
1906 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1907 
1908 	/* GuC needs ARAT expired interrupt unmasked */
1909 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
1910 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1911 }
1912 
1913 void intel_rps_sanitize(struct intel_rps *rps)
1914 {
1915 	if (rps_uses_slpc(rps))
1916 		return;
1917 
1918 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
1919 		rps_disable_interrupts(rps);
1920 }
1921 
1922 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1923 {
1924 	struct drm_i915_private *i915 = rps_to_i915(rps);
1925 	u32 cagf;
1926 
1927 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1928 		cagf = (rpstat >> 8) & 0xff;
1929 	else if (GRAPHICS_VER(i915) >= 9)
1930 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1931 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1932 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1933 	else if (GRAPHICS_VER(i915) >= 6)
1934 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1935 	else
1936 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
1937 					MEMSTAT_PSTATE_SHIFT);
1938 
1939 	return cagf;
1940 }
1941 
1942 static u32 read_cagf(struct intel_rps *rps)
1943 {
1944 	struct drm_i915_private *i915 = rps_to_i915(rps);
1945 	struct intel_uncore *uncore = rps_to_uncore(rps);
1946 	u32 freq;
1947 
1948 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1949 		vlv_punit_get(i915);
1950 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1951 		vlv_punit_put(i915);
1952 	} else if (GRAPHICS_VER(i915) >= 6) {
1953 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
1954 	} else {
1955 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
1956 	}
1957 
1958 	return intel_rps_get_cagf(rps, freq);
1959 }
1960 
1961 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1962 {
1963 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1964 	intel_wakeref_t wakeref;
1965 	u32 freq = 0;
1966 
1967 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1968 		freq = intel_gpu_freq(rps, read_cagf(rps));
1969 
1970 	return freq;
1971 }
1972 
1973 u32 intel_rps_read_punit_req(struct intel_rps *rps)
1974 {
1975 	struct intel_uncore *uncore = rps_to_uncore(rps);
1976 
1977 	return intel_uncore_read(uncore, GEN6_RPNSWREQ);
1978 }
1979 
1980 static u32 intel_rps_get_req(u32 pureq)
1981 {
1982 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
1983 
1984 	return req;
1985 }
1986 
1987 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
1988 {
1989 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
1990 
1991 	return intel_gpu_freq(rps, freq);
1992 }
1993 
1994 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
1995 {
1996 	if (rps_uses_slpc(rps))
1997 		return intel_rps_read_punit_req_frequency(rps);
1998 	else
1999 		return intel_gpu_freq(rps, rps->cur_freq);
2000 }
2001 
2002 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2003 {
2004 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2005 
2006 	if (rps_uses_slpc(rps))
2007 		return slpc->max_freq_softlimit;
2008 	else
2009 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2010 }
2011 
2012 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2013 {
2014 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2015 
2016 	if (rps_uses_slpc(rps))
2017 		return slpc->rp0_freq;
2018 	else
2019 		return intel_gpu_freq(rps, rps->rp0_freq);
2020 }
2021 
2022 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2023 {
2024 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2025 
2026 	if (rps_uses_slpc(rps))
2027 		return slpc->rp1_freq;
2028 	else
2029 		return intel_gpu_freq(rps, rps->rp1_freq);
2030 }
2031 
2032 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2033 {
2034 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2035 
2036 	if (rps_uses_slpc(rps))
2037 		return slpc->min_freq;
2038 	else
2039 		return intel_gpu_freq(rps, rps->min_freq);
2040 }
2041 
2042 static int set_max_freq(struct intel_rps *rps, u32 val)
2043 {
2044 	struct drm_i915_private *i915 = rps_to_i915(rps);
2045 	int ret = 0;
2046 
2047 	mutex_lock(&rps->lock);
2048 
2049 	val = intel_freq_opcode(rps, val);
2050 	if (val < rps->min_freq ||
2051 	    val > rps->max_freq ||
2052 	    val < rps->min_freq_softlimit) {
2053 		ret = -EINVAL;
2054 		goto unlock;
2055 	}
2056 
2057 	if (val > rps->rp0_freq)
2058 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2059 			intel_gpu_freq(rps, val));
2060 
2061 	rps->max_freq_softlimit = val;
2062 
2063 	val = clamp_t(int, rps->cur_freq,
2064 		      rps->min_freq_softlimit,
2065 		      rps->max_freq_softlimit);
2066 
2067 	/*
2068 	 * We still need *_set_rps to process the new max_delay and
2069 	 * update the interrupt limits and PMINTRMSK even though
2070 	 * frequency request may be unchanged.
2071 	 */
2072 	intel_rps_set(rps, val);
2073 
2074 unlock:
2075 	mutex_unlock(&rps->lock);
2076 
2077 	return ret;
2078 }
2079 
2080 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2081 {
2082 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2083 
2084 	if (rps_uses_slpc(rps))
2085 		return intel_guc_slpc_set_max_freq(slpc, val);
2086 	else
2087 		return set_max_freq(rps, val);
2088 }
2089 
2090 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2091 {
2092 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2093 
2094 	if (rps_uses_slpc(rps))
2095 		return slpc->min_freq_softlimit;
2096 	else
2097 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2098 }
2099 
2100 static int set_min_freq(struct intel_rps *rps, u32 val)
2101 {
2102 	int ret = 0;
2103 
2104 	mutex_lock(&rps->lock);
2105 
2106 	val = intel_freq_opcode(rps, val);
2107 	if (val < rps->min_freq ||
2108 	    val > rps->max_freq ||
2109 	    val > rps->max_freq_softlimit) {
2110 		ret = -EINVAL;
2111 		goto unlock;
2112 	}
2113 
2114 	rps->min_freq_softlimit = val;
2115 
2116 	val = clamp_t(int, rps->cur_freq,
2117 		      rps->min_freq_softlimit,
2118 		      rps->max_freq_softlimit);
2119 
2120 	/*
2121 	 * We still need *_set_rps to process the new min_delay and
2122 	 * update the interrupt limits and PMINTRMSK even though
2123 	 * frequency request may be unchanged.
2124 	 */
2125 	intel_rps_set(rps, val);
2126 
2127 unlock:
2128 	mutex_unlock(&rps->lock);
2129 
2130 	return ret;
2131 }
2132 
2133 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2134 {
2135 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2136 
2137 	if (rps_uses_slpc(rps))
2138 		return intel_guc_slpc_set_min_freq(slpc, val);
2139 	else
2140 		return set_min_freq(rps, val);
2141 }
2142 
2143 /* External interface for intel_ips.ko */
2144 
2145 static struct drm_i915_private __rcu *ips_mchdev;
2146 
2147 /**
2148  * Tells the intel_ips driver that the i915 driver is now loaded, if
2149  * IPS got loaded first.
2150  *
2151  * This awkward dance is so that neither module has to depend on the
2152  * other in order for IPS to do the appropriate communication of
2153  * GPU turbo limits to i915.
2154  */
2155 static void
2156 ips_ping_for_i915_load(void)
2157 {
2158 	void (*link)(void);
2159 
2160 	link = symbol_get(ips_link_to_i915_driver);
2161 	if (link) {
2162 		link();
2163 		symbol_put(ips_link_to_i915_driver);
2164 	}
2165 }
2166 
2167 void intel_rps_driver_register(struct intel_rps *rps)
2168 {
2169 	struct intel_gt *gt = rps_to_gt(rps);
2170 
2171 	/*
2172 	 * We only register the i915 ips part with intel-ips once everything is
2173 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2174 	 */
2175 	if (GRAPHICS_VER(gt->i915) == 5) {
2176 		GEM_BUG_ON(ips_mchdev);
2177 		rcu_assign_pointer(ips_mchdev, gt->i915);
2178 		ips_ping_for_i915_load();
2179 	}
2180 }
2181 
2182 void intel_rps_driver_unregister(struct intel_rps *rps)
2183 {
2184 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2185 		rcu_assign_pointer(ips_mchdev, NULL);
2186 }
2187 
2188 static struct drm_i915_private *mchdev_get(void)
2189 {
2190 	struct drm_i915_private *i915;
2191 
2192 	rcu_read_lock();
2193 	i915 = rcu_dereference(ips_mchdev);
2194 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2195 		i915 = NULL;
2196 	rcu_read_unlock();
2197 
2198 	return i915;
2199 }
2200 
2201 /**
2202  * i915_read_mch_val - return value for IPS use
2203  *
2204  * Calculate and return a value for the IPS driver to use when deciding whether
2205  * we have thermal and power headroom to increase CPU or GPU power budget.
2206  */
2207 unsigned long i915_read_mch_val(void)
2208 {
2209 	struct drm_i915_private *i915;
2210 	unsigned long chipset_val = 0;
2211 	unsigned long graphics_val = 0;
2212 	intel_wakeref_t wakeref;
2213 
2214 	i915 = mchdev_get();
2215 	if (!i915)
2216 		return 0;
2217 
2218 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2219 		struct intel_ips *ips = &i915->gt.rps.ips;
2220 
2221 		spin_lock_irq(&mchdev_lock);
2222 		chipset_val = __ips_chipset_val(ips);
2223 		graphics_val = __ips_gfx_val(ips);
2224 		spin_unlock_irq(&mchdev_lock);
2225 	}
2226 
2227 	drm_dev_put(&i915->drm);
2228 	return chipset_val + graphics_val;
2229 }
2230 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2231 
2232 /**
2233  * i915_gpu_raise - raise GPU frequency limit
2234  *
2235  * Raise the limit; IPS indicates we have thermal headroom.
2236  */
2237 bool i915_gpu_raise(void)
2238 {
2239 	struct drm_i915_private *i915;
2240 	struct intel_rps *rps;
2241 
2242 	i915 = mchdev_get();
2243 	if (!i915)
2244 		return false;
2245 
2246 	rps = &i915->gt.rps;
2247 
2248 	spin_lock_irq(&mchdev_lock);
2249 	if (rps->max_freq_softlimit < rps->max_freq)
2250 		rps->max_freq_softlimit++;
2251 	spin_unlock_irq(&mchdev_lock);
2252 
2253 	drm_dev_put(&i915->drm);
2254 	return true;
2255 }
2256 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2257 
2258 /**
2259  * i915_gpu_lower - lower GPU frequency limit
2260  *
2261  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2262  * frequency maximum.
2263  */
2264 bool i915_gpu_lower(void)
2265 {
2266 	struct drm_i915_private *i915;
2267 	struct intel_rps *rps;
2268 
2269 	i915 = mchdev_get();
2270 	if (!i915)
2271 		return false;
2272 
2273 	rps = &i915->gt.rps;
2274 
2275 	spin_lock_irq(&mchdev_lock);
2276 	if (rps->max_freq_softlimit > rps->min_freq)
2277 		rps->max_freq_softlimit--;
2278 	spin_unlock_irq(&mchdev_lock);
2279 
2280 	drm_dev_put(&i915->drm);
2281 	return true;
2282 }
2283 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2284 
2285 /**
2286  * i915_gpu_busy - indicate GPU business to IPS
2287  *
2288  * Tell the IPS driver whether or not the GPU is busy.
2289  */
2290 bool i915_gpu_busy(void)
2291 {
2292 	struct drm_i915_private *i915;
2293 	bool ret;
2294 
2295 	i915 = mchdev_get();
2296 	if (!i915)
2297 		return false;
2298 
2299 	ret = i915->gt.awake;
2300 
2301 	drm_dev_put(&i915->drm);
2302 	return ret;
2303 }
2304 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2305 
2306 /**
2307  * i915_gpu_turbo_disable - disable graphics turbo
2308  *
2309  * Disable graphics turbo by resetting the max frequency and setting the
2310  * current frequency to the default.
2311  */
2312 bool i915_gpu_turbo_disable(void)
2313 {
2314 	struct drm_i915_private *i915;
2315 	struct intel_rps *rps;
2316 	bool ret;
2317 
2318 	i915 = mchdev_get();
2319 	if (!i915)
2320 		return false;
2321 
2322 	rps = &i915->gt.rps;
2323 
2324 	spin_lock_irq(&mchdev_lock);
2325 	rps->max_freq_softlimit = rps->min_freq;
2326 	ret = !__gen5_rps_set(&i915->gt.rps, rps->min_freq);
2327 	spin_unlock_irq(&mchdev_lock);
2328 
2329 	drm_dev_put(&i915->drm);
2330 	return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2333 
2334 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2335 #include "selftest_rps.c"
2336 #include "selftest_slpc.c"
2337 #endif
2338