xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 501f94d0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/i915_drm.h>
9 
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "intel_breadcrumbs.h"
13 #include "intel_gt.h"
14 #include "intel_gt_clock_utils.h"
15 #include "intel_gt_irq.h"
16 #include "intel_gt_pm_irq.h"
17 #include "intel_gt_regs.h"
18 #include "intel_mchbar_regs.h"
19 #include "intel_pcode.h"
20 #include "intel_rps.h"
21 #include "vlv_sideband.h"
22 #include "../../../platform/x86/intel_ips.h"
23 
24 #define BUSY_MAX_EI	20u /* ms */
25 
26 /*
27  * Lock protecting IPS related data structures
28  */
29 static DEFINE_SPINLOCK(mchdev_lock);
30 
31 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
32 {
33 	return container_of(rps, struct intel_gt, rps);
34 }
35 
36 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
37 {
38 	return rps_to_gt(rps)->i915;
39 }
40 
41 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
42 {
43 	return rps_to_gt(rps)->uncore;
44 }
45 
46 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
47 {
48 	struct intel_gt *gt = rps_to_gt(rps);
49 
50 	return &gt->uc.guc.slpc;
51 }
52 
53 static bool rps_uses_slpc(struct intel_rps *rps)
54 {
55 	struct intel_gt *gt = rps_to_gt(rps);
56 
57 	return intel_uc_uses_guc_slpc(&gt->uc);
58 }
59 
60 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
61 {
62 	return mask & ~rps->pm_intrmsk_mbz;
63 }
64 
65 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
66 {
67 	intel_uncore_write_fw(uncore, reg, val);
68 }
69 
70 static void rps_timer(struct timer_list *t)
71 {
72 	struct intel_rps *rps = from_timer(rps, t, timer);
73 	struct intel_engine_cs *engine;
74 	ktime_t dt, last, timestamp;
75 	enum intel_engine_id id;
76 	s64 max_busy[3] = {};
77 
78 	timestamp = 0;
79 	for_each_engine(engine, rps_to_gt(rps), id) {
80 		s64 busy;
81 		int i;
82 
83 		dt = intel_engine_get_busy_time(engine, &timestamp);
84 		last = engine->stats.rps;
85 		engine->stats.rps = dt;
86 
87 		busy = ktime_to_ns(ktime_sub(dt, last));
88 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
89 			if (busy > max_busy[i])
90 				swap(busy, max_busy[i]);
91 		}
92 	}
93 	last = rps->pm_timestamp;
94 	rps->pm_timestamp = timestamp;
95 
96 	if (intel_rps_is_active(rps)) {
97 		s64 busy;
98 		int i;
99 
100 		dt = ktime_sub(timestamp, last);
101 
102 		/*
103 		 * Our goal is to evaluate each engine independently, so we run
104 		 * at the lowest clocks required to sustain the heaviest
105 		 * workload. However, a task may be split into sequential
106 		 * dependent operations across a set of engines, such that
107 		 * the independent contributions do not account for high load,
108 		 * but overall the task is GPU bound. For example, consider
109 		 * video decode on vcs followed by colour post-processing
110 		 * on vecs, followed by general post-processing on rcs.
111 		 * Since multi-engines being active does imply a single
112 		 * continuous workload across all engines, we hedge our
113 		 * bets by only contributing a factor of the distributed
114 		 * load into our busyness calculation.
115 		 */
116 		busy = max_busy[0];
117 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
118 			if (!max_busy[i])
119 				break;
120 
121 			busy += div_u64(max_busy[i], 1 << i);
122 		}
123 		GT_TRACE(rps_to_gt(rps),
124 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
125 			 busy, (int)div64_u64(100 * busy, dt),
126 			 max_busy[0], max_busy[1], max_busy[2],
127 			 rps->pm_interval);
128 
129 		if (100 * busy > rps->power.up_threshold * dt &&
130 		    rps->cur_freq < rps->max_freq_softlimit) {
131 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
132 			rps->pm_interval = 1;
133 			schedule_work(&rps->work);
134 		} else if (100 * busy < rps->power.down_threshold * dt &&
135 			   rps->cur_freq > rps->min_freq_softlimit) {
136 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
137 			rps->pm_interval = 1;
138 			schedule_work(&rps->work);
139 		} else {
140 			rps->last_adj = 0;
141 		}
142 
143 		mod_timer(&rps->timer,
144 			  jiffies + msecs_to_jiffies(rps->pm_interval));
145 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
146 	}
147 }
148 
149 static void rps_start_timer(struct intel_rps *rps)
150 {
151 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
152 	rps->pm_interval = 1;
153 	mod_timer(&rps->timer, jiffies + 1);
154 }
155 
156 static void rps_stop_timer(struct intel_rps *rps)
157 {
158 	del_timer_sync(&rps->timer);
159 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
160 	cancel_work_sync(&rps->work);
161 }
162 
163 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
164 {
165 	u32 mask = 0;
166 
167 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
168 	if (val > rps->min_freq_softlimit)
169 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
170 			 GEN6_PM_RP_DOWN_THRESHOLD |
171 			 GEN6_PM_RP_DOWN_TIMEOUT);
172 
173 	if (val < rps->max_freq_softlimit)
174 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
175 
176 	mask &= rps->pm_events;
177 
178 	return rps_pm_sanitize_mask(rps, ~mask);
179 }
180 
181 static void rps_reset_ei(struct intel_rps *rps)
182 {
183 	memset(&rps->ei, 0, sizeof(rps->ei));
184 }
185 
186 static void rps_enable_interrupts(struct intel_rps *rps)
187 {
188 	struct intel_gt *gt = rps_to_gt(rps);
189 
190 	GEM_BUG_ON(rps_uses_slpc(rps));
191 
192 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
193 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
194 
195 	rps_reset_ei(rps);
196 
197 	spin_lock_irq(&gt->irq_lock);
198 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
199 	spin_unlock_irq(&gt->irq_lock);
200 
201 	intel_uncore_write(gt->uncore,
202 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
203 }
204 
205 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
206 {
207 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
208 }
209 
210 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
211 {
212 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
213 		;
214 }
215 
216 static void rps_reset_interrupts(struct intel_rps *rps)
217 {
218 	struct intel_gt *gt = rps_to_gt(rps);
219 
220 	spin_lock_irq(&gt->irq_lock);
221 	if (GRAPHICS_VER(gt->i915) >= 11)
222 		gen11_rps_reset_interrupts(rps);
223 	else
224 		gen6_rps_reset_interrupts(rps);
225 
226 	rps->pm_iir = 0;
227 	spin_unlock_irq(&gt->irq_lock);
228 }
229 
230 static void rps_disable_interrupts(struct intel_rps *rps)
231 {
232 	struct intel_gt *gt = rps_to_gt(rps);
233 
234 	intel_uncore_write(gt->uncore,
235 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
236 
237 	spin_lock_irq(&gt->irq_lock);
238 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
239 	spin_unlock_irq(&gt->irq_lock);
240 
241 	intel_synchronize_irq(gt->i915);
242 
243 	/*
244 	 * Now that we will not be generating any more work, flush any
245 	 * outstanding tasks. As we are called on the RPS idle path,
246 	 * we will reset the GPU to minimum frequencies, so the current
247 	 * state of the worker can be discarded.
248 	 */
249 	cancel_work_sync(&rps->work);
250 
251 	rps_reset_interrupts(rps);
252 	GT_TRACE(gt, "interrupts:off\n");
253 }
254 
255 static const struct cparams {
256 	u16 i;
257 	u16 t;
258 	u16 m;
259 	u16 c;
260 } cparams[] = {
261 	{ 1, 1333, 301, 28664 },
262 	{ 1, 1066, 294, 24460 },
263 	{ 1, 800, 294, 25192 },
264 	{ 0, 1333, 276, 27605 },
265 	{ 0, 1066, 276, 27605 },
266 	{ 0, 800, 231, 23784 },
267 };
268 
269 static void gen5_rps_init(struct intel_rps *rps)
270 {
271 	struct drm_i915_private *i915 = rps_to_i915(rps);
272 	struct intel_uncore *uncore = rps_to_uncore(rps);
273 	u8 fmax, fmin, fstart;
274 	u32 rgvmodectl;
275 	int c_m, i;
276 
277 	if (i915->fsb_freq <= 3200)
278 		c_m = 0;
279 	else if (i915->fsb_freq <= 4800)
280 		c_m = 1;
281 	else
282 		c_m = 2;
283 
284 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
285 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
286 			rps->ips.m = cparams[i].m;
287 			rps->ips.c = cparams[i].c;
288 			break;
289 		}
290 	}
291 
292 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
293 
294 	/* Set up min, max, and cur for interrupt handling */
295 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
296 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
297 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
298 		MEMMODE_FSTART_SHIFT;
299 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
300 		fmax, fmin, fstart);
301 
302 	rps->min_freq = fmax;
303 	rps->efficient_freq = fstart;
304 	rps->max_freq = fmin;
305 }
306 
307 static unsigned long
308 __ips_chipset_val(struct intel_ips *ips)
309 {
310 	struct intel_uncore *uncore =
311 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
312 	unsigned long now = jiffies_to_msecs(jiffies), dt;
313 	unsigned long result;
314 	u64 total, delta;
315 
316 	lockdep_assert_held(&mchdev_lock);
317 
318 	/*
319 	 * Prevent division-by-zero if we are asking too fast.
320 	 * Also, we don't get interesting results if we are polling
321 	 * faster than once in 10ms, so just return the saved value
322 	 * in such cases.
323 	 */
324 	dt = now - ips->last_time1;
325 	if (dt <= 10)
326 		return ips->chipset_power;
327 
328 	/* FIXME: handle per-counter overflow */
329 	total = intel_uncore_read(uncore, DMIEC);
330 	total += intel_uncore_read(uncore, DDREC);
331 	total += intel_uncore_read(uncore, CSIEC);
332 
333 	delta = total - ips->last_count1;
334 
335 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
336 
337 	ips->last_count1 = total;
338 	ips->last_time1 = now;
339 
340 	ips->chipset_power = result;
341 
342 	return result;
343 }
344 
345 static unsigned long ips_mch_val(struct intel_uncore *uncore)
346 {
347 	unsigned int m, x, b;
348 	u32 tsfs;
349 
350 	tsfs = intel_uncore_read(uncore, TSFS);
351 	x = intel_uncore_read8(uncore, TR1);
352 
353 	b = tsfs & TSFS_INTR_MASK;
354 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
355 
356 	return m * x / 127 - b;
357 }
358 
359 static int _pxvid_to_vd(u8 pxvid)
360 {
361 	if (pxvid == 0)
362 		return 0;
363 
364 	if (pxvid >= 8 && pxvid < 31)
365 		pxvid = 31;
366 
367 	return (pxvid + 2) * 125;
368 }
369 
370 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
371 {
372 	const int vd = _pxvid_to_vd(pxvid);
373 
374 	if (INTEL_INFO(i915)->is_mobile)
375 		return max(vd - 1125, 0);
376 
377 	return vd;
378 }
379 
380 static void __gen5_ips_update(struct intel_ips *ips)
381 {
382 	struct intel_uncore *uncore =
383 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
384 	u64 now, delta, dt;
385 	u32 count;
386 
387 	lockdep_assert_held(&mchdev_lock);
388 
389 	now = ktime_get_raw_ns();
390 	dt = now - ips->last_time2;
391 	do_div(dt, NSEC_PER_MSEC);
392 
393 	/* Don't divide by 0 */
394 	if (dt <= 10)
395 		return;
396 
397 	count = intel_uncore_read(uncore, GFXEC);
398 	delta = count - ips->last_count2;
399 
400 	ips->last_count2 = count;
401 	ips->last_time2 = now;
402 
403 	/* More magic constants... */
404 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
405 }
406 
407 static void gen5_rps_update(struct intel_rps *rps)
408 {
409 	spin_lock_irq(&mchdev_lock);
410 	__gen5_ips_update(&rps->ips);
411 	spin_unlock_irq(&mchdev_lock);
412 }
413 
414 static unsigned int gen5_invert_freq(struct intel_rps *rps,
415 				     unsigned int val)
416 {
417 	/* Invert the frequency bin into an ips delay */
418 	val = rps->max_freq - val;
419 	val = rps->min_freq + val;
420 
421 	return val;
422 }
423 
424 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
425 {
426 	struct intel_uncore *uncore = rps_to_uncore(rps);
427 	u16 rgvswctl;
428 
429 	lockdep_assert_held(&mchdev_lock);
430 
431 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
432 	if (rgvswctl & MEMCTL_CMD_STS) {
433 		DRM_DEBUG("gpu busy, RCS change rejected\n");
434 		return -EBUSY; /* still busy with another command */
435 	}
436 
437 	/* Invert the frequency bin into an ips delay */
438 	val = gen5_invert_freq(rps, val);
439 
440 	rgvswctl =
441 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
442 		(val << MEMCTL_FREQ_SHIFT) |
443 		MEMCTL_SFCAVM;
444 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
445 	intel_uncore_posting_read16(uncore, MEMSWCTL);
446 
447 	rgvswctl |= MEMCTL_CMD_STS;
448 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
449 
450 	return 0;
451 }
452 
453 static int gen5_rps_set(struct intel_rps *rps, u8 val)
454 {
455 	int err;
456 
457 	spin_lock_irq(&mchdev_lock);
458 	err = __gen5_rps_set(rps, val);
459 	spin_unlock_irq(&mchdev_lock);
460 
461 	return err;
462 }
463 
464 static unsigned long intel_pxfreq(u32 vidfreq)
465 {
466 	int div = (vidfreq & 0x3f0000) >> 16;
467 	int post = (vidfreq & 0x3000) >> 12;
468 	int pre = (vidfreq & 0x7);
469 
470 	if (!pre)
471 		return 0;
472 
473 	return div * 133333 / (pre << post);
474 }
475 
476 static unsigned int init_emon(struct intel_uncore *uncore)
477 {
478 	u8 pxw[16];
479 	int i;
480 
481 	/* Disable to program */
482 	intel_uncore_write(uncore, ECR, 0);
483 	intel_uncore_posting_read(uncore, ECR);
484 
485 	/* Program energy weights for various events */
486 	intel_uncore_write(uncore, SDEW, 0x15040d00);
487 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
488 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
489 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
490 
491 	for (i = 0; i < 5; i++)
492 		intel_uncore_write(uncore, PEW(i), 0);
493 	for (i = 0; i < 3; i++)
494 		intel_uncore_write(uncore, DEW(i), 0);
495 
496 	/* Program P-state weights to account for frequency power adjustment */
497 	for (i = 0; i < 16; i++) {
498 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
499 		unsigned int freq = intel_pxfreq(pxvidfreq);
500 		unsigned int vid =
501 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
502 		unsigned int val;
503 
504 		val = vid * vid * freq / 1000 * 255;
505 		val /= 127 * 127 * 900;
506 
507 		pxw[i] = val;
508 	}
509 	/* Render standby states get 0 weight */
510 	pxw[14] = 0;
511 	pxw[15] = 0;
512 
513 	for (i = 0; i < 4; i++) {
514 		intel_uncore_write(uncore, PXW(i),
515 				   pxw[i * 4 + 0] << 24 |
516 				   pxw[i * 4 + 1] << 16 |
517 				   pxw[i * 4 + 2] <<  8 |
518 				   pxw[i * 4 + 3] <<  0);
519 	}
520 
521 	/* Adjust magic regs to magic values (more experimental results) */
522 	intel_uncore_write(uncore, OGW0, 0);
523 	intel_uncore_write(uncore, OGW1, 0);
524 	intel_uncore_write(uncore, EG0, 0x00007f00);
525 	intel_uncore_write(uncore, EG1, 0x0000000e);
526 	intel_uncore_write(uncore, EG2, 0x000e0000);
527 	intel_uncore_write(uncore, EG3, 0x68000300);
528 	intel_uncore_write(uncore, EG4, 0x42000000);
529 	intel_uncore_write(uncore, EG5, 0x00140031);
530 	intel_uncore_write(uncore, EG6, 0);
531 	intel_uncore_write(uncore, EG7, 0);
532 
533 	for (i = 0; i < 8; i++)
534 		intel_uncore_write(uncore, PXWL(i), 0);
535 
536 	/* Enable PMON + select events */
537 	intel_uncore_write(uncore, ECR, 0x80000019);
538 
539 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
540 }
541 
542 static bool gen5_rps_enable(struct intel_rps *rps)
543 {
544 	struct drm_i915_private *i915 = rps_to_i915(rps);
545 	struct intel_uncore *uncore = rps_to_uncore(rps);
546 	u8 fstart, vstart;
547 	u32 rgvmodectl;
548 
549 	spin_lock_irq(&mchdev_lock);
550 
551 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
552 
553 	/* Enable temp reporting */
554 	intel_uncore_write16(uncore, PMMISC,
555 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
556 	intel_uncore_write16(uncore, TSC1,
557 			     intel_uncore_read16(uncore, TSC1) | TSE);
558 
559 	/* 100ms RC evaluation intervals */
560 	intel_uncore_write(uncore, RCUPEI, 100000);
561 	intel_uncore_write(uncore, RCDNEI, 100000);
562 
563 	/* Set max/min thresholds to 90ms and 80ms respectively */
564 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
565 	intel_uncore_write(uncore, RCBMINAVG, 80000);
566 
567 	intel_uncore_write(uncore, MEMIHYST, 1);
568 
569 	/* Set up min, max, and cur for interrupt handling */
570 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
571 		MEMMODE_FSTART_SHIFT;
572 
573 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
574 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
575 
576 	intel_uncore_write(uncore,
577 			   MEMINTREN,
578 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
579 
580 	intel_uncore_write(uncore, VIDSTART, vstart);
581 	intel_uncore_posting_read(uncore, VIDSTART);
582 
583 	rgvmodectl |= MEMMODE_SWMODE_EN;
584 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
585 
586 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
587 			     MEMCTL_CMD_STS) == 0, 10))
588 		drm_err(&uncore->i915->drm,
589 			"stuck trying to change perf mode\n");
590 	mdelay(1);
591 
592 	__gen5_rps_set(rps, rps->cur_freq);
593 
594 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
595 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
596 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
597 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
598 
599 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
600 	rps->ips.last_time2 = ktime_get_raw_ns();
601 
602 	spin_lock(&i915->irq_lock);
603 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
604 	spin_unlock(&i915->irq_lock);
605 
606 	spin_unlock_irq(&mchdev_lock);
607 
608 	rps->ips.corr = init_emon(uncore);
609 
610 	return true;
611 }
612 
613 static void gen5_rps_disable(struct intel_rps *rps)
614 {
615 	struct drm_i915_private *i915 = rps_to_i915(rps);
616 	struct intel_uncore *uncore = rps_to_uncore(rps);
617 	u16 rgvswctl;
618 
619 	spin_lock_irq(&mchdev_lock);
620 
621 	spin_lock(&i915->irq_lock);
622 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
623 	spin_unlock(&i915->irq_lock);
624 
625 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
626 
627 	/* Ack interrupts, disable EFC interrupt */
628 	intel_uncore_write(uncore, MEMINTREN,
629 			   intel_uncore_read(uncore, MEMINTREN) &
630 			   ~MEMINT_EVAL_CHG_EN);
631 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
632 
633 	/* Go back to the starting frequency */
634 	__gen5_rps_set(rps, rps->idle_freq);
635 	mdelay(1);
636 	rgvswctl |= MEMCTL_CMD_STS;
637 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
638 	mdelay(1);
639 
640 	spin_unlock_irq(&mchdev_lock);
641 }
642 
643 static u32 rps_limits(struct intel_rps *rps, u8 val)
644 {
645 	u32 limits;
646 
647 	/*
648 	 * Only set the down limit when we've reached the lowest level to avoid
649 	 * getting more interrupts, otherwise leave this clear. This prevents a
650 	 * race in the hw when coming out of rc6: There's a tiny window where
651 	 * the hw runs at the minimal clock before selecting the desired
652 	 * frequency, if the down threshold expires in that window we will not
653 	 * receive a down interrupt.
654 	 */
655 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
656 		limits = rps->max_freq_softlimit << 23;
657 		if (val <= rps->min_freq_softlimit)
658 			limits |= rps->min_freq_softlimit << 14;
659 	} else {
660 		limits = rps->max_freq_softlimit << 24;
661 		if (val <= rps->min_freq_softlimit)
662 			limits |= rps->min_freq_softlimit << 16;
663 	}
664 
665 	return limits;
666 }
667 
668 static void rps_set_power(struct intel_rps *rps, int new_power)
669 {
670 	struct intel_gt *gt = rps_to_gt(rps);
671 	struct intel_uncore *uncore = gt->uncore;
672 	u32 threshold_up = 0, threshold_down = 0; /* in % */
673 	u32 ei_up = 0, ei_down = 0;
674 
675 	lockdep_assert_held(&rps->power.mutex);
676 
677 	if (new_power == rps->power.mode)
678 		return;
679 
680 	threshold_up = 95;
681 	threshold_down = 85;
682 
683 	/* Note the units here are not exactly 1us, but 1280ns. */
684 	switch (new_power) {
685 	case LOW_POWER:
686 		ei_up = 16000;
687 		ei_down = 32000;
688 		break;
689 
690 	case BETWEEN:
691 		ei_up = 13000;
692 		ei_down = 32000;
693 		break;
694 
695 	case HIGH_POWER:
696 		ei_up = 10000;
697 		ei_down = 32000;
698 		break;
699 	}
700 
701 	/* When byt can survive without system hang with dynamic
702 	 * sw freq adjustments, this restriction can be lifted.
703 	 */
704 	if (IS_VALLEYVIEW(gt->i915))
705 		goto skip_hw_write;
706 
707 	GT_TRACE(gt,
708 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
709 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
710 
711 	set(uncore, GEN6_RP_UP_EI,
712 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
713 	set(uncore, GEN6_RP_UP_THRESHOLD,
714 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
715 
716 	set(uncore, GEN6_RP_DOWN_EI,
717 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
718 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
719 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
720 
721 	set(uncore, GEN6_RP_CONTROL,
722 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
723 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
724 	    GEN6_RP_MEDIA_IS_GFX |
725 	    GEN6_RP_ENABLE |
726 	    GEN6_RP_UP_BUSY_AVG |
727 	    GEN6_RP_DOWN_IDLE_AVG);
728 
729 skip_hw_write:
730 	rps->power.mode = new_power;
731 	rps->power.up_threshold = threshold_up;
732 	rps->power.down_threshold = threshold_down;
733 }
734 
735 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
736 {
737 	int new_power;
738 
739 	new_power = rps->power.mode;
740 	switch (rps->power.mode) {
741 	case LOW_POWER:
742 		if (val > rps->efficient_freq + 1 &&
743 		    val > rps->cur_freq)
744 			new_power = BETWEEN;
745 		break;
746 
747 	case BETWEEN:
748 		if (val <= rps->efficient_freq &&
749 		    val < rps->cur_freq)
750 			new_power = LOW_POWER;
751 		else if (val >= rps->rp0_freq &&
752 			 val > rps->cur_freq)
753 			new_power = HIGH_POWER;
754 		break;
755 
756 	case HIGH_POWER:
757 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
758 		    val < rps->cur_freq)
759 			new_power = BETWEEN;
760 		break;
761 	}
762 	/* Max/min bins are special */
763 	if (val <= rps->min_freq_softlimit)
764 		new_power = LOW_POWER;
765 	if (val >= rps->max_freq_softlimit)
766 		new_power = HIGH_POWER;
767 
768 	mutex_lock(&rps->power.mutex);
769 	if (rps->power.interactive)
770 		new_power = HIGH_POWER;
771 	rps_set_power(rps, new_power);
772 	mutex_unlock(&rps->power.mutex);
773 }
774 
775 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
776 {
777 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
778 		 str_yes_no(interactive));
779 
780 	mutex_lock(&rps->power.mutex);
781 	if (interactive) {
782 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
783 			rps_set_power(rps, HIGH_POWER);
784 	} else {
785 		GEM_BUG_ON(!rps->power.interactive);
786 		rps->power.interactive--;
787 	}
788 	mutex_unlock(&rps->power.mutex);
789 }
790 
791 static int gen6_rps_set(struct intel_rps *rps, u8 val)
792 {
793 	struct intel_uncore *uncore = rps_to_uncore(rps);
794 	struct drm_i915_private *i915 = rps_to_i915(rps);
795 	u32 swreq;
796 
797 	GEM_BUG_ON(rps_uses_slpc(rps));
798 
799 	if (GRAPHICS_VER(i915) >= 9)
800 		swreq = GEN9_FREQUENCY(val);
801 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
802 		swreq = HSW_FREQUENCY(val);
803 	else
804 		swreq = (GEN6_FREQUENCY(val) |
805 			 GEN6_OFFSET(0) |
806 			 GEN6_AGGRESSIVE_TURBO);
807 	set(uncore, GEN6_RPNSWREQ, swreq);
808 
809 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
810 		 val, intel_gpu_freq(rps, val), swreq);
811 
812 	return 0;
813 }
814 
815 static int vlv_rps_set(struct intel_rps *rps, u8 val)
816 {
817 	struct drm_i915_private *i915 = rps_to_i915(rps);
818 	int err;
819 
820 	vlv_punit_get(i915);
821 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
822 	vlv_punit_put(i915);
823 
824 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
825 		 val, intel_gpu_freq(rps, val));
826 
827 	return err;
828 }
829 
830 static int rps_set(struct intel_rps *rps, u8 val, bool update)
831 {
832 	struct drm_i915_private *i915 = rps_to_i915(rps);
833 	int err;
834 
835 	if (val == rps->last_freq)
836 		return 0;
837 
838 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
839 		err = vlv_rps_set(rps, val);
840 	else if (GRAPHICS_VER(i915) >= 6)
841 		err = gen6_rps_set(rps, val);
842 	else
843 		err = gen5_rps_set(rps, val);
844 	if (err)
845 		return err;
846 
847 	if (update && GRAPHICS_VER(i915) >= 6)
848 		gen6_rps_set_thresholds(rps, val);
849 	rps->last_freq = val;
850 
851 	return 0;
852 }
853 
854 void intel_rps_unpark(struct intel_rps *rps)
855 {
856 	if (!intel_rps_is_enabled(rps))
857 		return;
858 
859 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
860 
861 	/*
862 	 * Use the user's desired frequency as a guide, but for better
863 	 * performance, jump directly to RPe as our starting frequency.
864 	 */
865 	mutex_lock(&rps->lock);
866 
867 	intel_rps_set_active(rps);
868 	intel_rps_set(rps,
869 		      clamp(rps->cur_freq,
870 			    rps->min_freq_softlimit,
871 			    rps->max_freq_softlimit));
872 
873 	mutex_unlock(&rps->lock);
874 
875 	rps->pm_iir = 0;
876 	if (intel_rps_has_interrupts(rps))
877 		rps_enable_interrupts(rps);
878 	if (intel_rps_uses_timer(rps))
879 		rps_start_timer(rps);
880 
881 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
882 		gen5_rps_update(rps);
883 }
884 
885 void intel_rps_park(struct intel_rps *rps)
886 {
887 	int adj;
888 
889 	if (!intel_rps_is_enabled(rps))
890 		return;
891 
892 	if (!intel_rps_clear_active(rps))
893 		return;
894 
895 	if (intel_rps_uses_timer(rps))
896 		rps_stop_timer(rps);
897 	if (intel_rps_has_interrupts(rps))
898 		rps_disable_interrupts(rps);
899 
900 	if (rps->last_freq <= rps->idle_freq)
901 		return;
902 
903 	/*
904 	 * The punit delays the write of the frequency and voltage until it
905 	 * determines the GPU is awake. During normal usage we don't want to
906 	 * waste power changing the frequency if the GPU is sleeping (rc6).
907 	 * However, the GPU and driver is now idle and we do not want to delay
908 	 * switching to minimum voltage (reducing power whilst idle) as we do
909 	 * not expect to be woken in the near future and so must flush the
910 	 * change by waking the device.
911 	 *
912 	 * We choose to take the media powerwell (either would do to trick the
913 	 * punit into committing the voltage change) as that takes a lot less
914 	 * power than the render powerwell.
915 	 */
916 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
917 	rps_set(rps, rps->idle_freq, false);
918 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
919 
920 	/*
921 	 * Since we will try and restart from the previously requested
922 	 * frequency on unparking, treat this idle point as a downclock
923 	 * interrupt and reduce the frequency for resume. If we park/unpark
924 	 * more frequently than the rps worker can run, we will not respond
925 	 * to any EI and never see a change in frequency.
926 	 *
927 	 * (Note we accommodate Cherryview's limitation of only using an
928 	 * even bin by applying it to all.)
929 	 */
930 	adj = rps->last_adj;
931 	if (adj < 0)
932 		adj *= 2;
933 	else /* CHV needs even encode values */
934 		adj = -2;
935 	rps->last_adj = adj;
936 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
937 	if (rps->cur_freq < rps->efficient_freq) {
938 		rps->cur_freq = rps->efficient_freq;
939 		rps->last_adj = 0;
940 	}
941 
942 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
943 }
944 
945 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
946 {
947 	struct intel_guc_slpc *slpc;
948 
949 	if (rps_uses_slpc(rps)) {
950 		slpc = rps_to_slpc(rps);
951 
952 		return slpc->boost_freq;
953 	} else {
954 		return intel_gpu_freq(rps, rps->boost_freq);
955 	}
956 }
957 
958 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
959 {
960 	bool boost = false;
961 
962 	/* Validate against (static) hardware limits */
963 	val = intel_freq_opcode(rps, val);
964 	if (val < rps->min_freq || val > rps->max_freq)
965 		return -EINVAL;
966 
967 	mutex_lock(&rps->lock);
968 	if (val != rps->boost_freq) {
969 		rps->boost_freq = val;
970 		boost = atomic_read(&rps->num_waiters);
971 	}
972 	mutex_unlock(&rps->lock);
973 	if (boost)
974 		schedule_work(&rps->work);
975 
976 	return 0;
977 }
978 
979 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
980 {
981 	struct intel_guc_slpc *slpc;
982 
983 	if (rps_uses_slpc(rps)) {
984 		slpc = rps_to_slpc(rps);
985 
986 		return intel_guc_slpc_set_boost_freq(slpc, freq);
987 	} else {
988 		return rps_set_boost_freq(rps, freq);
989 	}
990 }
991 
992 void intel_rps_dec_waiters(struct intel_rps *rps)
993 {
994 	struct intel_guc_slpc *slpc;
995 
996 	if (rps_uses_slpc(rps)) {
997 		slpc = rps_to_slpc(rps);
998 
999 		intel_guc_slpc_dec_waiters(slpc);
1000 	} else {
1001 		atomic_dec(&rps->num_waiters);
1002 	}
1003 }
1004 
1005 void intel_rps_boost(struct i915_request *rq)
1006 {
1007 	struct intel_guc_slpc *slpc;
1008 
1009 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1010 		return;
1011 
1012 	/* Serializes with i915_request_retire() */
1013 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1014 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1015 
1016 		if (rps_uses_slpc(rps)) {
1017 			slpc = rps_to_slpc(rps);
1018 
1019 			/* Return if old value is non zero */
1020 			if (!atomic_fetch_inc(&slpc->num_waiters))
1021 				schedule_work(&slpc->boost_work);
1022 
1023 			return;
1024 		}
1025 
1026 		if (atomic_fetch_inc(&rps->num_waiters))
1027 			return;
1028 
1029 		if (!intel_rps_is_active(rps))
1030 			return;
1031 
1032 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1033 			 rq->fence.context, rq->fence.seqno);
1034 
1035 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1036 			schedule_work(&rps->work);
1037 
1038 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1039 	}
1040 }
1041 
1042 int intel_rps_set(struct intel_rps *rps, u8 val)
1043 {
1044 	int err;
1045 
1046 	lockdep_assert_held(&rps->lock);
1047 	GEM_BUG_ON(val > rps->max_freq);
1048 	GEM_BUG_ON(val < rps->min_freq);
1049 
1050 	if (intel_rps_is_active(rps)) {
1051 		err = rps_set(rps, val, true);
1052 		if (err)
1053 			return err;
1054 
1055 		/*
1056 		 * Make sure we continue to get interrupts
1057 		 * until we hit the minimum or maximum frequencies.
1058 		 */
1059 		if (intel_rps_has_interrupts(rps)) {
1060 			struct intel_uncore *uncore = rps_to_uncore(rps);
1061 
1062 			set(uncore,
1063 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1064 
1065 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1066 		}
1067 	}
1068 
1069 	rps->cur_freq = val;
1070 	return 0;
1071 }
1072 
1073 static void gen6_rps_init(struct intel_rps *rps)
1074 {
1075 	struct drm_i915_private *i915 = rps_to_i915(rps);
1076 	u32 rp_state_cap = intel_rps_read_state_cap(rps);
1077 
1078 	/* All of these values are in units of 50MHz */
1079 
1080 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1081 	if (IS_GEN9_LP(i915)) {
1082 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1083 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1084 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
1085 	} else {
1086 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1087 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1088 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
1089 	}
1090 
1091 	/* hw_max = RP0 until we check for overclocking */
1092 	rps->max_freq = rps->rp0_freq;
1093 
1094 	rps->efficient_freq = rps->rp1_freq;
1095 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1096 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1097 		u32 ddcc_status = 0;
1098 
1099 		if (snb_pcode_read(i915, HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1100 				   &ddcc_status, NULL) == 0)
1101 			rps->efficient_freq =
1102 				clamp_t(u8,
1103 					(ddcc_status >> 8) & 0xff,
1104 					rps->min_freq,
1105 					rps->max_freq);
1106 	}
1107 
1108 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1109 		/* Store the frequency values in 16.66 MHZ units, which is
1110 		 * the natural hardware unit for SKL
1111 		 */
1112 		rps->rp0_freq *= GEN9_FREQ_SCALER;
1113 		rps->rp1_freq *= GEN9_FREQ_SCALER;
1114 		rps->min_freq *= GEN9_FREQ_SCALER;
1115 		rps->max_freq *= GEN9_FREQ_SCALER;
1116 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1117 	}
1118 }
1119 
1120 static bool rps_reset(struct intel_rps *rps)
1121 {
1122 	struct drm_i915_private *i915 = rps_to_i915(rps);
1123 
1124 	/* force a reset */
1125 	rps->power.mode = -1;
1126 	rps->last_freq = -1;
1127 
1128 	if (rps_set(rps, rps->min_freq, true)) {
1129 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1130 		return false;
1131 	}
1132 
1133 	rps->cur_freq = rps->min_freq;
1134 	return true;
1135 }
1136 
1137 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1138 static bool gen9_rps_enable(struct intel_rps *rps)
1139 {
1140 	struct intel_gt *gt = rps_to_gt(rps);
1141 	struct intel_uncore *uncore = gt->uncore;
1142 
1143 	/* Program defaults and thresholds for RPS */
1144 	if (GRAPHICS_VER(gt->i915) == 9)
1145 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1146 				      GEN9_FREQUENCY(rps->rp1_freq));
1147 
1148 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1149 
1150 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1151 
1152 	return rps_reset(rps);
1153 }
1154 
1155 static bool gen8_rps_enable(struct intel_rps *rps)
1156 {
1157 	struct intel_uncore *uncore = rps_to_uncore(rps);
1158 
1159 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1160 			      HSW_FREQUENCY(rps->rp1_freq));
1161 
1162 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1163 
1164 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1165 
1166 	return rps_reset(rps);
1167 }
1168 
1169 static bool gen6_rps_enable(struct intel_rps *rps)
1170 {
1171 	struct intel_uncore *uncore = rps_to_uncore(rps);
1172 
1173 	/* Power down if completely idle for over 50ms */
1174 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1175 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1176 
1177 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1178 			  GEN6_PM_RP_DOWN_THRESHOLD |
1179 			  GEN6_PM_RP_DOWN_TIMEOUT);
1180 
1181 	return rps_reset(rps);
1182 }
1183 
1184 static int chv_rps_max_freq(struct intel_rps *rps)
1185 {
1186 	struct drm_i915_private *i915 = rps_to_i915(rps);
1187 	struct intel_gt *gt = rps_to_gt(rps);
1188 	u32 val;
1189 
1190 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1191 
1192 	switch (gt->info.sseu.eu_total) {
1193 	case 8:
1194 		/* (2 * 4) config */
1195 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1196 		break;
1197 	case 12:
1198 		/* (2 * 6) config */
1199 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1200 		break;
1201 	case 16:
1202 		/* (2 * 8) config */
1203 	default:
1204 		/* Setting (2 * 8) Min RP0 for any other combination */
1205 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1206 		break;
1207 	}
1208 
1209 	return val & FB_GFX_FREQ_FUSE_MASK;
1210 }
1211 
1212 static int chv_rps_rpe_freq(struct intel_rps *rps)
1213 {
1214 	struct drm_i915_private *i915 = rps_to_i915(rps);
1215 	u32 val;
1216 
1217 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1218 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1219 
1220 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1221 }
1222 
1223 static int chv_rps_guar_freq(struct intel_rps *rps)
1224 {
1225 	struct drm_i915_private *i915 = rps_to_i915(rps);
1226 	u32 val;
1227 
1228 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1229 
1230 	return val & FB_GFX_FREQ_FUSE_MASK;
1231 }
1232 
1233 static u32 chv_rps_min_freq(struct intel_rps *rps)
1234 {
1235 	struct drm_i915_private *i915 = rps_to_i915(rps);
1236 	u32 val;
1237 
1238 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1239 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1240 
1241 	return val & FB_GFX_FREQ_FUSE_MASK;
1242 }
1243 
1244 static bool chv_rps_enable(struct intel_rps *rps)
1245 {
1246 	struct intel_uncore *uncore = rps_to_uncore(rps);
1247 	struct drm_i915_private *i915 = rps_to_i915(rps);
1248 	u32 val;
1249 
1250 	/* 1: Program defaults and thresholds for RPS*/
1251 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1252 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1253 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1254 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1255 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1256 
1257 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1258 
1259 	/* 2: Enable RPS */
1260 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1261 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1262 			      GEN6_RP_MEDIA_IS_GFX |
1263 			      GEN6_RP_ENABLE |
1264 			      GEN6_RP_UP_BUSY_AVG |
1265 			      GEN6_RP_DOWN_IDLE_AVG);
1266 
1267 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1268 			  GEN6_PM_RP_DOWN_THRESHOLD |
1269 			  GEN6_PM_RP_DOWN_TIMEOUT);
1270 
1271 	/* Setting Fixed Bias */
1272 	vlv_punit_get(i915);
1273 
1274 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1275 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1276 
1277 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1278 
1279 	vlv_punit_put(i915);
1280 
1281 	/* RPS code assumes GPLL is used */
1282 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1283 		      "GPLL not enabled\n");
1284 
1285 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1286 		str_yes_no(val & GPLLENABLE));
1287 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1288 
1289 	return rps_reset(rps);
1290 }
1291 
1292 static int vlv_rps_guar_freq(struct intel_rps *rps)
1293 {
1294 	struct drm_i915_private *i915 = rps_to_i915(rps);
1295 	u32 val, rp1;
1296 
1297 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1298 
1299 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1300 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1301 
1302 	return rp1;
1303 }
1304 
1305 static int vlv_rps_max_freq(struct intel_rps *rps)
1306 {
1307 	struct drm_i915_private *i915 = rps_to_i915(rps);
1308 	u32 val, rp0;
1309 
1310 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1311 
1312 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1313 	/* Clamp to max */
1314 	rp0 = min_t(u32, rp0, 0xea);
1315 
1316 	return rp0;
1317 }
1318 
1319 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1320 {
1321 	struct drm_i915_private *i915 = rps_to_i915(rps);
1322 	u32 val, rpe;
1323 
1324 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1325 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1326 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1327 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1328 
1329 	return rpe;
1330 }
1331 
1332 static int vlv_rps_min_freq(struct intel_rps *rps)
1333 {
1334 	struct drm_i915_private *i915 = rps_to_i915(rps);
1335 	u32 val;
1336 
1337 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1338 	/*
1339 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1340 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1341 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1342 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1343 	 * to make sure it matches what Punit accepts.
1344 	 */
1345 	return max_t(u32, val, 0xc0);
1346 }
1347 
1348 static bool vlv_rps_enable(struct intel_rps *rps)
1349 {
1350 	struct intel_uncore *uncore = rps_to_uncore(rps);
1351 	struct drm_i915_private *i915 = rps_to_i915(rps);
1352 	u32 val;
1353 
1354 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1355 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1356 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1357 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1358 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1359 
1360 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1361 
1362 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1363 			      GEN6_RP_MEDIA_TURBO |
1364 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1365 			      GEN6_RP_MEDIA_IS_GFX |
1366 			      GEN6_RP_ENABLE |
1367 			      GEN6_RP_UP_BUSY_AVG |
1368 			      GEN6_RP_DOWN_IDLE_CONT);
1369 
1370 	/* WaGsvRC0ResidencyMethod:vlv */
1371 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1372 
1373 	vlv_punit_get(i915);
1374 
1375 	/* Setting Fixed Bias */
1376 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1377 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1378 
1379 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1380 
1381 	vlv_punit_put(i915);
1382 
1383 	/* RPS code assumes GPLL is used */
1384 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1385 		      "GPLL not enabled\n");
1386 
1387 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1388 		str_yes_no(val & GPLLENABLE));
1389 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1390 
1391 	return rps_reset(rps);
1392 }
1393 
1394 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1395 {
1396 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1397 	struct intel_uncore *uncore = rps_to_uncore(rps);
1398 	unsigned int t, state1, state2;
1399 	u32 pxvid, ext_v;
1400 	u64 corr, corr2;
1401 
1402 	lockdep_assert_held(&mchdev_lock);
1403 
1404 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1405 	pxvid = (pxvid >> 24) & 0x7f;
1406 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1407 
1408 	state1 = ext_v;
1409 
1410 	/* Revel in the empirically derived constants */
1411 
1412 	/* Correction factor in 1/100000 units */
1413 	t = ips_mch_val(uncore);
1414 	if (t > 80)
1415 		corr = t * 2349 + 135940;
1416 	else if (t >= 50)
1417 		corr = t * 964 + 29317;
1418 	else /* < 50 */
1419 		corr = t * 301 + 1004;
1420 
1421 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1422 	corr2 = div_u64(corr, 100000) * ips->corr;
1423 
1424 	state2 = div_u64(corr2 * state1, 10000);
1425 	state2 /= 100; /* convert to mW */
1426 
1427 	__gen5_ips_update(ips);
1428 
1429 	return ips->gfx_power + state2;
1430 }
1431 
1432 static bool has_busy_stats(struct intel_rps *rps)
1433 {
1434 	struct intel_engine_cs *engine;
1435 	enum intel_engine_id id;
1436 
1437 	for_each_engine(engine, rps_to_gt(rps), id) {
1438 		if (!intel_engine_supports_stats(engine))
1439 			return false;
1440 	}
1441 
1442 	return true;
1443 }
1444 
1445 void intel_rps_enable(struct intel_rps *rps)
1446 {
1447 	struct drm_i915_private *i915 = rps_to_i915(rps);
1448 	struct intel_uncore *uncore = rps_to_uncore(rps);
1449 	bool enabled = false;
1450 
1451 	if (!HAS_RPS(i915))
1452 		return;
1453 
1454 	if (rps_uses_slpc(rps))
1455 		return;
1456 
1457 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1458 
1459 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1460 	if (rps->max_freq <= rps->min_freq)
1461 		/* leave disabled, no room for dynamic reclocking */;
1462 	else if (IS_CHERRYVIEW(i915))
1463 		enabled = chv_rps_enable(rps);
1464 	else if (IS_VALLEYVIEW(i915))
1465 		enabled = vlv_rps_enable(rps);
1466 	else if (GRAPHICS_VER(i915) >= 9)
1467 		enabled = gen9_rps_enable(rps);
1468 	else if (GRAPHICS_VER(i915) >= 8)
1469 		enabled = gen8_rps_enable(rps);
1470 	else if (GRAPHICS_VER(i915) >= 6)
1471 		enabled = gen6_rps_enable(rps);
1472 	else if (IS_IRONLAKE_M(i915))
1473 		enabled = gen5_rps_enable(rps);
1474 	else
1475 		MISSING_CASE(GRAPHICS_VER(i915));
1476 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1477 	if (!enabled)
1478 		return;
1479 
1480 	GT_TRACE(rps_to_gt(rps),
1481 		 "min:%x, max:%x, freq:[%d, %d]\n",
1482 		 rps->min_freq, rps->max_freq,
1483 		 intel_gpu_freq(rps, rps->min_freq),
1484 		 intel_gpu_freq(rps, rps->max_freq));
1485 
1486 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1487 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1488 
1489 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1490 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1491 
1492 	if (has_busy_stats(rps))
1493 		intel_rps_set_timer(rps);
1494 	else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1495 		intel_rps_set_interrupts(rps);
1496 	else
1497 		/* Ironlake currently uses intel_ips.ko */ {}
1498 
1499 	intel_rps_set_enabled(rps);
1500 }
1501 
1502 static void gen6_rps_disable(struct intel_rps *rps)
1503 {
1504 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1505 }
1506 
1507 void intel_rps_disable(struct intel_rps *rps)
1508 {
1509 	struct drm_i915_private *i915 = rps_to_i915(rps);
1510 
1511 	intel_rps_clear_enabled(rps);
1512 	intel_rps_clear_interrupts(rps);
1513 	intel_rps_clear_timer(rps);
1514 
1515 	if (GRAPHICS_VER(i915) >= 6)
1516 		gen6_rps_disable(rps);
1517 	else if (IS_IRONLAKE_M(i915))
1518 		gen5_rps_disable(rps);
1519 }
1520 
1521 static int byt_gpu_freq(struct intel_rps *rps, int val)
1522 {
1523 	/*
1524 	 * N = val - 0xb7
1525 	 * Slow = Fast = GPLL ref * N
1526 	 */
1527 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1528 }
1529 
1530 static int byt_freq_opcode(struct intel_rps *rps, int val)
1531 {
1532 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1533 }
1534 
1535 static int chv_gpu_freq(struct intel_rps *rps, int val)
1536 {
1537 	/*
1538 	 * N = val / 2
1539 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1540 	 */
1541 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1542 }
1543 
1544 static int chv_freq_opcode(struct intel_rps *rps, int val)
1545 {
1546 	/* CHV needs even values */
1547 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1548 }
1549 
1550 int intel_gpu_freq(struct intel_rps *rps, int val)
1551 {
1552 	struct drm_i915_private *i915 = rps_to_i915(rps);
1553 
1554 	if (GRAPHICS_VER(i915) >= 9)
1555 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1556 					 GEN9_FREQ_SCALER);
1557 	else if (IS_CHERRYVIEW(i915))
1558 		return chv_gpu_freq(rps, val);
1559 	else if (IS_VALLEYVIEW(i915))
1560 		return byt_gpu_freq(rps, val);
1561 	else if (GRAPHICS_VER(i915) >= 6)
1562 		return val * GT_FREQUENCY_MULTIPLIER;
1563 	else
1564 		return val;
1565 }
1566 
1567 int intel_freq_opcode(struct intel_rps *rps, int val)
1568 {
1569 	struct drm_i915_private *i915 = rps_to_i915(rps);
1570 
1571 	if (GRAPHICS_VER(i915) >= 9)
1572 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1573 					 GT_FREQUENCY_MULTIPLIER);
1574 	else if (IS_CHERRYVIEW(i915))
1575 		return chv_freq_opcode(rps, val);
1576 	else if (IS_VALLEYVIEW(i915))
1577 		return byt_freq_opcode(rps, val);
1578 	else if (GRAPHICS_VER(i915) >= 6)
1579 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1580 	else
1581 		return val;
1582 }
1583 
1584 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1585 {
1586 	struct drm_i915_private *i915 = rps_to_i915(rps);
1587 
1588 	rps->gpll_ref_freq =
1589 		vlv_get_cck_clock(i915, "GPLL ref",
1590 				  CCK_GPLL_CLOCK_CONTROL,
1591 				  i915->czclk_freq);
1592 
1593 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1594 		rps->gpll_ref_freq);
1595 }
1596 
1597 static void vlv_rps_init(struct intel_rps *rps)
1598 {
1599 	struct drm_i915_private *i915 = rps_to_i915(rps);
1600 	u32 val;
1601 
1602 	vlv_iosf_sb_get(i915,
1603 			BIT(VLV_IOSF_SB_PUNIT) |
1604 			BIT(VLV_IOSF_SB_NC) |
1605 			BIT(VLV_IOSF_SB_CCK));
1606 
1607 	vlv_init_gpll_ref_freq(rps);
1608 
1609 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1610 	switch ((val >> 6) & 3) {
1611 	case 0:
1612 	case 1:
1613 		i915->mem_freq = 800;
1614 		break;
1615 	case 2:
1616 		i915->mem_freq = 1066;
1617 		break;
1618 	case 3:
1619 		i915->mem_freq = 1333;
1620 		break;
1621 	}
1622 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1623 
1624 	rps->max_freq = vlv_rps_max_freq(rps);
1625 	rps->rp0_freq = rps->max_freq;
1626 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1627 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1628 
1629 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1630 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1631 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1632 
1633 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1634 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1635 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1636 
1637 	rps->min_freq = vlv_rps_min_freq(rps);
1638 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1639 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1640 
1641 	vlv_iosf_sb_put(i915,
1642 			BIT(VLV_IOSF_SB_PUNIT) |
1643 			BIT(VLV_IOSF_SB_NC) |
1644 			BIT(VLV_IOSF_SB_CCK));
1645 }
1646 
1647 static void chv_rps_init(struct intel_rps *rps)
1648 {
1649 	struct drm_i915_private *i915 = rps_to_i915(rps);
1650 	u32 val;
1651 
1652 	vlv_iosf_sb_get(i915,
1653 			BIT(VLV_IOSF_SB_PUNIT) |
1654 			BIT(VLV_IOSF_SB_NC) |
1655 			BIT(VLV_IOSF_SB_CCK));
1656 
1657 	vlv_init_gpll_ref_freq(rps);
1658 
1659 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1660 
1661 	switch ((val >> 2) & 0x7) {
1662 	case 3:
1663 		i915->mem_freq = 2000;
1664 		break;
1665 	default:
1666 		i915->mem_freq = 1600;
1667 		break;
1668 	}
1669 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1670 
1671 	rps->max_freq = chv_rps_max_freq(rps);
1672 	rps->rp0_freq = rps->max_freq;
1673 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1674 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1675 
1676 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1677 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1678 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1679 
1680 	rps->rp1_freq = chv_rps_guar_freq(rps);
1681 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1682 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1683 
1684 	rps->min_freq = chv_rps_min_freq(rps);
1685 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1686 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1687 
1688 	vlv_iosf_sb_put(i915,
1689 			BIT(VLV_IOSF_SB_PUNIT) |
1690 			BIT(VLV_IOSF_SB_NC) |
1691 			BIT(VLV_IOSF_SB_CCK));
1692 
1693 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1694 				   rps->rp1_freq | rps->min_freq) & 1,
1695 		      "Odd GPU freq values\n");
1696 }
1697 
1698 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1699 {
1700 	ei->ktime = ktime_get_raw();
1701 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1702 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1703 }
1704 
1705 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1706 {
1707 	struct intel_uncore *uncore = rps_to_uncore(rps);
1708 	const struct intel_rps_ei *prev = &rps->ei;
1709 	struct intel_rps_ei now;
1710 	u32 events = 0;
1711 
1712 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1713 		return 0;
1714 
1715 	vlv_c0_read(uncore, &now);
1716 
1717 	if (prev->ktime) {
1718 		u64 time, c0;
1719 		u32 render, media;
1720 
1721 		time = ktime_us_delta(now.ktime, prev->ktime);
1722 
1723 		time *= rps_to_i915(rps)->czclk_freq;
1724 
1725 		/* Workload can be split between render + media,
1726 		 * e.g. SwapBuffers being blitted in X after being rendered in
1727 		 * mesa. To account for this we need to combine both engines
1728 		 * into our activity counter.
1729 		 */
1730 		render = now.render_c0 - prev->render_c0;
1731 		media = now.media_c0 - prev->media_c0;
1732 		c0 = max(render, media);
1733 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1734 
1735 		if (c0 > time * rps->power.up_threshold)
1736 			events = GEN6_PM_RP_UP_THRESHOLD;
1737 		else if (c0 < time * rps->power.down_threshold)
1738 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1739 	}
1740 
1741 	rps->ei = now;
1742 	return events;
1743 }
1744 
1745 static void rps_work(struct work_struct *work)
1746 {
1747 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1748 	struct intel_gt *gt = rps_to_gt(rps);
1749 	struct drm_i915_private *i915 = rps_to_i915(rps);
1750 	bool client_boost = false;
1751 	int new_freq, adj, min, max;
1752 	u32 pm_iir = 0;
1753 
1754 	spin_lock_irq(&gt->irq_lock);
1755 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1756 	client_boost = atomic_read(&rps->num_waiters);
1757 	spin_unlock_irq(&gt->irq_lock);
1758 
1759 	/* Make sure we didn't queue anything we're not going to process. */
1760 	if (!pm_iir && !client_boost)
1761 		goto out;
1762 
1763 	mutex_lock(&rps->lock);
1764 	if (!intel_rps_is_active(rps)) {
1765 		mutex_unlock(&rps->lock);
1766 		return;
1767 	}
1768 
1769 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1770 
1771 	adj = rps->last_adj;
1772 	new_freq = rps->cur_freq;
1773 	min = rps->min_freq_softlimit;
1774 	max = rps->max_freq_softlimit;
1775 	if (client_boost)
1776 		max = rps->max_freq;
1777 
1778 	GT_TRACE(gt,
1779 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1780 		 pm_iir, str_yes_no(client_boost),
1781 		 adj, new_freq, min, max);
1782 
1783 	if (client_boost && new_freq < rps->boost_freq) {
1784 		new_freq = rps->boost_freq;
1785 		adj = 0;
1786 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1787 		if (adj > 0)
1788 			adj *= 2;
1789 		else /* CHV needs even encode values */
1790 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1791 
1792 		if (new_freq >= rps->max_freq_softlimit)
1793 			adj = 0;
1794 	} else if (client_boost) {
1795 		adj = 0;
1796 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1797 		if (rps->cur_freq > rps->efficient_freq)
1798 			new_freq = rps->efficient_freq;
1799 		else if (rps->cur_freq > rps->min_freq_softlimit)
1800 			new_freq = rps->min_freq_softlimit;
1801 		adj = 0;
1802 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1803 		if (adj < 0)
1804 			adj *= 2;
1805 		else /* CHV needs even encode values */
1806 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1807 
1808 		if (new_freq <= rps->min_freq_softlimit)
1809 			adj = 0;
1810 	} else { /* unknown event */
1811 		adj = 0;
1812 	}
1813 
1814 	/*
1815 	 * sysfs frequency limits may have snuck in while
1816 	 * servicing the interrupt
1817 	 */
1818 	new_freq += adj;
1819 	new_freq = clamp_t(int, new_freq, min, max);
1820 
1821 	if (intel_rps_set(rps, new_freq)) {
1822 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1823 		adj = 0;
1824 	}
1825 	rps->last_adj = adj;
1826 
1827 	mutex_unlock(&rps->lock);
1828 
1829 out:
1830 	spin_lock_irq(&gt->irq_lock);
1831 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1832 	spin_unlock_irq(&gt->irq_lock);
1833 }
1834 
1835 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1836 {
1837 	struct intel_gt *gt = rps_to_gt(rps);
1838 	const u32 events = rps->pm_events & pm_iir;
1839 
1840 	lockdep_assert_held(&gt->irq_lock);
1841 
1842 	if (unlikely(!events))
1843 		return;
1844 
1845 	GT_TRACE(gt, "irq events:%x\n", events);
1846 
1847 	gen6_gt_pm_mask_irq(gt, events);
1848 
1849 	rps->pm_iir |= events;
1850 	schedule_work(&rps->work);
1851 }
1852 
1853 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1854 {
1855 	struct intel_gt *gt = rps_to_gt(rps);
1856 	u32 events;
1857 
1858 	events = pm_iir & rps->pm_events;
1859 	if (events) {
1860 		spin_lock(&gt->irq_lock);
1861 
1862 		GT_TRACE(gt, "irq events:%x\n", events);
1863 
1864 		gen6_gt_pm_mask_irq(gt, events);
1865 		rps->pm_iir |= events;
1866 
1867 		schedule_work(&rps->work);
1868 		spin_unlock(&gt->irq_lock);
1869 	}
1870 
1871 	if (GRAPHICS_VER(gt->i915) >= 8)
1872 		return;
1873 
1874 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1875 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1876 
1877 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1878 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1879 }
1880 
1881 void gen5_rps_irq_handler(struct intel_rps *rps)
1882 {
1883 	struct intel_uncore *uncore = rps_to_uncore(rps);
1884 	u32 busy_up, busy_down, max_avg, min_avg;
1885 	u8 new_freq;
1886 
1887 	spin_lock(&mchdev_lock);
1888 
1889 	intel_uncore_write16(uncore,
1890 			     MEMINTRSTS,
1891 			     intel_uncore_read(uncore, MEMINTRSTS));
1892 
1893 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1894 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1895 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1896 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1897 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1898 
1899 	/* Handle RCS change request from hw */
1900 	new_freq = rps->cur_freq;
1901 	if (busy_up > max_avg)
1902 		new_freq++;
1903 	else if (busy_down < min_avg)
1904 		new_freq--;
1905 	new_freq = clamp(new_freq,
1906 			 rps->min_freq_softlimit,
1907 			 rps->max_freq_softlimit);
1908 
1909 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1910 		rps->cur_freq = new_freq;
1911 
1912 	spin_unlock(&mchdev_lock);
1913 }
1914 
1915 void intel_rps_init_early(struct intel_rps *rps)
1916 {
1917 	mutex_init(&rps->lock);
1918 	mutex_init(&rps->power.mutex);
1919 
1920 	INIT_WORK(&rps->work, rps_work);
1921 	timer_setup(&rps->timer, rps_timer, 0);
1922 
1923 	atomic_set(&rps->num_waiters, 0);
1924 }
1925 
1926 void intel_rps_init(struct intel_rps *rps)
1927 {
1928 	struct drm_i915_private *i915 = rps_to_i915(rps);
1929 
1930 	if (rps_uses_slpc(rps))
1931 		return;
1932 
1933 	if (IS_CHERRYVIEW(i915))
1934 		chv_rps_init(rps);
1935 	else if (IS_VALLEYVIEW(i915))
1936 		vlv_rps_init(rps);
1937 	else if (GRAPHICS_VER(i915) >= 6)
1938 		gen6_rps_init(rps);
1939 	else if (IS_IRONLAKE_M(i915))
1940 		gen5_rps_init(rps);
1941 
1942 	/* Derive initial user preferences/limits from the hardware limits */
1943 	rps->max_freq_softlimit = rps->max_freq;
1944 	rps->min_freq_softlimit = rps->min_freq;
1945 
1946 	/* After setting max-softlimit, find the overclock max freq */
1947 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1948 		u32 params = 0;
1949 
1950 		snb_pcode_read(i915, GEN6_READ_OC_PARAMS, &params, NULL);
1951 		if (params & BIT(31)) { /* OC supported */
1952 			drm_dbg(&i915->drm,
1953 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1954 				(rps->max_freq & 0xff) * 50,
1955 				(params & 0xff) * 50);
1956 			rps->max_freq = params & 0xff;
1957 		}
1958 	}
1959 
1960 	/* Finally allow us to boost to max by default */
1961 	rps->boost_freq = rps->max_freq;
1962 	rps->idle_freq = rps->min_freq;
1963 
1964 	/* Start in the middle, from here we will autotune based on workload */
1965 	rps->cur_freq = rps->efficient_freq;
1966 
1967 	rps->pm_intrmsk_mbz = 0;
1968 
1969 	/*
1970 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1971 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1972 	 *
1973 	 * TODO: verify if this can be reproduced on VLV,CHV.
1974 	 */
1975 	if (GRAPHICS_VER(i915) <= 7)
1976 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1977 
1978 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
1979 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1980 
1981 	/* GuC needs ARAT expired interrupt unmasked */
1982 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
1983 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1984 }
1985 
1986 void intel_rps_sanitize(struct intel_rps *rps)
1987 {
1988 	if (rps_uses_slpc(rps))
1989 		return;
1990 
1991 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
1992 		rps_disable_interrupts(rps);
1993 }
1994 
1995 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1996 {
1997 	struct drm_i915_private *i915 = rps_to_i915(rps);
1998 	u32 cagf;
1999 
2000 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2001 		cagf = (rpstat >> 8) & 0xff;
2002 	else if (GRAPHICS_VER(i915) >= 9)
2003 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
2004 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2005 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
2006 	else if (GRAPHICS_VER(i915) >= 6)
2007 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
2008 	else
2009 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
2010 					MEMSTAT_PSTATE_SHIFT);
2011 
2012 	return cagf;
2013 }
2014 
2015 static u32 read_cagf(struct intel_rps *rps)
2016 {
2017 	struct drm_i915_private *i915 = rps_to_i915(rps);
2018 	struct intel_uncore *uncore = rps_to_uncore(rps);
2019 	u32 freq;
2020 
2021 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2022 		vlv_punit_get(i915);
2023 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2024 		vlv_punit_put(i915);
2025 	} else if (GRAPHICS_VER(i915) >= 6) {
2026 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
2027 	} else {
2028 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
2029 	}
2030 
2031 	return intel_rps_get_cagf(rps, freq);
2032 }
2033 
2034 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2035 {
2036 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2037 	intel_wakeref_t wakeref;
2038 	u32 freq = 0;
2039 
2040 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2041 		freq = intel_gpu_freq(rps, read_cagf(rps));
2042 
2043 	return freq;
2044 }
2045 
2046 u32 intel_rps_read_punit_req(struct intel_rps *rps)
2047 {
2048 	struct intel_uncore *uncore = rps_to_uncore(rps);
2049 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2050 	intel_wakeref_t wakeref;
2051 	u32 freq = 0;
2052 
2053 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2054 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2055 
2056 	return freq;
2057 }
2058 
2059 static u32 intel_rps_get_req(u32 pureq)
2060 {
2061 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2062 
2063 	return req;
2064 }
2065 
2066 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2067 {
2068 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2069 
2070 	return intel_gpu_freq(rps, freq);
2071 }
2072 
2073 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2074 {
2075 	if (rps_uses_slpc(rps))
2076 		return intel_rps_read_punit_req_frequency(rps);
2077 	else
2078 		return intel_gpu_freq(rps, rps->cur_freq);
2079 }
2080 
2081 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2082 {
2083 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2084 
2085 	if (rps_uses_slpc(rps))
2086 		return slpc->max_freq_softlimit;
2087 	else
2088 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2089 }
2090 
2091 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2092 {
2093 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2094 
2095 	if (rps_uses_slpc(rps))
2096 		return slpc->rp0_freq;
2097 	else
2098 		return intel_gpu_freq(rps, rps->rp0_freq);
2099 }
2100 
2101 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2102 {
2103 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2104 
2105 	if (rps_uses_slpc(rps))
2106 		return slpc->rp1_freq;
2107 	else
2108 		return intel_gpu_freq(rps, rps->rp1_freq);
2109 }
2110 
2111 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2112 {
2113 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2114 
2115 	if (rps_uses_slpc(rps))
2116 		return slpc->min_freq;
2117 	else
2118 		return intel_gpu_freq(rps, rps->min_freq);
2119 }
2120 
2121 static int set_max_freq(struct intel_rps *rps, u32 val)
2122 {
2123 	struct drm_i915_private *i915 = rps_to_i915(rps);
2124 	int ret = 0;
2125 
2126 	mutex_lock(&rps->lock);
2127 
2128 	val = intel_freq_opcode(rps, val);
2129 	if (val < rps->min_freq ||
2130 	    val > rps->max_freq ||
2131 	    val < rps->min_freq_softlimit) {
2132 		ret = -EINVAL;
2133 		goto unlock;
2134 	}
2135 
2136 	if (val > rps->rp0_freq)
2137 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2138 			intel_gpu_freq(rps, val));
2139 
2140 	rps->max_freq_softlimit = val;
2141 
2142 	val = clamp_t(int, rps->cur_freq,
2143 		      rps->min_freq_softlimit,
2144 		      rps->max_freq_softlimit);
2145 
2146 	/*
2147 	 * We still need *_set_rps to process the new max_delay and
2148 	 * update the interrupt limits and PMINTRMSK even though
2149 	 * frequency request may be unchanged.
2150 	 */
2151 	intel_rps_set(rps, val);
2152 
2153 unlock:
2154 	mutex_unlock(&rps->lock);
2155 
2156 	return ret;
2157 }
2158 
2159 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2160 {
2161 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2162 
2163 	if (rps_uses_slpc(rps))
2164 		return intel_guc_slpc_set_max_freq(slpc, val);
2165 	else
2166 		return set_max_freq(rps, val);
2167 }
2168 
2169 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2170 {
2171 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2172 
2173 	if (rps_uses_slpc(rps))
2174 		return slpc->min_freq_softlimit;
2175 	else
2176 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2177 }
2178 
2179 static int set_min_freq(struct intel_rps *rps, u32 val)
2180 {
2181 	int ret = 0;
2182 
2183 	mutex_lock(&rps->lock);
2184 
2185 	val = intel_freq_opcode(rps, val);
2186 	if (val < rps->min_freq ||
2187 	    val > rps->max_freq ||
2188 	    val > rps->max_freq_softlimit) {
2189 		ret = -EINVAL;
2190 		goto unlock;
2191 	}
2192 
2193 	rps->min_freq_softlimit = val;
2194 
2195 	val = clamp_t(int, rps->cur_freq,
2196 		      rps->min_freq_softlimit,
2197 		      rps->max_freq_softlimit);
2198 
2199 	/*
2200 	 * We still need *_set_rps to process the new min_delay and
2201 	 * update the interrupt limits and PMINTRMSK even though
2202 	 * frequency request may be unchanged.
2203 	 */
2204 	intel_rps_set(rps, val);
2205 
2206 unlock:
2207 	mutex_unlock(&rps->lock);
2208 
2209 	return ret;
2210 }
2211 
2212 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2213 {
2214 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2215 
2216 	if (rps_uses_slpc(rps))
2217 		return intel_guc_slpc_set_min_freq(slpc, val);
2218 	else
2219 		return set_min_freq(rps, val);
2220 }
2221 
2222 u32 intel_rps_read_state_cap(struct intel_rps *rps)
2223 {
2224 	struct drm_i915_private *i915 = rps_to_i915(rps);
2225 	struct intel_uncore *uncore = rps_to_uncore(rps);
2226 
2227 	if (IS_XEHPSDV(i915))
2228 		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
2229 	else if (IS_GEN9_LP(i915))
2230 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
2231 	else
2232 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
2233 }
2234 
2235 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2236 {
2237 	struct intel_uncore *uncore = rps_to_uncore(rps);
2238 	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2239 
2240 	/* Allow punit to process software requests */
2241 	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2242 }
2243 
2244 void intel_rps_raise_unslice(struct intel_rps *rps)
2245 {
2246 	struct intel_uncore *uncore = rps_to_uncore(rps);
2247 	u32 rp0_unslice_req;
2248 
2249 	mutex_lock(&rps->lock);
2250 
2251 	if (rps_uses_slpc(rps)) {
2252 		/* RP limits have not been initialized yet for SLPC path */
2253 		rp0_unslice_req = ((intel_rps_read_state_cap(rps) >> 0)
2254 				   & 0xff) * GEN9_FREQ_SCALER;
2255 
2256 		intel_rps_set_manual(rps, true);
2257 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2258 				   ((rp0_unslice_req <<
2259 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2260 				   GEN9_IGNORE_SLICE_RATIO));
2261 		intel_rps_set_manual(rps, false);
2262 	} else {
2263 		intel_rps_set(rps, rps->rp0_freq);
2264 	}
2265 
2266 	mutex_unlock(&rps->lock);
2267 }
2268 
2269 void intel_rps_lower_unslice(struct intel_rps *rps)
2270 {
2271 	struct intel_uncore *uncore = rps_to_uncore(rps);
2272 	u32 rpn_unslice_req;
2273 
2274 	mutex_lock(&rps->lock);
2275 
2276 	if (rps_uses_slpc(rps)) {
2277 		/* RP limits have not been initialized yet for SLPC path */
2278 		rpn_unslice_req = ((intel_rps_read_state_cap(rps) >> 16)
2279 				   & 0xff) * GEN9_FREQ_SCALER;
2280 
2281 		intel_rps_set_manual(rps, true);
2282 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2283 				   ((rpn_unslice_req <<
2284 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2285 				   GEN9_IGNORE_SLICE_RATIO));
2286 		intel_rps_set_manual(rps, false);
2287 	} else {
2288 		intel_rps_set(rps, rps->min_freq);
2289 	}
2290 
2291 	mutex_unlock(&rps->lock);
2292 }
2293 
2294 /* External interface for intel_ips.ko */
2295 
2296 static struct drm_i915_private __rcu *ips_mchdev;
2297 
2298 /**
2299  * Tells the intel_ips driver that the i915 driver is now loaded, if
2300  * IPS got loaded first.
2301  *
2302  * This awkward dance is so that neither module has to depend on the
2303  * other in order for IPS to do the appropriate communication of
2304  * GPU turbo limits to i915.
2305  */
2306 static void
2307 ips_ping_for_i915_load(void)
2308 {
2309 	void (*link)(void);
2310 
2311 	link = symbol_get(ips_link_to_i915_driver);
2312 	if (link) {
2313 		link();
2314 		symbol_put(ips_link_to_i915_driver);
2315 	}
2316 }
2317 
2318 void intel_rps_driver_register(struct intel_rps *rps)
2319 {
2320 	struct intel_gt *gt = rps_to_gt(rps);
2321 
2322 	/*
2323 	 * We only register the i915 ips part with intel-ips once everything is
2324 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2325 	 */
2326 	if (GRAPHICS_VER(gt->i915) == 5) {
2327 		GEM_BUG_ON(ips_mchdev);
2328 		rcu_assign_pointer(ips_mchdev, gt->i915);
2329 		ips_ping_for_i915_load();
2330 	}
2331 }
2332 
2333 void intel_rps_driver_unregister(struct intel_rps *rps)
2334 {
2335 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2336 		rcu_assign_pointer(ips_mchdev, NULL);
2337 }
2338 
2339 static struct drm_i915_private *mchdev_get(void)
2340 {
2341 	struct drm_i915_private *i915;
2342 
2343 	rcu_read_lock();
2344 	i915 = rcu_dereference(ips_mchdev);
2345 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2346 		i915 = NULL;
2347 	rcu_read_unlock();
2348 
2349 	return i915;
2350 }
2351 
2352 /**
2353  * i915_read_mch_val - return value for IPS use
2354  *
2355  * Calculate and return a value for the IPS driver to use when deciding whether
2356  * we have thermal and power headroom to increase CPU or GPU power budget.
2357  */
2358 unsigned long i915_read_mch_val(void)
2359 {
2360 	struct drm_i915_private *i915;
2361 	unsigned long chipset_val = 0;
2362 	unsigned long graphics_val = 0;
2363 	intel_wakeref_t wakeref;
2364 
2365 	i915 = mchdev_get();
2366 	if (!i915)
2367 		return 0;
2368 
2369 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2370 		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2371 
2372 		spin_lock_irq(&mchdev_lock);
2373 		chipset_val = __ips_chipset_val(ips);
2374 		graphics_val = __ips_gfx_val(ips);
2375 		spin_unlock_irq(&mchdev_lock);
2376 	}
2377 
2378 	drm_dev_put(&i915->drm);
2379 	return chipset_val + graphics_val;
2380 }
2381 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2382 
2383 /**
2384  * i915_gpu_raise - raise GPU frequency limit
2385  *
2386  * Raise the limit; IPS indicates we have thermal headroom.
2387  */
2388 bool i915_gpu_raise(void)
2389 {
2390 	struct drm_i915_private *i915;
2391 	struct intel_rps *rps;
2392 
2393 	i915 = mchdev_get();
2394 	if (!i915)
2395 		return false;
2396 
2397 	rps = &to_gt(i915)->rps;
2398 
2399 	spin_lock_irq(&mchdev_lock);
2400 	if (rps->max_freq_softlimit < rps->max_freq)
2401 		rps->max_freq_softlimit++;
2402 	spin_unlock_irq(&mchdev_lock);
2403 
2404 	drm_dev_put(&i915->drm);
2405 	return true;
2406 }
2407 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2408 
2409 /**
2410  * i915_gpu_lower - lower GPU frequency limit
2411  *
2412  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2413  * frequency maximum.
2414  */
2415 bool i915_gpu_lower(void)
2416 {
2417 	struct drm_i915_private *i915;
2418 	struct intel_rps *rps;
2419 
2420 	i915 = mchdev_get();
2421 	if (!i915)
2422 		return false;
2423 
2424 	rps = &to_gt(i915)->rps;
2425 
2426 	spin_lock_irq(&mchdev_lock);
2427 	if (rps->max_freq_softlimit > rps->min_freq)
2428 		rps->max_freq_softlimit--;
2429 	spin_unlock_irq(&mchdev_lock);
2430 
2431 	drm_dev_put(&i915->drm);
2432 	return true;
2433 }
2434 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2435 
2436 /**
2437  * i915_gpu_busy - indicate GPU business to IPS
2438  *
2439  * Tell the IPS driver whether or not the GPU is busy.
2440  */
2441 bool i915_gpu_busy(void)
2442 {
2443 	struct drm_i915_private *i915;
2444 	bool ret;
2445 
2446 	i915 = mchdev_get();
2447 	if (!i915)
2448 		return false;
2449 
2450 	ret = to_gt(i915)->awake;
2451 
2452 	drm_dev_put(&i915->drm);
2453 	return ret;
2454 }
2455 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2456 
2457 /**
2458  * i915_gpu_turbo_disable - disable graphics turbo
2459  *
2460  * Disable graphics turbo by resetting the max frequency and setting the
2461  * current frequency to the default.
2462  */
2463 bool i915_gpu_turbo_disable(void)
2464 {
2465 	struct drm_i915_private *i915;
2466 	struct intel_rps *rps;
2467 	bool ret;
2468 
2469 	i915 = mchdev_get();
2470 	if (!i915)
2471 		return false;
2472 
2473 	rps = &to_gt(i915)->rps;
2474 
2475 	spin_lock_irq(&mchdev_lock);
2476 	rps->max_freq_softlimit = rps->min_freq;
2477 	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2478 	spin_unlock_irq(&mchdev_lock);
2479 
2480 	drm_dev_put(&i915->drm);
2481 	return ret;
2482 }
2483 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2484 
2485 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2486 #include "selftest_rps.c"
2487 #include "selftest_slpc.c"
2488 #endif
2489