xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 3d40aed862874db14e1dd41fd6f12636dcfdcc3e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/i915_drm.h>
9 
10 #include "display/intel_display.h"
11 #include "display/intel_display_irq.h"
12 #include "i915_drv.h"
13 #include "i915_irq.h"
14 #include "i915_reg.h"
15 #include "intel_breadcrumbs.h"
16 #include "intel_gt.h"
17 #include "intel_gt_clock_utils.h"
18 #include "intel_gt_irq.h"
19 #include "intel_gt_pm_irq.h"
20 #include "intel_gt_regs.h"
21 #include "intel_mchbar_regs.h"
22 #include "intel_pcode.h"
23 #include "intel_rps.h"
24 #include "vlv_sideband.h"
25 #include "../../../platform/x86/intel_ips.h"
26 
27 #define BUSY_MAX_EI	20u /* ms */
28 
29 /*
30  * Lock protecting IPS related data structures
31  */
32 static DEFINE_SPINLOCK(mchdev_lock);
33 
34 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
35 {
36 	return container_of(rps, struct intel_gt, rps);
37 }
38 
39 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
40 {
41 	return rps_to_gt(rps)->i915;
42 }
43 
44 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
45 {
46 	return rps_to_gt(rps)->uncore;
47 }
48 
49 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
50 {
51 	struct intel_gt *gt = rps_to_gt(rps);
52 
53 	return &gt->uc.guc.slpc;
54 }
55 
56 static bool rps_uses_slpc(struct intel_rps *rps)
57 {
58 	struct intel_gt *gt = rps_to_gt(rps);
59 
60 	return intel_uc_uses_guc_slpc(&gt->uc);
61 }
62 
63 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
64 {
65 	return mask & ~rps->pm_intrmsk_mbz;
66 }
67 
68 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
69 {
70 	intel_uncore_write_fw(uncore, reg, val);
71 }
72 
73 static void rps_timer(struct timer_list *t)
74 {
75 	struct intel_rps *rps = from_timer(rps, t, timer);
76 	struct intel_gt *gt = rps_to_gt(rps);
77 	struct intel_engine_cs *engine;
78 	ktime_t dt, last, timestamp;
79 	enum intel_engine_id id;
80 	s64 max_busy[3] = {};
81 
82 	timestamp = 0;
83 	for_each_engine(engine, gt, id) {
84 		s64 busy;
85 		int i;
86 
87 		dt = intel_engine_get_busy_time(engine, &timestamp);
88 		last = engine->stats.rps;
89 		engine->stats.rps = dt;
90 
91 		busy = ktime_to_ns(ktime_sub(dt, last));
92 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
93 			if (busy > max_busy[i])
94 				swap(busy, max_busy[i]);
95 		}
96 	}
97 	last = rps->pm_timestamp;
98 	rps->pm_timestamp = timestamp;
99 
100 	if (intel_rps_is_active(rps)) {
101 		s64 busy;
102 		int i;
103 
104 		dt = ktime_sub(timestamp, last);
105 
106 		/*
107 		 * Our goal is to evaluate each engine independently, so we run
108 		 * at the lowest clocks required to sustain the heaviest
109 		 * workload. However, a task may be split into sequential
110 		 * dependent operations across a set of engines, such that
111 		 * the independent contributions do not account for high load,
112 		 * but overall the task is GPU bound. For example, consider
113 		 * video decode on vcs followed by colour post-processing
114 		 * on vecs, followed by general post-processing on rcs.
115 		 * Since multi-engines being active does imply a single
116 		 * continuous workload across all engines, we hedge our
117 		 * bets by only contributing a factor of the distributed
118 		 * load into our busyness calculation.
119 		 */
120 		busy = max_busy[0];
121 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
122 			if (!max_busy[i])
123 				break;
124 
125 			busy += div_u64(max_busy[i], 1 << i);
126 		}
127 		GT_TRACE(gt,
128 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
129 			 busy, (int)div64_u64(100 * busy, dt),
130 			 max_busy[0], max_busy[1], max_busy[2],
131 			 rps->pm_interval);
132 
133 		if (100 * busy > rps->power.up_threshold * dt &&
134 		    rps->cur_freq < rps->max_freq_softlimit) {
135 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
136 			rps->pm_interval = 1;
137 			queue_work(gt->i915->unordered_wq, &rps->work);
138 		} else if (100 * busy < rps->power.down_threshold * dt &&
139 			   rps->cur_freq > rps->min_freq_softlimit) {
140 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
141 			rps->pm_interval = 1;
142 			queue_work(gt->i915->unordered_wq, &rps->work);
143 		} else {
144 			rps->last_adj = 0;
145 		}
146 
147 		mod_timer(&rps->timer,
148 			  jiffies + msecs_to_jiffies(rps->pm_interval));
149 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
150 	}
151 }
152 
153 static void rps_start_timer(struct intel_rps *rps)
154 {
155 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
156 	rps->pm_interval = 1;
157 	mod_timer(&rps->timer, jiffies + 1);
158 }
159 
160 static void rps_stop_timer(struct intel_rps *rps)
161 {
162 	del_timer_sync(&rps->timer);
163 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
164 	cancel_work_sync(&rps->work);
165 }
166 
167 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
168 {
169 	u32 mask = 0;
170 
171 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
172 	if (val > rps->min_freq_softlimit)
173 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
174 			 GEN6_PM_RP_DOWN_THRESHOLD |
175 			 GEN6_PM_RP_DOWN_TIMEOUT);
176 
177 	if (val < rps->max_freq_softlimit)
178 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
179 
180 	mask &= rps->pm_events;
181 
182 	return rps_pm_sanitize_mask(rps, ~mask);
183 }
184 
185 static void rps_reset_ei(struct intel_rps *rps)
186 {
187 	memset(&rps->ei, 0, sizeof(rps->ei));
188 }
189 
190 static void rps_enable_interrupts(struct intel_rps *rps)
191 {
192 	struct intel_gt *gt = rps_to_gt(rps);
193 
194 	GEM_BUG_ON(rps_uses_slpc(rps));
195 
196 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
197 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
198 
199 	rps_reset_ei(rps);
200 
201 	spin_lock_irq(gt->irq_lock);
202 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
203 	spin_unlock_irq(gt->irq_lock);
204 
205 	intel_uncore_write(gt->uncore,
206 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
207 }
208 
209 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
210 {
211 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
212 }
213 
214 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
215 {
216 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
217 		;
218 }
219 
220 static void rps_reset_interrupts(struct intel_rps *rps)
221 {
222 	struct intel_gt *gt = rps_to_gt(rps);
223 
224 	spin_lock_irq(gt->irq_lock);
225 	if (GRAPHICS_VER(gt->i915) >= 11)
226 		gen11_rps_reset_interrupts(rps);
227 	else
228 		gen6_rps_reset_interrupts(rps);
229 
230 	rps->pm_iir = 0;
231 	spin_unlock_irq(gt->irq_lock);
232 }
233 
234 static void rps_disable_interrupts(struct intel_rps *rps)
235 {
236 	struct intel_gt *gt = rps_to_gt(rps);
237 
238 	intel_uncore_write(gt->uncore,
239 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
240 
241 	spin_lock_irq(gt->irq_lock);
242 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
243 	spin_unlock_irq(gt->irq_lock);
244 
245 	intel_synchronize_irq(gt->i915);
246 
247 	/*
248 	 * Now that we will not be generating any more work, flush any
249 	 * outstanding tasks. As we are called on the RPS idle path,
250 	 * we will reset the GPU to minimum frequencies, so the current
251 	 * state of the worker can be discarded.
252 	 */
253 	cancel_work_sync(&rps->work);
254 
255 	rps_reset_interrupts(rps);
256 	GT_TRACE(gt, "interrupts:off\n");
257 }
258 
259 static const struct cparams {
260 	u16 i;
261 	u16 t;
262 	u16 m;
263 	u16 c;
264 } cparams[] = {
265 	{ 1, 1333, 301, 28664 },
266 	{ 1, 1066, 294, 24460 },
267 	{ 1, 800, 294, 25192 },
268 	{ 0, 1333, 276, 27605 },
269 	{ 0, 1066, 276, 27605 },
270 	{ 0, 800, 231, 23784 },
271 };
272 
273 static void gen5_rps_init(struct intel_rps *rps)
274 {
275 	struct drm_i915_private *i915 = rps_to_i915(rps);
276 	struct intel_uncore *uncore = rps_to_uncore(rps);
277 	u8 fmax, fmin, fstart;
278 	u32 rgvmodectl;
279 	int c_m, i;
280 
281 	if (i915->fsb_freq <= 3200)
282 		c_m = 0;
283 	else if (i915->fsb_freq <= 4800)
284 		c_m = 1;
285 	else
286 		c_m = 2;
287 
288 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
289 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
290 			rps->ips.m = cparams[i].m;
291 			rps->ips.c = cparams[i].c;
292 			break;
293 		}
294 	}
295 
296 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
297 
298 	/* Set up min, max, and cur for interrupt handling */
299 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
300 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
301 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
302 		MEMMODE_FSTART_SHIFT;
303 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
304 		fmax, fmin, fstart);
305 
306 	rps->min_freq = fmax;
307 	rps->efficient_freq = fstart;
308 	rps->max_freq = fmin;
309 }
310 
311 static unsigned long
312 __ips_chipset_val(struct intel_ips *ips)
313 {
314 	struct intel_uncore *uncore =
315 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
316 	unsigned long now = jiffies_to_msecs(jiffies), dt;
317 	unsigned long result;
318 	u64 total, delta;
319 
320 	lockdep_assert_held(&mchdev_lock);
321 
322 	/*
323 	 * Prevent division-by-zero if we are asking too fast.
324 	 * Also, we don't get interesting results if we are polling
325 	 * faster than once in 10ms, so just return the saved value
326 	 * in such cases.
327 	 */
328 	dt = now - ips->last_time1;
329 	if (dt <= 10)
330 		return ips->chipset_power;
331 
332 	/* FIXME: handle per-counter overflow */
333 	total = intel_uncore_read(uncore, DMIEC);
334 	total += intel_uncore_read(uncore, DDREC);
335 	total += intel_uncore_read(uncore, CSIEC);
336 
337 	delta = total - ips->last_count1;
338 
339 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
340 
341 	ips->last_count1 = total;
342 	ips->last_time1 = now;
343 
344 	ips->chipset_power = result;
345 
346 	return result;
347 }
348 
349 static unsigned long ips_mch_val(struct intel_uncore *uncore)
350 {
351 	unsigned int m, x, b;
352 	u32 tsfs;
353 
354 	tsfs = intel_uncore_read(uncore, TSFS);
355 	x = intel_uncore_read8(uncore, TR1);
356 
357 	b = tsfs & TSFS_INTR_MASK;
358 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
359 
360 	return m * x / 127 - b;
361 }
362 
363 static int _pxvid_to_vd(u8 pxvid)
364 {
365 	if (pxvid == 0)
366 		return 0;
367 
368 	if (pxvid >= 8 && pxvid < 31)
369 		pxvid = 31;
370 
371 	return (pxvid + 2) * 125;
372 }
373 
374 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
375 {
376 	const int vd = _pxvid_to_vd(pxvid);
377 
378 	if (INTEL_INFO(i915)->is_mobile)
379 		return max(vd - 1125, 0);
380 
381 	return vd;
382 }
383 
384 static void __gen5_ips_update(struct intel_ips *ips)
385 {
386 	struct intel_uncore *uncore =
387 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
388 	u64 now, delta, dt;
389 	u32 count;
390 
391 	lockdep_assert_held(&mchdev_lock);
392 
393 	now = ktime_get_raw_ns();
394 	dt = now - ips->last_time2;
395 	do_div(dt, NSEC_PER_MSEC);
396 
397 	/* Don't divide by 0 */
398 	if (dt <= 10)
399 		return;
400 
401 	count = intel_uncore_read(uncore, GFXEC);
402 	delta = count - ips->last_count2;
403 
404 	ips->last_count2 = count;
405 	ips->last_time2 = now;
406 
407 	/* More magic constants... */
408 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
409 }
410 
411 static void gen5_rps_update(struct intel_rps *rps)
412 {
413 	spin_lock_irq(&mchdev_lock);
414 	__gen5_ips_update(&rps->ips);
415 	spin_unlock_irq(&mchdev_lock);
416 }
417 
418 static unsigned int gen5_invert_freq(struct intel_rps *rps,
419 				     unsigned int val)
420 {
421 	/* Invert the frequency bin into an ips delay */
422 	val = rps->max_freq - val;
423 	val = rps->min_freq + val;
424 
425 	return val;
426 }
427 
428 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
429 {
430 	struct intel_uncore *uncore = rps_to_uncore(rps);
431 	u16 rgvswctl;
432 
433 	lockdep_assert_held(&mchdev_lock);
434 
435 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
436 	if (rgvswctl & MEMCTL_CMD_STS) {
437 		drm_dbg(&rps_to_i915(rps)->drm,
438 			"gpu busy, RCS change rejected\n");
439 		return -EBUSY; /* still busy with another command */
440 	}
441 
442 	/* Invert the frequency bin into an ips delay */
443 	val = gen5_invert_freq(rps, val);
444 
445 	rgvswctl =
446 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
447 		(val << MEMCTL_FREQ_SHIFT) |
448 		MEMCTL_SFCAVM;
449 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
450 	intel_uncore_posting_read16(uncore, MEMSWCTL);
451 
452 	rgvswctl |= MEMCTL_CMD_STS;
453 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
454 
455 	return 0;
456 }
457 
458 static int gen5_rps_set(struct intel_rps *rps, u8 val)
459 {
460 	int err;
461 
462 	spin_lock_irq(&mchdev_lock);
463 	err = __gen5_rps_set(rps, val);
464 	spin_unlock_irq(&mchdev_lock);
465 
466 	return err;
467 }
468 
469 static unsigned long intel_pxfreq(u32 vidfreq)
470 {
471 	int div = (vidfreq & 0x3f0000) >> 16;
472 	int post = (vidfreq & 0x3000) >> 12;
473 	int pre = (vidfreq & 0x7);
474 
475 	if (!pre)
476 		return 0;
477 
478 	return div * 133333 / (pre << post);
479 }
480 
481 static unsigned int init_emon(struct intel_uncore *uncore)
482 {
483 	u8 pxw[16];
484 	int i;
485 
486 	/* Disable to program */
487 	intel_uncore_write(uncore, ECR, 0);
488 	intel_uncore_posting_read(uncore, ECR);
489 
490 	/* Program energy weights for various events */
491 	intel_uncore_write(uncore, SDEW, 0x15040d00);
492 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
493 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
494 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
495 
496 	for (i = 0; i < 5; i++)
497 		intel_uncore_write(uncore, PEW(i), 0);
498 	for (i = 0; i < 3; i++)
499 		intel_uncore_write(uncore, DEW(i), 0);
500 
501 	/* Program P-state weights to account for frequency power adjustment */
502 	for (i = 0; i < 16; i++) {
503 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
504 		unsigned int freq = intel_pxfreq(pxvidfreq);
505 		unsigned int vid =
506 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
507 		unsigned int val;
508 
509 		val = vid * vid * freq / 1000 * 255;
510 		val /= 127 * 127 * 900;
511 
512 		pxw[i] = val;
513 	}
514 	/* Render standby states get 0 weight */
515 	pxw[14] = 0;
516 	pxw[15] = 0;
517 
518 	for (i = 0; i < 4; i++) {
519 		intel_uncore_write(uncore, PXW(i),
520 				   pxw[i * 4 + 0] << 24 |
521 				   pxw[i * 4 + 1] << 16 |
522 				   pxw[i * 4 + 2] <<  8 |
523 				   pxw[i * 4 + 3] <<  0);
524 	}
525 
526 	/* Adjust magic regs to magic values (more experimental results) */
527 	intel_uncore_write(uncore, OGW0, 0);
528 	intel_uncore_write(uncore, OGW1, 0);
529 	intel_uncore_write(uncore, EG0, 0x00007f00);
530 	intel_uncore_write(uncore, EG1, 0x0000000e);
531 	intel_uncore_write(uncore, EG2, 0x000e0000);
532 	intel_uncore_write(uncore, EG3, 0x68000300);
533 	intel_uncore_write(uncore, EG4, 0x42000000);
534 	intel_uncore_write(uncore, EG5, 0x00140031);
535 	intel_uncore_write(uncore, EG6, 0);
536 	intel_uncore_write(uncore, EG7, 0);
537 
538 	for (i = 0; i < 8; i++)
539 		intel_uncore_write(uncore, PXWL(i), 0);
540 
541 	/* Enable PMON + select events */
542 	intel_uncore_write(uncore, ECR, 0x80000019);
543 
544 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
545 }
546 
547 static bool gen5_rps_enable(struct intel_rps *rps)
548 {
549 	struct drm_i915_private *i915 = rps_to_i915(rps);
550 	struct intel_uncore *uncore = rps_to_uncore(rps);
551 	u8 fstart, vstart;
552 	u32 rgvmodectl;
553 
554 	spin_lock_irq(&mchdev_lock);
555 
556 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
557 
558 	/* Enable temp reporting */
559 	intel_uncore_write16(uncore, PMMISC,
560 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
561 	intel_uncore_write16(uncore, TSC1,
562 			     intel_uncore_read16(uncore, TSC1) | TSE);
563 
564 	/* 100ms RC evaluation intervals */
565 	intel_uncore_write(uncore, RCUPEI, 100000);
566 	intel_uncore_write(uncore, RCDNEI, 100000);
567 
568 	/* Set max/min thresholds to 90ms and 80ms respectively */
569 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
570 	intel_uncore_write(uncore, RCBMINAVG, 80000);
571 
572 	intel_uncore_write(uncore, MEMIHYST, 1);
573 
574 	/* Set up min, max, and cur for interrupt handling */
575 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
576 		MEMMODE_FSTART_SHIFT;
577 
578 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
579 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
580 
581 	intel_uncore_write(uncore,
582 			   MEMINTREN,
583 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
584 
585 	intel_uncore_write(uncore, VIDSTART, vstart);
586 	intel_uncore_posting_read(uncore, VIDSTART);
587 
588 	rgvmodectl |= MEMMODE_SWMODE_EN;
589 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
590 
591 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
592 			     MEMCTL_CMD_STS) == 0, 10))
593 		drm_err(&uncore->i915->drm,
594 			"stuck trying to change perf mode\n");
595 	mdelay(1);
596 
597 	__gen5_rps_set(rps, rps->cur_freq);
598 
599 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
600 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
601 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
602 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
603 
604 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
605 	rps->ips.last_time2 = ktime_get_raw_ns();
606 
607 	spin_lock(&i915->irq_lock);
608 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
609 	spin_unlock(&i915->irq_lock);
610 
611 	spin_unlock_irq(&mchdev_lock);
612 
613 	rps->ips.corr = init_emon(uncore);
614 
615 	return true;
616 }
617 
618 static void gen5_rps_disable(struct intel_rps *rps)
619 {
620 	struct drm_i915_private *i915 = rps_to_i915(rps);
621 	struct intel_uncore *uncore = rps_to_uncore(rps);
622 	u16 rgvswctl;
623 
624 	spin_lock_irq(&mchdev_lock);
625 
626 	spin_lock(&i915->irq_lock);
627 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
628 	spin_unlock(&i915->irq_lock);
629 
630 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
631 
632 	/* Ack interrupts, disable EFC interrupt */
633 	intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
634 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
635 
636 	/* Go back to the starting frequency */
637 	__gen5_rps_set(rps, rps->idle_freq);
638 	mdelay(1);
639 	rgvswctl |= MEMCTL_CMD_STS;
640 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
641 	mdelay(1);
642 
643 	spin_unlock_irq(&mchdev_lock);
644 }
645 
646 static u32 rps_limits(struct intel_rps *rps, u8 val)
647 {
648 	u32 limits;
649 
650 	/*
651 	 * Only set the down limit when we've reached the lowest level to avoid
652 	 * getting more interrupts, otherwise leave this clear. This prevents a
653 	 * race in the hw when coming out of rc6: There's a tiny window where
654 	 * the hw runs at the minimal clock before selecting the desired
655 	 * frequency, if the down threshold expires in that window we will not
656 	 * receive a down interrupt.
657 	 */
658 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
659 		limits = rps->max_freq_softlimit << 23;
660 		if (val <= rps->min_freq_softlimit)
661 			limits |= rps->min_freq_softlimit << 14;
662 	} else {
663 		limits = rps->max_freq_softlimit << 24;
664 		if (val <= rps->min_freq_softlimit)
665 			limits |= rps->min_freq_softlimit << 16;
666 	}
667 
668 	return limits;
669 }
670 
671 static void rps_set_power(struct intel_rps *rps, int new_power)
672 {
673 	struct intel_gt *gt = rps_to_gt(rps);
674 	struct intel_uncore *uncore = gt->uncore;
675 	u32 threshold_up = 0, threshold_down = 0; /* in % */
676 	u32 ei_up = 0, ei_down = 0;
677 
678 	lockdep_assert_held(&rps->power.mutex);
679 
680 	if (new_power == rps->power.mode)
681 		return;
682 
683 	threshold_up = 95;
684 	threshold_down = 85;
685 
686 	/* Note the units here are not exactly 1us, but 1280ns. */
687 	switch (new_power) {
688 	case LOW_POWER:
689 		ei_up = 16000;
690 		ei_down = 32000;
691 		break;
692 
693 	case BETWEEN:
694 		ei_up = 13000;
695 		ei_down = 32000;
696 		break;
697 
698 	case HIGH_POWER:
699 		ei_up = 10000;
700 		ei_down = 32000;
701 		break;
702 	}
703 
704 	/* When byt can survive without system hang with dynamic
705 	 * sw freq adjustments, this restriction can be lifted.
706 	 */
707 	if (IS_VALLEYVIEW(gt->i915))
708 		goto skip_hw_write;
709 
710 	GT_TRACE(gt,
711 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
712 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
713 
714 	set(uncore, GEN6_RP_UP_EI,
715 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
716 	set(uncore, GEN6_RP_UP_THRESHOLD,
717 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
718 
719 	set(uncore, GEN6_RP_DOWN_EI,
720 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
721 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
722 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
723 
724 	set(uncore, GEN6_RP_CONTROL,
725 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
726 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
727 	    GEN6_RP_MEDIA_IS_GFX |
728 	    GEN6_RP_ENABLE |
729 	    GEN6_RP_UP_BUSY_AVG |
730 	    GEN6_RP_DOWN_IDLE_AVG);
731 
732 skip_hw_write:
733 	rps->power.mode = new_power;
734 	rps->power.up_threshold = threshold_up;
735 	rps->power.down_threshold = threshold_down;
736 }
737 
738 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
739 {
740 	int new_power;
741 
742 	new_power = rps->power.mode;
743 	switch (rps->power.mode) {
744 	case LOW_POWER:
745 		if (val > rps->efficient_freq + 1 &&
746 		    val > rps->cur_freq)
747 			new_power = BETWEEN;
748 		break;
749 
750 	case BETWEEN:
751 		if (val <= rps->efficient_freq &&
752 		    val < rps->cur_freq)
753 			new_power = LOW_POWER;
754 		else if (val >= rps->rp0_freq &&
755 			 val > rps->cur_freq)
756 			new_power = HIGH_POWER;
757 		break;
758 
759 	case HIGH_POWER:
760 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
761 		    val < rps->cur_freq)
762 			new_power = BETWEEN;
763 		break;
764 	}
765 	/* Max/min bins are special */
766 	if (val <= rps->min_freq_softlimit)
767 		new_power = LOW_POWER;
768 	if (val >= rps->max_freq_softlimit)
769 		new_power = HIGH_POWER;
770 
771 	mutex_lock(&rps->power.mutex);
772 	if (rps->power.interactive)
773 		new_power = HIGH_POWER;
774 	rps_set_power(rps, new_power);
775 	mutex_unlock(&rps->power.mutex);
776 }
777 
778 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
779 {
780 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
781 		 str_yes_no(interactive));
782 
783 	mutex_lock(&rps->power.mutex);
784 	if (interactive) {
785 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
786 			rps_set_power(rps, HIGH_POWER);
787 	} else {
788 		GEM_BUG_ON(!rps->power.interactive);
789 		rps->power.interactive--;
790 	}
791 	mutex_unlock(&rps->power.mutex);
792 }
793 
794 static int gen6_rps_set(struct intel_rps *rps, u8 val)
795 {
796 	struct intel_uncore *uncore = rps_to_uncore(rps);
797 	struct drm_i915_private *i915 = rps_to_i915(rps);
798 	u32 swreq;
799 
800 	GEM_BUG_ON(rps_uses_slpc(rps));
801 
802 	if (GRAPHICS_VER(i915) >= 9)
803 		swreq = GEN9_FREQUENCY(val);
804 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
805 		swreq = HSW_FREQUENCY(val);
806 	else
807 		swreq = (GEN6_FREQUENCY(val) |
808 			 GEN6_OFFSET(0) |
809 			 GEN6_AGGRESSIVE_TURBO);
810 	set(uncore, GEN6_RPNSWREQ, swreq);
811 
812 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
813 		 val, intel_gpu_freq(rps, val), swreq);
814 
815 	return 0;
816 }
817 
818 static int vlv_rps_set(struct intel_rps *rps, u8 val)
819 {
820 	struct drm_i915_private *i915 = rps_to_i915(rps);
821 	int err;
822 
823 	vlv_punit_get(i915);
824 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
825 	vlv_punit_put(i915);
826 
827 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
828 		 val, intel_gpu_freq(rps, val));
829 
830 	return err;
831 }
832 
833 static int rps_set(struct intel_rps *rps, u8 val, bool update)
834 {
835 	struct drm_i915_private *i915 = rps_to_i915(rps);
836 	int err;
837 
838 	if (val == rps->last_freq)
839 		return 0;
840 
841 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
842 		err = vlv_rps_set(rps, val);
843 	else if (GRAPHICS_VER(i915) >= 6)
844 		err = gen6_rps_set(rps, val);
845 	else
846 		err = gen5_rps_set(rps, val);
847 	if (err)
848 		return err;
849 
850 	if (update && GRAPHICS_VER(i915) >= 6)
851 		gen6_rps_set_thresholds(rps, val);
852 	rps->last_freq = val;
853 
854 	return 0;
855 }
856 
857 void intel_rps_unpark(struct intel_rps *rps)
858 {
859 	if (!intel_rps_is_enabled(rps))
860 		return;
861 
862 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
863 
864 	/*
865 	 * Use the user's desired frequency as a guide, but for better
866 	 * performance, jump directly to RPe as our starting frequency.
867 	 */
868 	mutex_lock(&rps->lock);
869 
870 	intel_rps_set_active(rps);
871 	intel_rps_set(rps,
872 		      clamp(rps->cur_freq,
873 			    rps->min_freq_softlimit,
874 			    rps->max_freq_softlimit));
875 
876 	mutex_unlock(&rps->lock);
877 
878 	rps->pm_iir = 0;
879 	if (intel_rps_has_interrupts(rps))
880 		rps_enable_interrupts(rps);
881 	if (intel_rps_uses_timer(rps))
882 		rps_start_timer(rps);
883 
884 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
885 		gen5_rps_update(rps);
886 }
887 
888 void intel_rps_park(struct intel_rps *rps)
889 {
890 	int adj;
891 
892 	if (!intel_rps_is_enabled(rps))
893 		return;
894 
895 	if (!intel_rps_clear_active(rps))
896 		return;
897 
898 	if (intel_rps_uses_timer(rps))
899 		rps_stop_timer(rps);
900 	if (intel_rps_has_interrupts(rps))
901 		rps_disable_interrupts(rps);
902 
903 	if (rps->last_freq <= rps->idle_freq)
904 		return;
905 
906 	/*
907 	 * The punit delays the write of the frequency and voltage until it
908 	 * determines the GPU is awake. During normal usage we don't want to
909 	 * waste power changing the frequency if the GPU is sleeping (rc6).
910 	 * However, the GPU and driver is now idle and we do not want to delay
911 	 * switching to minimum voltage (reducing power whilst idle) as we do
912 	 * not expect to be woken in the near future and so must flush the
913 	 * change by waking the device.
914 	 *
915 	 * We choose to take the media powerwell (either would do to trick the
916 	 * punit into committing the voltage change) as that takes a lot less
917 	 * power than the render powerwell.
918 	 */
919 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
920 	rps_set(rps, rps->idle_freq, false);
921 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
922 
923 	/*
924 	 * Since we will try and restart from the previously requested
925 	 * frequency on unparking, treat this idle point as a downclock
926 	 * interrupt and reduce the frequency for resume. If we park/unpark
927 	 * more frequently than the rps worker can run, we will not respond
928 	 * to any EI and never see a change in frequency.
929 	 *
930 	 * (Note we accommodate Cherryview's limitation of only using an
931 	 * even bin by applying it to all.)
932 	 */
933 	adj = rps->last_adj;
934 	if (adj < 0)
935 		adj *= 2;
936 	else /* CHV needs even encode values */
937 		adj = -2;
938 	rps->last_adj = adj;
939 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
940 	if (rps->cur_freq < rps->efficient_freq) {
941 		rps->cur_freq = rps->efficient_freq;
942 		rps->last_adj = 0;
943 	}
944 
945 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
946 }
947 
948 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
949 {
950 	struct intel_guc_slpc *slpc;
951 
952 	if (rps_uses_slpc(rps)) {
953 		slpc = rps_to_slpc(rps);
954 
955 		return slpc->boost_freq;
956 	} else {
957 		return intel_gpu_freq(rps, rps->boost_freq);
958 	}
959 }
960 
961 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
962 {
963 	bool boost = false;
964 
965 	/* Validate against (static) hardware limits */
966 	val = intel_freq_opcode(rps, val);
967 	if (val < rps->min_freq || val > rps->max_freq)
968 		return -EINVAL;
969 
970 	mutex_lock(&rps->lock);
971 	if (val != rps->boost_freq) {
972 		rps->boost_freq = val;
973 		boost = atomic_read(&rps->num_waiters);
974 	}
975 	mutex_unlock(&rps->lock);
976 	if (boost)
977 		queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
978 
979 	return 0;
980 }
981 
982 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
983 {
984 	struct intel_guc_slpc *slpc;
985 
986 	if (rps_uses_slpc(rps)) {
987 		slpc = rps_to_slpc(rps);
988 
989 		return intel_guc_slpc_set_boost_freq(slpc, freq);
990 	} else {
991 		return rps_set_boost_freq(rps, freq);
992 	}
993 }
994 
995 void intel_rps_dec_waiters(struct intel_rps *rps)
996 {
997 	struct intel_guc_slpc *slpc;
998 
999 	if (rps_uses_slpc(rps)) {
1000 		slpc = rps_to_slpc(rps);
1001 
1002 		intel_guc_slpc_dec_waiters(slpc);
1003 	} else {
1004 		atomic_dec(&rps->num_waiters);
1005 	}
1006 }
1007 
1008 void intel_rps_boost(struct i915_request *rq)
1009 {
1010 	struct intel_guc_slpc *slpc;
1011 
1012 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1013 		return;
1014 
1015 	/* Serializes with i915_request_retire() */
1016 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1017 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1018 
1019 		if (rps_uses_slpc(rps)) {
1020 			slpc = rps_to_slpc(rps);
1021 
1022 			if (slpc->min_freq_softlimit >= slpc->boost_freq)
1023 				return;
1024 
1025 			/* Return if old value is non zero */
1026 			if (!atomic_fetch_inc(&slpc->num_waiters)) {
1027 				GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1028 					 rq->fence.context, rq->fence.seqno);
1029 				queue_work(rps_to_gt(rps)->i915->unordered_wq,
1030 					   &slpc->boost_work);
1031 			}
1032 
1033 			return;
1034 		}
1035 
1036 		if (atomic_fetch_inc(&rps->num_waiters))
1037 			return;
1038 
1039 		if (!intel_rps_is_active(rps))
1040 			return;
1041 
1042 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1043 			 rq->fence.context, rq->fence.seqno);
1044 
1045 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1046 			queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1047 
1048 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1049 	}
1050 }
1051 
1052 int intel_rps_set(struct intel_rps *rps, u8 val)
1053 {
1054 	int err;
1055 
1056 	lockdep_assert_held(&rps->lock);
1057 	GEM_BUG_ON(val > rps->max_freq);
1058 	GEM_BUG_ON(val < rps->min_freq);
1059 
1060 	if (intel_rps_is_active(rps)) {
1061 		err = rps_set(rps, val, true);
1062 		if (err)
1063 			return err;
1064 
1065 		/*
1066 		 * Make sure we continue to get interrupts
1067 		 * until we hit the minimum or maximum frequencies.
1068 		 */
1069 		if (intel_rps_has_interrupts(rps)) {
1070 			struct intel_uncore *uncore = rps_to_uncore(rps);
1071 
1072 			set(uncore,
1073 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1074 
1075 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1076 		}
1077 	}
1078 
1079 	rps->cur_freq = val;
1080 	return 0;
1081 }
1082 
1083 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1084 {
1085 	struct drm_i915_private *i915 = rps_to_i915(rps);
1086 	struct intel_uncore *uncore = rps_to_uncore(rps);
1087 
1088 	if (IS_PONTEVECCHIO(i915))
1089 		return intel_uncore_read(uncore, PVC_RP_STATE_CAP);
1090 	else if (IS_XEHPSDV(i915))
1091 		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1092 	else if (IS_GEN9_LP(i915))
1093 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1094 	else
1095 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1096 }
1097 
1098 static void
1099 mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1100 {
1101 	struct intel_uncore *uncore = rps_to_uncore(rps);
1102 	u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1103 				intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1104 				intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1105 	u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1106 			intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1107 			intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1108 
1109 	/* MTL values are in units of 16.67 MHz */
1110 	caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1111 	caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1112 	caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1113 }
1114 
1115 static void
1116 __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1117 {
1118 	struct drm_i915_private *i915 = rps_to_i915(rps);
1119 	u32 rp_state_cap;
1120 
1121 	rp_state_cap = intel_rps_read_state_cap(rps);
1122 
1123 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1124 	if (IS_GEN9_LP(i915)) {
1125 		caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1126 		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1127 		caps->min_freq = (rp_state_cap >>  0) & 0xff;
1128 	} else {
1129 		caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1130 		if (GRAPHICS_VER(i915) >= 10)
1131 			caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1132 						       intel_uncore_read(to_gt(i915)->uncore,
1133 						       GEN10_FREQ_INFO_REC));
1134 		else
1135 			caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1136 		caps->min_freq = (rp_state_cap >> 16) & 0xff;
1137 	}
1138 
1139 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1140 		/*
1141 		 * In this case rp_state_cap register reports frequencies in
1142 		 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1143 		 * units of 16.67 MHz
1144 		 */
1145 		caps->rp0_freq *= GEN9_FREQ_SCALER;
1146 		caps->rp1_freq *= GEN9_FREQ_SCALER;
1147 		caps->min_freq *= GEN9_FREQ_SCALER;
1148 	}
1149 }
1150 
1151 /**
1152  * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1153  * @rps: the intel_rps structure
1154  * @caps: returned freq caps
1155  *
1156  * Returned "caps" frequencies should be converted to MHz using
1157  * intel_gpu_freq()
1158  */
1159 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1160 {
1161 	struct drm_i915_private *i915 = rps_to_i915(rps);
1162 
1163 	if (IS_METEORLAKE(i915))
1164 		return mtl_get_freq_caps(rps, caps);
1165 	else
1166 		return __gen6_rps_get_freq_caps(rps, caps);
1167 }
1168 
1169 static void gen6_rps_init(struct intel_rps *rps)
1170 {
1171 	struct drm_i915_private *i915 = rps_to_i915(rps);
1172 	struct intel_rps_freq_caps caps;
1173 
1174 	gen6_rps_get_freq_caps(rps, &caps);
1175 	rps->rp0_freq = caps.rp0_freq;
1176 	rps->rp1_freq = caps.rp1_freq;
1177 	rps->min_freq = caps.min_freq;
1178 
1179 	/* hw_max = RP0 until we check for overclocking */
1180 	rps->max_freq = rps->rp0_freq;
1181 
1182 	rps->efficient_freq = rps->rp1_freq;
1183 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1184 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1185 		u32 ddcc_status = 0;
1186 		u32 mult = 1;
1187 
1188 		if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1189 			mult = GEN9_FREQ_SCALER;
1190 		if (snb_pcode_read(rps_to_gt(rps)->uncore,
1191 				   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1192 				   &ddcc_status, NULL) == 0)
1193 			rps->efficient_freq =
1194 				clamp_t(u32,
1195 					((ddcc_status >> 8) & 0xff) * mult,
1196 					rps->min_freq,
1197 					rps->max_freq);
1198 	}
1199 }
1200 
1201 static bool rps_reset(struct intel_rps *rps)
1202 {
1203 	struct drm_i915_private *i915 = rps_to_i915(rps);
1204 
1205 	/* force a reset */
1206 	rps->power.mode = -1;
1207 	rps->last_freq = -1;
1208 
1209 	if (rps_set(rps, rps->min_freq, true)) {
1210 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1211 		return false;
1212 	}
1213 
1214 	rps->cur_freq = rps->min_freq;
1215 	return true;
1216 }
1217 
1218 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1219 static bool gen9_rps_enable(struct intel_rps *rps)
1220 {
1221 	struct intel_gt *gt = rps_to_gt(rps);
1222 	struct intel_uncore *uncore = gt->uncore;
1223 
1224 	/* Program defaults and thresholds for RPS */
1225 	if (GRAPHICS_VER(gt->i915) == 9)
1226 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1227 				      GEN9_FREQUENCY(rps->rp1_freq));
1228 
1229 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1230 
1231 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1232 
1233 	return rps_reset(rps);
1234 }
1235 
1236 static bool gen8_rps_enable(struct intel_rps *rps)
1237 {
1238 	struct intel_uncore *uncore = rps_to_uncore(rps);
1239 
1240 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1241 			      HSW_FREQUENCY(rps->rp1_freq));
1242 
1243 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1244 
1245 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1246 
1247 	return rps_reset(rps);
1248 }
1249 
1250 static bool gen6_rps_enable(struct intel_rps *rps)
1251 {
1252 	struct intel_uncore *uncore = rps_to_uncore(rps);
1253 
1254 	/* Power down if completely idle for over 50ms */
1255 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1256 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1257 
1258 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1259 			  GEN6_PM_RP_DOWN_THRESHOLD |
1260 			  GEN6_PM_RP_DOWN_TIMEOUT);
1261 
1262 	return rps_reset(rps);
1263 }
1264 
1265 static int chv_rps_max_freq(struct intel_rps *rps)
1266 {
1267 	struct drm_i915_private *i915 = rps_to_i915(rps);
1268 	struct intel_gt *gt = rps_to_gt(rps);
1269 	u32 val;
1270 
1271 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1272 
1273 	switch (gt->info.sseu.eu_total) {
1274 	case 8:
1275 		/* (2 * 4) config */
1276 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1277 		break;
1278 	case 12:
1279 		/* (2 * 6) config */
1280 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1281 		break;
1282 	case 16:
1283 		/* (2 * 8) config */
1284 	default:
1285 		/* Setting (2 * 8) Min RP0 for any other combination */
1286 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1287 		break;
1288 	}
1289 
1290 	return val & FB_GFX_FREQ_FUSE_MASK;
1291 }
1292 
1293 static int chv_rps_rpe_freq(struct intel_rps *rps)
1294 {
1295 	struct drm_i915_private *i915 = rps_to_i915(rps);
1296 	u32 val;
1297 
1298 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1299 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1300 
1301 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1302 }
1303 
1304 static int chv_rps_guar_freq(struct intel_rps *rps)
1305 {
1306 	struct drm_i915_private *i915 = rps_to_i915(rps);
1307 	u32 val;
1308 
1309 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1310 
1311 	return val & FB_GFX_FREQ_FUSE_MASK;
1312 }
1313 
1314 static u32 chv_rps_min_freq(struct intel_rps *rps)
1315 {
1316 	struct drm_i915_private *i915 = rps_to_i915(rps);
1317 	u32 val;
1318 
1319 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1320 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1321 
1322 	return val & FB_GFX_FREQ_FUSE_MASK;
1323 }
1324 
1325 static bool chv_rps_enable(struct intel_rps *rps)
1326 {
1327 	struct intel_uncore *uncore = rps_to_uncore(rps);
1328 	struct drm_i915_private *i915 = rps_to_i915(rps);
1329 	u32 val;
1330 
1331 	/* 1: Program defaults and thresholds for RPS*/
1332 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1333 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1334 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1335 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1336 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1337 
1338 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1339 
1340 	/* 2: Enable RPS */
1341 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1342 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1343 			      GEN6_RP_MEDIA_IS_GFX |
1344 			      GEN6_RP_ENABLE |
1345 			      GEN6_RP_UP_BUSY_AVG |
1346 			      GEN6_RP_DOWN_IDLE_AVG);
1347 
1348 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1349 			  GEN6_PM_RP_DOWN_THRESHOLD |
1350 			  GEN6_PM_RP_DOWN_TIMEOUT);
1351 
1352 	/* Setting Fixed Bias */
1353 	vlv_punit_get(i915);
1354 
1355 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1356 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1357 
1358 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1359 
1360 	vlv_punit_put(i915);
1361 
1362 	/* RPS code assumes GPLL is used */
1363 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1364 		      "GPLL not enabled\n");
1365 
1366 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1367 		str_yes_no(val & GPLLENABLE));
1368 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1369 
1370 	return rps_reset(rps);
1371 }
1372 
1373 static int vlv_rps_guar_freq(struct intel_rps *rps)
1374 {
1375 	struct drm_i915_private *i915 = rps_to_i915(rps);
1376 	u32 val, rp1;
1377 
1378 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1379 
1380 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1381 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1382 
1383 	return rp1;
1384 }
1385 
1386 static int vlv_rps_max_freq(struct intel_rps *rps)
1387 {
1388 	struct drm_i915_private *i915 = rps_to_i915(rps);
1389 	u32 val, rp0;
1390 
1391 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1392 
1393 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1394 	/* Clamp to max */
1395 	rp0 = min_t(u32, rp0, 0xea);
1396 
1397 	return rp0;
1398 }
1399 
1400 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1401 {
1402 	struct drm_i915_private *i915 = rps_to_i915(rps);
1403 	u32 val, rpe;
1404 
1405 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1406 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1407 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1408 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1409 
1410 	return rpe;
1411 }
1412 
1413 static int vlv_rps_min_freq(struct intel_rps *rps)
1414 {
1415 	struct drm_i915_private *i915 = rps_to_i915(rps);
1416 	u32 val;
1417 
1418 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1419 	/*
1420 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1421 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1422 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1423 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1424 	 * to make sure it matches what Punit accepts.
1425 	 */
1426 	return max_t(u32, val, 0xc0);
1427 }
1428 
1429 static bool vlv_rps_enable(struct intel_rps *rps)
1430 {
1431 	struct intel_uncore *uncore = rps_to_uncore(rps);
1432 	struct drm_i915_private *i915 = rps_to_i915(rps);
1433 	u32 val;
1434 
1435 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1436 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1437 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1438 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1439 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1440 
1441 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1442 
1443 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1444 			      GEN6_RP_MEDIA_TURBO |
1445 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1446 			      GEN6_RP_MEDIA_IS_GFX |
1447 			      GEN6_RP_ENABLE |
1448 			      GEN6_RP_UP_BUSY_AVG |
1449 			      GEN6_RP_DOWN_IDLE_CONT);
1450 
1451 	/* WaGsvRC0ResidencyMethod:vlv */
1452 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1453 
1454 	vlv_punit_get(i915);
1455 
1456 	/* Setting Fixed Bias */
1457 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1458 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1459 
1460 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1461 
1462 	vlv_punit_put(i915);
1463 
1464 	/* RPS code assumes GPLL is used */
1465 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1466 		      "GPLL not enabled\n");
1467 
1468 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1469 		str_yes_no(val & GPLLENABLE));
1470 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1471 
1472 	return rps_reset(rps);
1473 }
1474 
1475 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1476 {
1477 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1478 	struct intel_uncore *uncore = rps_to_uncore(rps);
1479 	unsigned int t, state1, state2;
1480 	u32 pxvid, ext_v;
1481 	u64 corr, corr2;
1482 
1483 	lockdep_assert_held(&mchdev_lock);
1484 
1485 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1486 	pxvid = (pxvid >> 24) & 0x7f;
1487 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1488 
1489 	state1 = ext_v;
1490 
1491 	/* Revel in the empirically derived constants */
1492 
1493 	/* Correction factor in 1/100000 units */
1494 	t = ips_mch_val(uncore);
1495 	if (t > 80)
1496 		corr = t * 2349 + 135940;
1497 	else if (t >= 50)
1498 		corr = t * 964 + 29317;
1499 	else /* < 50 */
1500 		corr = t * 301 + 1004;
1501 
1502 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1503 	corr2 = div_u64(corr, 100000) * ips->corr;
1504 
1505 	state2 = div_u64(corr2 * state1, 10000);
1506 	state2 /= 100; /* convert to mW */
1507 
1508 	__gen5_ips_update(ips);
1509 
1510 	return ips->gfx_power + state2;
1511 }
1512 
1513 static bool has_busy_stats(struct intel_rps *rps)
1514 {
1515 	struct intel_engine_cs *engine;
1516 	enum intel_engine_id id;
1517 
1518 	for_each_engine(engine, rps_to_gt(rps), id) {
1519 		if (!intel_engine_supports_stats(engine))
1520 			return false;
1521 	}
1522 
1523 	return true;
1524 }
1525 
1526 void intel_rps_enable(struct intel_rps *rps)
1527 {
1528 	struct drm_i915_private *i915 = rps_to_i915(rps);
1529 	struct intel_uncore *uncore = rps_to_uncore(rps);
1530 	bool enabled = false;
1531 
1532 	if (!HAS_RPS(i915))
1533 		return;
1534 
1535 	if (rps_uses_slpc(rps))
1536 		return;
1537 
1538 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1539 
1540 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1541 	if (rps->max_freq <= rps->min_freq)
1542 		/* leave disabled, no room for dynamic reclocking */;
1543 	else if (IS_CHERRYVIEW(i915))
1544 		enabled = chv_rps_enable(rps);
1545 	else if (IS_VALLEYVIEW(i915))
1546 		enabled = vlv_rps_enable(rps);
1547 	else if (GRAPHICS_VER(i915) >= 9)
1548 		enabled = gen9_rps_enable(rps);
1549 	else if (GRAPHICS_VER(i915) >= 8)
1550 		enabled = gen8_rps_enable(rps);
1551 	else if (GRAPHICS_VER(i915) >= 6)
1552 		enabled = gen6_rps_enable(rps);
1553 	else if (IS_IRONLAKE_M(i915))
1554 		enabled = gen5_rps_enable(rps);
1555 	else
1556 		MISSING_CASE(GRAPHICS_VER(i915));
1557 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1558 	if (!enabled)
1559 		return;
1560 
1561 	GT_TRACE(rps_to_gt(rps),
1562 		 "min:%x, max:%x, freq:[%d, %d]\n",
1563 		 rps->min_freq, rps->max_freq,
1564 		 intel_gpu_freq(rps, rps->min_freq),
1565 		 intel_gpu_freq(rps, rps->max_freq));
1566 
1567 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1568 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1569 
1570 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1571 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1572 
1573 	if (has_busy_stats(rps))
1574 		intel_rps_set_timer(rps);
1575 	else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1576 		intel_rps_set_interrupts(rps);
1577 	else
1578 		/* Ironlake currently uses intel_ips.ko */ {}
1579 
1580 	intel_rps_set_enabled(rps);
1581 }
1582 
1583 static void gen6_rps_disable(struct intel_rps *rps)
1584 {
1585 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1586 }
1587 
1588 void intel_rps_disable(struct intel_rps *rps)
1589 {
1590 	struct drm_i915_private *i915 = rps_to_i915(rps);
1591 
1592 	if (!intel_rps_is_enabled(rps))
1593 		return;
1594 
1595 	intel_rps_clear_enabled(rps);
1596 	intel_rps_clear_interrupts(rps);
1597 	intel_rps_clear_timer(rps);
1598 
1599 	if (GRAPHICS_VER(i915) >= 6)
1600 		gen6_rps_disable(rps);
1601 	else if (IS_IRONLAKE_M(i915))
1602 		gen5_rps_disable(rps);
1603 }
1604 
1605 static int byt_gpu_freq(struct intel_rps *rps, int val)
1606 {
1607 	/*
1608 	 * N = val - 0xb7
1609 	 * Slow = Fast = GPLL ref * N
1610 	 */
1611 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1612 }
1613 
1614 static int byt_freq_opcode(struct intel_rps *rps, int val)
1615 {
1616 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1617 }
1618 
1619 static int chv_gpu_freq(struct intel_rps *rps, int val)
1620 {
1621 	/*
1622 	 * N = val / 2
1623 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1624 	 */
1625 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1626 }
1627 
1628 static int chv_freq_opcode(struct intel_rps *rps, int val)
1629 {
1630 	/* CHV needs even values */
1631 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1632 }
1633 
1634 int intel_gpu_freq(struct intel_rps *rps, int val)
1635 {
1636 	struct drm_i915_private *i915 = rps_to_i915(rps);
1637 
1638 	if (GRAPHICS_VER(i915) >= 9)
1639 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1640 					 GEN9_FREQ_SCALER);
1641 	else if (IS_CHERRYVIEW(i915))
1642 		return chv_gpu_freq(rps, val);
1643 	else if (IS_VALLEYVIEW(i915))
1644 		return byt_gpu_freq(rps, val);
1645 	else if (GRAPHICS_VER(i915) >= 6)
1646 		return val * GT_FREQUENCY_MULTIPLIER;
1647 	else
1648 		return val;
1649 }
1650 
1651 int intel_freq_opcode(struct intel_rps *rps, int val)
1652 {
1653 	struct drm_i915_private *i915 = rps_to_i915(rps);
1654 
1655 	if (GRAPHICS_VER(i915) >= 9)
1656 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1657 					 GT_FREQUENCY_MULTIPLIER);
1658 	else if (IS_CHERRYVIEW(i915))
1659 		return chv_freq_opcode(rps, val);
1660 	else if (IS_VALLEYVIEW(i915))
1661 		return byt_freq_opcode(rps, val);
1662 	else if (GRAPHICS_VER(i915) >= 6)
1663 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1664 	else
1665 		return val;
1666 }
1667 
1668 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1669 {
1670 	struct drm_i915_private *i915 = rps_to_i915(rps);
1671 
1672 	rps->gpll_ref_freq =
1673 		vlv_get_cck_clock(i915, "GPLL ref",
1674 				  CCK_GPLL_CLOCK_CONTROL,
1675 				  i915->czclk_freq);
1676 
1677 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1678 		rps->gpll_ref_freq);
1679 }
1680 
1681 static void vlv_rps_init(struct intel_rps *rps)
1682 {
1683 	struct drm_i915_private *i915 = rps_to_i915(rps);
1684 
1685 	vlv_iosf_sb_get(i915,
1686 			BIT(VLV_IOSF_SB_PUNIT) |
1687 			BIT(VLV_IOSF_SB_NC) |
1688 			BIT(VLV_IOSF_SB_CCK));
1689 
1690 	vlv_init_gpll_ref_freq(rps);
1691 
1692 	rps->max_freq = vlv_rps_max_freq(rps);
1693 	rps->rp0_freq = rps->max_freq;
1694 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1695 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1696 
1697 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1698 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1699 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1700 
1701 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1702 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1703 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1704 
1705 	rps->min_freq = vlv_rps_min_freq(rps);
1706 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1707 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1708 
1709 	vlv_iosf_sb_put(i915,
1710 			BIT(VLV_IOSF_SB_PUNIT) |
1711 			BIT(VLV_IOSF_SB_NC) |
1712 			BIT(VLV_IOSF_SB_CCK));
1713 }
1714 
1715 static void chv_rps_init(struct intel_rps *rps)
1716 {
1717 	struct drm_i915_private *i915 = rps_to_i915(rps);
1718 
1719 	vlv_iosf_sb_get(i915,
1720 			BIT(VLV_IOSF_SB_PUNIT) |
1721 			BIT(VLV_IOSF_SB_NC) |
1722 			BIT(VLV_IOSF_SB_CCK));
1723 
1724 	vlv_init_gpll_ref_freq(rps);
1725 
1726 	rps->max_freq = chv_rps_max_freq(rps);
1727 	rps->rp0_freq = rps->max_freq;
1728 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1729 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1730 
1731 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1732 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1733 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1734 
1735 	rps->rp1_freq = chv_rps_guar_freq(rps);
1736 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1737 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1738 
1739 	rps->min_freq = chv_rps_min_freq(rps);
1740 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1741 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1742 
1743 	vlv_iosf_sb_put(i915,
1744 			BIT(VLV_IOSF_SB_PUNIT) |
1745 			BIT(VLV_IOSF_SB_NC) |
1746 			BIT(VLV_IOSF_SB_CCK));
1747 
1748 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1749 				   rps->rp1_freq | rps->min_freq) & 1,
1750 		      "Odd GPU freq values\n");
1751 }
1752 
1753 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1754 {
1755 	ei->ktime = ktime_get_raw();
1756 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1757 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1758 }
1759 
1760 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1761 {
1762 	struct intel_uncore *uncore = rps_to_uncore(rps);
1763 	const struct intel_rps_ei *prev = &rps->ei;
1764 	struct intel_rps_ei now;
1765 	u32 events = 0;
1766 
1767 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1768 		return 0;
1769 
1770 	vlv_c0_read(uncore, &now);
1771 
1772 	if (prev->ktime) {
1773 		u64 time, c0;
1774 		u32 render, media;
1775 
1776 		time = ktime_us_delta(now.ktime, prev->ktime);
1777 
1778 		time *= rps_to_i915(rps)->czclk_freq;
1779 
1780 		/* Workload can be split between render + media,
1781 		 * e.g. SwapBuffers being blitted in X after being rendered in
1782 		 * mesa. To account for this we need to combine both engines
1783 		 * into our activity counter.
1784 		 */
1785 		render = now.render_c0 - prev->render_c0;
1786 		media = now.media_c0 - prev->media_c0;
1787 		c0 = max(render, media);
1788 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1789 
1790 		if (c0 > time * rps->power.up_threshold)
1791 			events = GEN6_PM_RP_UP_THRESHOLD;
1792 		else if (c0 < time * rps->power.down_threshold)
1793 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1794 	}
1795 
1796 	rps->ei = now;
1797 	return events;
1798 }
1799 
1800 static void rps_work(struct work_struct *work)
1801 {
1802 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1803 	struct intel_gt *gt = rps_to_gt(rps);
1804 	struct drm_i915_private *i915 = rps_to_i915(rps);
1805 	bool client_boost = false;
1806 	int new_freq, adj, min, max;
1807 	u32 pm_iir = 0;
1808 
1809 	spin_lock_irq(gt->irq_lock);
1810 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1811 	client_boost = atomic_read(&rps->num_waiters);
1812 	spin_unlock_irq(gt->irq_lock);
1813 
1814 	/* Make sure we didn't queue anything we're not going to process. */
1815 	if (!pm_iir && !client_boost)
1816 		goto out;
1817 
1818 	mutex_lock(&rps->lock);
1819 	if (!intel_rps_is_active(rps)) {
1820 		mutex_unlock(&rps->lock);
1821 		return;
1822 	}
1823 
1824 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1825 
1826 	adj = rps->last_adj;
1827 	new_freq = rps->cur_freq;
1828 	min = rps->min_freq_softlimit;
1829 	max = rps->max_freq_softlimit;
1830 	if (client_boost)
1831 		max = rps->max_freq;
1832 
1833 	GT_TRACE(gt,
1834 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1835 		 pm_iir, str_yes_no(client_boost),
1836 		 adj, new_freq, min, max);
1837 
1838 	if (client_boost && new_freq < rps->boost_freq) {
1839 		new_freq = rps->boost_freq;
1840 		adj = 0;
1841 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1842 		if (adj > 0)
1843 			adj *= 2;
1844 		else /* CHV needs even encode values */
1845 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1846 
1847 		if (new_freq >= rps->max_freq_softlimit)
1848 			adj = 0;
1849 	} else if (client_boost) {
1850 		adj = 0;
1851 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1852 		if (rps->cur_freq > rps->efficient_freq)
1853 			new_freq = rps->efficient_freq;
1854 		else if (rps->cur_freq > rps->min_freq_softlimit)
1855 			new_freq = rps->min_freq_softlimit;
1856 		adj = 0;
1857 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1858 		if (adj < 0)
1859 			adj *= 2;
1860 		else /* CHV needs even encode values */
1861 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1862 
1863 		if (new_freq <= rps->min_freq_softlimit)
1864 			adj = 0;
1865 	} else { /* unknown event */
1866 		adj = 0;
1867 	}
1868 
1869 	/*
1870 	 * sysfs frequency limits may have snuck in while
1871 	 * servicing the interrupt
1872 	 */
1873 	new_freq += adj;
1874 	new_freq = clamp_t(int, new_freq, min, max);
1875 
1876 	if (intel_rps_set(rps, new_freq)) {
1877 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1878 		adj = 0;
1879 	}
1880 	rps->last_adj = adj;
1881 
1882 	mutex_unlock(&rps->lock);
1883 
1884 out:
1885 	spin_lock_irq(gt->irq_lock);
1886 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1887 	spin_unlock_irq(gt->irq_lock);
1888 }
1889 
1890 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1891 {
1892 	struct intel_gt *gt = rps_to_gt(rps);
1893 	const u32 events = rps->pm_events & pm_iir;
1894 
1895 	lockdep_assert_held(gt->irq_lock);
1896 
1897 	if (unlikely(!events))
1898 		return;
1899 
1900 	GT_TRACE(gt, "irq events:%x\n", events);
1901 
1902 	gen6_gt_pm_mask_irq(gt, events);
1903 
1904 	rps->pm_iir |= events;
1905 	queue_work(gt->i915->unordered_wq, &rps->work);
1906 }
1907 
1908 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1909 {
1910 	struct intel_gt *gt = rps_to_gt(rps);
1911 	u32 events;
1912 
1913 	events = pm_iir & rps->pm_events;
1914 	if (events) {
1915 		spin_lock(gt->irq_lock);
1916 
1917 		GT_TRACE(gt, "irq events:%x\n", events);
1918 
1919 		gen6_gt_pm_mask_irq(gt, events);
1920 		rps->pm_iir |= events;
1921 
1922 		queue_work(gt->i915->unordered_wq, &rps->work);
1923 		spin_unlock(gt->irq_lock);
1924 	}
1925 
1926 	if (GRAPHICS_VER(gt->i915) >= 8)
1927 		return;
1928 
1929 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1930 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1931 
1932 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1933 		drm_dbg(&rps_to_i915(rps)->drm,
1934 			"Command parser error, pm_iir 0x%08x\n", pm_iir);
1935 }
1936 
1937 void gen5_rps_irq_handler(struct intel_rps *rps)
1938 {
1939 	struct intel_uncore *uncore = rps_to_uncore(rps);
1940 	u32 busy_up, busy_down, max_avg, min_avg;
1941 	u8 new_freq;
1942 
1943 	spin_lock(&mchdev_lock);
1944 
1945 	intel_uncore_write16(uncore,
1946 			     MEMINTRSTS,
1947 			     intel_uncore_read(uncore, MEMINTRSTS));
1948 
1949 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1950 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1951 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1952 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1953 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1954 
1955 	/* Handle RCS change request from hw */
1956 	new_freq = rps->cur_freq;
1957 	if (busy_up > max_avg)
1958 		new_freq++;
1959 	else if (busy_down < min_avg)
1960 		new_freq--;
1961 	new_freq = clamp(new_freq,
1962 			 rps->min_freq_softlimit,
1963 			 rps->max_freq_softlimit);
1964 
1965 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1966 		rps->cur_freq = new_freq;
1967 
1968 	spin_unlock(&mchdev_lock);
1969 }
1970 
1971 void intel_rps_init_early(struct intel_rps *rps)
1972 {
1973 	mutex_init(&rps->lock);
1974 	mutex_init(&rps->power.mutex);
1975 
1976 	INIT_WORK(&rps->work, rps_work);
1977 	timer_setup(&rps->timer, rps_timer, 0);
1978 
1979 	atomic_set(&rps->num_waiters, 0);
1980 }
1981 
1982 void intel_rps_init(struct intel_rps *rps)
1983 {
1984 	struct drm_i915_private *i915 = rps_to_i915(rps);
1985 
1986 	if (rps_uses_slpc(rps))
1987 		return;
1988 
1989 	if (IS_CHERRYVIEW(i915))
1990 		chv_rps_init(rps);
1991 	else if (IS_VALLEYVIEW(i915))
1992 		vlv_rps_init(rps);
1993 	else if (GRAPHICS_VER(i915) >= 6)
1994 		gen6_rps_init(rps);
1995 	else if (IS_IRONLAKE_M(i915))
1996 		gen5_rps_init(rps);
1997 
1998 	/* Derive initial user preferences/limits from the hardware limits */
1999 	rps->max_freq_softlimit = rps->max_freq;
2000 	rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2001 	rps->min_freq_softlimit = rps->min_freq;
2002 	rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2003 
2004 	/* After setting max-softlimit, find the overclock max freq */
2005 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2006 		u32 params = 0;
2007 
2008 		snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
2009 		if (params & BIT(31)) { /* OC supported */
2010 			drm_dbg(&i915->drm,
2011 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2012 				(rps->max_freq & 0xff) * 50,
2013 				(params & 0xff) * 50);
2014 			rps->max_freq = params & 0xff;
2015 		}
2016 	}
2017 
2018 	/* Finally allow us to boost to max by default */
2019 	rps->boost_freq = rps->max_freq;
2020 	rps->idle_freq = rps->min_freq;
2021 
2022 	/* Start in the middle, from here we will autotune based on workload */
2023 	rps->cur_freq = rps->efficient_freq;
2024 
2025 	rps->pm_intrmsk_mbz = 0;
2026 
2027 	/*
2028 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2029 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
2030 	 *
2031 	 * TODO: verify if this can be reproduced on VLV,CHV.
2032 	 */
2033 	if (GRAPHICS_VER(i915) <= 7)
2034 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2035 
2036 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2037 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2038 
2039 	/* GuC needs ARAT expired interrupt unmasked */
2040 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2041 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2042 }
2043 
2044 void intel_rps_sanitize(struct intel_rps *rps)
2045 {
2046 	if (rps_uses_slpc(rps))
2047 		return;
2048 
2049 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2050 		rps_disable_interrupts(rps);
2051 }
2052 
2053 u32 intel_rps_read_rpstat(struct intel_rps *rps)
2054 {
2055 	struct drm_i915_private *i915 = rps_to_i915(rps);
2056 	i915_reg_t rpstat;
2057 
2058 	rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2059 
2060 	return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2061 }
2062 
2063 static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2064 {
2065 	struct drm_i915_private *i915 = rps_to_i915(rps);
2066 	u32 cagf;
2067 
2068 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2069 		cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2070 	else if (GRAPHICS_VER(i915) >= 12)
2071 		cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2072 	else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2073 		cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2074 	else if (GRAPHICS_VER(i915) >= 9)
2075 		cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2076 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2077 		cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2078 	else if (GRAPHICS_VER(i915) >= 6)
2079 		cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2080 	else
2081 		cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2082 
2083 	return cagf;
2084 }
2085 
2086 static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2087 {
2088 	struct drm_i915_private *i915 = rps_to_i915(rps);
2089 	struct intel_uncore *uncore = rps_to_uncore(rps);
2090 	i915_reg_t r = INVALID_MMIO_REG;
2091 	u32 freq;
2092 
2093 	/*
2094 	 * For Gen12+ reading freq from HW does not need a forcewake and
2095 	 * registers will return 0 freq when GT is in RC6
2096 	 */
2097 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2098 		r = MTL_MIRROR_TARGET_WP1;
2099 	} else if (GRAPHICS_VER(i915) >= 12) {
2100 		r = GEN12_RPSTAT1;
2101 	} else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2102 		vlv_punit_get(i915);
2103 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2104 		vlv_punit_put(i915);
2105 	} else if (GRAPHICS_VER(i915) >= 6) {
2106 		r = GEN6_RPSTAT1;
2107 	} else {
2108 		r = MEMSTAT_ILK;
2109 	}
2110 
2111 	if (i915_mmio_reg_valid(r))
2112 		freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2113 
2114 	return intel_rps_get_cagf(rps, freq);
2115 }
2116 
2117 static u32 read_cagf(struct intel_rps *rps)
2118 {
2119 	return __read_cagf(rps, true);
2120 }
2121 
2122 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2123 {
2124 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2125 	intel_wakeref_t wakeref;
2126 	u32 freq = 0;
2127 
2128 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2129 		freq = intel_gpu_freq(rps, read_cagf(rps));
2130 
2131 	return freq;
2132 }
2133 
2134 u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2135 {
2136 	return intel_gpu_freq(rps, __read_cagf(rps, false));
2137 }
2138 
2139 static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2140 {
2141 	struct intel_uncore *uncore = rps_to_uncore(rps);
2142 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2143 	intel_wakeref_t wakeref;
2144 	u32 freq = 0;
2145 
2146 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2147 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2148 
2149 	return freq;
2150 }
2151 
2152 static u32 intel_rps_get_req(u32 pureq)
2153 {
2154 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2155 
2156 	return req;
2157 }
2158 
2159 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2160 {
2161 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2162 
2163 	return intel_gpu_freq(rps, freq);
2164 }
2165 
2166 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2167 {
2168 	if (rps_uses_slpc(rps))
2169 		return intel_rps_read_punit_req_frequency(rps);
2170 	else
2171 		return intel_gpu_freq(rps, rps->cur_freq);
2172 }
2173 
2174 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2175 {
2176 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2177 
2178 	if (rps_uses_slpc(rps))
2179 		return slpc->max_freq_softlimit;
2180 	else
2181 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2182 }
2183 
2184 /**
2185  * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2186  * @rps: the intel_rps structure
2187  *
2188  * Returns the max frequency in a raw format. In newer platforms raw is in
2189  * units of 50 MHz.
2190  */
2191 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2192 {
2193 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2194 	u32 freq;
2195 
2196 	if (rps_uses_slpc(rps)) {
2197 		return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2198 					 GT_FREQUENCY_MULTIPLIER);
2199 	} else {
2200 		freq = rps->max_freq;
2201 		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2202 			/* Convert GT frequency to 50 MHz units */
2203 			freq /= GEN9_FREQ_SCALER;
2204 		}
2205 		return freq;
2206 	}
2207 }
2208 
2209 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2210 {
2211 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2212 
2213 	if (rps_uses_slpc(rps))
2214 		return slpc->rp0_freq;
2215 	else
2216 		return intel_gpu_freq(rps, rps->rp0_freq);
2217 }
2218 
2219 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2220 {
2221 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2222 
2223 	if (rps_uses_slpc(rps))
2224 		return slpc->rp1_freq;
2225 	else
2226 		return intel_gpu_freq(rps, rps->rp1_freq);
2227 }
2228 
2229 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2230 {
2231 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2232 
2233 	if (rps_uses_slpc(rps))
2234 		return slpc->min_freq;
2235 	else
2236 		return intel_gpu_freq(rps, rps->min_freq);
2237 }
2238 
2239 static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2240 {
2241 	struct intel_gt *gt = rps_to_gt(rps);
2242 	struct drm_i915_private *i915 = gt->i915;
2243 	struct intel_uncore *uncore = gt->uncore;
2244 	struct intel_rps_freq_caps caps;
2245 	u32 rp_state_limits;
2246 	u32 gt_perf_status;
2247 	u32 rpmodectl, rpinclimit, rpdeclimit;
2248 	u32 rpstat, cagf, reqf;
2249 	u32 rpcurupei, rpcurup, rpprevup;
2250 	u32 rpcurdownei, rpcurdown, rpprevdown;
2251 	u32 rpupei, rpupt, rpdownei, rpdownt;
2252 	u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2253 
2254 	rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2255 	gen6_rps_get_freq_caps(rps, &caps);
2256 	if (IS_GEN9_LP(i915))
2257 		gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2258 	else
2259 		gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2260 
2261 	/* RPSTAT1 is in the GT power well */
2262 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2263 
2264 	reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2265 	if (GRAPHICS_VER(i915) >= 9) {
2266 		reqf >>= 23;
2267 	} else {
2268 		reqf &= ~GEN6_TURBO_DISABLE;
2269 		if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2270 			reqf >>= 24;
2271 		else
2272 			reqf >>= 25;
2273 	}
2274 	reqf = intel_gpu_freq(rps, reqf);
2275 
2276 	rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2277 	rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2278 	rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2279 
2280 	rpstat = intel_rps_read_rpstat(rps);
2281 	rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2282 	rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2283 	rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2284 	rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2285 	rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2286 	rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2287 
2288 	rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2289 	rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2290 
2291 	rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2292 	rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2293 
2294 	cagf = intel_rps_read_actual_frequency(rps);
2295 
2296 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2297 
2298 	if (GRAPHICS_VER(i915) >= 11) {
2299 		pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2300 		pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2301 		/*
2302 		 * The equivalent to the PM ISR & IIR cannot be read
2303 		 * without affecting the current state of the system
2304 		 */
2305 		pm_isr = 0;
2306 		pm_iir = 0;
2307 	} else if (GRAPHICS_VER(i915) >= 8) {
2308 		pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2309 		pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2310 		pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2311 		pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2312 	} else {
2313 		pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2314 		pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2315 		pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2316 		pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2317 	}
2318 	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2319 
2320 	drm_printf(p, "Video Turbo Mode: %s\n",
2321 		   str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2322 	drm_printf(p, "HW control enabled: %s\n",
2323 		   str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2324 	drm_printf(p, "SW control enabled: %s\n",
2325 		   str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2326 
2327 	drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2328 		   pm_ier, pm_imr, pm_mask);
2329 	if (GRAPHICS_VER(i915) <= 10)
2330 		drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2331 			   pm_isr, pm_iir);
2332 	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2333 		   rps->pm_intrmsk_mbz);
2334 	drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2335 	drm_printf(p, "Render p-state ratio: %d\n",
2336 		   (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2337 	drm_printf(p, "Render p-state VID: %d\n",
2338 		   gt_perf_status & 0xff);
2339 	drm_printf(p, "Render p-state limit: %d\n",
2340 		   rp_state_limits & 0xff);
2341 	drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2342 	drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2343 	drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2344 	drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2345 	drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2346 	drm_printf(p, "CAGF: %dMHz\n", cagf);
2347 	drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2348 		   rpcurupei,
2349 		   intel_gt_pm_interval_to_ns(gt, rpcurupei));
2350 	drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2351 		   rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2352 	drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2353 		   rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2354 	drm_printf(p, "Up threshold: %d%%\n",
2355 		   rps->power.up_threshold);
2356 	drm_printf(p, "RP UP EI: %d (%lldns)\n",
2357 		   rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2358 	drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2359 		   rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2360 
2361 	drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2362 		   rpcurdownei,
2363 		   intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2364 	drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2365 		   rpcurdown,
2366 		   intel_gt_pm_interval_to_ns(gt, rpcurdown));
2367 	drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2368 		   rpprevdown,
2369 		   intel_gt_pm_interval_to_ns(gt, rpprevdown));
2370 	drm_printf(p, "Down threshold: %d%%\n",
2371 		   rps->power.down_threshold);
2372 	drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2373 		   rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2374 	drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2375 		   rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2376 
2377 	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2378 		   intel_gpu_freq(rps, caps.min_freq));
2379 	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2380 		   intel_gpu_freq(rps, caps.rp1_freq));
2381 	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2382 		   intel_gpu_freq(rps, caps.rp0_freq));
2383 	drm_printf(p, "Max overclocked frequency: %dMHz\n",
2384 		   intel_gpu_freq(rps, rps->max_freq));
2385 
2386 	drm_printf(p, "Current freq: %d MHz\n",
2387 		   intel_gpu_freq(rps, rps->cur_freq));
2388 	drm_printf(p, "Actual freq: %d MHz\n", cagf);
2389 	drm_printf(p, "Idle freq: %d MHz\n",
2390 		   intel_gpu_freq(rps, rps->idle_freq));
2391 	drm_printf(p, "Min freq: %d MHz\n",
2392 		   intel_gpu_freq(rps, rps->min_freq));
2393 	drm_printf(p, "Boost freq: %d MHz\n",
2394 		   intel_gpu_freq(rps, rps->boost_freq));
2395 	drm_printf(p, "Max freq: %d MHz\n",
2396 		   intel_gpu_freq(rps, rps->max_freq));
2397 	drm_printf(p,
2398 		   "efficient (RPe) frequency: %d MHz\n",
2399 		   intel_gpu_freq(rps, rps->efficient_freq));
2400 }
2401 
2402 static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2403 {
2404 	struct intel_gt *gt = rps_to_gt(rps);
2405 	struct intel_uncore *uncore = gt->uncore;
2406 	struct intel_rps_freq_caps caps;
2407 	u32 pm_mask;
2408 
2409 	gen6_rps_get_freq_caps(rps, &caps);
2410 	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2411 
2412 	drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2413 	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2414 		   rps->pm_intrmsk_mbz);
2415 	drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2416 	drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2417 	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2418 		   intel_gpu_freq(rps, caps.min_freq));
2419 	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2420 		   intel_gpu_freq(rps, caps.rp1_freq));
2421 	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2422 		   intel_gpu_freq(rps, caps.rp0_freq));
2423 	drm_printf(p, "Current freq: %d MHz\n",
2424 		   intel_rps_get_requested_frequency(rps));
2425 	drm_printf(p, "Actual freq: %d MHz\n",
2426 		   intel_rps_read_actual_frequency(rps));
2427 	drm_printf(p, "Min freq: %d MHz\n",
2428 		   intel_rps_get_min_frequency(rps));
2429 	drm_printf(p, "Boost freq: %d MHz\n",
2430 		   intel_rps_get_boost_frequency(rps));
2431 	drm_printf(p, "Max freq: %d MHz\n",
2432 		   intel_rps_get_max_frequency(rps));
2433 	drm_printf(p,
2434 		   "efficient (RPe) frequency: %d MHz\n",
2435 		   intel_gpu_freq(rps, caps.rp1_freq));
2436 }
2437 
2438 void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2439 {
2440 	if (rps_uses_slpc(rps))
2441 		return slpc_frequency_dump(rps, p);
2442 	else
2443 		return rps_frequency_dump(rps, p);
2444 }
2445 
2446 static int set_max_freq(struct intel_rps *rps, u32 val)
2447 {
2448 	struct drm_i915_private *i915 = rps_to_i915(rps);
2449 	int ret = 0;
2450 
2451 	mutex_lock(&rps->lock);
2452 
2453 	val = intel_freq_opcode(rps, val);
2454 	if (val < rps->min_freq ||
2455 	    val > rps->max_freq ||
2456 	    val < rps->min_freq_softlimit) {
2457 		ret = -EINVAL;
2458 		goto unlock;
2459 	}
2460 
2461 	if (val > rps->rp0_freq)
2462 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2463 			intel_gpu_freq(rps, val));
2464 
2465 	rps->max_freq_softlimit = val;
2466 
2467 	val = clamp_t(int, rps->cur_freq,
2468 		      rps->min_freq_softlimit,
2469 		      rps->max_freq_softlimit);
2470 
2471 	/*
2472 	 * We still need *_set_rps to process the new max_delay and
2473 	 * update the interrupt limits and PMINTRMSK even though
2474 	 * frequency request may be unchanged.
2475 	 */
2476 	intel_rps_set(rps, val);
2477 
2478 unlock:
2479 	mutex_unlock(&rps->lock);
2480 
2481 	return ret;
2482 }
2483 
2484 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2485 {
2486 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2487 
2488 	if (rps_uses_slpc(rps))
2489 		return intel_guc_slpc_set_max_freq(slpc, val);
2490 	else
2491 		return set_max_freq(rps, val);
2492 }
2493 
2494 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2495 {
2496 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2497 
2498 	if (rps_uses_slpc(rps))
2499 		return slpc->min_freq_softlimit;
2500 	else
2501 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2502 }
2503 
2504 /**
2505  * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2506  * @rps: the intel_rps structure
2507  *
2508  * Returns the min frequency in a raw format. In newer platforms raw is in
2509  * units of 50 MHz.
2510  */
2511 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2512 {
2513 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2514 	u32 freq;
2515 
2516 	if (rps_uses_slpc(rps)) {
2517 		return DIV_ROUND_CLOSEST(slpc->min_freq,
2518 					 GT_FREQUENCY_MULTIPLIER);
2519 	} else {
2520 		freq = rps->min_freq;
2521 		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2522 			/* Convert GT frequency to 50 MHz units */
2523 			freq /= GEN9_FREQ_SCALER;
2524 		}
2525 		return freq;
2526 	}
2527 }
2528 
2529 static int set_min_freq(struct intel_rps *rps, u32 val)
2530 {
2531 	int ret = 0;
2532 
2533 	mutex_lock(&rps->lock);
2534 
2535 	val = intel_freq_opcode(rps, val);
2536 	if (val < rps->min_freq ||
2537 	    val > rps->max_freq ||
2538 	    val > rps->max_freq_softlimit) {
2539 		ret = -EINVAL;
2540 		goto unlock;
2541 	}
2542 
2543 	rps->min_freq_softlimit = val;
2544 
2545 	val = clamp_t(int, rps->cur_freq,
2546 		      rps->min_freq_softlimit,
2547 		      rps->max_freq_softlimit);
2548 
2549 	/*
2550 	 * We still need *_set_rps to process the new min_delay and
2551 	 * update the interrupt limits and PMINTRMSK even though
2552 	 * frequency request may be unchanged.
2553 	 */
2554 	intel_rps_set(rps, val);
2555 
2556 unlock:
2557 	mutex_unlock(&rps->lock);
2558 
2559 	return ret;
2560 }
2561 
2562 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2563 {
2564 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2565 
2566 	if (rps_uses_slpc(rps))
2567 		return intel_guc_slpc_set_min_freq(slpc, val);
2568 	else
2569 		return set_min_freq(rps, val);
2570 }
2571 
2572 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2573 {
2574 	struct intel_uncore *uncore = rps_to_uncore(rps);
2575 	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2576 
2577 	/* Allow punit to process software requests */
2578 	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2579 }
2580 
2581 void intel_rps_raise_unslice(struct intel_rps *rps)
2582 {
2583 	struct intel_uncore *uncore = rps_to_uncore(rps);
2584 
2585 	mutex_lock(&rps->lock);
2586 
2587 	if (rps_uses_slpc(rps)) {
2588 		/* RP limits have not been initialized yet for SLPC path */
2589 		struct intel_rps_freq_caps caps;
2590 
2591 		gen6_rps_get_freq_caps(rps, &caps);
2592 
2593 		intel_rps_set_manual(rps, true);
2594 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2595 				   ((caps.rp0_freq <<
2596 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2597 				   GEN9_IGNORE_SLICE_RATIO));
2598 		intel_rps_set_manual(rps, false);
2599 	} else {
2600 		intel_rps_set(rps, rps->rp0_freq);
2601 	}
2602 
2603 	mutex_unlock(&rps->lock);
2604 }
2605 
2606 void intel_rps_lower_unslice(struct intel_rps *rps)
2607 {
2608 	struct intel_uncore *uncore = rps_to_uncore(rps);
2609 
2610 	mutex_lock(&rps->lock);
2611 
2612 	if (rps_uses_slpc(rps)) {
2613 		/* RP limits have not been initialized yet for SLPC path */
2614 		struct intel_rps_freq_caps caps;
2615 
2616 		gen6_rps_get_freq_caps(rps, &caps);
2617 
2618 		intel_rps_set_manual(rps, true);
2619 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2620 				   ((caps.min_freq <<
2621 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2622 				   GEN9_IGNORE_SLICE_RATIO));
2623 		intel_rps_set_manual(rps, false);
2624 	} else {
2625 		intel_rps_set(rps, rps->min_freq);
2626 	}
2627 
2628 	mutex_unlock(&rps->lock);
2629 }
2630 
2631 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2632 {
2633 	struct intel_gt *gt = rps_to_gt(rps);
2634 	intel_wakeref_t wakeref;
2635 	u32 val;
2636 
2637 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2638 		val = intel_uncore_read(gt->uncore, reg32);
2639 
2640 	return val;
2641 }
2642 
2643 bool rps_read_mask_mmio(struct intel_rps *rps,
2644 			i915_reg_t reg32, u32 mask)
2645 {
2646 	return rps_read_mmio(rps, reg32) & mask;
2647 }
2648 
2649 /* External interface for intel_ips.ko */
2650 
2651 static struct drm_i915_private __rcu *ips_mchdev;
2652 
2653 /*
2654  * Tells the intel_ips driver that the i915 driver is now loaded, if
2655  * IPS got loaded first.
2656  *
2657  * This awkward dance is so that neither module has to depend on the
2658  * other in order for IPS to do the appropriate communication of
2659  * GPU turbo limits to i915.
2660  */
2661 static void
2662 ips_ping_for_i915_load(void)
2663 {
2664 	void (*link)(void);
2665 
2666 	link = symbol_get(ips_link_to_i915_driver);
2667 	if (link) {
2668 		link();
2669 		symbol_put(ips_link_to_i915_driver);
2670 	}
2671 }
2672 
2673 void intel_rps_driver_register(struct intel_rps *rps)
2674 {
2675 	struct intel_gt *gt = rps_to_gt(rps);
2676 
2677 	/*
2678 	 * We only register the i915 ips part with intel-ips once everything is
2679 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2680 	 */
2681 	if (GRAPHICS_VER(gt->i915) == 5) {
2682 		GEM_BUG_ON(ips_mchdev);
2683 		rcu_assign_pointer(ips_mchdev, gt->i915);
2684 		ips_ping_for_i915_load();
2685 	}
2686 }
2687 
2688 void intel_rps_driver_unregister(struct intel_rps *rps)
2689 {
2690 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2691 		rcu_assign_pointer(ips_mchdev, NULL);
2692 }
2693 
2694 static struct drm_i915_private *mchdev_get(void)
2695 {
2696 	struct drm_i915_private *i915;
2697 
2698 	rcu_read_lock();
2699 	i915 = rcu_dereference(ips_mchdev);
2700 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2701 		i915 = NULL;
2702 	rcu_read_unlock();
2703 
2704 	return i915;
2705 }
2706 
2707 /**
2708  * i915_read_mch_val - return value for IPS use
2709  *
2710  * Calculate and return a value for the IPS driver to use when deciding whether
2711  * we have thermal and power headroom to increase CPU or GPU power budget.
2712  */
2713 unsigned long i915_read_mch_val(void)
2714 {
2715 	struct drm_i915_private *i915;
2716 	unsigned long chipset_val = 0;
2717 	unsigned long graphics_val = 0;
2718 	intel_wakeref_t wakeref;
2719 
2720 	i915 = mchdev_get();
2721 	if (!i915)
2722 		return 0;
2723 
2724 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2725 		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2726 
2727 		spin_lock_irq(&mchdev_lock);
2728 		chipset_val = __ips_chipset_val(ips);
2729 		graphics_val = __ips_gfx_val(ips);
2730 		spin_unlock_irq(&mchdev_lock);
2731 	}
2732 
2733 	drm_dev_put(&i915->drm);
2734 	return chipset_val + graphics_val;
2735 }
2736 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2737 
2738 /**
2739  * i915_gpu_raise - raise GPU frequency limit
2740  *
2741  * Raise the limit; IPS indicates we have thermal headroom.
2742  */
2743 bool i915_gpu_raise(void)
2744 {
2745 	struct drm_i915_private *i915;
2746 	struct intel_rps *rps;
2747 
2748 	i915 = mchdev_get();
2749 	if (!i915)
2750 		return false;
2751 
2752 	rps = &to_gt(i915)->rps;
2753 
2754 	spin_lock_irq(&mchdev_lock);
2755 	if (rps->max_freq_softlimit < rps->max_freq)
2756 		rps->max_freq_softlimit++;
2757 	spin_unlock_irq(&mchdev_lock);
2758 
2759 	drm_dev_put(&i915->drm);
2760 	return true;
2761 }
2762 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2763 
2764 /**
2765  * i915_gpu_lower - lower GPU frequency limit
2766  *
2767  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2768  * frequency maximum.
2769  */
2770 bool i915_gpu_lower(void)
2771 {
2772 	struct drm_i915_private *i915;
2773 	struct intel_rps *rps;
2774 
2775 	i915 = mchdev_get();
2776 	if (!i915)
2777 		return false;
2778 
2779 	rps = &to_gt(i915)->rps;
2780 
2781 	spin_lock_irq(&mchdev_lock);
2782 	if (rps->max_freq_softlimit > rps->min_freq)
2783 		rps->max_freq_softlimit--;
2784 	spin_unlock_irq(&mchdev_lock);
2785 
2786 	drm_dev_put(&i915->drm);
2787 	return true;
2788 }
2789 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2790 
2791 /**
2792  * i915_gpu_busy - indicate GPU business to IPS
2793  *
2794  * Tell the IPS driver whether or not the GPU is busy.
2795  */
2796 bool i915_gpu_busy(void)
2797 {
2798 	struct drm_i915_private *i915;
2799 	bool ret;
2800 
2801 	i915 = mchdev_get();
2802 	if (!i915)
2803 		return false;
2804 
2805 	ret = to_gt(i915)->awake;
2806 
2807 	drm_dev_put(&i915->drm);
2808 	return ret;
2809 }
2810 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2811 
2812 /**
2813  * i915_gpu_turbo_disable - disable graphics turbo
2814  *
2815  * Disable graphics turbo by resetting the max frequency and setting the
2816  * current frequency to the default.
2817  */
2818 bool i915_gpu_turbo_disable(void)
2819 {
2820 	struct drm_i915_private *i915;
2821 	struct intel_rps *rps;
2822 	bool ret;
2823 
2824 	i915 = mchdev_get();
2825 	if (!i915)
2826 		return false;
2827 
2828 	rps = &to_gt(i915)->rps;
2829 
2830 	spin_lock_irq(&mchdev_lock);
2831 	rps->max_freq_softlimit = rps->min_freq;
2832 	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2833 	spin_unlock_irq(&mchdev_lock);
2834 
2835 	drm_dev_put(&i915->drm);
2836 	return ret;
2837 }
2838 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2839 
2840 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2841 #include "selftest_rps.c"
2842 #include "selftest_slpc.c"
2843 #endif
2844