xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 3a9a6f3d)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/i915_drm.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "intel_breadcrumbs.h"
11 #include "intel_gt.h"
12 #include "intel_gt_clock_utils.h"
13 #include "intel_gt_irq.h"
14 #include "intel_gt_pm_irq.h"
15 #include "intel_gt_regs.h"
16 #include "intel_mchbar_regs.h"
17 #include "intel_pcode.h"
18 #include "intel_rps.h"
19 #include "vlv_sideband.h"
20 #include "../../../platform/x86/intel_ips.h"
21 
22 #define BUSY_MAX_EI	20u /* ms */
23 
24 /*
25  * Lock protecting IPS related data structures
26  */
27 static DEFINE_SPINLOCK(mchdev_lock);
28 
29 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
30 {
31 	return container_of(rps, struct intel_gt, rps);
32 }
33 
34 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
35 {
36 	return rps_to_gt(rps)->i915;
37 }
38 
39 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
40 {
41 	return rps_to_gt(rps)->uncore;
42 }
43 
44 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
45 {
46 	struct intel_gt *gt = rps_to_gt(rps);
47 
48 	return &gt->uc.guc.slpc;
49 }
50 
51 static bool rps_uses_slpc(struct intel_rps *rps)
52 {
53 	struct intel_gt *gt = rps_to_gt(rps);
54 
55 	return intel_uc_uses_guc_slpc(&gt->uc);
56 }
57 
58 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
59 {
60 	return mask & ~rps->pm_intrmsk_mbz;
61 }
62 
63 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
64 {
65 	intel_uncore_write_fw(uncore, reg, val);
66 }
67 
68 static void rps_timer(struct timer_list *t)
69 {
70 	struct intel_rps *rps = from_timer(rps, t, timer);
71 	struct intel_engine_cs *engine;
72 	ktime_t dt, last, timestamp;
73 	enum intel_engine_id id;
74 	s64 max_busy[3] = {};
75 
76 	timestamp = 0;
77 	for_each_engine(engine, rps_to_gt(rps), id) {
78 		s64 busy;
79 		int i;
80 
81 		dt = intel_engine_get_busy_time(engine, &timestamp);
82 		last = engine->stats.rps;
83 		engine->stats.rps = dt;
84 
85 		busy = ktime_to_ns(ktime_sub(dt, last));
86 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
87 			if (busy > max_busy[i])
88 				swap(busy, max_busy[i]);
89 		}
90 	}
91 	last = rps->pm_timestamp;
92 	rps->pm_timestamp = timestamp;
93 
94 	if (intel_rps_is_active(rps)) {
95 		s64 busy;
96 		int i;
97 
98 		dt = ktime_sub(timestamp, last);
99 
100 		/*
101 		 * Our goal is to evaluate each engine independently, so we run
102 		 * at the lowest clocks required to sustain the heaviest
103 		 * workload. However, a task may be split into sequential
104 		 * dependent operations across a set of engines, such that
105 		 * the independent contributions do not account for high load,
106 		 * but overall the task is GPU bound. For example, consider
107 		 * video decode on vcs followed by colour post-processing
108 		 * on vecs, followed by general post-processing on rcs.
109 		 * Since multi-engines being active does imply a single
110 		 * continuous workload across all engines, we hedge our
111 		 * bets by only contributing a factor of the distributed
112 		 * load into our busyness calculation.
113 		 */
114 		busy = max_busy[0];
115 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
116 			if (!max_busy[i])
117 				break;
118 
119 			busy += div_u64(max_busy[i], 1 << i);
120 		}
121 		GT_TRACE(rps_to_gt(rps),
122 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
123 			 busy, (int)div64_u64(100 * busy, dt),
124 			 max_busy[0], max_busy[1], max_busy[2],
125 			 rps->pm_interval);
126 
127 		if (100 * busy > rps->power.up_threshold * dt &&
128 		    rps->cur_freq < rps->max_freq_softlimit) {
129 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
130 			rps->pm_interval = 1;
131 			schedule_work(&rps->work);
132 		} else if (100 * busy < rps->power.down_threshold * dt &&
133 			   rps->cur_freq > rps->min_freq_softlimit) {
134 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
135 			rps->pm_interval = 1;
136 			schedule_work(&rps->work);
137 		} else {
138 			rps->last_adj = 0;
139 		}
140 
141 		mod_timer(&rps->timer,
142 			  jiffies + msecs_to_jiffies(rps->pm_interval));
143 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
144 	}
145 }
146 
147 static void rps_start_timer(struct intel_rps *rps)
148 {
149 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
150 	rps->pm_interval = 1;
151 	mod_timer(&rps->timer, jiffies + 1);
152 }
153 
154 static void rps_stop_timer(struct intel_rps *rps)
155 {
156 	del_timer_sync(&rps->timer);
157 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
158 	cancel_work_sync(&rps->work);
159 }
160 
161 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
162 {
163 	u32 mask = 0;
164 
165 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
166 	if (val > rps->min_freq_softlimit)
167 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
168 			 GEN6_PM_RP_DOWN_THRESHOLD |
169 			 GEN6_PM_RP_DOWN_TIMEOUT);
170 
171 	if (val < rps->max_freq_softlimit)
172 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
173 
174 	mask &= rps->pm_events;
175 
176 	return rps_pm_sanitize_mask(rps, ~mask);
177 }
178 
179 static void rps_reset_ei(struct intel_rps *rps)
180 {
181 	memset(&rps->ei, 0, sizeof(rps->ei));
182 }
183 
184 static void rps_enable_interrupts(struct intel_rps *rps)
185 {
186 	struct intel_gt *gt = rps_to_gt(rps);
187 
188 	GEM_BUG_ON(rps_uses_slpc(rps));
189 
190 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
191 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
192 
193 	rps_reset_ei(rps);
194 
195 	spin_lock_irq(&gt->irq_lock);
196 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
197 	spin_unlock_irq(&gt->irq_lock);
198 
199 	intel_uncore_write(gt->uncore,
200 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
201 }
202 
203 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
204 {
205 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
206 }
207 
208 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
209 {
210 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
211 		;
212 }
213 
214 static void rps_reset_interrupts(struct intel_rps *rps)
215 {
216 	struct intel_gt *gt = rps_to_gt(rps);
217 
218 	spin_lock_irq(&gt->irq_lock);
219 	if (GRAPHICS_VER(gt->i915) >= 11)
220 		gen11_rps_reset_interrupts(rps);
221 	else
222 		gen6_rps_reset_interrupts(rps);
223 
224 	rps->pm_iir = 0;
225 	spin_unlock_irq(&gt->irq_lock);
226 }
227 
228 static void rps_disable_interrupts(struct intel_rps *rps)
229 {
230 	struct intel_gt *gt = rps_to_gt(rps);
231 
232 	intel_uncore_write(gt->uncore,
233 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
234 
235 	spin_lock_irq(&gt->irq_lock);
236 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
237 	spin_unlock_irq(&gt->irq_lock);
238 
239 	intel_synchronize_irq(gt->i915);
240 
241 	/*
242 	 * Now that we will not be generating any more work, flush any
243 	 * outstanding tasks. As we are called on the RPS idle path,
244 	 * we will reset the GPU to minimum frequencies, so the current
245 	 * state of the worker can be discarded.
246 	 */
247 	cancel_work_sync(&rps->work);
248 
249 	rps_reset_interrupts(rps);
250 	GT_TRACE(gt, "interrupts:off\n");
251 }
252 
253 static const struct cparams {
254 	u16 i;
255 	u16 t;
256 	u16 m;
257 	u16 c;
258 } cparams[] = {
259 	{ 1, 1333, 301, 28664 },
260 	{ 1, 1066, 294, 24460 },
261 	{ 1, 800, 294, 25192 },
262 	{ 0, 1333, 276, 27605 },
263 	{ 0, 1066, 276, 27605 },
264 	{ 0, 800, 231, 23784 },
265 };
266 
267 static void gen5_rps_init(struct intel_rps *rps)
268 {
269 	struct drm_i915_private *i915 = rps_to_i915(rps);
270 	struct intel_uncore *uncore = rps_to_uncore(rps);
271 	u8 fmax, fmin, fstart;
272 	u32 rgvmodectl;
273 	int c_m, i;
274 
275 	if (i915->fsb_freq <= 3200)
276 		c_m = 0;
277 	else if (i915->fsb_freq <= 4800)
278 		c_m = 1;
279 	else
280 		c_m = 2;
281 
282 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
283 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
284 			rps->ips.m = cparams[i].m;
285 			rps->ips.c = cparams[i].c;
286 			break;
287 		}
288 	}
289 
290 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
291 
292 	/* Set up min, max, and cur for interrupt handling */
293 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
294 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
295 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
296 		MEMMODE_FSTART_SHIFT;
297 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
298 		fmax, fmin, fstart);
299 
300 	rps->min_freq = fmax;
301 	rps->efficient_freq = fstart;
302 	rps->max_freq = fmin;
303 }
304 
305 static unsigned long
306 __ips_chipset_val(struct intel_ips *ips)
307 {
308 	struct intel_uncore *uncore =
309 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
310 	unsigned long now = jiffies_to_msecs(jiffies), dt;
311 	unsigned long result;
312 	u64 total, delta;
313 
314 	lockdep_assert_held(&mchdev_lock);
315 
316 	/*
317 	 * Prevent division-by-zero if we are asking too fast.
318 	 * Also, we don't get interesting results if we are polling
319 	 * faster than once in 10ms, so just return the saved value
320 	 * in such cases.
321 	 */
322 	dt = now - ips->last_time1;
323 	if (dt <= 10)
324 		return ips->chipset_power;
325 
326 	/* FIXME: handle per-counter overflow */
327 	total = intel_uncore_read(uncore, DMIEC);
328 	total += intel_uncore_read(uncore, DDREC);
329 	total += intel_uncore_read(uncore, CSIEC);
330 
331 	delta = total - ips->last_count1;
332 
333 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
334 
335 	ips->last_count1 = total;
336 	ips->last_time1 = now;
337 
338 	ips->chipset_power = result;
339 
340 	return result;
341 }
342 
343 static unsigned long ips_mch_val(struct intel_uncore *uncore)
344 {
345 	unsigned int m, x, b;
346 	u32 tsfs;
347 
348 	tsfs = intel_uncore_read(uncore, TSFS);
349 	x = intel_uncore_read8(uncore, TR1);
350 
351 	b = tsfs & TSFS_INTR_MASK;
352 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
353 
354 	return m * x / 127 - b;
355 }
356 
357 static int _pxvid_to_vd(u8 pxvid)
358 {
359 	if (pxvid == 0)
360 		return 0;
361 
362 	if (pxvid >= 8 && pxvid < 31)
363 		pxvid = 31;
364 
365 	return (pxvid + 2) * 125;
366 }
367 
368 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
369 {
370 	const int vd = _pxvid_to_vd(pxvid);
371 
372 	if (INTEL_INFO(i915)->is_mobile)
373 		return max(vd - 1125, 0);
374 
375 	return vd;
376 }
377 
378 static void __gen5_ips_update(struct intel_ips *ips)
379 {
380 	struct intel_uncore *uncore =
381 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
382 	u64 now, delta, dt;
383 	u32 count;
384 
385 	lockdep_assert_held(&mchdev_lock);
386 
387 	now = ktime_get_raw_ns();
388 	dt = now - ips->last_time2;
389 	do_div(dt, NSEC_PER_MSEC);
390 
391 	/* Don't divide by 0 */
392 	if (dt <= 10)
393 		return;
394 
395 	count = intel_uncore_read(uncore, GFXEC);
396 	delta = count - ips->last_count2;
397 
398 	ips->last_count2 = count;
399 	ips->last_time2 = now;
400 
401 	/* More magic constants... */
402 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
403 }
404 
405 static void gen5_rps_update(struct intel_rps *rps)
406 {
407 	spin_lock_irq(&mchdev_lock);
408 	__gen5_ips_update(&rps->ips);
409 	spin_unlock_irq(&mchdev_lock);
410 }
411 
412 static unsigned int gen5_invert_freq(struct intel_rps *rps,
413 				     unsigned int val)
414 {
415 	/* Invert the frequency bin into an ips delay */
416 	val = rps->max_freq - val;
417 	val = rps->min_freq + val;
418 
419 	return val;
420 }
421 
422 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
423 {
424 	struct intel_uncore *uncore = rps_to_uncore(rps);
425 	u16 rgvswctl;
426 
427 	lockdep_assert_held(&mchdev_lock);
428 
429 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
430 	if (rgvswctl & MEMCTL_CMD_STS) {
431 		DRM_DEBUG("gpu busy, RCS change rejected\n");
432 		return -EBUSY; /* still busy with another command */
433 	}
434 
435 	/* Invert the frequency bin into an ips delay */
436 	val = gen5_invert_freq(rps, val);
437 
438 	rgvswctl =
439 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
440 		(val << MEMCTL_FREQ_SHIFT) |
441 		MEMCTL_SFCAVM;
442 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
443 	intel_uncore_posting_read16(uncore, MEMSWCTL);
444 
445 	rgvswctl |= MEMCTL_CMD_STS;
446 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
447 
448 	return 0;
449 }
450 
451 static int gen5_rps_set(struct intel_rps *rps, u8 val)
452 {
453 	int err;
454 
455 	spin_lock_irq(&mchdev_lock);
456 	err = __gen5_rps_set(rps, val);
457 	spin_unlock_irq(&mchdev_lock);
458 
459 	return err;
460 }
461 
462 static unsigned long intel_pxfreq(u32 vidfreq)
463 {
464 	int div = (vidfreq & 0x3f0000) >> 16;
465 	int post = (vidfreq & 0x3000) >> 12;
466 	int pre = (vidfreq & 0x7);
467 
468 	if (!pre)
469 		return 0;
470 
471 	return div * 133333 / (pre << post);
472 }
473 
474 static unsigned int init_emon(struct intel_uncore *uncore)
475 {
476 	u8 pxw[16];
477 	int i;
478 
479 	/* Disable to program */
480 	intel_uncore_write(uncore, ECR, 0);
481 	intel_uncore_posting_read(uncore, ECR);
482 
483 	/* Program energy weights for various events */
484 	intel_uncore_write(uncore, SDEW, 0x15040d00);
485 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
486 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
487 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
488 
489 	for (i = 0; i < 5; i++)
490 		intel_uncore_write(uncore, PEW(i), 0);
491 	for (i = 0; i < 3; i++)
492 		intel_uncore_write(uncore, DEW(i), 0);
493 
494 	/* Program P-state weights to account for frequency power adjustment */
495 	for (i = 0; i < 16; i++) {
496 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
497 		unsigned int freq = intel_pxfreq(pxvidfreq);
498 		unsigned int vid =
499 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
500 		unsigned int val;
501 
502 		val = vid * vid * freq / 1000 * 255;
503 		val /= 127 * 127 * 900;
504 
505 		pxw[i] = val;
506 	}
507 	/* Render standby states get 0 weight */
508 	pxw[14] = 0;
509 	pxw[15] = 0;
510 
511 	for (i = 0; i < 4; i++) {
512 		intel_uncore_write(uncore, PXW(i),
513 				   pxw[i * 4 + 0] << 24 |
514 				   pxw[i * 4 + 1] << 16 |
515 				   pxw[i * 4 + 2] <<  8 |
516 				   pxw[i * 4 + 3] <<  0);
517 	}
518 
519 	/* Adjust magic regs to magic values (more experimental results) */
520 	intel_uncore_write(uncore, OGW0, 0);
521 	intel_uncore_write(uncore, OGW1, 0);
522 	intel_uncore_write(uncore, EG0, 0x00007f00);
523 	intel_uncore_write(uncore, EG1, 0x0000000e);
524 	intel_uncore_write(uncore, EG2, 0x000e0000);
525 	intel_uncore_write(uncore, EG3, 0x68000300);
526 	intel_uncore_write(uncore, EG4, 0x42000000);
527 	intel_uncore_write(uncore, EG5, 0x00140031);
528 	intel_uncore_write(uncore, EG6, 0);
529 	intel_uncore_write(uncore, EG7, 0);
530 
531 	for (i = 0; i < 8; i++)
532 		intel_uncore_write(uncore, PXWL(i), 0);
533 
534 	/* Enable PMON + select events */
535 	intel_uncore_write(uncore, ECR, 0x80000019);
536 
537 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
538 }
539 
540 static bool gen5_rps_enable(struct intel_rps *rps)
541 {
542 	struct drm_i915_private *i915 = rps_to_i915(rps);
543 	struct intel_uncore *uncore = rps_to_uncore(rps);
544 	u8 fstart, vstart;
545 	u32 rgvmodectl;
546 
547 	spin_lock_irq(&mchdev_lock);
548 
549 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
550 
551 	/* Enable temp reporting */
552 	intel_uncore_write16(uncore, PMMISC,
553 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
554 	intel_uncore_write16(uncore, TSC1,
555 			     intel_uncore_read16(uncore, TSC1) | TSE);
556 
557 	/* 100ms RC evaluation intervals */
558 	intel_uncore_write(uncore, RCUPEI, 100000);
559 	intel_uncore_write(uncore, RCDNEI, 100000);
560 
561 	/* Set max/min thresholds to 90ms and 80ms respectively */
562 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
563 	intel_uncore_write(uncore, RCBMINAVG, 80000);
564 
565 	intel_uncore_write(uncore, MEMIHYST, 1);
566 
567 	/* Set up min, max, and cur for interrupt handling */
568 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
569 		MEMMODE_FSTART_SHIFT;
570 
571 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
572 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
573 
574 	intel_uncore_write(uncore,
575 			   MEMINTREN,
576 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
577 
578 	intel_uncore_write(uncore, VIDSTART, vstart);
579 	intel_uncore_posting_read(uncore, VIDSTART);
580 
581 	rgvmodectl |= MEMMODE_SWMODE_EN;
582 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
583 
584 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
585 			     MEMCTL_CMD_STS) == 0, 10))
586 		drm_err(&uncore->i915->drm,
587 			"stuck trying to change perf mode\n");
588 	mdelay(1);
589 
590 	__gen5_rps_set(rps, rps->cur_freq);
591 
592 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
593 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
594 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
595 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
596 
597 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
598 	rps->ips.last_time2 = ktime_get_raw_ns();
599 
600 	spin_lock(&i915->irq_lock);
601 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
602 	spin_unlock(&i915->irq_lock);
603 
604 	spin_unlock_irq(&mchdev_lock);
605 
606 	rps->ips.corr = init_emon(uncore);
607 
608 	return true;
609 }
610 
611 static void gen5_rps_disable(struct intel_rps *rps)
612 {
613 	struct drm_i915_private *i915 = rps_to_i915(rps);
614 	struct intel_uncore *uncore = rps_to_uncore(rps);
615 	u16 rgvswctl;
616 
617 	spin_lock_irq(&mchdev_lock);
618 
619 	spin_lock(&i915->irq_lock);
620 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
621 	spin_unlock(&i915->irq_lock);
622 
623 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
624 
625 	/* Ack interrupts, disable EFC interrupt */
626 	intel_uncore_write(uncore, MEMINTREN,
627 			   intel_uncore_read(uncore, MEMINTREN) &
628 			   ~MEMINT_EVAL_CHG_EN);
629 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
630 
631 	/* Go back to the starting frequency */
632 	__gen5_rps_set(rps, rps->idle_freq);
633 	mdelay(1);
634 	rgvswctl |= MEMCTL_CMD_STS;
635 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
636 	mdelay(1);
637 
638 	spin_unlock_irq(&mchdev_lock);
639 }
640 
641 static u32 rps_limits(struct intel_rps *rps, u8 val)
642 {
643 	u32 limits;
644 
645 	/*
646 	 * Only set the down limit when we've reached the lowest level to avoid
647 	 * getting more interrupts, otherwise leave this clear. This prevents a
648 	 * race in the hw when coming out of rc6: There's a tiny window where
649 	 * the hw runs at the minimal clock before selecting the desired
650 	 * frequency, if the down threshold expires in that window we will not
651 	 * receive a down interrupt.
652 	 */
653 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
654 		limits = rps->max_freq_softlimit << 23;
655 		if (val <= rps->min_freq_softlimit)
656 			limits |= rps->min_freq_softlimit << 14;
657 	} else {
658 		limits = rps->max_freq_softlimit << 24;
659 		if (val <= rps->min_freq_softlimit)
660 			limits |= rps->min_freq_softlimit << 16;
661 	}
662 
663 	return limits;
664 }
665 
666 static void rps_set_power(struct intel_rps *rps, int new_power)
667 {
668 	struct intel_gt *gt = rps_to_gt(rps);
669 	struct intel_uncore *uncore = gt->uncore;
670 	u32 threshold_up = 0, threshold_down = 0; /* in % */
671 	u32 ei_up = 0, ei_down = 0;
672 
673 	lockdep_assert_held(&rps->power.mutex);
674 
675 	if (new_power == rps->power.mode)
676 		return;
677 
678 	threshold_up = 95;
679 	threshold_down = 85;
680 
681 	/* Note the units here are not exactly 1us, but 1280ns. */
682 	switch (new_power) {
683 	case LOW_POWER:
684 		ei_up = 16000;
685 		ei_down = 32000;
686 		break;
687 
688 	case BETWEEN:
689 		ei_up = 13000;
690 		ei_down = 32000;
691 		break;
692 
693 	case HIGH_POWER:
694 		ei_up = 10000;
695 		ei_down = 32000;
696 		break;
697 	}
698 
699 	/* When byt can survive without system hang with dynamic
700 	 * sw freq adjustments, this restriction can be lifted.
701 	 */
702 	if (IS_VALLEYVIEW(gt->i915))
703 		goto skip_hw_write;
704 
705 	GT_TRACE(gt,
706 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
707 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
708 
709 	set(uncore, GEN6_RP_UP_EI,
710 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
711 	set(uncore, GEN6_RP_UP_THRESHOLD,
712 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
713 
714 	set(uncore, GEN6_RP_DOWN_EI,
715 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
716 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
717 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
718 
719 	set(uncore, GEN6_RP_CONTROL,
720 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
721 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
722 	    GEN6_RP_MEDIA_IS_GFX |
723 	    GEN6_RP_ENABLE |
724 	    GEN6_RP_UP_BUSY_AVG |
725 	    GEN6_RP_DOWN_IDLE_AVG);
726 
727 skip_hw_write:
728 	rps->power.mode = new_power;
729 	rps->power.up_threshold = threshold_up;
730 	rps->power.down_threshold = threshold_down;
731 }
732 
733 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
734 {
735 	int new_power;
736 
737 	new_power = rps->power.mode;
738 	switch (rps->power.mode) {
739 	case LOW_POWER:
740 		if (val > rps->efficient_freq + 1 &&
741 		    val > rps->cur_freq)
742 			new_power = BETWEEN;
743 		break;
744 
745 	case BETWEEN:
746 		if (val <= rps->efficient_freq &&
747 		    val < rps->cur_freq)
748 			new_power = LOW_POWER;
749 		else if (val >= rps->rp0_freq &&
750 			 val > rps->cur_freq)
751 			new_power = HIGH_POWER;
752 		break;
753 
754 	case HIGH_POWER:
755 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
756 		    val < rps->cur_freq)
757 			new_power = BETWEEN;
758 		break;
759 	}
760 	/* Max/min bins are special */
761 	if (val <= rps->min_freq_softlimit)
762 		new_power = LOW_POWER;
763 	if (val >= rps->max_freq_softlimit)
764 		new_power = HIGH_POWER;
765 
766 	mutex_lock(&rps->power.mutex);
767 	if (rps->power.interactive)
768 		new_power = HIGH_POWER;
769 	rps_set_power(rps, new_power);
770 	mutex_unlock(&rps->power.mutex);
771 }
772 
773 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
774 {
775 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
776 
777 	mutex_lock(&rps->power.mutex);
778 	if (interactive) {
779 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
780 			rps_set_power(rps, HIGH_POWER);
781 	} else {
782 		GEM_BUG_ON(!rps->power.interactive);
783 		rps->power.interactive--;
784 	}
785 	mutex_unlock(&rps->power.mutex);
786 }
787 
788 static int gen6_rps_set(struct intel_rps *rps, u8 val)
789 {
790 	struct intel_uncore *uncore = rps_to_uncore(rps);
791 	struct drm_i915_private *i915 = rps_to_i915(rps);
792 	u32 swreq;
793 
794 	GEM_BUG_ON(rps_uses_slpc(rps));
795 
796 	if (GRAPHICS_VER(i915) >= 9)
797 		swreq = GEN9_FREQUENCY(val);
798 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
799 		swreq = HSW_FREQUENCY(val);
800 	else
801 		swreq = (GEN6_FREQUENCY(val) |
802 			 GEN6_OFFSET(0) |
803 			 GEN6_AGGRESSIVE_TURBO);
804 	set(uncore, GEN6_RPNSWREQ, swreq);
805 
806 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
807 		 val, intel_gpu_freq(rps, val), swreq);
808 
809 	return 0;
810 }
811 
812 static int vlv_rps_set(struct intel_rps *rps, u8 val)
813 {
814 	struct drm_i915_private *i915 = rps_to_i915(rps);
815 	int err;
816 
817 	vlv_punit_get(i915);
818 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
819 	vlv_punit_put(i915);
820 
821 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
822 		 val, intel_gpu_freq(rps, val));
823 
824 	return err;
825 }
826 
827 static int rps_set(struct intel_rps *rps, u8 val, bool update)
828 {
829 	struct drm_i915_private *i915 = rps_to_i915(rps);
830 	int err;
831 
832 	if (val == rps->last_freq)
833 		return 0;
834 
835 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
836 		err = vlv_rps_set(rps, val);
837 	else if (GRAPHICS_VER(i915) >= 6)
838 		err = gen6_rps_set(rps, val);
839 	else
840 		err = gen5_rps_set(rps, val);
841 	if (err)
842 		return err;
843 
844 	if (update && GRAPHICS_VER(i915) >= 6)
845 		gen6_rps_set_thresholds(rps, val);
846 	rps->last_freq = val;
847 
848 	return 0;
849 }
850 
851 void intel_rps_unpark(struct intel_rps *rps)
852 {
853 	if (!intel_rps_is_enabled(rps))
854 		return;
855 
856 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
857 
858 	/*
859 	 * Use the user's desired frequency as a guide, but for better
860 	 * performance, jump directly to RPe as our starting frequency.
861 	 */
862 	mutex_lock(&rps->lock);
863 
864 	intel_rps_set_active(rps);
865 	intel_rps_set(rps,
866 		      clamp(rps->cur_freq,
867 			    rps->min_freq_softlimit,
868 			    rps->max_freq_softlimit));
869 
870 	mutex_unlock(&rps->lock);
871 
872 	rps->pm_iir = 0;
873 	if (intel_rps_has_interrupts(rps))
874 		rps_enable_interrupts(rps);
875 	if (intel_rps_uses_timer(rps))
876 		rps_start_timer(rps);
877 
878 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
879 		gen5_rps_update(rps);
880 }
881 
882 void intel_rps_park(struct intel_rps *rps)
883 {
884 	int adj;
885 
886 	if (!intel_rps_is_enabled(rps))
887 		return;
888 
889 	if (!intel_rps_clear_active(rps))
890 		return;
891 
892 	if (intel_rps_uses_timer(rps))
893 		rps_stop_timer(rps);
894 	if (intel_rps_has_interrupts(rps))
895 		rps_disable_interrupts(rps);
896 
897 	if (rps->last_freq <= rps->idle_freq)
898 		return;
899 
900 	/*
901 	 * The punit delays the write of the frequency and voltage until it
902 	 * determines the GPU is awake. During normal usage we don't want to
903 	 * waste power changing the frequency if the GPU is sleeping (rc6).
904 	 * However, the GPU and driver is now idle and we do not want to delay
905 	 * switching to minimum voltage (reducing power whilst idle) as we do
906 	 * not expect to be woken in the near future and so must flush the
907 	 * change by waking the device.
908 	 *
909 	 * We choose to take the media powerwell (either would do to trick the
910 	 * punit into committing the voltage change) as that takes a lot less
911 	 * power than the render powerwell.
912 	 */
913 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
914 	rps_set(rps, rps->idle_freq, false);
915 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
916 
917 	/*
918 	 * Since we will try and restart from the previously requested
919 	 * frequency on unparking, treat this idle point as a downclock
920 	 * interrupt and reduce the frequency for resume. If we park/unpark
921 	 * more frequently than the rps worker can run, we will not respond
922 	 * to any EI and never see a change in frequency.
923 	 *
924 	 * (Note we accommodate Cherryview's limitation of only using an
925 	 * even bin by applying it to all.)
926 	 */
927 	adj = rps->last_adj;
928 	if (adj < 0)
929 		adj *= 2;
930 	else /* CHV needs even encode values */
931 		adj = -2;
932 	rps->last_adj = adj;
933 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
934 	if (rps->cur_freq < rps->efficient_freq) {
935 		rps->cur_freq = rps->efficient_freq;
936 		rps->last_adj = 0;
937 	}
938 
939 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
940 }
941 
942 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
943 {
944 	struct intel_guc_slpc *slpc;
945 
946 	if (rps_uses_slpc(rps)) {
947 		slpc = rps_to_slpc(rps);
948 
949 		return slpc->boost_freq;
950 	} else {
951 		return intel_gpu_freq(rps, rps->boost_freq);
952 	}
953 }
954 
955 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
956 {
957 	bool boost = false;
958 
959 	/* Validate against (static) hardware limits */
960 	val = intel_freq_opcode(rps, val);
961 	if (val < rps->min_freq || val > rps->max_freq)
962 		return -EINVAL;
963 
964 	mutex_lock(&rps->lock);
965 	if (val != rps->boost_freq) {
966 		rps->boost_freq = val;
967 		boost = atomic_read(&rps->num_waiters);
968 	}
969 	mutex_unlock(&rps->lock);
970 	if (boost)
971 		schedule_work(&rps->work);
972 
973 	return 0;
974 }
975 
976 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
977 {
978 	struct intel_guc_slpc *slpc;
979 
980 	if (rps_uses_slpc(rps)) {
981 		slpc = rps_to_slpc(rps);
982 
983 		return intel_guc_slpc_set_boost_freq(slpc, freq);
984 	} else {
985 		return rps_set_boost_freq(rps, freq);
986 	}
987 }
988 
989 void intel_rps_dec_waiters(struct intel_rps *rps)
990 {
991 	struct intel_guc_slpc *slpc;
992 
993 	if (rps_uses_slpc(rps)) {
994 		slpc = rps_to_slpc(rps);
995 
996 		intel_guc_slpc_dec_waiters(slpc);
997 	} else {
998 		atomic_dec(&rps->num_waiters);
999 	}
1000 }
1001 
1002 void intel_rps_boost(struct i915_request *rq)
1003 {
1004 	struct intel_guc_slpc *slpc;
1005 
1006 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1007 		return;
1008 
1009 	/* Serializes with i915_request_retire() */
1010 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1011 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1012 
1013 		if (rps_uses_slpc(rps)) {
1014 			slpc = rps_to_slpc(rps);
1015 
1016 			/* Return if old value is non zero */
1017 			if (!atomic_fetch_inc(&slpc->num_waiters))
1018 				schedule_work(&slpc->boost_work);
1019 
1020 			return;
1021 		}
1022 
1023 		if (atomic_fetch_inc(&rps->num_waiters))
1024 			return;
1025 
1026 		if (!intel_rps_is_active(rps))
1027 			return;
1028 
1029 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1030 			 rq->fence.context, rq->fence.seqno);
1031 
1032 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1033 			schedule_work(&rps->work);
1034 
1035 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1036 	}
1037 }
1038 
1039 int intel_rps_set(struct intel_rps *rps, u8 val)
1040 {
1041 	int err;
1042 
1043 	lockdep_assert_held(&rps->lock);
1044 	GEM_BUG_ON(val > rps->max_freq);
1045 	GEM_BUG_ON(val < rps->min_freq);
1046 
1047 	if (intel_rps_is_active(rps)) {
1048 		err = rps_set(rps, val, true);
1049 		if (err)
1050 			return err;
1051 
1052 		/*
1053 		 * Make sure we continue to get interrupts
1054 		 * until we hit the minimum or maximum frequencies.
1055 		 */
1056 		if (intel_rps_has_interrupts(rps)) {
1057 			struct intel_uncore *uncore = rps_to_uncore(rps);
1058 
1059 			set(uncore,
1060 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1061 
1062 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1063 		}
1064 	}
1065 
1066 	rps->cur_freq = val;
1067 	return 0;
1068 }
1069 
1070 static void gen6_rps_init(struct intel_rps *rps)
1071 {
1072 	struct drm_i915_private *i915 = rps_to_i915(rps);
1073 	u32 rp_state_cap = intel_rps_read_state_cap(rps);
1074 
1075 	/* All of these values are in units of 50MHz */
1076 
1077 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1078 	if (IS_GEN9_LP(i915)) {
1079 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1080 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1081 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
1082 	} else {
1083 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1084 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1085 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
1086 	}
1087 
1088 	/* hw_max = RP0 until we check for overclocking */
1089 	rps->max_freq = rps->rp0_freq;
1090 
1091 	rps->efficient_freq = rps->rp1_freq;
1092 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1093 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1094 		u32 ddcc_status = 0;
1095 
1096 		if (snb_pcode_read(i915, HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1097 				   &ddcc_status, NULL) == 0)
1098 			rps->efficient_freq =
1099 				clamp_t(u8,
1100 					(ddcc_status >> 8) & 0xff,
1101 					rps->min_freq,
1102 					rps->max_freq);
1103 	}
1104 
1105 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1106 		/* Store the frequency values in 16.66 MHZ units, which is
1107 		 * the natural hardware unit for SKL
1108 		 */
1109 		rps->rp0_freq *= GEN9_FREQ_SCALER;
1110 		rps->rp1_freq *= GEN9_FREQ_SCALER;
1111 		rps->min_freq *= GEN9_FREQ_SCALER;
1112 		rps->max_freq *= GEN9_FREQ_SCALER;
1113 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1114 	}
1115 }
1116 
1117 static bool rps_reset(struct intel_rps *rps)
1118 {
1119 	struct drm_i915_private *i915 = rps_to_i915(rps);
1120 
1121 	/* force a reset */
1122 	rps->power.mode = -1;
1123 	rps->last_freq = -1;
1124 
1125 	if (rps_set(rps, rps->min_freq, true)) {
1126 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1127 		return false;
1128 	}
1129 
1130 	rps->cur_freq = rps->min_freq;
1131 	return true;
1132 }
1133 
1134 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1135 static bool gen9_rps_enable(struct intel_rps *rps)
1136 {
1137 	struct intel_gt *gt = rps_to_gt(rps);
1138 	struct intel_uncore *uncore = gt->uncore;
1139 
1140 	/* Program defaults and thresholds for RPS */
1141 	if (GRAPHICS_VER(gt->i915) == 9)
1142 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1143 				      GEN9_FREQUENCY(rps->rp1_freq));
1144 
1145 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1146 
1147 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1148 
1149 	return rps_reset(rps);
1150 }
1151 
1152 static bool gen8_rps_enable(struct intel_rps *rps)
1153 {
1154 	struct intel_uncore *uncore = rps_to_uncore(rps);
1155 
1156 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1157 			      HSW_FREQUENCY(rps->rp1_freq));
1158 
1159 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1160 
1161 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1162 
1163 	return rps_reset(rps);
1164 }
1165 
1166 static bool gen6_rps_enable(struct intel_rps *rps)
1167 {
1168 	struct intel_uncore *uncore = rps_to_uncore(rps);
1169 
1170 	/* Power down if completely idle for over 50ms */
1171 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1172 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1173 
1174 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1175 			  GEN6_PM_RP_DOWN_THRESHOLD |
1176 			  GEN6_PM_RP_DOWN_TIMEOUT);
1177 
1178 	return rps_reset(rps);
1179 }
1180 
1181 static int chv_rps_max_freq(struct intel_rps *rps)
1182 {
1183 	struct drm_i915_private *i915 = rps_to_i915(rps);
1184 	struct intel_gt *gt = rps_to_gt(rps);
1185 	u32 val;
1186 
1187 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1188 
1189 	switch (gt->info.sseu.eu_total) {
1190 	case 8:
1191 		/* (2 * 4) config */
1192 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1193 		break;
1194 	case 12:
1195 		/* (2 * 6) config */
1196 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1197 		break;
1198 	case 16:
1199 		/* (2 * 8) config */
1200 	default:
1201 		/* Setting (2 * 8) Min RP0 for any other combination */
1202 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1203 		break;
1204 	}
1205 
1206 	return val & FB_GFX_FREQ_FUSE_MASK;
1207 }
1208 
1209 static int chv_rps_rpe_freq(struct intel_rps *rps)
1210 {
1211 	struct drm_i915_private *i915 = rps_to_i915(rps);
1212 	u32 val;
1213 
1214 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1215 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1216 
1217 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1218 }
1219 
1220 static int chv_rps_guar_freq(struct intel_rps *rps)
1221 {
1222 	struct drm_i915_private *i915 = rps_to_i915(rps);
1223 	u32 val;
1224 
1225 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1226 
1227 	return val & FB_GFX_FREQ_FUSE_MASK;
1228 }
1229 
1230 static u32 chv_rps_min_freq(struct intel_rps *rps)
1231 {
1232 	struct drm_i915_private *i915 = rps_to_i915(rps);
1233 	u32 val;
1234 
1235 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1236 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1237 
1238 	return val & FB_GFX_FREQ_FUSE_MASK;
1239 }
1240 
1241 static bool chv_rps_enable(struct intel_rps *rps)
1242 {
1243 	struct intel_uncore *uncore = rps_to_uncore(rps);
1244 	struct drm_i915_private *i915 = rps_to_i915(rps);
1245 	u32 val;
1246 
1247 	/* 1: Program defaults and thresholds for RPS*/
1248 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1249 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1250 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1251 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1252 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1253 
1254 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1255 
1256 	/* 2: Enable RPS */
1257 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1258 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1259 			      GEN6_RP_MEDIA_IS_GFX |
1260 			      GEN6_RP_ENABLE |
1261 			      GEN6_RP_UP_BUSY_AVG |
1262 			      GEN6_RP_DOWN_IDLE_AVG);
1263 
1264 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1265 			  GEN6_PM_RP_DOWN_THRESHOLD |
1266 			  GEN6_PM_RP_DOWN_TIMEOUT);
1267 
1268 	/* Setting Fixed Bias */
1269 	vlv_punit_get(i915);
1270 
1271 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1272 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1273 
1274 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1275 
1276 	vlv_punit_put(i915);
1277 
1278 	/* RPS code assumes GPLL is used */
1279 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1280 		      "GPLL not enabled\n");
1281 
1282 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1283 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1284 
1285 	return rps_reset(rps);
1286 }
1287 
1288 static int vlv_rps_guar_freq(struct intel_rps *rps)
1289 {
1290 	struct drm_i915_private *i915 = rps_to_i915(rps);
1291 	u32 val, rp1;
1292 
1293 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1294 
1295 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1296 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1297 
1298 	return rp1;
1299 }
1300 
1301 static int vlv_rps_max_freq(struct intel_rps *rps)
1302 {
1303 	struct drm_i915_private *i915 = rps_to_i915(rps);
1304 	u32 val, rp0;
1305 
1306 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1307 
1308 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1309 	/* Clamp to max */
1310 	rp0 = min_t(u32, rp0, 0xea);
1311 
1312 	return rp0;
1313 }
1314 
1315 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1316 {
1317 	struct drm_i915_private *i915 = rps_to_i915(rps);
1318 	u32 val, rpe;
1319 
1320 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1321 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1322 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1323 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1324 
1325 	return rpe;
1326 }
1327 
1328 static int vlv_rps_min_freq(struct intel_rps *rps)
1329 {
1330 	struct drm_i915_private *i915 = rps_to_i915(rps);
1331 	u32 val;
1332 
1333 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1334 	/*
1335 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1336 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1337 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1338 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1339 	 * to make sure it matches what Punit accepts.
1340 	 */
1341 	return max_t(u32, val, 0xc0);
1342 }
1343 
1344 static bool vlv_rps_enable(struct intel_rps *rps)
1345 {
1346 	struct intel_uncore *uncore = rps_to_uncore(rps);
1347 	struct drm_i915_private *i915 = rps_to_i915(rps);
1348 	u32 val;
1349 
1350 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1351 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1352 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1353 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1354 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1355 
1356 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1357 
1358 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1359 			      GEN6_RP_MEDIA_TURBO |
1360 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1361 			      GEN6_RP_MEDIA_IS_GFX |
1362 			      GEN6_RP_ENABLE |
1363 			      GEN6_RP_UP_BUSY_AVG |
1364 			      GEN6_RP_DOWN_IDLE_CONT);
1365 
1366 	/* WaGsvRC0ResidencyMethod:vlv */
1367 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1368 
1369 	vlv_punit_get(i915);
1370 
1371 	/* Setting Fixed Bias */
1372 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1373 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1374 
1375 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1376 
1377 	vlv_punit_put(i915);
1378 
1379 	/* RPS code assumes GPLL is used */
1380 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1381 		      "GPLL not enabled\n");
1382 
1383 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1384 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1385 
1386 	return rps_reset(rps);
1387 }
1388 
1389 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1390 {
1391 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1392 	struct intel_uncore *uncore = rps_to_uncore(rps);
1393 	unsigned int t, state1, state2;
1394 	u32 pxvid, ext_v;
1395 	u64 corr, corr2;
1396 
1397 	lockdep_assert_held(&mchdev_lock);
1398 
1399 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1400 	pxvid = (pxvid >> 24) & 0x7f;
1401 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1402 
1403 	state1 = ext_v;
1404 
1405 	/* Revel in the empirically derived constants */
1406 
1407 	/* Correction factor in 1/100000 units */
1408 	t = ips_mch_val(uncore);
1409 	if (t > 80)
1410 		corr = t * 2349 + 135940;
1411 	else if (t >= 50)
1412 		corr = t * 964 + 29317;
1413 	else /* < 50 */
1414 		corr = t * 301 + 1004;
1415 
1416 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1417 	corr2 = div_u64(corr, 100000) * ips->corr;
1418 
1419 	state2 = div_u64(corr2 * state1, 10000);
1420 	state2 /= 100; /* convert to mW */
1421 
1422 	__gen5_ips_update(ips);
1423 
1424 	return ips->gfx_power + state2;
1425 }
1426 
1427 static bool has_busy_stats(struct intel_rps *rps)
1428 {
1429 	struct intel_engine_cs *engine;
1430 	enum intel_engine_id id;
1431 
1432 	for_each_engine(engine, rps_to_gt(rps), id) {
1433 		if (!intel_engine_supports_stats(engine))
1434 			return false;
1435 	}
1436 
1437 	return true;
1438 }
1439 
1440 void intel_rps_enable(struct intel_rps *rps)
1441 {
1442 	struct drm_i915_private *i915 = rps_to_i915(rps);
1443 	struct intel_uncore *uncore = rps_to_uncore(rps);
1444 	bool enabled = false;
1445 
1446 	if (!HAS_RPS(i915))
1447 		return;
1448 
1449 	if (rps_uses_slpc(rps))
1450 		return;
1451 
1452 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1453 
1454 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1455 	if (rps->max_freq <= rps->min_freq)
1456 		/* leave disabled, no room for dynamic reclocking */;
1457 	else if (IS_CHERRYVIEW(i915))
1458 		enabled = chv_rps_enable(rps);
1459 	else if (IS_VALLEYVIEW(i915))
1460 		enabled = vlv_rps_enable(rps);
1461 	else if (GRAPHICS_VER(i915) >= 9)
1462 		enabled = gen9_rps_enable(rps);
1463 	else if (GRAPHICS_VER(i915) >= 8)
1464 		enabled = gen8_rps_enable(rps);
1465 	else if (GRAPHICS_VER(i915) >= 6)
1466 		enabled = gen6_rps_enable(rps);
1467 	else if (IS_IRONLAKE_M(i915))
1468 		enabled = gen5_rps_enable(rps);
1469 	else
1470 		MISSING_CASE(GRAPHICS_VER(i915));
1471 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1472 	if (!enabled)
1473 		return;
1474 
1475 	GT_TRACE(rps_to_gt(rps),
1476 		 "min:%x, max:%x, freq:[%d, %d]\n",
1477 		 rps->min_freq, rps->max_freq,
1478 		 intel_gpu_freq(rps, rps->min_freq),
1479 		 intel_gpu_freq(rps, rps->max_freq));
1480 
1481 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1482 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1483 
1484 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1485 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1486 
1487 	if (has_busy_stats(rps))
1488 		intel_rps_set_timer(rps);
1489 	else if (GRAPHICS_VER(i915) >= 6)
1490 		intel_rps_set_interrupts(rps);
1491 	else
1492 		/* Ironlake currently uses intel_ips.ko */ {}
1493 
1494 	intel_rps_set_enabled(rps);
1495 }
1496 
1497 static void gen6_rps_disable(struct intel_rps *rps)
1498 {
1499 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1500 }
1501 
1502 void intel_rps_disable(struct intel_rps *rps)
1503 {
1504 	struct drm_i915_private *i915 = rps_to_i915(rps);
1505 
1506 	intel_rps_clear_enabled(rps);
1507 	intel_rps_clear_interrupts(rps);
1508 	intel_rps_clear_timer(rps);
1509 
1510 	if (GRAPHICS_VER(i915) >= 6)
1511 		gen6_rps_disable(rps);
1512 	else if (IS_IRONLAKE_M(i915))
1513 		gen5_rps_disable(rps);
1514 }
1515 
1516 static int byt_gpu_freq(struct intel_rps *rps, int val)
1517 {
1518 	/*
1519 	 * N = val - 0xb7
1520 	 * Slow = Fast = GPLL ref * N
1521 	 */
1522 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1523 }
1524 
1525 static int byt_freq_opcode(struct intel_rps *rps, int val)
1526 {
1527 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1528 }
1529 
1530 static int chv_gpu_freq(struct intel_rps *rps, int val)
1531 {
1532 	/*
1533 	 * N = val / 2
1534 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1535 	 */
1536 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1537 }
1538 
1539 static int chv_freq_opcode(struct intel_rps *rps, int val)
1540 {
1541 	/* CHV needs even values */
1542 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1543 }
1544 
1545 int intel_gpu_freq(struct intel_rps *rps, int val)
1546 {
1547 	struct drm_i915_private *i915 = rps_to_i915(rps);
1548 
1549 	if (GRAPHICS_VER(i915) >= 9)
1550 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1551 					 GEN9_FREQ_SCALER);
1552 	else if (IS_CHERRYVIEW(i915))
1553 		return chv_gpu_freq(rps, val);
1554 	else if (IS_VALLEYVIEW(i915))
1555 		return byt_gpu_freq(rps, val);
1556 	else if (GRAPHICS_VER(i915) >= 6)
1557 		return val * GT_FREQUENCY_MULTIPLIER;
1558 	else
1559 		return val;
1560 }
1561 
1562 int intel_freq_opcode(struct intel_rps *rps, int val)
1563 {
1564 	struct drm_i915_private *i915 = rps_to_i915(rps);
1565 
1566 	if (GRAPHICS_VER(i915) >= 9)
1567 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1568 					 GT_FREQUENCY_MULTIPLIER);
1569 	else if (IS_CHERRYVIEW(i915))
1570 		return chv_freq_opcode(rps, val);
1571 	else if (IS_VALLEYVIEW(i915))
1572 		return byt_freq_opcode(rps, val);
1573 	else if (GRAPHICS_VER(i915) >= 6)
1574 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1575 	else
1576 		return val;
1577 }
1578 
1579 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1580 {
1581 	struct drm_i915_private *i915 = rps_to_i915(rps);
1582 
1583 	rps->gpll_ref_freq =
1584 		vlv_get_cck_clock(i915, "GPLL ref",
1585 				  CCK_GPLL_CLOCK_CONTROL,
1586 				  i915->czclk_freq);
1587 
1588 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1589 		rps->gpll_ref_freq);
1590 }
1591 
1592 static void vlv_rps_init(struct intel_rps *rps)
1593 {
1594 	struct drm_i915_private *i915 = rps_to_i915(rps);
1595 	u32 val;
1596 
1597 	vlv_iosf_sb_get(i915,
1598 			BIT(VLV_IOSF_SB_PUNIT) |
1599 			BIT(VLV_IOSF_SB_NC) |
1600 			BIT(VLV_IOSF_SB_CCK));
1601 
1602 	vlv_init_gpll_ref_freq(rps);
1603 
1604 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1605 	switch ((val >> 6) & 3) {
1606 	case 0:
1607 	case 1:
1608 		i915->mem_freq = 800;
1609 		break;
1610 	case 2:
1611 		i915->mem_freq = 1066;
1612 		break;
1613 	case 3:
1614 		i915->mem_freq = 1333;
1615 		break;
1616 	}
1617 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1618 
1619 	rps->max_freq = vlv_rps_max_freq(rps);
1620 	rps->rp0_freq = rps->max_freq;
1621 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1622 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1623 
1624 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1625 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1626 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1627 
1628 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1629 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1630 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1631 
1632 	rps->min_freq = vlv_rps_min_freq(rps);
1633 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1634 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1635 
1636 	vlv_iosf_sb_put(i915,
1637 			BIT(VLV_IOSF_SB_PUNIT) |
1638 			BIT(VLV_IOSF_SB_NC) |
1639 			BIT(VLV_IOSF_SB_CCK));
1640 }
1641 
1642 static void chv_rps_init(struct intel_rps *rps)
1643 {
1644 	struct drm_i915_private *i915 = rps_to_i915(rps);
1645 	u32 val;
1646 
1647 	vlv_iosf_sb_get(i915,
1648 			BIT(VLV_IOSF_SB_PUNIT) |
1649 			BIT(VLV_IOSF_SB_NC) |
1650 			BIT(VLV_IOSF_SB_CCK));
1651 
1652 	vlv_init_gpll_ref_freq(rps);
1653 
1654 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1655 
1656 	switch ((val >> 2) & 0x7) {
1657 	case 3:
1658 		i915->mem_freq = 2000;
1659 		break;
1660 	default:
1661 		i915->mem_freq = 1600;
1662 		break;
1663 	}
1664 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1665 
1666 	rps->max_freq = chv_rps_max_freq(rps);
1667 	rps->rp0_freq = rps->max_freq;
1668 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1669 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1670 
1671 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1672 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1673 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1674 
1675 	rps->rp1_freq = chv_rps_guar_freq(rps);
1676 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1677 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1678 
1679 	rps->min_freq = chv_rps_min_freq(rps);
1680 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1681 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1682 
1683 	vlv_iosf_sb_put(i915,
1684 			BIT(VLV_IOSF_SB_PUNIT) |
1685 			BIT(VLV_IOSF_SB_NC) |
1686 			BIT(VLV_IOSF_SB_CCK));
1687 
1688 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1689 				   rps->rp1_freq | rps->min_freq) & 1,
1690 		      "Odd GPU freq values\n");
1691 }
1692 
1693 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1694 {
1695 	ei->ktime = ktime_get_raw();
1696 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1697 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1698 }
1699 
1700 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1701 {
1702 	struct intel_uncore *uncore = rps_to_uncore(rps);
1703 	const struct intel_rps_ei *prev = &rps->ei;
1704 	struct intel_rps_ei now;
1705 	u32 events = 0;
1706 
1707 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1708 		return 0;
1709 
1710 	vlv_c0_read(uncore, &now);
1711 
1712 	if (prev->ktime) {
1713 		u64 time, c0;
1714 		u32 render, media;
1715 
1716 		time = ktime_us_delta(now.ktime, prev->ktime);
1717 
1718 		time *= rps_to_i915(rps)->czclk_freq;
1719 
1720 		/* Workload can be split between render + media,
1721 		 * e.g. SwapBuffers being blitted in X after being rendered in
1722 		 * mesa. To account for this we need to combine both engines
1723 		 * into our activity counter.
1724 		 */
1725 		render = now.render_c0 - prev->render_c0;
1726 		media = now.media_c0 - prev->media_c0;
1727 		c0 = max(render, media);
1728 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1729 
1730 		if (c0 > time * rps->power.up_threshold)
1731 			events = GEN6_PM_RP_UP_THRESHOLD;
1732 		else if (c0 < time * rps->power.down_threshold)
1733 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1734 	}
1735 
1736 	rps->ei = now;
1737 	return events;
1738 }
1739 
1740 static void rps_work(struct work_struct *work)
1741 {
1742 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1743 	struct intel_gt *gt = rps_to_gt(rps);
1744 	struct drm_i915_private *i915 = rps_to_i915(rps);
1745 	bool client_boost = false;
1746 	int new_freq, adj, min, max;
1747 	u32 pm_iir = 0;
1748 
1749 	spin_lock_irq(&gt->irq_lock);
1750 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1751 	client_boost = atomic_read(&rps->num_waiters);
1752 	spin_unlock_irq(&gt->irq_lock);
1753 
1754 	/* Make sure we didn't queue anything we're not going to process. */
1755 	if (!pm_iir && !client_boost)
1756 		goto out;
1757 
1758 	mutex_lock(&rps->lock);
1759 	if (!intel_rps_is_active(rps)) {
1760 		mutex_unlock(&rps->lock);
1761 		return;
1762 	}
1763 
1764 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1765 
1766 	adj = rps->last_adj;
1767 	new_freq = rps->cur_freq;
1768 	min = rps->min_freq_softlimit;
1769 	max = rps->max_freq_softlimit;
1770 	if (client_boost)
1771 		max = rps->max_freq;
1772 
1773 	GT_TRACE(gt,
1774 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1775 		 pm_iir, yesno(client_boost),
1776 		 adj, new_freq, min, max);
1777 
1778 	if (client_boost && new_freq < rps->boost_freq) {
1779 		new_freq = rps->boost_freq;
1780 		adj = 0;
1781 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1782 		if (adj > 0)
1783 			adj *= 2;
1784 		else /* CHV needs even encode values */
1785 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1786 
1787 		if (new_freq >= rps->max_freq_softlimit)
1788 			adj = 0;
1789 	} else if (client_boost) {
1790 		adj = 0;
1791 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1792 		if (rps->cur_freq > rps->efficient_freq)
1793 			new_freq = rps->efficient_freq;
1794 		else if (rps->cur_freq > rps->min_freq_softlimit)
1795 			new_freq = rps->min_freq_softlimit;
1796 		adj = 0;
1797 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1798 		if (adj < 0)
1799 			adj *= 2;
1800 		else /* CHV needs even encode values */
1801 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1802 
1803 		if (new_freq <= rps->min_freq_softlimit)
1804 			adj = 0;
1805 	} else { /* unknown event */
1806 		adj = 0;
1807 	}
1808 
1809 	/*
1810 	 * sysfs frequency limits may have snuck in while
1811 	 * servicing the interrupt
1812 	 */
1813 	new_freq += adj;
1814 	new_freq = clamp_t(int, new_freq, min, max);
1815 
1816 	if (intel_rps_set(rps, new_freq)) {
1817 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1818 		adj = 0;
1819 	}
1820 	rps->last_adj = adj;
1821 
1822 	mutex_unlock(&rps->lock);
1823 
1824 out:
1825 	spin_lock_irq(&gt->irq_lock);
1826 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1827 	spin_unlock_irq(&gt->irq_lock);
1828 }
1829 
1830 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1831 {
1832 	struct intel_gt *gt = rps_to_gt(rps);
1833 	const u32 events = rps->pm_events & pm_iir;
1834 
1835 	lockdep_assert_held(&gt->irq_lock);
1836 
1837 	if (unlikely(!events))
1838 		return;
1839 
1840 	GT_TRACE(gt, "irq events:%x\n", events);
1841 
1842 	gen6_gt_pm_mask_irq(gt, events);
1843 
1844 	rps->pm_iir |= events;
1845 	schedule_work(&rps->work);
1846 }
1847 
1848 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1849 {
1850 	struct intel_gt *gt = rps_to_gt(rps);
1851 	u32 events;
1852 
1853 	events = pm_iir & rps->pm_events;
1854 	if (events) {
1855 		spin_lock(&gt->irq_lock);
1856 
1857 		GT_TRACE(gt, "irq events:%x\n", events);
1858 
1859 		gen6_gt_pm_mask_irq(gt, events);
1860 		rps->pm_iir |= events;
1861 
1862 		schedule_work(&rps->work);
1863 		spin_unlock(&gt->irq_lock);
1864 	}
1865 
1866 	if (GRAPHICS_VER(gt->i915) >= 8)
1867 		return;
1868 
1869 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1870 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1871 
1872 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1873 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1874 }
1875 
1876 void gen5_rps_irq_handler(struct intel_rps *rps)
1877 {
1878 	struct intel_uncore *uncore = rps_to_uncore(rps);
1879 	u32 busy_up, busy_down, max_avg, min_avg;
1880 	u8 new_freq;
1881 
1882 	spin_lock(&mchdev_lock);
1883 
1884 	intel_uncore_write16(uncore,
1885 			     MEMINTRSTS,
1886 			     intel_uncore_read(uncore, MEMINTRSTS));
1887 
1888 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1889 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1890 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1891 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1892 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1893 
1894 	/* Handle RCS change request from hw */
1895 	new_freq = rps->cur_freq;
1896 	if (busy_up > max_avg)
1897 		new_freq++;
1898 	else if (busy_down < min_avg)
1899 		new_freq--;
1900 	new_freq = clamp(new_freq,
1901 			 rps->min_freq_softlimit,
1902 			 rps->max_freq_softlimit);
1903 
1904 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1905 		rps->cur_freq = new_freq;
1906 
1907 	spin_unlock(&mchdev_lock);
1908 }
1909 
1910 void intel_rps_init_early(struct intel_rps *rps)
1911 {
1912 	mutex_init(&rps->lock);
1913 	mutex_init(&rps->power.mutex);
1914 
1915 	INIT_WORK(&rps->work, rps_work);
1916 	timer_setup(&rps->timer, rps_timer, 0);
1917 
1918 	atomic_set(&rps->num_waiters, 0);
1919 }
1920 
1921 void intel_rps_init(struct intel_rps *rps)
1922 {
1923 	struct drm_i915_private *i915 = rps_to_i915(rps);
1924 
1925 	if (rps_uses_slpc(rps))
1926 		return;
1927 
1928 	if (IS_CHERRYVIEW(i915))
1929 		chv_rps_init(rps);
1930 	else if (IS_VALLEYVIEW(i915))
1931 		vlv_rps_init(rps);
1932 	else if (GRAPHICS_VER(i915) >= 6)
1933 		gen6_rps_init(rps);
1934 	else if (IS_IRONLAKE_M(i915))
1935 		gen5_rps_init(rps);
1936 
1937 	/* Derive initial user preferences/limits from the hardware limits */
1938 	rps->max_freq_softlimit = rps->max_freq;
1939 	rps->min_freq_softlimit = rps->min_freq;
1940 
1941 	/* After setting max-softlimit, find the overclock max freq */
1942 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1943 		u32 params = 0;
1944 
1945 		snb_pcode_read(i915, GEN6_READ_OC_PARAMS, &params, NULL);
1946 		if (params & BIT(31)) { /* OC supported */
1947 			drm_dbg(&i915->drm,
1948 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1949 				(rps->max_freq & 0xff) * 50,
1950 				(params & 0xff) * 50);
1951 			rps->max_freq = params & 0xff;
1952 		}
1953 	}
1954 
1955 	/* Finally allow us to boost to max by default */
1956 	rps->boost_freq = rps->max_freq;
1957 	rps->idle_freq = rps->min_freq;
1958 
1959 	/* Start in the middle, from here we will autotune based on workload */
1960 	rps->cur_freq = rps->efficient_freq;
1961 
1962 	rps->pm_intrmsk_mbz = 0;
1963 
1964 	/*
1965 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1966 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1967 	 *
1968 	 * TODO: verify if this can be reproduced on VLV,CHV.
1969 	 */
1970 	if (GRAPHICS_VER(i915) <= 7)
1971 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1972 
1973 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
1974 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1975 
1976 	/* GuC needs ARAT expired interrupt unmasked */
1977 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
1978 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1979 }
1980 
1981 void intel_rps_sanitize(struct intel_rps *rps)
1982 {
1983 	if (rps_uses_slpc(rps))
1984 		return;
1985 
1986 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
1987 		rps_disable_interrupts(rps);
1988 }
1989 
1990 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1991 {
1992 	struct drm_i915_private *i915 = rps_to_i915(rps);
1993 	u32 cagf;
1994 
1995 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1996 		cagf = (rpstat >> 8) & 0xff;
1997 	else if (GRAPHICS_VER(i915) >= 9)
1998 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1999 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2000 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
2001 	else if (GRAPHICS_VER(i915) >= 6)
2002 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
2003 	else
2004 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
2005 					MEMSTAT_PSTATE_SHIFT);
2006 
2007 	return cagf;
2008 }
2009 
2010 static u32 read_cagf(struct intel_rps *rps)
2011 {
2012 	struct drm_i915_private *i915 = rps_to_i915(rps);
2013 	struct intel_uncore *uncore = rps_to_uncore(rps);
2014 	u32 freq;
2015 
2016 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2017 		vlv_punit_get(i915);
2018 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2019 		vlv_punit_put(i915);
2020 	} else if (GRAPHICS_VER(i915) >= 6) {
2021 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
2022 	} else {
2023 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
2024 	}
2025 
2026 	return intel_rps_get_cagf(rps, freq);
2027 }
2028 
2029 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2030 {
2031 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2032 	intel_wakeref_t wakeref;
2033 	u32 freq = 0;
2034 
2035 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2036 		freq = intel_gpu_freq(rps, read_cagf(rps));
2037 
2038 	return freq;
2039 }
2040 
2041 u32 intel_rps_read_punit_req(struct intel_rps *rps)
2042 {
2043 	struct intel_uncore *uncore = rps_to_uncore(rps);
2044 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2045 	intel_wakeref_t wakeref;
2046 	u32 freq = 0;
2047 
2048 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2049 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2050 
2051 	return freq;
2052 }
2053 
2054 static u32 intel_rps_get_req(u32 pureq)
2055 {
2056 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2057 
2058 	return req;
2059 }
2060 
2061 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2062 {
2063 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2064 
2065 	return intel_gpu_freq(rps, freq);
2066 }
2067 
2068 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2069 {
2070 	if (rps_uses_slpc(rps))
2071 		return intel_rps_read_punit_req_frequency(rps);
2072 	else
2073 		return intel_gpu_freq(rps, rps->cur_freq);
2074 }
2075 
2076 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2077 {
2078 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2079 
2080 	if (rps_uses_slpc(rps))
2081 		return slpc->max_freq_softlimit;
2082 	else
2083 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2084 }
2085 
2086 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2087 {
2088 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2089 
2090 	if (rps_uses_slpc(rps))
2091 		return slpc->rp0_freq;
2092 	else
2093 		return intel_gpu_freq(rps, rps->rp0_freq);
2094 }
2095 
2096 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2097 {
2098 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2099 
2100 	if (rps_uses_slpc(rps))
2101 		return slpc->rp1_freq;
2102 	else
2103 		return intel_gpu_freq(rps, rps->rp1_freq);
2104 }
2105 
2106 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2107 {
2108 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2109 
2110 	if (rps_uses_slpc(rps))
2111 		return slpc->min_freq;
2112 	else
2113 		return intel_gpu_freq(rps, rps->min_freq);
2114 }
2115 
2116 static int set_max_freq(struct intel_rps *rps, u32 val)
2117 {
2118 	struct drm_i915_private *i915 = rps_to_i915(rps);
2119 	int ret = 0;
2120 
2121 	mutex_lock(&rps->lock);
2122 
2123 	val = intel_freq_opcode(rps, val);
2124 	if (val < rps->min_freq ||
2125 	    val > rps->max_freq ||
2126 	    val < rps->min_freq_softlimit) {
2127 		ret = -EINVAL;
2128 		goto unlock;
2129 	}
2130 
2131 	if (val > rps->rp0_freq)
2132 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2133 			intel_gpu_freq(rps, val));
2134 
2135 	rps->max_freq_softlimit = val;
2136 
2137 	val = clamp_t(int, rps->cur_freq,
2138 		      rps->min_freq_softlimit,
2139 		      rps->max_freq_softlimit);
2140 
2141 	/*
2142 	 * We still need *_set_rps to process the new max_delay and
2143 	 * update the interrupt limits and PMINTRMSK even though
2144 	 * frequency request may be unchanged.
2145 	 */
2146 	intel_rps_set(rps, val);
2147 
2148 unlock:
2149 	mutex_unlock(&rps->lock);
2150 
2151 	return ret;
2152 }
2153 
2154 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2155 {
2156 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2157 
2158 	if (rps_uses_slpc(rps))
2159 		return intel_guc_slpc_set_max_freq(slpc, val);
2160 	else
2161 		return set_max_freq(rps, val);
2162 }
2163 
2164 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2165 {
2166 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2167 
2168 	if (rps_uses_slpc(rps))
2169 		return slpc->min_freq_softlimit;
2170 	else
2171 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2172 }
2173 
2174 static int set_min_freq(struct intel_rps *rps, u32 val)
2175 {
2176 	int ret = 0;
2177 
2178 	mutex_lock(&rps->lock);
2179 
2180 	val = intel_freq_opcode(rps, val);
2181 	if (val < rps->min_freq ||
2182 	    val > rps->max_freq ||
2183 	    val > rps->max_freq_softlimit) {
2184 		ret = -EINVAL;
2185 		goto unlock;
2186 	}
2187 
2188 	rps->min_freq_softlimit = val;
2189 
2190 	val = clamp_t(int, rps->cur_freq,
2191 		      rps->min_freq_softlimit,
2192 		      rps->max_freq_softlimit);
2193 
2194 	/*
2195 	 * We still need *_set_rps to process the new min_delay and
2196 	 * update the interrupt limits and PMINTRMSK even though
2197 	 * frequency request may be unchanged.
2198 	 */
2199 	intel_rps_set(rps, val);
2200 
2201 unlock:
2202 	mutex_unlock(&rps->lock);
2203 
2204 	return ret;
2205 }
2206 
2207 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2208 {
2209 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2210 
2211 	if (rps_uses_slpc(rps))
2212 		return intel_guc_slpc_set_min_freq(slpc, val);
2213 	else
2214 		return set_min_freq(rps, val);
2215 }
2216 
2217 u32 intel_rps_read_state_cap(struct intel_rps *rps)
2218 {
2219 	struct drm_i915_private *i915 = rps_to_i915(rps);
2220 	struct intel_uncore *uncore = rps_to_uncore(rps);
2221 
2222 	if (IS_XEHPSDV(i915))
2223 		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
2224 	else if (IS_GEN9_LP(i915))
2225 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
2226 	else
2227 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
2228 }
2229 
2230 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2231 {
2232 	struct intel_uncore *uncore = rps_to_uncore(rps);
2233 	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2234 
2235 	/* Allow punit to process software requests */
2236 	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2237 }
2238 
2239 void intel_rps_raise_unslice(struct intel_rps *rps)
2240 {
2241 	struct intel_uncore *uncore = rps_to_uncore(rps);
2242 	u32 rp0_unslice_req;
2243 
2244 	mutex_lock(&rps->lock);
2245 
2246 	if (rps_uses_slpc(rps)) {
2247 		/* RP limits have not been initialized yet for SLPC path */
2248 		rp0_unslice_req = ((intel_rps_read_state_cap(rps) >> 0)
2249 				   & 0xff) * GEN9_FREQ_SCALER;
2250 
2251 		intel_rps_set_manual(rps, true);
2252 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2253 				   ((rp0_unslice_req <<
2254 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2255 				   GEN9_IGNORE_SLICE_RATIO));
2256 		intel_rps_set_manual(rps, false);
2257 	} else {
2258 		intel_rps_set(rps, rps->rp0_freq);
2259 	}
2260 
2261 	mutex_unlock(&rps->lock);
2262 }
2263 
2264 void intel_rps_lower_unslice(struct intel_rps *rps)
2265 {
2266 	struct intel_uncore *uncore = rps_to_uncore(rps);
2267 	u32 rpn_unslice_req;
2268 
2269 	mutex_lock(&rps->lock);
2270 
2271 	if (rps_uses_slpc(rps)) {
2272 		/* RP limits have not been initialized yet for SLPC path */
2273 		rpn_unslice_req = ((intel_rps_read_state_cap(rps) >> 16)
2274 				   & 0xff) * GEN9_FREQ_SCALER;
2275 
2276 		intel_rps_set_manual(rps, true);
2277 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2278 				   ((rpn_unslice_req <<
2279 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2280 				   GEN9_IGNORE_SLICE_RATIO));
2281 		intel_rps_set_manual(rps, false);
2282 	} else {
2283 		intel_rps_set(rps, rps->min_freq);
2284 	}
2285 
2286 	mutex_unlock(&rps->lock);
2287 }
2288 
2289 /* External interface for intel_ips.ko */
2290 
2291 static struct drm_i915_private __rcu *ips_mchdev;
2292 
2293 /**
2294  * Tells the intel_ips driver that the i915 driver is now loaded, if
2295  * IPS got loaded first.
2296  *
2297  * This awkward dance is so that neither module has to depend on the
2298  * other in order for IPS to do the appropriate communication of
2299  * GPU turbo limits to i915.
2300  */
2301 static void
2302 ips_ping_for_i915_load(void)
2303 {
2304 	void (*link)(void);
2305 
2306 	link = symbol_get(ips_link_to_i915_driver);
2307 	if (link) {
2308 		link();
2309 		symbol_put(ips_link_to_i915_driver);
2310 	}
2311 }
2312 
2313 void intel_rps_driver_register(struct intel_rps *rps)
2314 {
2315 	struct intel_gt *gt = rps_to_gt(rps);
2316 
2317 	/*
2318 	 * We only register the i915 ips part with intel-ips once everything is
2319 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2320 	 */
2321 	if (GRAPHICS_VER(gt->i915) == 5) {
2322 		GEM_BUG_ON(ips_mchdev);
2323 		rcu_assign_pointer(ips_mchdev, gt->i915);
2324 		ips_ping_for_i915_load();
2325 	}
2326 }
2327 
2328 void intel_rps_driver_unregister(struct intel_rps *rps)
2329 {
2330 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2331 		rcu_assign_pointer(ips_mchdev, NULL);
2332 }
2333 
2334 static struct drm_i915_private *mchdev_get(void)
2335 {
2336 	struct drm_i915_private *i915;
2337 
2338 	rcu_read_lock();
2339 	i915 = rcu_dereference(ips_mchdev);
2340 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2341 		i915 = NULL;
2342 	rcu_read_unlock();
2343 
2344 	return i915;
2345 }
2346 
2347 /**
2348  * i915_read_mch_val - return value for IPS use
2349  *
2350  * Calculate and return a value for the IPS driver to use when deciding whether
2351  * we have thermal and power headroom to increase CPU or GPU power budget.
2352  */
2353 unsigned long i915_read_mch_val(void)
2354 {
2355 	struct drm_i915_private *i915;
2356 	unsigned long chipset_val = 0;
2357 	unsigned long graphics_val = 0;
2358 	intel_wakeref_t wakeref;
2359 
2360 	i915 = mchdev_get();
2361 	if (!i915)
2362 		return 0;
2363 
2364 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2365 		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2366 
2367 		spin_lock_irq(&mchdev_lock);
2368 		chipset_val = __ips_chipset_val(ips);
2369 		graphics_val = __ips_gfx_val(ips);
2370 		spin_unlock_irq(&mchdev_lock);
2371 	}
2372 
2373 	drm_dev_put(&i915->drm);
2374 	return chipset_val + graphics_val;
2375 }
2376 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2377 
2378 /**
2379  * i915_gpu_raise - raise GPU frequency limit
2380  *
2381  * Raise the limit; IPS indicates we have thermal headroom.
2382  */
2383 bool i915_gpu_raise(void)
2384 {
2385 	struct drm_i915_private *i915;
2386 	struct intel_rps *rps;
2387 
2388 	i915 = mchdev_get();
2389 	if (!i915)
2390 		return false;
2391 
2392 	rps = &to_gt(i915)->rps;
2393 
2394 	spin_lock_irq(&mchdev_lock);
2395 	if (rps->max_freq_softlimit < rps->max_freq)
2396 		rps->max_freq_softlimit++;
2397 	spin_unlock_irq(&mchdev_lock);
2398 
2399 	drm_dev_put(&i915->drm);
2400 	return true;
2401 }
2402 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2403 
2404 /**
2405  * i915_gpu_lower - lower GPU frequency limit
2406  *
2407  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2408  * frequency maximum.
2409  */
2410 bool i915_gpu_lower(void)
2411 {
2412 	struct drm_i915_private *i915;
2413 	struct intel_rps *rps;
2414 
2415 	i915 = mchdev_get();
2416 	if (!i915)
2417 		return false;
2418 
2419 	rps = &to_gt(i915)->rps;
2420 
2421 	spin_lock_irq(&mchdev_lock);
2422 	if (rps->max_freq_softlimit > rps->min_freq)
2423 		rps->max_freq_softlimit--;
2424 	spin_unlock_irq(&mchdev_lock);
2425 
2426 	drm_dev_put(&i915->drm);
2427 	return true;
2428 }
2429 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2430 
2431 /**
2432  * i915_gpu_busy - indicate GPU business to IPS
2433  *
2434  * Tell the IPS driver whether or not the GPU is busy.
2435  */
2436 bool i915_gpu_busy(void)
2437 {
2438 	struct drm_i915_private *i915;
2439 	bool ret;
2440 
2441 	i915 = mchdev_get();
2442 	if (!i915)
2443 		return false;
2444 
2445 	ret = to_gt(i915)->awake;
2446 
2447 	drm_dev_put(&i915->drm);
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2451 
2452 /**
2453  * i915_gpu_turbo_disable - disable graphics turbo
2454  *
2455  * Disable graphics turbo by resetting the max frequency and setting the
2456  * current frequency to the default.
2457  */
2458 bool i915_gpu_turbo_disable(void)
2459 {
2460 	struct drm_i915_private *i915;
2461 	struct intel_rps *rps;
2462 	bool ret;
2463 
2464 	i915 = mchdev_get();
2465 	if (!i915)
2466 		return false;
2467 
2468 	rps = &to_gt(i915)->rps;
2469 
2470 	spin_lock_irq(&mchdev_lock);
2471 	rps->max_freq_softlimit = rps->min_freq;
2472 	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2473 	spin_unlock_irq(&mchdev_lock);
2474 
2475 	drm_dev_put(&i915->drm);
2476 	return ret;
2477 }
2478 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2479 
2480 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2481 #include "selftest_rps.c"
2482 #include "selftest_slpc.c"
2483 #endif
2484