xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 2dd6532e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/i915_drm.h>
9 
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "intel_breadcrumbs.h"
13 #include "intel_gt.h"
14 #include "intel_gt_clock_utils.h"
15 #include "intel_gt_irq.h"
16 #include "intel_gt_pm_irq.h"
17 #include "intel_gt_regs.h"
18 #include "intel_mchbar_regs.h"
19 #include "intel_pcode.h"
20 #include "intel_rps.h"
21 #include "vlv_sideband.h"
22 #include "../../../platform/x86/intel_ips.h"
23 
24 #define BUSY_MAX_EI	20u /* ms */
25 
26 /*
27  * Lock protecting IPS related data structures
28  */
29 static DEFINE_SPINLOCK(mchdev_lock);
30 
31 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
32 {
33 	return container_of(rps, struct intel_gt, rps);
34 }
35 
36 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
37 {
38 	return rps_to_gt(rps)->i915;
39 }
40 
41 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
42 {
43 	return rps_to_gt(rps)->uncore;
44 }
45 
46 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
47 {
48 	struct intel_gt *gt = rps_to_gt(rps);
49 
50 	return &gt->uc.guc.slpc;
51 }
52 
53 static bool rps_uses_slpc(struct intel_rps *rps)
54 {
55 	struct intel_gt *gt = rps_to_gt(rps);
56 
57 	return intel_uc_uses_guc_slpc(&gt->uc);
58 }
59 
60 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
61 {
62 	return mask & ~rps->pm_intrmsk_mbz;
63 }
64 
65 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
66 {
67 	intel_uncore_write_fw(uncore, reg, val);
68 }
69 
70 static void rps_timer(struct timer_list *t)
71 {
72 	struct intel_rps *rps = from_timer(rps, t, timer);
73 	struct intel_engine_cs *engine;
74 	ktime_t dt, last, timestamp;
75 	enum intel_engine_id id;
76 	s64 max_busy[3] = {};
77 
78 	timestamp = 0;
79 	for_each_engine(engine, rps_to_gt(rps), id) {
80 		s64 busy;
81 		int i;
82 
83 		dt = intel_engine_get_busy_time(engine, &timestamp);
84 		last = engine->stats.rps;
85 		engine->stats.rps = dt;
86 
87 		busy = ktime_to_ns(ktime_sub(dt, last));
88 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
89 			if (busy > max_busy[i])
90 				swap(busy, max_busy[i]);
91 		}
92 	}
93 	last = rps->pm_timestamp;
94 	rps->pm_timestamp = timestamp;
95 
96 	if (intel_rps_is_active(rps)) {
97 		s64 busy;
98 		int i;
99 
100 		dt = ktime_sub(timestamp, last);
101 
102 		/*
103 		 * Our goal is to evaluate each engine independently, so we run
104 		 * at the lowest clocks required to sustain the heaviest
105 		 * workload. However, a task may be split into sequential
106 		 * dependent operations across a set of engines, such that
107 		 * the independent contributions do not account for high load,
108 		 * but overall the task is GPU bound. For example, consider
109 		 * video decode on vcs followed by colour post-processing
110 		 * on vecs, followed by general post-processing on rcs.
111 		 * Since multi-engines being active does imply a single
112 		 * continuous workload across all engines, we hedge our
113 		 * bets by only contributing a factor of the distributed
114 		 * load into our busyness calculation.
115 		 */
116 		busy = max_busy[0];
117 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
118 			if (!max_busy[i])
119 				break;
120 
121 			busy += div_u64(max_busy[i], 1 << i);
122 		}
123 		GT_TRACE(rps_to_gt(rps),
124 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
125 			 busy, (int)div64_u64(100 * busy, dt),
126 			 max_busy[0], max_busy[1], max_busy[2],
127 			 rps->pm_interval);
128 
129 		if (100 * busy > rps->power.up_threshold * dt &&
130 		    rps->cur_freq < rps->max_freq_softlimit) {
131 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
132 			rps->pm_interval = 1;
133 			schedule_work(&rps->work);
134 		} else if (100 * busy < rps->power.down_threshold * dt &&
135 			   rps->cur_freq > rps->min_freq_softlimit) {
136 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
137 			rps->pm_interval = 1;
138 			schedule_work(&rps->work);
139 		} else {
140 			rps->last_adj = 0;
141 		}
142 
143 		mod_timer(&rps->timer,
144 			  jiffies + msecs_to_jiffies(rps->pm_interval));
145 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
146 	}
147 }
148 
149 static void rps_start_timer(struct intel_rps *rps)
150 {
151 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
152 	rps->pm_interval = 1;
153 	mod_timer(&rps->timer, jiffies + 1);
154 }
155 
156 static void rps_stop_timer(struct intel_rps *rps)
157 {
158 	del_timer_sync(&rps->timer);
159 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
160 	cancel_work_sync(&rps->work);
161 }
162 
163 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
164 {
165 	u32 mask = 0;
166 
167 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
168 	if (val > rps->min_freq_softlimit)
169 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
170 			 GEN6_PM_RP_DOWN_THRESHOLD |
171 			 GEN6_PM_RP_DOWN_TIMEOUT);
172 
173 	if (val < rps->max_freq_softlimit)
174 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
175 
176 	mask &= rps->pm_events;
177 
178 	return rps_pm_sanitize_mask(rps, ~mask);
179 }
180 
181 static void rps_reset_ei(struct intel_rps *rps)
182 {
183 	memset(&rps->ei, 0, sizeof(rps->ei));
184 }
185 
186 static void rps_enable_interrupts(struct intel_rps *rps)
187 {
188 	struct intel_gt *gt = rps_to_gt(rps);
189 
190 	GEM_BUG_ON(rps_uses_slpc(rps));
191 
192 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
193 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
194 
195 	rps_reset_ei(rps);
196 
197 	spin_lock_irq(&gt->irq_lock);
198 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
199 	spin_unlock_irq(&gt->irq_lock);
200 
201 	intel_uncore_write(gt->uncore,
202 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
203 }
204 
205 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
206 {
207 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
208 }
209 
210 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
211 {
212 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
213 		;
214 }
215 
216 static void rps_reset_interrupts(struct intel_rps *rps)
217 {
218 	struct intel_gt *gt = rps_to_gt(rps);
219 
220 	spin_lock_irq(&gt->irq_lock);
221 	if (GRAPHICS_VER(gt->i915) >= 11)
222 		gen11_rps_reset_interrupts(rps);
223 	else
224 		gen6_rps_reset_interrupts(rps);
225 
226 	rps->pm_iir = 0;
227 	spin_unlock_irq(&gt->irq_lock);
228 }
229 
230 static void rps_disable_interrupts(struct intel_rps *rps)
231 {
232 	struct intel_gt *gt = rps_to_gt(rps);
233 
234 	intel_uncore_write(gt->uncore,
235 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
236 
237 	spin_lock_irq(&gt->irq_lock);
238 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
239 	spin_unlock_irq(&gt->irq_lock);
240 
241 	intel_synchronize_irq(gt->i915);
242 
243 	/*
244 	 * Now that we will not be generating any more work, flush any
245 	 * outstanding tasks. As we are called on the RPS idle path,
246 	 * we will reset the GPU to minimum frequencies, so the current
247 	 * state of the worker can be discarded.
248 	 */
249 	cancel_work_sync(&rps->work);
250 
251 	rps_reset_interrupts(rps);
252 	GT_TRACE(gt, "interrupts:off\n");
253 }
254 
255 static const struct cparams {
256 	u16 i;
257 	u16 t;
258 	u16 m;
259 	u16 c;
260 } cparams[] = {
261 	{ 1, 1333, 301, 28664 },
262 	{ 1, 1066, 294, 24460 },
263 	{ 1, 800, 294, 25192 },
264 	{ 0, 1333, 276, 27605 },
265 	{ 0, 1066, 276, 27605 },
266 	{ 0, 800, 231, 23784 },
267 };
268 
269 static void gen5_rps_init(struct intel_rps *rps)
270 {
271 	struct drm_i915_private *i915 = rps_to_i915(rps);
272 	struct intel_uncore *uncore = rps_to_uncore(rps);
273 	u8 fmax, fmin, fstart;
274 	u32 rgvmodectl;
275 	int c_m, i;
276 
277 	if (i915->fsb_freq <= 3200)
278 		c_m = 0;
279 	else if (i915->fsb_freq <= 4800)
280 		c_m = 1;
281 	else
282 		c_m = 2;
283 
284 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
285 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
286 			rps->ips.m = cparams[i].m;
287 			rps->ips.c = cparams[i].c;
288 			break;
289 		}
290 	}
291 
292 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
293 
294 	/* Set up min, max, and cur for interrupt handling */
295 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
296 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
297 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
298 		MEMMODE_FSTART_SHIFT;
299 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
300 		fmax, fmin, fstart);
301 
302 	rps->min_freq = fmax;
303 	rps->efficient_freq = fstart;
304 	rps->max_freq = fmin;
305 }
306 
307 static unsigned long
308 __ips_chipset_val(struct intel_ips *ips)
309 {
310 	struct intel_uncore *uncore =
311 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
312 	unsigned long now = jiffies_to_msecs(jiffies), dt;
313 	unsigned long result;
314 	u64 total, delta;
315 
316 	lockdep_assert_held(&mchdev_lock);
317 
318 	/*
319 	 * Prevent division-by-zero if we are asking too fast.
320 	 * Also, we don't get interesting results if we are polling
321 	 * faster than once in 10ms, so just return the saved value
322 	 * in such cases.
323 	 */
324 	dt = now - ips->last_time1;
325 	if (dt <= 10)
326 		return ips->chipset_power;
327 
328 	/* FIXME: handle per-counter overflow */
329 	total = intel_uncore_read(uncore, DMIEC);
330 	total += intel_uncore_read(uncore, DDREC);
331 	total += intel_uncore_read(uncore, CSIEC);
332 
333 	delta = total - ips->last_count1;
334 
335 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
336 
337 	ips->last_count1 = total;
338 	ips->last_time1 = now;
339 
340 	ips->chipset_power = result;
341 
342 	return result;
343 }
344 
345 static unsigned long ips_mch_val(struct intel_uncore *uncore)
346 {
347 	unsigned int m, x, b;
348 	u32 tsfs;
349 
350 	tsfs = intel_uncore_read(uncore, TSFS);
351 	x = intel_uncore_read8(uncore, TR1);
352 
353 	b = tsfs & TSFS_INTR_MASK;
354 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
355 
356 	return m * x / 127 - b;
357 }
358 
359 static int _pxvid_to_vd(u8 pxvid)
360 {
361 	if (pxvid == 0)
362 		return 0;
363 
364 	if (pxvid >= 8 && pxvid < 31)
365 		pxvid = 31;
366 
367 	return (pxvid + 2) * 125;
368 }
369 
370 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
371 {
372 	const int vd = _pxvid_to_vd(pxvid);
373 
374 	if (INTEL_INFO(i915)->is_mobile)
375 		return max(vd - 1125, 0);
376 
377 	return vd;
378 }
379 
380 static void __gen5_ips_update(struct intel_ips *ips)
381 {
382 	struct intel_uncore *uncore =
383 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
384 	u64 now, delta, dt;
385 	u32 count;
386 
387 	lockdep_assert_held(&mchdev_lock);
388 
389 	now = ktime_get_raw_ns();
390 	dt = now - ips->last_time2;
391 	do_div(dt, NSEC_PER_MSEC);
392 
393 	/* Don't divide by 0 */
394 	if (dt <= 10)
395 		return;
396 
397 	count = intel_uncore_read(uncore, GFXEC);
398 	delta = count - ips->last_count2;
399 
400 	ips->last_count2 = count;
401 	ips->last_time2 = now;
402 
403 	/* More magic constants... */
404 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
405 }
406 
407 static void gen5_rps_update(struct intel_rps *rps)
408 {
409 	spin_lock_irq(&mchdev_lock);
410 	__gen5_ips_update(&rps->ips);
411 	spin_unlock_irq(&mchdev_lock);
412 }
413 
414 static unsigned int gen5_invert_freq(struct intel_rps *rps,
415 				     unsigned int val)
416 {
417 	/* Invert the frequency bin into an ips delay */
418 	val = rps->max_freq - val;
419 	val = rps->min_freq + val;
420 
421 	return val;
422 }
423 
424 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
425 {
426 	struct intel_uncore *uncore = rps_to_uncore(rps);
427 	u16 rgvswctl;
428 
429 	lockdep_assert_held(&mchdev_lock);
430 
431 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
432 	if (rgvswctl & MEMCTL_CMD_STS) {
433 		DRM_DEBUG("gpu busy, RCS change rejected\n");
434 		return -EBUSY; /* still busy with another command */
435 	}
436 
437 	/* Invert the frequency bin into an ips delay */
438 	val = gen5_invert_freq(rps, val);
439 
440 	rgvswctl =
441 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
442 		(val << MEMCTL_FREQ_SHIFT) |
443 		MEMCTL_SFCAVM;
444 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
445 	intel_uncore_posting_read16(uncore, MEMSWCTL);
446 
447 	rgvswctl |= MEMCTL_CMD_STS;
448 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
449 
450 	return 0;
451 }
452 
453 static int gen5_rps_set(struct intel_rps *rps, u8 val)
454 {
455 	int err;
456 
457 	spin_lock_irq(&mchdev_lock);
458 	err = __gen5_rps_set(rps, val);
459 	spin_unlock_irq(&mchdev_lock);
460 
461 	return err;
462 }
463 
464 static unsigned long intel_pxfreq(u32 vidfreq)
465 {
466 	int div = (vidfreq & 0x3f0000) >> 16;
467 	int post = (vidfreq & 0x3000) >> 12;
468 	int pre = (vidfreq & 0x7);
469 
470 	if (!pre)
471 		return 0;
472 
473 	return div * 133333 / (pre << post);
474 }
475 
476 static unsigned int init_emon(struct intel_uncore *uncore)
477 {
478 	u8 pxw[16];
479 	int i;
480 
481 	/* Disable to program */
482 	intel_uncore_write(uncore, ECR, 0);
483 	intel_uncore_posting_read(uncore, ECR);
484 
485 	/* Program energy weights for various events */
486 	intel_uncore_write(uncore, SDEW, 0x15040d00);
487 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
488 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
489 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
490 
491 	for (i = 0; i < 5; i++)
492 		intel_uncore_write(uncore, PEW(i), 0);
493 	for (i = 0; i < 3; i++)
494 		intel_uncore_write(uncore, DEW(i), 0);
495 
496 	/* Program P-state weights to account for frequency power adjustment */
497 	for (i = 0; i < 16; i++) {
498 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
499 		unsigned int freq = intel_pxfreq(pxvidfreq);
500 		unsigned int vid =
501 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
502 		unsigned int val;
503 
504 		val = vid * vid * freq / 1000 * 255;
505 		val /= 127 * 127 * 900;
506 
507 		pxw[i] = val;
508 	}
509 	/* Render standby states get 0 weight */
510 	pxw[14] = 0;
511 	pxw[15] = 0;
512 
513 	for (i = 0; i < 4; i++) {
514 		intel_uncore_write(uncore, PXW(i),
515 				   pxw[i * 4 + 0] << 24 |
516 				   pxw[i * 4 + 1] << 16 |
517 				   pxw[i * 4 + 2] <<  8 |
518 				   pxw[i * 4 + 3] <<  0);
519 	}
520 
521 	/* Adjust magic regs to magic values (more experimental results) */
522 	intel_uncore_write(uncore, OGW0, 0);
523 	intel_uncore_write(uncore, OGW1, 0);
524 	intel_uncore_write(uncore, EG0, 0x00007f00);
525 	intel_uncore_write(uncore, EG1, 0x0000000e);
526 	intel_uncore_write(uncore, EG2, 0x000e0000);
527 	intel_uncore_write(uncore, EG3, 0x68000300);
528 	intel_uncore_write(uncore, EG4, 0x42000000);
529 	intel_uncore_write(uncore, EG5, 0x00140031);
530 	intel_uncore_write(uncore, EG6, 0);
531 	intel_uncore_write(uncore, EG7, 0);
532 
533 	for (i = 0; i < 8; i++)
534 		intel_uncore_write(uncore, PXWL(i), 0);
535 
536 	/* Enable PMON + select events */
537 	intel_uncore_write(uncore, ECR, 0x80000019);
538 
539 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
540 }
541 
542 static bool gen5_rps_enable(struct intel_rps *rps)
543 {
544 	struct drm_i915_private *i915 = rps_to_i915(rps);
545 	struct intel_uncore *uncore = rps_to_uncore(rps);
546 	u8 fstart, vstart;
547 	u32 rgvmodectl;
548 
549 	spin_lock_irq(&mchdev_lock);
550 
551 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
552 
553 	/* Enable temp reporting */
554 	intel_uncore_write16(uncore, PMMISC,
555 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
556 	intel_uncore_write16(uncore, TSC1,
557 			     intel_uncore_read16(uncore, TSC1) | TSE);
558 
559 	/* 100ms RC evaluation intervals */
560 	intel_uncore_write(uncore, RCUPEI, 100000);
561 	intel_uncore_write(uncore, RCDNEI, 100000);
562 
563 	/* Set max/min thresholds to 90ms and 80ms respectively */
564 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
565 	intel_uncore_write(uncore, RCBMINAVG, 80000);
566 
567 	intel_uncore_write(uncore, MEMIHYST, 1);
568 
569 	/* Set up min, max, and cur for interrupt handling */
570 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
571 		MEMMODE_FSTART_SHIFT;
572 
573 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
574 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
575 
576 	intel_uncore_write(uncore,
577 			   MEMINTREN,
578 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
579 
580 	intel_uncore_write(uncore, VIDSTART, vstart);
581 	intel_uncore_posting_read(uncore, VIDSTART);
582 
583 	rgvmodectl |= MEMMODE_SWMODE_EN;
584 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
585 
586 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
587 			     MEMCTL_CMD_STS) == 0, 10))
588 		drm_err(&uncore->i915->drm,
589 			"stuck trying to change perf mode\n");
590 	mdelay(1);
591 
592 	__gen5_rps_set(rps, rps->cur_freq);
593 
594 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
595 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
596 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
597 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
598 
599 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
600 	rps->ips.last_time2 = ktime_get_raw_ns();
601 
602 	spin_lock(&i915->irq_lock);
603 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
604 	spin_unlock(&i915->irq_lock);
605 
606 	spin_unlock_irq(&mchdev_lock);
607 
608 	rps->ips.corr = init_emon(uncore);
609 
610 	return true;
611 }
612 
613 static void gen5_rps_disable(struct intel_rps *rps)
614 {
615 	struct drm_i915_private *i915 = rps_to_i915(rps);
616 	struct intel_uncore *uncore = rps_to_uncore(rps);
617 	u16 rgvswctl;
618 
619 	spin_lock_irq(&mchdev_lock);
620 
621 	spin_lock(&i915->irq_lock);
622 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
623 	spin_unlock(&i915->irq_lock);
624 
625 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
626 
627 	/* Ack interrupts, disable EFC interrupt */
628 	intel_uncore_write(uncore, MEMINTREN,
629 			   intel_uncore_read(uncore, MEMINTREN) &
630 			   ~MEMINT_EVAL_CHG_EN);
631 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
632 
633 	/* Go back to the starting frequency */
634 	__gen5_rps_set(rps, rps->idle_freq);
635 	mdelay(1);
636 	rgvswctl |= MEMCTL_CMD_STS;
637 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
638 	mdelay(1);
639 
640 	spin_unlock_irq(&mchdev_lock);
641 }
642 
643 static u32 rps_limits(struct intel_rps *rps, u8 val)
644 {
645 	u32 limits;
646 
647 	/*
648 	 * Only set the down limit when we've reached the lowest level to avoid
649 	 * getting more interrupts, otherwise leave this clear. This prevents a
650 	 * race in the hw when coming out of rc6: There's a tiny window where
651 	 * the hw runs at the minimal clock before selecting the desired
652 	 * frequency, if the down threshold expires in that window we will not
653 	 * receive a down interrupt.
654 	 */
655 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
656 		limits = rps->max_freq_softlimit << 23;
657 		if (val <= rps->min_freq_softlimit)
658 			limits |= rps->min_freq_softlimit << 14;
659 	} else {
660 		limits = rps->max_freq_softlimit << 24;
661 		if (val <= rps->min_freq_softlimit)
662 			limits |= rps->min_freq_softlimit << 16;
663 	}
664 
665 	return limits;
666 }
667 
668 static void rps_set_power(struct intel_rps *rps, int new_power)
669 {
670 	struct intel_gt *gt = rps_to_gt(rps);
671 	struct intel_uncore *uncore = gt->uncore;
672 	u32 threshold_up = 0, threshold_down = 0; /* in % */
673 	u32 ei_up = 0, ei_down = 0;
674 
675 	lockdep_assert_held(&rps->power.mutex);
676 
677 	if (new_power == rps->power.mode)
678 		return;
679 
680 	threshold_up = 95;
681 	threshold_down = 85;
682 
683 	/* Note the units here are not exactly 1us, but 1280ns. */
684 	switch (new_power) {
685 	case LOW_POWER:
686 		ei_up = 16000;
687 		ei_down = 32000;
688 		break;
689 
690 	case BETWEEN:
691 		ei_up = 13000;
692 		ei_down = 32000;
693 		break;
694 
695 	case HIGH_POWER:
696 		ei_up = 10000;
697 		ei_down = 32000;
698 		break;
699 	}
700 
701 	/* When byt can survive without system hang with dynamic
702 	 * sw freq adjustments, this restriction can be lifted.
703 	 */
704 	if (IS_VALLEYVIEW(gt->i915))
705 		goto skip_hw_write;
706 
707 	GT_TRACE(gt,
708 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
709 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
710 
711 	set(uncore, GEN6_RP_UP_EI,
712 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
713 	set(uncore, GEN6_RP_UP_THRESHOLD,
714 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
715 
716 	set(uncore, GEN6_RP_DOWN_EI,
717 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
718 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
719 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
720 
721 	set(uncore, GEN6_RP_CONTROL,
722 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
723 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
724 	    GEN6_RP_MEDIA_IS_GFX |
725 	    GEN6_RP_ENABLE |
726 	    GEN6_RP_UP_BUSY_AVG |
727 	    GEN6_RP_DOWN_IDLE_AVG);
728 
729 skip_hw_write:
730 	rps->power.mode = new_power;
731 	rps->power.up_threshold = threshold_up;
732 	rps->power.down_threshold = threshold_down;
733 }
734 
735 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
736 {
737 	int new_power;
738 
739 	new_power = rps->power.mode;
740 	switch (rps->power.mode) {
741 	case LOW_POWER:
742 		if (val > rps->efficient_freq + 1 &&
743 		    val > rps->cur_freq)
744 			new_power = BETWEEN;
745 		break;
746 
747 	case BETWEEN:
748 		if (val <= rps->efficient_freq &&
749 		    val < rps->cur_freq)
750 			new_power = LOW_POWER;
751 		else if (val >= rps->rp0_freq &&
752 			 val > rps->cur_freq)
753 			new_power = HIGH_POWER;
754 		break;
755 
756 	case HIGH_POWER:
757 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
758 		    val < rps->cur_freq)
759 			new_power = BETWEEN;
760 		break;
761 	}
762 	/* Max/min bins are special */
763 	if (val <= rps->min_freq_softlimit)
764 		new_power = LOW_POWER;
765 	if (val >= rps->max_freq_softlimit)
766 		new_power = HIGH_POWER;
767 
768 	mutex_lock(&rps->power.mutex);
769 	if (rps->power.interactive)
770 		new_power = HIGH_POWER;
771 	rps_set_power(rps, new_power);
772 	mutex_unlock(&rps->power.mutex);
773 }
774 
775 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
776 {
777 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
778 		 str_yes_no(interactive));
779 
780 	mutex_lock(&rps->power.mutex);
781 	if (interactive) {
782 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
783 			rps_set_power(rps, HIGH_POWER);
784 	} else {
785 		GEM_BUG_ON(!rps->power.interactive);
786 		rps->power.interactive--;
787 	}
788 	mutex_unlock(&rps->power.mutex);
789 }
790 
791 static int gen6_rps_set(struct intel_rps *rps, u8 val)
792 {
793 	struct intel_uncore *uncore = rps_to_uncore(rps);
794 	struct drm_i915_private *i915 = rps_to_i915(rps);
795 	u32 swreq;
796 
797 	GEM_BUG_ON(rps_uses_slpc(rps));
798 
799 	if (GRAPHICS_VER(i915) >= 9)
800 		swreq = GEN9_FREQUENCY(val);
801 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
802 		swreq = HSW_FREQUENCY(val);
803 	else
804 		swreq = (GEN6_FREQUENCY(val) |
805 			 GEN6_OFFSET(0) |
806 			 GEN6_AGGRESSIVE_TURBO);
807 	set(uncore, GEN6_RPNSWREQ, swreq);
808 
809 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
810 		 val, intel_gpu_freq(rps, val), swreq);
811 
812 	return 0;
813 }
814 
815 static int vlv_rps_set(struct intel_rps *rps, u8 val)
816 {
817 	struct drm_i915_private *i915 = rps_to_i915(rps);
818 	int err;
819 
820 	vlv_punit_get(i915);
821 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
822 	vlv_punit_put(i915);
823 
824 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
825 		 val, intel_gpu_freq(rps, val));
826 
827 	return err;
828 }
829 
830 static int rps_set(struct intel_rps *rps, u8 val, bool update)
831 {
832 	struct drm_i915_private *i915 = rps_to_i915(rps);
833 	int err;
834 
835 	if (val == rps->last_freq)
836 		return 0;
837 
838 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
839 		err = vlv_rps_set(rps, val);
840 	else if (GRAPHICS_VER(i915) >= 6)
841 		err = gen6_rps_set(rps, val);
842 	else
843 		err = gen5_rps_set(rps, val);
844 	if (err)
845 		return err;
846 
847 	if (update && GRAPHICS_VER(i915) >= 6)
848 		gen6_rps_set_thresholds(rps, val);
849 	rps->last_freq = val;
850 
851 	return 0;
852 }
853 
854 void intel_rps_unpark(struct intel_rps *rps)
855 {
856 	if (!intel_rps_is_enabled(rps))
857 		return;
858 
859 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
860 
861 	/*
862 	 * Use the user's desired frequency as a guide, but for better
863 	 * performance, jump directly to RPe as our starting frequency.
864 	 */
865 	mutex_lock(&rps->lock);
866 
867 	intel_rps_set_active(rps);
868 	intel_rps_set(rps,
869 		      clamp(rps->cur_freq,
870 			    rps->min_freq_softlimit,
871 			    rps->max_freq_softlimit));
872 
873 	mutex_unlock(&rps->lock);
874 
875 	rps->pm_iir = 0;
876 	if (intel_rps_has_interrupts(rps))
877 		rps_enable_interrupts(rps);
878 	if (intel_rps_uses_timer(rps))
879 		rps_start_timer(rps);
880 
881 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
882 		gen5_rps_update(rps);
883 }
884 
885 void intel_rps_park(struct intel_rps *rps)
886 {
887 	int adj;
888 
889 	if (!intel_rps_is_enabled(rps))
890 		return;
891 
892 	if (!intel_rps_clear_active(rps))
893 		return;
894 
895 	if (intel_rps_uses_timer(rps))
896 		rps_stop_timer(rps);
897 	if (intel_rps_has_interrupts(rps))
898 		rps_disable_interrupts(rps);
899 
900 	if (rps->last_freq <= rps->idle_freq)
901 		return;
902 
903 	/*
904 	 * The punit delays the write of the frequency and voltage until it
905 	 * determines the GPU is awake. During normal usage we don't want to
906 	 * waste power changing the frequency if the GPU is sleeping (rc6).
907 	 * However, the GPU and driver is now idle and we do not want to delay
908 	 * switching to minimum voltage (reducing power whilst idle) as we do
909 	 * not expect to be woken in the near future and so must flush the
910 	 * change by waking the device.
911 	 *
912 	 * We choose to take the media powerwell (either would do to trick the
913 	 * punit into committing the voltage change) as that takes a lot less
914 	 * power than the render powerwell.
915 	 */
916 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
917 	rps_set(rps, rps->idle_freq, false);
918 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
919 
920 	/*
921 	 * Since we will try and restart from the previously requested
922 	 * frequency on unparking, treat this idle point as a downclock
923 	 * interrupt and reduce the frequency for resume. If we park/unpark
924 	 * more frequently than the rps worker can run, we will not respond
925 	 * to any EI and never see a change in frequency.
926 	 *
927 	 * (Note we accommodate Cherryview's limitation of only using an
928 	 * even bin by applying it to all.)
929 	 */
930 	adj = rps->last_adj;
931 	if (adj < 0)
932 		adj *= 2;
933 	else /* CHV needs even encode values */
934 		adj = -2;
935 	rps->last_adj = adj;
936 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
937 	if (rps->cur_freq < rps->efficient_freq) {
938 		rps->cur_freq = rps->efficient_freq;
939 		rps->last_adj = 0;
940 	}
941 
942 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
943 }
944 
945 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
946 {
947 	struct intel_guc_slpc *slpc;
948 
949 	if (rps_uses_slpc(rps)) {
950 		slpc = rps_to_slpc(rps);
951 
952 		return slpc->boost_freq;
953 	} else {
954 		return intel_gpu_freq(rps, rps->boost_freq);
955 	}
956 }
957 
958 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
959 {
960 	bool boost = false;
961 
962 	/* Validate against (static) hardware limits */
963 	val = intel_freq_opcode(rps, val);
964 	if (val < rps->min_freq || val > rps->max_freq)
965 		return -EINVAL;
966 
967 	mutex_lock(&rps->lock);
968 	if (val != rps->boost_freq) {
969 		rps->boost_freq = val;
970 		boost = atomic_read(&rps->num_waiters);
971 	}
972 	mutex_unlock(&rps->lock);
973 	if (boost)
974 		schedule_work(&rps->work);
975 
976 	return 0;
977 }
978 
979 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
980 {
981 	struct intel_guc_slpc *slpc;
982 
983 	if (rps_uses_slpc(rps)) {
984 		slpc = rps_to_slpc(rps);
985 
986 		return intel_guc_slpc_set_boost_freq(slpc, freq);
987 	} else {
988 		return rps_set_boost_freq(rps, freq);
989 	}
990 }
991 
992 void intel_rps_dec_waiters(struct intel_rps *rps)
993 {
994 	struct intel_guc_slpc *slpc;
995 
996 	if (rps_uses_slpc(rps)) {
997 		slpc = rps_to_slpc(rps);
998 
999 		intel_guc_slpc_dec_waiters(slpc);
1000 	} else {
1001 		atomic_dec(&rps->num_waiters);
1002 	}
1003 }
1004 
1005 void intel_rps_boost(struct i915_request *rq)
1006 {
1007 	struct intel_guc_slpc *slpc;
1008 
1009 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1010 		return;
1011 
1012 	/* Serializes with i915_request_retire() */
1013 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1014 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1015 
1016 		if (rps_uses_slpc(rps)) {
1017 			slpc = rps_to_slpc(rps);
1018 
1019 			/* Return if old value is non zero */
1020 			if (!atomic_fetch_inc(&slpc->num_waiters))
1021 				schedule_work(&slpc->boost_work);
1022 
1023 			return;
1024 		}
1025 
1026 		if (atomic_fetch_inc(&rps->num_waiters))
1027 			return;
1028 
1029 		if (!intel_rps_is_active(rps))
1030 			return;
1031 
1032 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1033 			 rq->fence.context, rq->fence.seqno);
1034 
1035 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1036 			schedule_work(&rps->work);
1037 
1038 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1039 	}
1040 }
1041 
1042 int intel_rps_set(struct intel_rps *rps, u8 val)
1043 {
1044 	int err;
1045 
1046 	lockdep_assert_held(&rps->lock);
1047 	GEM_BUG_ON(val > rps->max_freq);
1048 	GEM_BUG_ON(val < rps->min_freq);
1049 
1050 	if (intel_rps_is_active(rps)) {
1051 		err = rps_set(rps, val, true);
1052 		if (err)
1053 			return err;
1054 
1055 		/*
1056 		 * Make sure we continue to get interrupts
1057 		 * until we hit the minimum or maximum frequencies.
1058 		 */
1059 		if (intel_rps_has_interrupts(rps)) {
1060 			struct intel_uncore *uncore = rps_to_uncore(rps);
1061 
1062 			set(uncore,
1063 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1064 
1065 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1066 		}
1067 	}
1068 
1069 	rps->cur_freq = val;
1070 	return 0;
1071 }
1072 
1073 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1074 {
1075 	struct drm_i915_private *i915 = rps_to_i915(rps);
1076 	struct intel_uncore *uncore = rps_to_uncore(rps);
1077 
1078 	if (IS_XEHPSDV(i915))
1079 		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1080 	else if (IS_GEN9_LP(i915))
1081 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1082 	else
1083 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1084 }
1085 
1086 /**
1087  * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1088  * @rps: the intel_rps structure
1089  * @caps: returned freq caps
1090  *
1091  * Returned "caps" frequencies should be converted to MHz using
1092  * intel_gpu_freq()
1093  */
1094 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1095 {
1096 	struct drm_i915_private *i915 = rps_to_i915(rps);
1097 	u32 rp_state_cap;
1098 
1099 	rp_state_cap = intel_rps_read_state_cap(rps);
1100 
1101 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1102 	if (IS_GEN9_LP(i915)) {
1103 		caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1104 		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1105 		caps->min_freq = (rp_state_cap >>  0) & 0xff;
1106 	} else {
1107 		caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1108 		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1109 		caps->min_freq = (rp_state_cap >> 16) & 0xff;
1110 	}
1111 
1112 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1113 		/*
1114 		 * In this case rp_state_cap register reports frequencies in
1115 		 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1116 		 * units of 16.67 MHz
1117 		 */
1118 		caps->rp0_freq *= GEN9_FREQ_SCALER;
1119 		caps->rp1_freq *= GEN9_FREQ_SCALER;
1120 		caps->min_freq *= GEN9_FREQ_SCALER;
1121 	}
1122 }
1123 
1124 static void gen6_rps_init(struct intel_rps *rps)
1125 {
1126 	struct drm_i915_private *i915 = rps_to_i915(rps);
1127 	struct intel_rps_freq_caps caps;
1128 
1129 	gen6_rps_get_freq_caps(rps, &caps);
1130 	rps->rp0_freq = caps.rp0_freq;
1131 	rps->rp1_freq = caps.rp1_freq;
1132 	rps->min_freq = caps.min_freq;
1133 
1134 	/* hw_max = RP0 until we check for overclocking */
1135 	rps->max_freq = rps->rp0_freq;
1136 
1137 	rps->efficient_freq = rps->rp1_freq;
1138 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1139 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1140 		u32 ddcc_status = 0;
1141 		u32 mult = 1;
1142 
1143 		if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1144 			mult = GEN9_FREQ_SCALER;
1145 		if (snb_pcode_read(i915, HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1146 				   &ddcc_status, NULL) == 0)
1147 			rps->efficient_freq =
1148 				clamp_t(u32,
1149 					((ddcc_status >> 8) & 0xff) * mult,
1150 					rps->min_freq,
1151 					rps->max_freq);
1152 	}
1153 }
1154 
1155 static bool rps_reset(struct intel_rps *rps)
1156 {
1157 	struct drm_i915_private *i915 = rps_to_i915(rps);
1158 
1159 	/* force a reset */
1160 	rps->power.mode = -1;
1161 	rps->last_freq = -1;
1162 
1163 	if (rps_set(rps, rps->min_freq, true)) {
1164 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1165 		return false;
1166 	}
1167 
1168 	rps->cur_freq = rps->min_freq;
1169 	return true;
1170 }
1171 
1172 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1173 static bool gen9_rps_enable(struct intel_rps *rps)
1174 {
1175 	struct intel_gt *gt = rps_to_gt(rps);
1176 	struct intel_uncore *uncore = gt->uncore;
1177 
1178 	/* Program defaults and thresholds for RPS */
1179 	if (GRAPHICS_VER(gt->i915) == 9)
1180 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1181 				      GEN9_FREQUENCY(rps->rp1_freq));
1182 
1183 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1184 
1185 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1186 
1187 	return rps_reset(rps);
1188 }
1189 
1190 static bool gen8_rps_enable(struct intel_rps *rps)
1191 {
1192 	struct intel_uncore *uncore = rps_to_uncore(rps);
1193 
1194 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1195 			      HSW_FREQUENCY(rps->rp1_freq));
1196 
1197 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1198 
1199 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1200 
1201 	return rps_reset(rps);
1202 }
1203 
1204 static bool gen6_rps_enable(struct intel_rps *rps)
1205 {
1206 	struct intel_uncore *uncore = rps_to_uncore(rps);
1207 
1208 	/* Power down if completely idle for over 50ms */
1209 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1210 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1211 
1212 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1213 			  GEN6_PM_RP_DOWN_THRESHOLD |
1214 			  GEN6_PM_RP_DOWN_TIMEOUT);
1215 
1216 	return rps_reset(rps);
1217 }
1218 
1219 static int chv_rps_max_freq(struct intel_rps *rps)
1220 {
1221 	struct drm_i915_private *i915 = rps_to_i915(rps);
1222 	struct intel_gt *gt = rps_to_gt(rps);
1223 	u32 val;
1224 
1225 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1226 
1227 	switch (gt->info.sseu.eu_total) {
1228 	case 8:
1229 		/* (2 * 4) config */
1230 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1231 		break;
1232 	case 12:
1233 		/* (2 * 6) config */
1234 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1235 		break;
1236 	case 16:
1237 		/* (2 * 8) config */
1238 	default:
1239 		/* Setting (2 * 8) Min RP0 for any other combination */
1240 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1241 		break;
1242 	}
1243 
1244 	return val & FB_GFX_FREQ_FUSE_MASK;
1245 }
1246 
1247 static int chv_rps_rpe_freq(struct intel_rps *rps)
1248 {
1249 	struct drm_i915_private *i915 = rps_to_i915(rps);
1250 	u32 val;
1251 
1252 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1253 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1254 
1255 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1256 }
1257 
1258 static int chv_rps_guar_freq(struct intel_rps *rps)
1259 {
1260 	struct drm_i915_private *i915 = rps_to_i915(rps);
1261 	u32 val;
1262 
1263 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1264 
1265 	return val & FB_GFX_FREQ_FUSE_MASK;
1266 }
1267 
1268 static u32 chv_rps_min_freq(struct intel_rps *rps)
1269 {
1270 	struct drm_i915_private *i915 = rps_to_i915(rps);
1271 	u32 val;
1272 
1273 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1274 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1275 
1276 	return val & FB_GFX_FREQ_FUSE_MASK;
1277 }
1278 
1279 static bool chv_rps_enable(struct intel_rps *rps)
1280 {
1281 	struct intel_uncore *uncore = rps_to_uncore(rps);
1282 	struct drm_i915_private *i915 = rps_to_i915(rps);
1283 	u32 val;
1284 
1285 	/* 1: Program defaults and thresholds for RPS*/
1286 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1287 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1288 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1289 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1290 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1291 
1292 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1293 
1294 	/* 2: Enable RPS */
1295 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1296 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1297 			      GEN6_RP_MEDIA_IS_GFX |
1298 			      GEN6_RP_ENABLE |
1299 			      GEN6_RP_UP_BUSY_AVG |
1300 			      GEN6_RP_DOWN_IDLE_AVG);
1301 
1302 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1303 			  GEN6_PM_RP_DOWN_THRESHOLD |
1304 			  GEN6_PM_RP_DOWN_TIMEOUT);
1305 
1306 	/* Setting Fixed Bias */
1307 	vlv_punit_get(i915);
1308 
1309 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1310 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1311 
1312 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1313 
1314 	vlv_punit_put(i915);
1315 
1316 	/* RPS code assumes GPLL is used */
1317 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1318 		      "GPLL not enabled\n");
1319 
1320 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1321 		str_yes_no(val & GPLLENABLE));
1322 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1323 
1324 	return rps_reset(rps);
1325 }
1326 
1327 static int vlv_rps_guar_freq(struct intel_rps *rps)
1328 {
1329 	struct drm_i915_private *i915 = rps_to_i915(rps);
1330 	u32 val, rp1;
1331 
1332 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1333 
1334 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1335 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1336 
1337 	return rp1;
1338 }
1339 
1340 static int vlv_rps_max_freq(struct intel_rps *rps)
1341 {
1342 	struct drm_i915_private *i915 = rps_to_i915(rps);
1343 	u32 val, rp0;
1344 
1345 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1346 
1347 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1348 	/* Clamp to max */
1349 	rp0 = min_t(u32, rp0, 0xea);
1350 
1351 	return rp0;
1352 }
1353 
1354 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1355 {
1356 	struct drm_i915_private *i915 = rps_to_i915(rps);
1357 	u32 val, rpe;
1358 
1359 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1360 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1361 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1362 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1363 
1364 	return rpe;
1365 }
1366 
1367 static int vlv_rps_min_freq(struct intel_rps *rps)
1368 {
1369 	struct drm_i915_private *i915 = rps_to_i915(rps);
1370 	u32 val;
1371 
1372 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1373 	/*
1374 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1375 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1376 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1377 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1378 	 * to make sure it matches what Punit accepts.
1379 	 */
1380 	return max_t(u32, val, 0xc0);
1381 }
1382 
1383 static bool vlv_rps_enable(struct intel_rps *rps)
1384 {
1385 	struct intel_uncore *uncore = rps_to_uncore(rps);
1386 	struct drm_i915_private *i915 = rps_to_i915(rps);
1387 	u32 val;
1388 
1389 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1390 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1391 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1392 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1393 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1394 
1395 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1396 
1397 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1398 			      GEN6_RP_MEDIA_TURBO |
1399 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1400 			      GEN6_RP_MEDIA_IS_GFX |
1401 			      GEN6_RP_ENABLE |
1402 			      GEN6_RP_UP_BUSY_AVG |
1403 			      GEN6_RP_DOWN_IDLE_CONT);
1404 
1405 	/* WaGsvRC0ResidencyMethod:vlv */
1406 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1407 
1408 	vlv_punit_get(i915);
1409 
1410 	/* Setting Fixed Bias */
1411 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1412 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1413 
1414 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1415 
1416 	vlv_punit_put(i915);
1417 
1418 	/* RPS code assumes GPLL is used */
1419 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1420 		      "GPLL not enabled\n");
1421 
1422 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1423 		str_yes_no(val & GPLLENABLE));
1424 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1425 
1426 	return rps_reset(rps);
1427 }
1428 
1429 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1430 {
1431 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1432 	struct intel_uncore *uncore = rps_to_uncore(rps);
1433 	unsigned int t, state1, state2;
1434 	u32 pxvid, ext_v;
1435 	u64 corr, corr2;
1436 
1437 	lockdep_assert_held(&mchdev_lock);
1438 
1439 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1440 	pxvid = (pxvid >> 24) & 0x7f;
1441 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1442 
1443 	state1 = ext_v;
1444 
1445 	/* Revel in the empirically derived constants */
1446 
1447 	/* Correction factor in 1/100000 units */
1448 	t = ips_mch_val(uncore);
1449 	if (t > 80)
1450 		corr = t * 2349 + 135940;
1451 	else if (t >= 50)
1452 		corr = t * 964 + 29317;
1453 	else /* < 50 */
1454 		corr = t * 301 + 1004;
1455 
1456 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1457 	corr2 = div_u64(corr, 100000) * ips->corr;
1458 
1459 	state2 = div_u64(corr2 * state1, 10000);
1460 	state2 /= 100; /* convert to mW */
1461 
1462 	__gen5_ips_update(ips);
1463 
1464 	return ips->gfx_power + state2;
1465 }
1466 
1467 static bool has_busy_stats(struct intel_rps *rps)
1468 {
1469 	struct intel_engine_cs *engine;
1470 	enum intel_engine_id id;
1471 
1472 	for_each_engine(engine, rps_to_gt(rps), id) {
1473 		if (!intel_engine_supports_stats(engine))
1474 			return false;
1475 	}
1476 
1477 	return true;
1478 }
1479 
1480 void intel_rps_enable(struct intel_rps *rps)
1481 {
1482 	struct drm_i915_private *i915 = rps_to_i915(rps);
1483 	struct intel_uncore *uncore = rps_to_uncore(rps);
1484 	bool enabled = false;
1485 
1486 	if (!HAS_RPS(i915))
1487 		return;
1488 
1489 	if (rps_uses_slpc(rps))
1490 		return;
1491 
1492 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1493 
1494 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1495 	if (rps->max_freq <= rps->min_freq)
1496 		/* leave disabled, no room for dynamic reclocking */;
1497 	else if (IS_CHERRYVIEW(i915))
1498 		enabled = chv_rps_enable(rps);
1499 	else if (IS_VALLEYVIEW(i915))
1500 		enabled = vlv_rps_enable(rps);
1501 	else if (GRAPHICS_VER(i915) >= 9)
1502 		enabled = gen9_rps_enable(rps);
1503 	else if (GRAPHICS_VER(i915) >= 8)
1504 		enabled = gen8_rps_enable(rps);
1505 	else if (GRAPHICS_VER(i915) >= 6)
1506 		enabled = gen6_rps_enable(rps);
1507 	else if (IS_IRONLAKE_M(i915))
1508 		enabled = gen5_rps_enable(rps);
1509 	else
1510 		MISSING_CASE(GRAPHICS_VER(i915));
1511 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1512 	if (!enabled)
1513 		return;
1514 
1515 	GT_TRACE(rps_to_gt(rps),
1516 		 "min:%x, max:%x, freq:[%d, %d]\n",
1517 		 rps->min_freq, rps->max_freq,
1518 		 intel_gpu_freq(rps, rps->min_freq),
1519 		 intel_gpu_freq(rps, rps->max_freq));
1520 
1521 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1522 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1523 
1524 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1525 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1526 
1527 	if (has_busy_stats(rps))
1528 		intel_rps_set_timer(rps);
1529 	else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1530 		intel_rps_set_interrupts(rps);
1531 	else
1532 		/* Ironlake currently uses intel_ips.ko */ {}
1533 
1534 	intel_rps_set_enabled(rps);
1535 }
1536 
1537 static void gen6_rps_disable(struct intel_rps *rps)
1538 {
1539 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1540 }
1541 
1542 void intel_rps_disable(struct intel_rps *rps)
1543 {
1544 	struct drm_i915_private *i915 = rps_to_i915(rps);
1545 
1546 	intel_rps_clear_enabled(rps);
1547 	intel_rps_clear_interrupts(rps);
1548 	intel_rps_clear_timer(rps);
1549 
1550 	if (GRAPHICS_VER(i915) >= 6)
1551 		gen6_rps_disable(rps);
1552 	else if (IS_IRONLAKE_M(i915))
1553 		gen5_rps_disable(rps);
1554 }
1555 
1556 static int byt_gpu_freq(struct intel_rps *rps, int val)
1557 {
1558 	/*
1559 	 * N = val - 0xb7
1560 	 * Slow = Fast = GPLL ref * N
1561 	 */
1562 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1563 }
1564 
1565 static int byt_freq_opcode(struct intel_rps *rps, int val)
1566 {
1567 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1568 }
1569 
1570 static int chv_gpu_freq(struct intel_rps *rps, int val)
1571 {
1572 	/*
1573 	 * N = val / 2
1574 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1575 	 */
1576 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1577 }
1578 
1579 static int chv_freq_opcode(struct intel_rps *rps, int val)
1580 {
1581 	/* CHV needs even values */
1582 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1583 }
1584 
1585 int intel_gpu_freq(struct intel_rps *rps, int val)
1586 {
1587 	struct drm_i915_private *i915 = rps_to_i915(rps);
1588 
1589 	if (GRAPHICS_VER(i915) >= 9)
1590 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1591 					 GEN9_FREQ_SCALER);
1592 	else if (IS_CHERRYVIEW(i915))
1593 		return chv_gpu_freq(rps, val);
1594 	else if (IS_VALLEYVIEW(i915))
1595 		return byt_gpu_freq(rps, val);
1596 	else if (GRAPHICS_VER(i915) >= 6)
1597 		return val * GT_FREQUENCY_MULTIPLIER;
1598 	else
1599 		return val;
1600 }
1601 
1602 int intel_freq_opcode(struct intel_rps *rps, int val)
1603 {
1604 	struct drm_i915_private *i915 = rps_to_i915(rps);
1605 
1606 	if (GRAPHICS_VER(i915) >= 9)
1607 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1608 					 GT_FREQUENCY_MULTIPLIER);
1609 	else if (IS_CHERRYVIEW(i915))
1610 		return chv_freq_opcode(rps, val);
1611 	else if (IS_VALLEYVIEW(i915))
1612 		return byt_freq_opcode(rps, val);
1613 	else if (GRAPHICS_VER(i915) >= 6)
1614 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1615 	else
1616 		return val;
1617 }
1618 
1619 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1620 {
1621 	struct drm_i915_private *i915 = rps_to_i915(rps);
1622 
1623 	rps->gpll_ref_freq =
1624 		vlv_get_cck_clock(i915, "GPLL ref",
1625 				  CCK_GPLL_CLOCK_CONTROL,
1626 				  i915->czclk_freq);
1627 
1628 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1629 		rps->gpll_ref_freq);
1630 }
1631 
1632 static void vlv_rps_init(struct intel_rps *rps)
1633 {
1634 	struct drm_i915_private *i915 = rps_to_i915(rps);
1635 	u32 val;
1636 
1637 	vlv_iosf_sb_get(i915,
1638 			BIT(VLV_IOSF_SB_PUNIT) |
1639 			BIT(VLV_IOSF_SB_NC) |
1640 			BIT(VLV_IOSF_SB_CCK));
1641 
1642 	vlv_init_gpll_ref_freq(rps);
1643 
1644 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1645 	switch ((val >> 6) & 3) {
1646 	case 0:
1647 	case 1:
1648 		i915->mem_freq = 800;
1649 		break;
1650 	case 2:
1651 		i915->mem_freq = 1066;
1652 		break;
1653 	case 3:
1654 		i915->mem_freq = 1333;
1655 		break;
1656 	}
1657 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1658 
1659 	rps->max_freq = vlv_rps_max_freq(rps);
1660 	rps->rp0_freq = rps->max_freq;
1661 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1662 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1663 
1664 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1665 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1666 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1667 
1668 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1669 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1670 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1671 
1672 	rps->min_freq = vlv_rps_min_freq(rps);
1673 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1674 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1675 
1676 	vlv_iosf_sb_put(i915,
1677 			BIT(VLV_IOSF_SB_PUNIT) |
1678 			BIT(VLV_IOSF_SB_NC) |
1679 			BIT(VLV_IOSF_SB_CCK));
1680 }
1681 
1682 static void chv_rps_init(struct intel_rps *rps)
1683 {
1684 	struct drm_i915_private *i915 = rps_to_i915(rps);
1685 	u32 val;
1686 
1687 	vlv_iosf_sb_get(i915,
1688 			BIT(VLV_IOSF_SB_PUNIT) |
1689 			BIT(VLV_IOSF_SB_NC) |
1690 			BIT(VLV_IOSF_SB_CCK));
1691 
1692 	vlv_init_gpll_ref_freq(rps);
1693 
1694 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1695 
1696 	switch ((val >> 2) & 0x7) {
1697 	case 3:
1698 		i915->mem_freq = 2000;
1699 		break;
1700 	default:
1701 		i915->mem_freq = 1600;
1702 		break;
1703 	}
1704 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1705 
1706 	rps->max_freq = chv_rps_max_freq(rps);
1707 	rps->rp0_freq = rps->max_freq;
1708 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1709 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1710 
1711 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1712 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1713 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1714 
1715 	rps->rp1_freq = chv_rps_guar_freq(rps);
1716 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1717 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1718 
1719 	rps->min_freq = chv_rps_min_freq(rps);
1720 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1721 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1722 
1723 	vlv_iosf_sb_put(i915,
1724 			BIT(VLV_IOSF_SB_PUNIT) |
1725 			BIT(VLV_IOSF_SB_NC) |
1726 			BIT(VLV_IOSF_SB_CCK));
1727 
1728 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1729 				   rps->rp1_freq | rps->min_freq) & 1,
1730 		      "Odd GPU freq values\n");
1731 }
1732 
1733 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1734 {
1735 	ei->ktime = ktime_get_raw();
1736 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1737 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1738 }
1739 
1740 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1741 {
1742 	struct intel_uncore *uncore = rps_to_uncore(rps);
1743 	const struct intel_rps_ei *prev = &rps->ei;
1744 	struct intel_rps_ei now;
1745 	u32 events = 0;
1746 
1747 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1748 		return 0;
1749 
1750 	vlv_c0_read(uncore, &now);
1751 
1752 	if (prev->ktime) {
1753 		u64 time, c0;
1754 		u32 render, media;
1755 
1756 		time = ktime_us_delta(now.ktime, prev->ktime);
1757 
1758 		time *= rps_to_i915(rps)->czclk_freq;
1759 
1760 		/* Workload can be split between render + media,
1761 		 * e.g. SwapBuffers being blitted in X after being rendered in
1762 		 * mesa. To account for this we need to combine both engines
1763 		 * into our activity counter.
1764 		 */
1765 		render = now.render_c0 - prev->render_c0;
1766 		media = now.media_c0 - prev->media_c0;
1767 		c0 = max(render, media);
1768 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1769 
1770 		if (c0 > time * rps->power.up_threshold)
1771 			events = GEN6_PM_RP_UP_THRESHOLD;
1772 		else if (c0 < time * rps->power.down_threshold)
1773 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1774 	}
1775 
1776 	rps->ei = now;
1777 	return events;
1778 }
1779 
1780 static void rps_work(struct work_struct *work)
1781 {
1782 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1783 	struct intel_gt *gt = rps_to_gt(rps);
1784 	struct drm_i915_private *i915 = rps_to_i915(rps);
1785 	bool client_boost = false;
1786 	int new_freq, adj, min, max;
1787 	u32 pm_iir = 0;
1788 
1789 	spin_lock_irq(&gt->irq_lock);
1790 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1791 	client_boost = atomic_read(&rps->num_waiters);
1792 	spin_unlock_irq(&gt->irq_lock);
1793 
1794 	/* Make sure we didn't queue anything we're not going to process. */
1795 	if (!pm_iir && !client_boost)
1796 		goto out;
1797 
1798 	mutex_lock(&rps->lock);
1799 	if (!intel_rps_is_active(rps)) {
1800 		mutex_unlock(&rps->lock);
1801 		return;
1802 	}
1803 
1804 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1805 
1806 	adj = rps->last_adj;
1807 	new_freq = rps->cur_freq;
1808 	min = rps->min_freq_softlimit;
1809 	max = rps->max_freq_softlimit;
1810 	if (client_boost)
1811 		max = rps->max_freq;
1812 
1813 	GT_TRACE(gt,
1814 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1815 		 pm_iir, str_yes_no(client_boost),
1816 		 adj, new_freq, min, max);
1817 
1818 	if (client_boost && new_freq < rps->boost_freq) {
1819 		new_freq = rps->boost_freq;
1820 		adj = 0;
1821 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1822 		if (adj > 0)
1823 			adj *= 2;
1824 		else /* CHV needs even encode values */
1825 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1826 
1827 		if (new_freq >= rps->max_freq_softlimit)
1828 			adj = 0;
1829 	} else if (client_boost) {
1830 		adj = 0;
1831 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1832 		if (rps->cur_freq > rps->efficient_freq)
1833 			new_freq = rps->efficient_freq;
1834 		else if (rps->cur_freq > rps->min_freq_softlimit)
1835 			new_freq = rps->min_freq_softlimit;
1836 		adj = 0;
1837 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1838 		if (adj < 0)
1839 			adj *= 2;
1840 		else /* CHV needs even encode values */
1841 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1842 
1843 		if (new_freq <= rps->min_freq_softlimit)
1844 			adj = 0;
1845 	} else { /* unknown event */
1846 		adj = 0;
1847 	}
1848 
1849 	/*
1850 	 * sysfs frequency limits may have snuck in while
1851 	 * servicing the interrupt
1852 	 */
1853 	new_freq += adj;
1854 	new_freq = clamp_t(int, new_freq, min, max);
1855 
1856 	if (intel_rps_set(rps, new_freq)) {
1857 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1858 		adj = 0;
1859 	}
1860 	rps->last_adj = adj;
1861 
1862 	mutex_unlock(&rps->lock);
1863 
1864 out:
1865 	spin_lock_irq(&gt->irq_lock);
1866 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1867 	spin_unlock_irq(&gt->irq_lock);
1868 }
1869 
1870 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1871 {
1872 	struct intel_gt *gt = rps_to_gt(rps);
1873 	const u32 events = rps->pm_events & pm_iir;
1874 
1875 	lockdep_assert_held(&gt->irq_lock);
1876 
1877 	if (unlikely(!events))
1878 		return;
1879 
1880 	GT_TRACE(gt, "irq events:%x\n", events);
1881 
1882 	gen6_gt_pm_mask_irq(gt, events);
1883 
1884 	rps->pm_iir |= events;
1885 	schedule_work(&rps->work);
1886 }
1887 
1888 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1889 {
1890 	struct intel_gt *gt = rps_to_gt(rps);
1891 	u32 events;
1892 
1893 	events = pm_iir & rps->pm_events;
1894 	if (events) {
1895 		spin_lock(&gt->irq_lock);
1896 
1897 		GT_TRACE(gt, "irq events:%x\n", events);
1898 
1899 		gen6_gt_pm_mask_irq(gt, events);
1900 		rps->pm_iir |= events;
1901 
1902 		schedule_work(&rps->work);
1903 		spin_unlock(&gt->irq_lock);
1904 	}
1905 
1906 	if (GRAPHICS_VER(gt->i915) >= 8)
1907 		return;
1908 
1909 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1910 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1911 
1912 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1913 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1914 }
1915 
1916 void gen5_rps_irq_handler(struct intel_rps *rps)
1917 {
1918 	struct intel_uncore *uncore = rps_to_uncore(rps);
1919 	u32 busy_up, busy_down, max_avg, min_avg;
1920 	u8 new_freq;
1921 
1922 	spin_lock(&mchdev_lock);
1923 
1924 	intel_uncore_write16(uncore,
1925 			     MEMINTRSTS,
1926 			     intel_uncore_read(uncore, MEMINTRSTS));
1927 
1928 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1929 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1930 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1931 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1932 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1933 
1934 	/* Handle RCS change request from hw */
1935 	new_freq = rps->cur_freq;
1936 	if (busy_up > max_avg)
1937 		new_freq++;
1938 	else if (busy_down < min_avg)
1939 		new_freq--;
1940 	new_freq = clamp(new_freq,
1941 			 rps->min_freq_softlimit,
1942 			 rps->max_freq_softlimit);
1943 
1944 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1945 		rps->cur_freq = new_freq;
1946 
1947 	spin_unlock(&mchdev_lock);
1948 }
1949 
1950 void intel_rps_init_early(struct intel_rps *rps)
1951 {
1952 	mutex_init(&rps->lock);
1953 	mutex_init(&rps->power.mutex);
1954 
1955 	INIT_WORK(&rps->work, rps_work);
1956 	timer_setup(&rps->timer, rps_timer, 0);
1957 
1958 	atomic_set(&rps->num_waiters, 0);
1959 }
1960 
1961 void intel_rps_init(struct intel_rps *rps)
1962 {
1963 	struct drm_i915_private *i915 = rps_to_i915(rps);
1964 
1965 	if (rps_uses_slpc(rps))
1966 		return;
1967 
1968 	if (IS_CHERRYVIEW(i915))
1969 		chv_rps_init(rps);
1970 	else if (IS_VALLEYVIEW(i915))
1971 		vlv_rps_init(rps);
1972 	else if (GRAPHICS_VER(i915) >= 6)
1973 		gen6_rps_init(rps);
1974 	else if (IS_IRONLAKE_M(i915))
1975 		gen5_rps_init(rps);
1976 
1977 	/* Derive initial user preferences/limits from the hardware limits */
1978 	rps->max_freq_softlimit = rps->max_freq;
1979 	rps->min_freq_softlimit = rps->min_freq;
1980 
1981 	/* After setting max-softlimit, find the overclock max freq */
1982 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1983 		u32 params = 0;
1984 
1985 		snb_pcode_read(i915, GEN6_READ_OC_PARAMS, &params, NULL);
1986 		if (params & BIT(31)) { /* OC supported */
1987 			drm_dbg(&i915->drm,
1988 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1989 				(rps->max_freq & 0xff) * 50,
1990 				(params & 0xff) * 50);
1991 			rps->max_freq = params & 0xff;
1992 		}
1993 	}
1994 
1995 	/* Finally allow us to boost to max by default */
1996 	rps->boost_freq = rps->max_freq;
1997 	rps->idle_freq = rps->min_freq;
1998 
1999 	/* Start in the middle, from here we will autotune based on workload */
2000 	rps->cur_freq = rps->efficient_freq;
2001 
2002 	rps->pm_intrmsk_mbz = 0;
2003 
2004 	/*
2005 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2006 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
2007 	 *
2008 	 * TODO: verify if this can be reproduced on VLV,CHV.
2009 	 */
2010 	if (GRAPHICS_VER(i915) <= 7)
2011 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2012 
2013 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2014 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2015 
2016 	/* GuC needs ARAT expired interrupt unmasked */
2017 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2018 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2019 }
2020 
2021 void intel_rps_sanitize(struct intel_rps *rps)
2022 {
2023 	if (rps_uses_slpc(rps))
2024 		return;
2025 
2026 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2027 		rps_disable_interrupts(rps);
2028 }
2029 
2030 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2031 {
2032 	struct drm_i915_private *i915 = rps_to_i915(rps);
2033 	u32 cagf;
2034 
2035 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2036 		cagf = (rpstat >> 8) & 0xff;
2037 	else if (GRAPHICS_VER(i915) >= 9)
2038 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
2039 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2040 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
2041 	else if (GRAPHICS_VER(i915) >= 6)
2042 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
2043 	else
2044 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
2045 					MEMSTAT_PSTATE_SHIFT);
2046 
2047 	return cagf;
2048 }
2049 
2050 static u32 read_cagf(struct intel_rps *rps)
2051 {
2052 	struct drm_i915_private *i915 = rps_to_i915(rps);
2053 	struct intel_uncore *uncore = rps_to_uncore(rps);
2054 	u32 freq;
2055 
2056 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2057 		vlv_punit_get(i915);
2058 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2059 		vlv_punit_put(i915);
2060 	} else if (GRAPHICS_VER(i915) >= 6) {
2061 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
2062 	} else {
2063 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
2064 	}
2065 
2066 	return intel_rps_get_cagf(rps, freq);
2067 }
2068 
2069 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2070 {
2071 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2072 	intel_wakeref_t wakeref;
2073 	u32 freq = 0;
2074 
2075 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2076 		freq = intel_gpu_freq(rps, read_cagf(rps));
2077 
2078 	return freq;
2079 }
2080 
2081 u32 intel_rps_read_punit_req(struct intel_rps *rps)
2082 {
2083 	struct intel_uncore *uncore = rps_to_uncore(rps);
2084 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2085 	intel_wakeref_t wakeref;
2086 	u32 freq = 0;
2087 
2088 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2089 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2090 
2091 	return freq;
2092 }
2093 
2094 static u32 intel_rps_get_req(u32 pureq)
2095 {
2096 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2097 
2098 	return req;
2099 }
2100 
2101 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2102 {
2103 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2104 
2105 	return intel_gpu_freq(rps, freq);
2106 }
2107 
2108 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2109 {
2110 	if (rps_uses_slpc(rps))
2111 		return intel_rps_read_punit_req_frequency(rps);
2112 	else
2113 		return intel_gpu_freq(rps, rps->cur_freq);
2114 }
2115 
2116 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2117 {
2118 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2119 
2120 	if (rps_uses_slpc(rps))
2121 		return slpc->max_freq_softlimit;
2122 	else
2123 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2124 }
2125 
2126 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2127 {
2128 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2129 
2130 	if (rps_uses_slpc(rps))
2131 		return slpc->rp0_freq;
2132 	else
2133 		return intel_gpu_freq(rps, rps->rp0_freq);
2134 }
2135 
2136 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2137 {
2138 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2139 
2140 	if (rps_uses_slpc(rps))
2141 		return slpc->rp1_freq;
2142 	else
2143 		return intel_gpu_freq(rps, rps->rp1_freq);
2144 }
2145 
2146 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2147 {
2148 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2149 
2150 	if (rps_uses_slpc(rps))
2151 		return slpc->min_freq;
2152 	else
2153 		return intel_gpu_freq(rps, rps->min_freq);
2154 }
2155 
2156 static int set_max_freq(struct intel_rps *rps, u32 val)
2157 {
2158 	struct drm_i915_private *i915 = rps_to_i915(rps);
2159 	int ret = 0;
2160 
2161 	mutex_lock(&rps->lock);
2162 
2163 	val = intel_freq_opcode(rps, val);
2164 	if (val < rps->min_freq ||
2165 	    val > rps->max_freq ||
2166 	    val < rps->min_freq_softlimit) {
2167 		ret = -EINVAL;
2168 		goto unlock;
2169 	}
2170 
2171 	if (val > rps->rp0_freq)
2172 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2173 			intel_gpu_freq(rps, val));
2174 
2175 	rps->max_freq_softlimit = val;
2176 
2177 	val = clamp_t(int, rps->cur_freq,
2178 		      rps->min_freq_softlimit,
2179 		      rps->max_freq_softlimit);
2180 
2181 	/*
2182 	 * We still need *_set_rps to process the new max_delay and
2183 	 * update the interrupt limits and PMINTRMSK even though
2184 	 * frequency request may be unchanged.
2185 	 */
2186 	intel_rps_set(rps, val);
2187 
2188 unlock:
2189 	mutex_unlock(&rps->lock);
2190 
2191 	return ret;
2192 }
2193 
2194 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2195 {
2196 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2197 
2198 	if (rps_uses_slpc(rps))
2199 		return intel_guc_slpc_set_max_freq(slpc, val);
2200 	else
2201 		return set_max_freq(rps, val);
2202 }
2203 
2204 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2205 {
2206 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2207 
2208 	if (rps_uses_slpc(rps))
2209 		return slpc->min_freq_softlimit;
2210 	else
2211 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2212 }
2213 
2214 static int set_min_freq(struct intel_rps *rps, u32 val)
2215 {
2216 	int ret = 0;
2217 
2218 	mutex_lock(&rps->lock);
2219 
2220 	val = intel_freq_opcode(rps, val);
2221 	if (val < rps->min_freq ||
2222 	    val > rps->max_freq ||
2223 	    val > rps->max_freq_softlimit) {
2224 		ret = -EINVAL;
2225 		goto unlock;
2226 	}
2227 
2228 	rps->min_freq_softlimit = val;
2229 
2230 	val = clamp_t(int, rps->cur_freq,
2231 		      rps->min_freq_softlimit,
2232 		      rps->max_freq_softlimit);
2233 
2234 	/*
2235 	 * We still need *_set_rps to process the new min_delay and
2236 	 * update the interrupt limits and PMINTRMSK even though
2237 	 * frequency request may be unchanged.
2238 	 */
2239 	intel_rps_set(rps, val);
2240 
2241 unlock:
2242 	mutex_unlock(&rps->lock);
2243 
2244 	return ret;
2245 }
2246 
2247 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2248 {
2249 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2250 
2251 	if (rps_uses_slpc(rps))
2252 		return intel_guc_slpc_set_min_freq(slpc, val);
2253 	else
2254 		return set_min_freq(rps, val);
2255 }
2256 
2257 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2258 {
2259 	struct intel_uncore *uncore = rps_to_uncore(rps);
2260 	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2261 
2262 	/* Allow punit to process software requests */
2263 	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2264 }
2265 
2266 void intel_rps_raise_unslice(struct intel_rps *rps)
2267 {
2268 	struct intel_uncore *uncore = rps_to_uncore(rps);
2269 
2270 	mutex_lock(&rps->lock);
2271 
2272 	if (rps_uses_slpc(rps)) {
2273 		/* RP limits have not been initialized yet for SLPC path */
2274 		struct intel_rps_freq_caps caps;
2275 
2276 		gen6_rps_get_freq_caps(rps, &caps);
2277 
2278 		intel_rps_set_manual(rps, true);
2279 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2280 				   ((caps.rp0_freq <<
2281 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2282 				   GEN9_IGNORE_SLICE_RATIO));
2283 		intel_rps_set_manual(rps, false);
2284 	} else {
2285 		intel_rps_set(rps, rps->rp0_freq);
2286 	}
2287 
2288 	mutex_unlock(&rps->lock);
2289 }
2290 
2291 void intel_rps_lower_unslice(struct intel_rps *rps)
2292 {
2293 	struct intel_uncore *uncore = rps_to_uncore(rps);
2294 
2295 	mutex_lock(&rps->lock);
2296 
2297 	if (rps_uses_slpc(rps)) {
2298 		/* RP limits have not been initialized yet for SLPC path */
2299 		struct intel_rps_freq_caps caps;
2300 
2301 		gen6_rps_get_freq_caps(rps, &caps);
2302 
2303 		intel_rps_set_manual(rps, true);
2304 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2305 				   ((caps.min_freq <<
2306 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2307 				   GEN9_IGNORE_SLICE_RATIO));
2308 		intel_rps_set_manual(rps, false);
2309 	} else {
2310 		intel_rps_set(rps, rps->min_freq);
2311 	}
2312 
2313 	mutex_unlock(&rps->lock);
2314 }
2315 
2316 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2317 {
2318 	struct intel_gt *gt = rps_to_gt(rps);
2319 	intel_wakeref_t wakeref;
2320 	u32 val;
2321 
2322 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2323 		val = intel_uncore_read(gt->uncore, reg32);
2324 
2325 	return val;
2326 }
2327 
2328 bool rps_read_mask_mmio(struct intel_rps *rps,
2329 			i915_reg_t reg32, u32 mask)
2330 {
2331 	return rps_read_mmio(rps, reg32) & mask;
2332 }
2333 
2334 /* External interface for intel_ips.ko */
2335 
2336 static struct drm_i915_private __rcu *ips_mchdev;
2337 
2338 /**
2339  * Tells the intel_ips driver that the i915 driver is now loaded, if
2340  * IPS got loaded first.
2341  *
2342  * This awkward dance is so that neither module has to depend on the
2343  * other in order for IPS to do the appropriate communication of
2344  * GPU turbo limits to i915.
2345  */
2346 static void
2347 ips_ping_for_i915_load(void)
2348 {
2349 	void (*link)(void);
2350 
2351 	link = symbol_get(ips_link_to_i915_driver);
2352 	if (link) {
2353 		link();
2354 		symbol_put(ips_link_to_i915_driver);
2355 	}
2356 }
2357 
2358 void intel_rps_driver_register(struct intel_rps *rps)
2359 {
2360 	struct intel_gt *gt = rps_to_gt(rps);
2361 
2362 	/*
2363 	 * We only register the i915 ips part with intel-ips once everything is
2364 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2365 	 */
2366 	if (GRAPHICS_VER(gt->i915) == 5) {
2367 		GEM_BUG_ON(ips_mchdev);
2368 		rcu_assign_pointer(ips_mchdev, gt->i915);
2369 		ips_ping_for_i915_load();
2370 	}
2371 }
2372 
2373 void intel_rps_driver_unregister(struct intel_rps *rps)
2374 {
2375 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2376 		rcu_assign_pointer(ips_mchdev, NULL);
2377 }
2378 
2379 static struct drm_i915_private *mchdev_get(void)
2380 {
2381 	struct drm_i915_private *i915;
2382 
2383 	rcu_read_lock();
2384 	i915 = rcu_dereference(ips_mchdev);
2385 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2386 		i915 = NULL;
2387 	rcu_read_unlock();
2388 
2389 	return i915;
2390 }
2391 
2392 /**
2393  * i915_read_mch_val - return value for IPS use
2394  *
2395  * Calculate and return a value for the IPS driver to use when deciding whether
2396  * we have thermal and power headroom to increase CPU or GPU power budget.
2397  */
2398 unsigned long i915_read_mch_val(void)
2399 {
2400 	struct drm_i915_private *i915;
2401 	unsigned long chipset_val = 0;
2402 	unsigned long graphics_val = 0;
2403 	intel_wakeref_t wakeref;
2404 
2405 	i915 = mchdev_get();
2406 	if (!i915)
2407 		return 0;
2408 
2409 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2410 		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2411 
2412 		spin_lock_irq(&mchdev_lock);
2413 		chipset_val = __ips_chipset_val(ips);
2414 		graphics_val = __ips_gfx_val(ips);
2415 		spin_unlock_irq(&mchdev_lock);
2416 	}
2417 
2418 	drm_dev_put(&i915->drm);
2419 	return chipset_val + graphics_val;
2420 }
2421 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2422 
2423 /**
2424  * i915_gpu_raise - raise GPU frequency limit
2425  *
2426  * Raise the limit; IPS indicates we have thermal headroom.
2427  */
2428 bool i915_gpu_raise(void)
2429 {
2430 	struct drm_i915_private *i915;
2431 	struct intel_rps *rps;
2432 
2433 	i915 = mchdev_get();
2434 	if (!i915)
2435 		return false;
2436 
2437 	rps = &to_gt(i915)->rps;
2438 
2439 	spin_lock_irq(&mchdev_lock);
2440 	if (rps->max_freq_softlimit < rps->max_freq)
2441 		rps->max_freq_softlimit++;
2442 	spin_unlock_irq(&mchdev_lock);
2443 
2444 	drm_dev_put(&i915->drm);
2445 	return true;
2446 }
2447 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2448 
2449 /**
2450  * i915_gpu_lower - lower GPU frequency limit
2451  *
2452  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2453  * frequency maximum.
2454  */
2455 bool i915_gpu_lower(void)
2456 {
2457 	struct drm_i915_private *i915;
2458 	struct intel_rps *rps;
2459 
2460 	i915 = mchdev_get();
2461 	if (!i915)
2462 		return false;
2463 
2464 	rps = &to_gt(i915)->rps;
2465 
2466 	spin_lock_irq(&mchdev_lock);
2467 	if (rps->max_freq_softlimit > rps->min_freq)
2468 		rps->max_freq_softlimit--;
2469 	spin_unlock_irq(&mchdev_lock);
2470 
2471 	drm_dev_put(&i915->drm);
2472 	return true;
2473 }
2474 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2475 
2476 /**
2477  * i915_gpu_busy - indicate GPU business to IPS
2478  *
2479  * Tell the IPS driver whether or not the GPU is busy.
2480  */
2481 bool i915_gpu_busy(void)
2482 {
2483 	struct drm_i915_private *i915;
2484 	bool ret;
2485 
2486 	i915 = mchdev_get();
2487 	if (!i915)
2488 		return false;
2489 
2490 	ret = to_gt(i915)->awake;
2491 
2492 	drm_dev_put(&i915->drm);
2493 	return ret;
2494 }
2495 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2496 
2497 /**
2498  * i915_gpu_turbo_disable - disable graphics turbo
2499  *
2500  * Disable graphics turbo by resetting the max frequency and setting the
2501  * current frequency to the default.
2502  */
2503 bool i915_gpu_turbo_disable(void)
2504 {
2505 	struct drm_i915_private *i915;
2506 	struct intel_rps *rps;
2507 	bool ret;
2508 
2509 	i915 = mchdev_get();
2510 	if (!i915)
2511 		return false;
2512 
2513 	rps = &to_gt(i915)->rps;
2514 
2515 	spin_lock_irq(&mchdev_lock);
2516 	rps->max_freq_softlimit = rps->min_freq;
2517 	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2518 	spin_unlock_irq(&mchdev_lock);
2519 
2520 	drm_dev_put(&i915->drm);
2521 	return ret;
2522 }
2523 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2524 
2525 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2526 #include "selftest_rps.c"
2527 #include "selftest_slpc.c"
2528 #endif
2529