xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 2cf1c348)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/i915_drm.h>
7 
8 #include "i915_drv.h"
9 #include "intel_breadcrumbs.h"
10 #include "intel_gt.h"
11 #include "intel_gt_clock_utils.h"
12 #include "intel_gt_irq.h"
13 #include "intel_gt_pm_irq.h"
14 #include "intel_pcode.h"
15 #include "intel_rps.h"
16 #include "vlv_sideband.h"
17 #include "../../../platform/x86/intel_ips.h"
18 
19 #define BUSY_MAX_EI	20u /* ms */
20 
21 /*
22  * Lock protecting IPS related data structures
23  */
24 static DEFINE_SPINLOCK(mchdev_lock);
25 
26 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
27 {
28 	return container_of(rps, struct intel_gt, rps);
29 }
30 
31 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
32 {
33 	return rps_to_gt(rps)->i915;
34 }
35 
36 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
37 {
38 	return rps_to_gt(rps)->uncore;
39 }
40 
41 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
42 {
43 	struct intel_gt *gt = rps_to_gt(rps);
44 
45 	return &gt->uc.guc.slpc;
46 }
47 
48 static bool rps_uses_slpc(struct intel_rps *rps)
49 {
50 	struct intel_gt *gt = rps_to_gt(rps);
51 
52 	return intel_uc_uses_guc_slpc(&gt->uc);
53 }
54 
55 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
56 {
57 	return mask & ~rps->pm_intrmsk_mbz;
58 }
59 
60 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
61 {
62 	intel_uncore_write_fw(uncore, reg, val);
63 }
64 
65 static void rps_timer(struct timer_list *t)
66 {
67 	struct intel_rps *rps = from_timer(rps, t, timer);
68 	struct intel_engine_cs *engine;
69 	ktime_t dt, last, timestamp;
70 	enum intel_engine_id id;
71 	s64 max_busy[3] = {};
72 
73 	timestamp = 0;
74 	for_each_engine(engine, rps_to_gt(rps), id) {
75 		s64 busy;
76 		int i;
77 
78 		dt = intel_engine_get_busy_time(engine, &timestamp);
79 		last = engine->stats.rps;
80 		engine->stats.rps = dt;
81 
82 		busy = ktime_to_ns(ktime_sub(dt, last));
83 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
84 			if (busy > max_busy[i])
85 				swap(busy, max_busy[i]);
86 		}
87 	}
88 	last = rps->pm_timestamp;
89 	rps->pm_timestamp = timestamp;
90 
91 	if (intel_rps_is_active(rps)) {
92 		s64 busy;
93 		int i;
94 
95 		dt = ktime_sub(timestamp, last);
96 
97 		/*
98 		 * Our goal is to evaluate each engine independently, so we run
99 		 * at the lowest clocks required to sustain the heaviest
100 		 * workload. However, a task may be split into sequential
101 		 * dependent operations across a set of engines, such that
102 		 * the independent contributions do not account for high load,
103 		 * but overall the task is GPU bound. For example, consider
104 		 * video decode on vcs followed by colour post-processing
105 		 * on vecs, followed by general post-processing on rcs.
106 		 * Since multi-engines being active does imply a single
107 		 * continuous workload across all engines, we hedge our
108 		 * bets by only contributing a factor of the distributed
109 		 * load into our busyness calculation.
110 		 */
111 		busy = max_busy[0];
112 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
113 			if (!max_busy[i])
114 				break;
115 
116 			busy += div_u64(max_busy[i], 1 << i);
117 		}
118 		GT_TRACE(rps_to_gt(rps),
119 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
120 			 busy, (int)div64_u64(100 * busy, dt),
121 			 max_busy[0], max_busy[1], max_busy[2],
122 			 rps->pm_interval);
123 
124 		if (100 * busy > rps->power.up_threshold * dt &&
125 		    rps->cur_freq < rps->max_freq_softlimit) {
126 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
127 			rps->pm_interval = 1;
128 			schedule_work(&rps->work);
129 		} else if (100 * busy < rps->power.down_threshold * dt &&
130 			   rps->cur_freq > rps->min_freq_softlimit) {
131 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
132 			rps->pm_interval = 1;
133 			schedule_work(&rps->work);
134 		} else {
135 			rps->last_adj = 0;
136 		}
137 
138 		mod_timer(&rps->timer,
139 			  jiffies + msecs_to_jiffies(rps->pm_interval));
140 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
141 	}
142 }
143 
144 static void rps_start_timer(struct intel_rps *rps)
145 {
146 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
147 	rps->pm_interval = 1;
148 	mod_timer(&rps->timer, jiffies + 1);
149 }
150 
151 static void rps_stop_timer(struct intel_rps *rps)
152 {
153 	del_timer_sync(&rps->timer);
154 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
155 	cancel_work_sync(&rps->work);
156 }
157 
158 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
159 {
160 	u32 mask = 0;
161 
162 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
163 	if (val > rps->min_freq_softlimit)
164 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
165 			 GEN6_PM_RP_DOWN_THRESHOLD |
166 			 GEN6_PM_RP_DOWN_TIMEOUT);
167 
168 	if (val < rps->max_freq_softlimit)
169 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
170 
171 	mask &= rps->pm_events;
172 
173 	return rps_pm_sanitize_mask(rps, ~mask);
174 }
175 
176 static void rps_reset_ei(struct intel_rps *rps)
177 {
178 	memset(&rps->ei, 0, sizeof(rps->ei));
179 }
180 
181 static void rps_enable_interrupts(struct intel_rps *rps)
182 {
183 	struct intel_gt *gt = rps_to_gt(rps);
184 
185 	GEM_BUG_ON(rps_uses_slpc(rps));
186 
187 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
188 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
189 
190 	rps_reset_ei(rps);
191 
192 	spin_lock_irq(&gt->irq_lock);
193 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
194 	spin_unlock_irq(&gt->irq_lock);
195 
196 	intel_uncore_write(gt->uncore,
197 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
198 }
199 
200 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
201 {
202 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
203 }
204 
205 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
206 {
207 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
208 		;
209 }
210 
211 static void rps_reset_interrupts(struct intel_rps *rps)
212 {
213 	struct intel_gt *gt = rps_to_gt(rps);
214 
215 	spin_lock_irq(&gt->irq_lock);
216 	if (GRAPHICS_VER(gt->i915) >= 11)
217 		gen11_rps_reset_interrupts(rps);
218 	else
219 		gen6_rps_reset_interrupts(rps);
220 
221 	rps->pm_iir = 0;
222 	spin_unlock_irq(&gt->irq_lock);
223 }
224 
225 static void rps_disable_interrupts(struct intel_rps *rps)
226 {
227 	struct intel_gt *gt = rps_to_gt(rps);
228 
229 	intel_uncore_write(gt->uncore,
230 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
231 
232 	spin_lock_irq(&gt->irq_lock);
233 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
234 	spin_unlock_irq(&gt->irq_lock);
235 
236 	intel_synchronize_irq(gt->i915);
237 
238 	/*
239 	 * Now that we will not be generating any more work, flush any
240 	 * outstanding tasks. As we are called on the RPS idle path,
241 	 * we will reset the GPU to minimum frequencies, so the current
242 	 * state of the worker can be discarded.
243 	 */
244 	cancel_work_sync(&rps->work);
245 
246 	rps_reset_interrupts(rps);
247 	GT_TRACE(gt, "interrupts:off\n");
248 }
249 
250 static const struct cparams {
251 	u16 i;
252 	u16 t;
253 	u16 m;
254 	u16 c;
255 } cparams[] = {
256 	{ 1, 1333, 301, 28664 },
257 	{ 1, 1066, 294, 24460 },
258 	{ 1, 800, 294, 25192 },
259 	{ 0, 1333, 276, 27605 },
260 	{ 0, 1066, 276, 27605 },
261 	{ 0, 800, 231, 23784 },
262 };
263 
264 static void gen5_rps_init(struct intel_rps *rps)
265 {
266 	struct drm_i915_private *i915 = rps_to_i915(rps);
267 	struct intel_uncore *uncore = rps_to_uncore(rps);
268 	u8 fmax, fmin, fstart;
269 	u32 rgvmodectl;
270 	int c_m, i;
271 
272 	if (i915->fsb_freq <= 3200)
273 		c_m = 0;
274 	else if (i915->fsb_freq <= 4800)
275 		c_m = 1;
276 	else
277 		c_m = 2;
278 
279 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
280 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
281 			rps->ips.m = cparams[i].m;
282 			rps->ips.c = cparams[i].c;
283 			break;
284 		}
285 	}
286 
287 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
288 
289 	/* Set up min, max, and cur for interrupt handling */
290 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
291 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
292 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
293 		MEMMODE_FSTART_SHIFT;
294 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
295 		fmax, fmin, fstart);
296 
297 	rps->min_freq = fmax;
298 	rps->efficient_freq = fstart;
299 	rps->max_freq = fmin;
300 }
301 
302 static unsigned long
303 __ips_chipset_val(struct intel_ips *ips)
304 {
305 	struct intel_uncore *uncore =
306 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
307 	unsigned long now = jiffies_to_msecs(jiffies), dt;
308 	unsigned long result;
309 	u64 total, delta;
310 
311 	lockdep_assert_held(&mchdev_lock);
312 
313 	/*
314 	 * Prevent division-by-zero if we are asking too fast.
315 	 * Also, we don't get interesting results if we are polling
316 	 * faster than once in 10ms, so just return the saved value
317 	 * in such cases.
318 	 */
319 	dt = now - ips->last_time1;
320 	if (dt <= 10)
321 		return ips->chipset_power;
322 
323 	/* FIXME: handle per-counter overflow */
324 	total = intel_uncore_read(uncore, DMIEC);
325 	total += intel_uncore_read(uncore, DDREC);
326 	total += intel_uncore_read(uncore, CSIEC);
327 
328 	delta = total - ips->last_count1;
329 
330 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
331 
332 	ips->last_count1 = total;
333 	ips->last_time1 = now;
334 
335 	ips->chipset_power = result;
336 
337 	return result;
338 }
339 
340 static unsigned long ips_mch_val(struct intel_uncore *uncore)
341 {
342 	unsigned int m, x, b;
343 	u32 tsfs;
344 
345 	tsfs = intel_uncore_read(uncore, TSFS);
346 	x = intel_uncore_read8(uncore, TR1);
347 
348 	b = tsfs & TSFS_INTR_MASK;
349 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
350 
351 	return m * x / 127 - b;
352 }
353 
354 static int _pxvid_to_vd(u8 pxvid)
355 {
356 	if (pxvid == 0)
357 		return 0;
358 
359 	if (pxvid >= 8 && pxvid < 31)
360 		pxvid = 31;
361 
362 	return (pxvid + 2) * 125;
363 }
364 
365 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
366 {
367 	const int vd = _pxvid_to_vd(pxvid);
368 
369 	if (INTEL_INFO(i915)->is_mobile)
370 		return max(vd - 1125, 0);
371 
372 	return vd;
373 }
374 
375 static void __gen5_ips_update(struct intel_ips *ips)
376 {
377 	struct intel_uncore *uncore =
378 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
379 	u64 now, delta, dt;
380 	u32 count;
381 
382 	lockdep_assert_held(&mchdev_lock);
383 
384 	now = ktime_get_raw_ns();
385 	dt = now - ips->last_time2;
386 	do_div(dt, NSEC_PER_MSEC);
387 
388 	/* Don't divide by 0 */
389 	if (dt <= 10)
390 		return;
391 
392 	count = intel_uncore_read(uncore, GFXEC);
393 	delta = count - ips->last_count2;
394 
395 	ips->last_count2 = count;
396 	ips->last_time2 = now;
397 
398 	/* More magic constants... */
399 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
400 }
401 
402 static void gen5_rps_update(struct intel_rps *rps)
403 {
404 	spin_lock_irq(&mchdev_lock);
405 	__gen5_ips_update(&rps->ips);
406 	spin_unlock_irq(&mchdev_lock);
407 }
408 
409 static unsigned int gen5_invert_freq(struct intel_rps *rps,
410 				     unsigned int val)
411 {
412 	/* Invert the frequency bin into an ips delay */
413 	val = rps->max_freq - val;
414 	val = rps->min_freq + val;
415 
416 	return val;
417 }
418 
419 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
420 {
421 	struct intel_uncore *uncore = rps_to_uncore(rps);
422 	u16 rgvswctl;
423 
424 	lockdep_assert_held(&mchdev_lock);
425 
426 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
427 	if (rgvswctl & MEMCTL_CMD_STS) {
428 		DRM_DEBUG("gpu busy, RCS change rejected\n");
429 		return -EBUSY; /* still busy with another command */
430 	}
431 
432 	/* Invert the frequency bin into an ips delay */
433 	val = gen5_invert_freq(rps, val);
434 
435 	rgvswctl =
436 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
437 		(val << MEMCTL_FREQ_SHIFT) |
438 		MEMCTL_SFCAVM;
439 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
440 	intel_uncore_posting_read16(uncore, MEMSWCTL);
441 
442 	rgvswctl |= MEMCTL_CMD_STS;
443 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
444 
445 	return 0;
446 }
447 
448 static int gen5_rps_set(struct intel_rps *rps, u8 val)
449 {
450 	int err;
451 
452 	spin_lock_irq(&mchdev_lock);
453 	err = __gen5_rps_set(rps, val);
454 	spin_unlock_irq(&mchdev_lock);
455 
456 	return err;
457 }
458 
459 static unsigned long intel_pxfreq(u32 vidfreq)
460 {
461 	int div = (vidfreq & 0x3f0000) >> 16;
462 	int post = (vidfreq & 0x3000) >> 12;
463 	int pre = (vidfreq & 0x7);
464 
465 	if (!pre)
466 		return 0;
467 
468 	return div * 133333 / (pre << post);
469 }
470 
471 static unsigned int init_emon(struct intel_uncore *uncore)
472 {
473 	u8 pxw[16];
474 	int i;
475 
476 	/* Disable to program */
477 	intel_uncore_write(uncore, ECR, 0);
478 	intel_uncore_posting_read(uncore, ECR);
479 
480 	/* Program energy weights for various events */
481 	intel_uncore_write(uncore, SDEW, 0x15040d00);
482 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
483 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
484 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
485 
486 	for (i = 0; i < 5; i++)
487 		intel_uncore_write(uncore, PEW(i), 0);
488 	for (i = 0; i < 3; i++)
489 		intel_uncore_write(uncore, DEW(i), 0);
490 
491 	/* Program P-state weights to account for frequency power adjustment */
492 	for (i = 0; i < 16; i++) {
493 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
494 		unsigned int freq = intel_pxfreq(pxvidfreq);
495 		unsigned int vid =
496 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
497 		unsigned int val;
498 
499 		val = vid * vid * freq / 1000 * 255;
500 		val /= 127 * 127 * 900;
501 
502 		pxw[i] = val;
503 	}
504 	/* Render standby states get 0 weight */
505 	pxw[14] = 0;
506 	pxw[15] = 0;
507 
508 	for (i = 0; i < 4; i++) {
509 		intel_uncore_write(uncore, PXW(i),
510 				   pxw[i * 4 + 0] << 24 |
511 				   pxw[i * 4 + 1] << 16 |
512 				   pxw[i * 4 + 2] <<  8 |
513 				   pxw[i * 4 + 3] <<  0);
514 	}
515 
516 	/* Adjust magic regs to magic values (more experimental results) */
517 	intel_uncore_write(uncore, OGW0, 0);
518 	intel_uncore_write(uncore, OGW1, 0);
519 	intel_uncore_write(uncore, EG0, 0x00007f00);
520 	intel_uncore_write(uncore, EG1, 0x0000000e);
521 	intel_uncore_write(uncore, EG2, 0x000e0000);
522 	intel_uncore_write(uncore, EG3, 0x68000300);
523 	intel_uncore_write(uncore, EG4, 0x42000000);
524 	intel_uncore_write(uncore, EG5, 0x00140031);
525 	intel_uncore_write(uncore, EG6, 0);
526 	intel_uncore_write(uncore, EG7, 0);
527 
528 	for (i = 0; i < 8; i++)
529 		intel_uncore_write(uncore, PXWL(i), 0);
530 
531 	/* Enable PMON + select events */
532 	intel_uncore_write(uncore, ECR, 0x80000019);
533 
534 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
535 }
536 
537 static bool gen5_rps_enable(struct intel_rps *rps)
538 {
539 	struct drm_i915_private *i915 = rps_to_i915(rps);
540 	struct intel_uncore *uncore = rps_to_uncore(rps);
541 	u8 fstart, vstart;
542 	u32 rgvmodectl;
543 
544 	spin_lock_irq(&mchdev_lock);
545 
546 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
547 
548 	/* Enable temp reporting */
549 	intel_uncore_write16(uncore, PMMISC,
550 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
551 	intel_uncore_write16(uncore, TSC1,
552 			     intel_uncore_read16(uncore, TSC1) | TSE);
553 
554 	/* 100ms RC evaluation intervals */
555 	intel_uncore_write(uncore, RCUPEI, 100000);
556 	intel_uncore_write(uncore, RCDNEI, 100000);
557 
558 	/* Set max/min thresholds to 90ms and 80ms respectively */
559 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
560 	intel_uncore_write(uncore, RCBMINAVG, 80000);
561 
562 	intel_uncore_write(uncore, MEMIHYST, 1);
563 
564 	/* Set up min, max, and cur for interrupt handling */
565 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
566 		MEMMODE_FSTART_SHIFT;
567 
568 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
569 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
570 
571 	intel_uncore_write(uncore,
572 			   MEMINTREN,
573 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
574 
575 	intel_uncore_write(uncore, VIDSTART, vstart);
576 	intel_uncore_posting_read(uncore, VIDSTART);
577 
578 	rgvmodectl |= MEMMODE_SWMODE_EN;
579 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
580 
581 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
582 			     MEMCTL_CMD_STS) == 0, 10))
583 		drm_err(&uncore->i915->drm,
584 			"stuck trying to change perf mode\n");
585 	mdelay(1);
586 
587 	__gen5_rps_set(rps, rps->cur_freq);
588 
589 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
590 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
591 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
592 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
593 
594 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
595 	rps->ips.last_time2 = ktime_get_raw_ns();
596 
597 	spin_lock(&i915->irq_lock);
598 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
599 	spin_unlock(&i915->irq_lock);
600 
601 	spin_unlock_irq(&mchdev_lock);
602 
603 	rps->ips.corr = init_emon(uncore);
604 
605 	return true;
606 }
607 
608 static void gen5_rps_disable(struct intel_rps *rps)
609 {
610 	struct drm_i915_private *i915 = rps_to_i915(rps);
611 	struct intel_uncore *uncore = rps_to_uncore(rps);
612 	u16 rgvswctl;
613 
614 	spin_lock_irq(&mchdev_lock);
615 
616 	spin_lock(&i915->irq_lock);
617 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
618 	spin_unlock(&i915->irq_lock);
619 
620 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
621 
622 	/* Ack interrupts, disable EFC interrupt */
623 	intel_uncore_write(uncore, MEMINTREN,
624 			   intel_uncore_read(uncore, MEMINTREN) &
625 			   ~MEMINT_EVAL_CHG_EN);
626 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
627 
628 	/* Go back to the starting frequency */
629 	__gen5_rps_set(rps, rps->idle_freq);
630 	mdelay(1);
631 	rgvswctl |= MEMCTL_CMD_STS;
632 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
633 	mdelay(1);
634 
635 	spin_unlock_irq(&mchdev_lock);
636 }
637 
638 static u32 rps_limits(struct intel_rps *rps, u8 val)
639 {
640 	u32 limits;
641 
642 	/*
643 	 * Only set the down limit when we've reached the lowest level to avoid
644 	 * getting more interrupts, otherwise leave this clear. This prevents a
645 	 * race in the hw when coming out of rc6: There's a tiny window where
646 	 * the hw runs at the minimal clock before selecting the desired
647 	 * frequency, if the down threshold expires in that window we will not
648 	 * receive a down interrupt.
649 	 */
650 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
651 		limits = rps->max_freq_softlimit << 23;
652 		if (val <= rps->min_freq_softlimit)
653 			limits |= rps->min_freq_softlimit << 14;
654 	} else {
655 		limits = rps->max_freq_softlimit << 24;
656 		if (val <= rps->min_freq_softlimit)
657 			limits |= rps->min_freq_softlimit << 16;
658 	}
659 
660 	return limits;
661 }
662 
663 static void rps_set_power(struct intel_rps *rps, int new_power)
664 {
665 	struct intel_gt *gt = rps_to_gt(rps);
666 	struct intel_uncore *uncore = gt->uncore;
667 	u32 threshold_up = 0, threshold_down = 0; /* in % */
668 	u32 ei_up = 0, ei_down = 0;
669 
670 	lockdep_assert_held(&rps->power.mutex);
671 
672 	if (new_power == rps->power.mode)
673 		return;
674 
675 	threshold_up = 95;
676 	threshold_down = 85;
677 
678 	/* Note the units here are not exactly 1us, but 1280ns. */
679 	switch (new_power) {
680 	case LOW_POWER:
681 		ei_up = 16000;
682 		ei_down = 32000;
683 		break;
684 
685 	case BETWEEN:
686 		ei_up = 13000;
687 		ei_down = 32000;
688 		break;
689 
690 	case HIGH_POWER:
691 		ei_up = 10000;
692 		ei_down = 32000;
693 		break;
694 	}
695 
696 	/* When byt can survive without system hang with dynamic
697 	 * sw freq adjustments, this restriction can be lifted.
698 	 */
699 	if (IS_VALLEYVIEW(gt->i915))
700 		goto skip_hw_write;
701 
702 	GT_TRACE(gt,
703 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
704 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
705 
706 	set(uncore, GEN6_RP_UP_EI,
707 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
708 	set(uncore, GEN6_RP_UP_THRESHOLD,
709 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
710 
711 	set(uncore, GEN6_RP_DOWN_EI,
712 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
713 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
714 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
715 
716 	set(uncore, GEN6_RP_CONTROL,
717 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
718 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
719 	    GEN6_RP_MEDIA_IS_GFX |
720 	    GEN6_RP_ENABLE |
721 	    GEN6_RP_UP_BUSY_AVG |
722 	    GEN6_RP_DOWN_IDLE_AVG);
723 
724 skip_hw_write:
725 	rps->power.mode = new_power;
726 	rps->power.up_threshold = threshold_up;
727 	rps->power.down_threshold = threshold_down;
728 }
729 
730 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
731 {
732 	int new_power;
733 
734 	new_power = rps->power.mode;
735 	switch (rps->power.mode) {
736 	case LOW_POWER:
737 		if (val > rps->efficient_freq + 1 &&
738 		    val > rps->cur_freq)
739 			new_power = BETWEEN;
740 		break;
741 
742 	case BETWEEN:
743 		if (val <= rps->efficient_freq &&
744 		    val < rps->cur_freq)
745 			new_power = LOW_POWER;
746 		else if (val >= rps->rp0_freq &&
747 			 val > rps->cur_freq)
748 			new_power = HIGH_POWER;
749 		break;
750 
751 	case HIGH_POWER:
752 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
753 		    val < rps->cur_freq)
754 			new_power = BETWEEN;
755 		break;
756 	}
757 	/* Max/min bins are special */
758 	if (val <= rps->min_freq_softlimit)
759 		new_power = LOW_POWER;
760 	if (val >= rps->max_freq_softlimit)
761 		new_power = HIGH_POWER;
762 
763 	mutex_lock(&rps->power.mutex);
764 	if (rps->power.interactive)
765 		new_power = HIGH_POWER;
766 	rps_set_power(rps, new_power);
767 	mutex_unlock(&rps->power.mutex);
768 }
769 
770 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
771 {
772 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
773 
774 	mutex_lock(&rps->power.mutex);
775 	if (interactive) {
776 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
777 			rps_set_power(rps, HIGH_POWER);
778 	} else {
779 		GEM_BUG_ON(!rps->power.interactive);
780 		rps->power.interactive--;
781 	}
782 	mutex_unlock(&rps->power.mutex);
783 }
784 
785 static int gen6_rps_set(struct intel_rps *rps, u8 val)
786 {
787 	struct intel_uncore *uncore = rps_to_uncore(rps);
788 	struct drm_i915_private *i915 = rps_to_i915(rps);
789 	u32 swreq;
790 
791 	GEM_BUG_ON(rps_uses_slpc(rps));
792 
793 	if (GRAPHICS_VER(i915) >= 9)
794 		swreq = GEN9_FREQUENCY(val);
795 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
796 		swreq = HSW_FREQUENCY(val);
797 	else
798 		swreq = (GEN6_FREQUENCY(val) |
799 			 GEN6_OFFSET(0) |
800 			 GEN6_AGGRESSIVE_TURBO);
801 	set(uncore, GEN6_RPNSWREQ, swreq);
802 
803 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
804 		 val, intel_gpu_freq(rps, val), swreq);
805 
806 	return 0;
807 }
808 
809 static int vlv_rps_set(struct intel_rps *rps, u8 val)
810 {
811 	struct drm_i915_private *i915 = rps_to_i915(rps);
812 	int err;
813 
814 	vlv_punit_get(i915);
815 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
816 	vlv_punit_put(i915);
817 
818 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
819 		 val, intel_gpu_freq(rps, val));
820 
821 	return err;
822 }
823 
824 static int rps_set(struct intel_rps *rps, u8 val, bool update)
825 {
826 	struct drm_i915_private *i915 = rps_to_i915(rps);
827 	int err;
828 
829 	if (val == rps->last_freq)
830 		return 0;
831 
832 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
833 		err = vlv_rps_set(rps, val);
834 	else if (GRAPHICS_VER(i915) >= 6)
835 		err = gen6_rps_set(rps, val);
836 	else
837 		err = gen5_rps_set(rps, val);
838 	if (err)
839 		return err;
840 
841 	if (update && GRAPHICS_VER(i915) >= 6)
842 		gen6_rps_set_thresholds(rps, val);
843 	rps->last_freq = val;
844 
845 	return 0;
846 }
847 
848 void intel_rps_unpark(struct intel_rps *rps)
849 {
850 	if (!intel_rps_is_enabled(rps))
851 		return;
852 
853 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
854 
855 	/*
856 	 * Use the user's desired frequency as a guide, but for better
857 	 * performance, jump directly to RPe as our starting frequency.
858 	 */
859 	mutex_lock(&rps->lock);
860 
861 	intel_rps_set_active(rps);
862 	intel_rps_set(rps,
863 		      clamp(rps->cur_freq,
864 			    rps->min_freq_softlimit,
865 			    rps->max_freq_softlimit));
866 
867 	mutex_unlock(&rps->lock);
868 
869 	rps->pm_iir = 0;
870 	if (intel_rps_has_interrupts(rps))
871 		rps_enable_interrupts(rps);
872 	if (intel_rps_uses_timer(rps))
873 		rps_start_timer(rps);
874 
875 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
876 		gen5_rps_update(rps);
877 }
878 
879 void intel_rps_park(struct intel_rps *rps)
880 {
881 	int adj;
882 
883 	if (!intel_rps_is_enabled(rps))
884 		return;
885 
886 	if (!intel_rps_clear_active(rps))
887 		return;
888 
889 	if (intel_rps_uses_timer(rps))
890 		rps_stop_timer(rps);
891 	if (intel_rps_has_interrupts(rps))
892 		rps_disable_interrupts(rps);
893 
894 	if (rps->last_freq <= rps->idle_freq)
895 		return;
896 
897 	/*
898 	 * The punit delays the write of the frequency and voltage until it
899 	 * determines the GPU is awake. During normal usage we don't want to
900 	 * waste power changing the frequency if the GPU is sleeping (rc6).
901 	 * However, the GPU and driver is now idle and we do not want to delay
902 	 * switching to minimum voltage (reducing power whilst idle) as we do
903 	 * not expect to be woken in the near future and so must flush the
904 	 * change by waking the device.
905 	 *
906 	 * We choose to take the media powerwell (either would do to trick the
907 	 * punit into committing the voltage change) as that takes a lot less
908 	 * power than the render powerwell.
909 	 */
910 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
911 	rps_set(rps, rps->idle_freq, false);
912 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
913 
914 	/*
915 	 * Since we will try and restart from the previously requested
916 	 * frequency on unparking, treat this idle point as a downclock
917 	 * interrupt and reduce the frequency for resume. If we park/unpark
918 	 * more frequently than the rps worker can run, we will not respond
919 	 * to any EI and never see a change in frequency.
920 	 *
921 	 * (Note we accommodate Cherryview's limitation of only using an
922 	 * even bin by applying it to all.)
923 	 */
924 	adj = rps->last_adj;
925 	if (adj < 0)
926 		adj *= 2;
927 	else /* CHV needs even encode values */
928 		adj = -2;
929 	rps->last_adj = adj;
930 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
931 	if (rps->cur_freq < rps->efficient_freq) {
932 		rps->cur_freq = rps->efficient_freq;
933 		rps->last_adj = 0;
934 	}
935 
936 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
937 }
938 
939 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
940 {
941 	struct intel_guc_slpc *slpc;
942 
943 	if (rps_uses_slpc(rps)) {
944 		slpc = rps_to_slpc(rps);
945 
946 		return slpc->boost_freq;
947 	} else {
948 		return intel_gpu_freq(rps, rps->boost_freq);
949 	}
950 }
951 
952 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
953 {
954 	bool boost = false;
955 
956 	/* Validate against (static) hardware limits */
957 	val = intel_freq_opcode(rps, val);
958 	if (val < rps->min_freq || val > rps->max_freq)
959 		return -EINVAL;
960 
961 	mutex_lock(&rps->lock);
962 	if (val != rps->boost_freq) {
963 		rps->boost_freq = val;
964 		boost = atomic_read(&rps->num_waiters);
965 	}
966 	mutex_unlock(&rps->lock);
967 	if (boost)
968 		schedule_work(&rps->work);
969 
970 	return 0;
971 }
972 
973 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
974 {
975 	struct intel_guc_slpc *slpc;
976 
977 	if (rps_uses_slpc(rps)) {
978 		slpc = rps_to_slpc(rps);
979 
980 		return intel_guc_slpc_set_boost_freq(slpc, freq);
981 	} else {
982 		return rps_set_boost_freq(rps, freq);
983 	}
984 }
985 
986 void intel_rps_dec_waiters(struct intel_rps *rps)
987 {
988 	struct intel_guc_slpc *slpc;
989 
990 	if (rps_uses_slpc(rps)) {
991 		slpc = rps_to_slpc(rps);
992 
993 		intel_guc_slpc_dec_waiters(slpc);
994 	} else {
995 		atomic_dec(&rps->num_waiters);
996 	}
997 }
998 
999 void intel_rps_boost(struct i915_request *rq)
1000 {
1001 	struct intel_guc_slpc *slpc;
1002 
1003 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1004 		return;
1005 
1006 	/* Serializes with i915_request_retire() */
1007 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1008 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1009 
1010 		if (rps_uses_slpc(rps)) {
1011 			slpc = rps_to_slpc(rps);
1012 
1013 			/* Return if old value is non zero */
1014 			if (!atomic_fetch_inc(&slpc->num_waiters))
1015 				schedule_work(&slpc->boost_work);
1016 
1017 			return;
1018 		}
1019 
1020 		if (atomic_fetch_inc(&rps->num_waiters))
1021 			return;
1022 
1023 		if (!intel_rps_is_active(rps))
1024 			return;
1025 
1026 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1027 			 rq->fence.context, rq->fence.seqno);
1028 
1029 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1030 			schedule_work(&rps->work);
1031 
1032 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1033 	}
1034 }
1035 
1036 int intel_rps_set(struct intel_rps *rps, u8 val)
1037 {
1038 	int err;
1039 
1040 	lockdep_assert_held(&rps->lock);
1041 	GEM_BUG_ON(val > rps->max_freq);
1042 	GEM_BUG_ON(val < rps->min_freq);
1043 
1044 	if (intel_rps_is_active(rps)) {
1045 		err = rps_set(rps, val, true);
1046 		if (err)
1047 			return err;
1048 
1049 		/*
1050 		 * Make sure we continue to get interrupts
1051 		 * until we hit the minimum or maximum frequencies.
1052 		 */
1053 		if (intel_rps_has_interrupts(rps)) {
1054 			struct intel_uncore *uncore = rps_to_uncore(rps);
1055 
1056 			set(uncore,
1057 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1058 
1059 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1060 		}
1061 	}
1062 
1063 	rps->cur_freq = val;
1064 	return 0;
1065 }
1066 
1067 static void gen6_rps_init(struct intel_rps *rps)
1068 {
1069 	struct drm_i915_private *i915 = rps_to_i915(rps);
1070 	u32 rp_state_cap = intel_rps_read_state_cap(rps);
1071 
1072 	/* All of these values are in units of 50MHz */
1073 
1074 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1075 	if (IS_GEN9_LP(i915)) {
1076 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1077 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1078 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
1079 	} else {
1080 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1081 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1082 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
1083 	}
1084 
1085 	/* hw_max = RP0 until we check for overclocking */
1086 	rps->max_freq = rps->rp0_freq;
1087 
1088 	rps->efficient_freq = rps->rp1_freq;
1089 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1090 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1091 		u32 ddcc_status = 0;
1092 
1093 		if (sandybridge_pcode_read(i915,
1094 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1095 					   &ddcc_status, NULL) == 0)
1096 			rps->efficient_freq =
1097 				clamp_t(u8,
1098 					(ddcc_status >> 8) & 0xff,
1099 					rps->min_freq,
1100 					rps->max_freq);
1101 	}
1102 
1103 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1104 		/* Store the frequency values in 16.66 MHZ units, which is
1105 		 * the natural hardware unit for SKL
1106 		 */
1107 		rps->rp0_freq *= GEN9_FREQ_SCALER;
1108 		rps->rp1_freq *= GEN9_FREQ_SCALER;
1109 		rps->min_freq *= GEN9_FREQ_SCALER;
1110 		rps->max_freq *= GEN9_FREQ_SCALER;
1111 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1112 	}
1113 }
1114 
1115 static bool rps_reset(struct intel_rps *rps)
1116 {
1117 	struct drm_i915_private *i915 = rps_to_i915(rps);
1118 
1119 	/* force a reset */
1120 	rps->power.mode = -1;
1121 	rps->last_freq = -1;
1122 
1123 	if (rps_set(rps, rps->min_freq, true)) {
1124 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1125 		return false;
1126 	}
1127 
1128 	rps->cur_freq = rps->min_freq;
1129 	return true;
1130 }
1131 
1132 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1133 static bool gen9_rps_enable(struct intel_rps *rps)
1134 {
1135 	struct intel_gt *gt = rps_to_gt(rps);
1136 	struct intel_uncore *uncore = gt->uncore;
1137 
1138 	/* Program defaults and thresholds for RPS */
1139 	if (GRAPHICS_VER(gt->i915) == 9)
1140 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1141 				      GEN9_FREQUENCY(rps->rp1_freq));
1142 
1143 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1144 
1145 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1146 
1147 	return rps_reset(rps);
1148 }
1149 
1150 static bool gen8_rps_enable(struct intel_rps *rps)
1151 {
1152 	struct intel_uncore *uncore = rps_to_uncore(rps);
1153 
1154 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1155 			      HSW_FREQUENCY(rps->rp1_freq));
1156 
1157 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1158 
1159 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1160 
1161 	return rps_reset(rps);
1162 }
1163 
1164 static bool gen6_rps_enable(struct intel_rps *rps)
1165 {
1166 	struct intel_uncore *uncore = rps_to_uncore(rps);
1167 
1168 	/* Power down if completely idle for over 50ms */
1169 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1170 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1171 
1172 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1173 			  GEN6_PM_RP_DOWN_THRESHOLD |
1174 			  GEN6_PM_RP_DOWN_TIMEOUT);
1175 
1176 	return rps_reset(rps);
1177 }
1178 
1179 static int chv_rps_max_freq(struct intel_rps *rps)
1180 {
1181 	struct drm_i915_private *i915 = rps_to_i915(rps);
1182 	struct intel_gt *gt = rps_to_gt(rps);
1183 	u32 val;
1184 
1185 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1186 
1187 	switch (gt->info.sseu.eu_total) {
1188 	case 8:
1189 		/* (2 * 4) config */
1190 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1191 		break;
1192 	case 12:
1193 		/* (2 * 6) config */
1194 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1195 		break;
1196 	case 16:
1197 		/* (2 * 8) config */
1198 	default:
1199 		/* Setting (2 * 8) Min RP0 for any other combination */
1200 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1201 		break;
1202 	}
1203 
1204 	return val & FB_GFX_FREQ_FUSE_MASK;
1205 }
1206 
1207 static int chv_rps_rpe_freq(struct intel_rps *rps)
1208 {
1209 	struct drm_i915_private *i915 = rps_to_i915(rps);
1210 	u32 val;
1211 
1212 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1213 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1214 
1215 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1216 }
1217 
1218 static int chv_rps_guar_freq(struct intel_rps *rps)
1219 {
1220 	struct drm_i915_private *i915 = rps_to_i915(rps);
1221 	u32 val;
1222 
1223 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1224 
1225 	return val & FB_GFX_FREQ_FUSE_MASK;
1226 }
1227 
1228 static u32 chv_rps_min_freq(struct intel_rps *rps)
1229 {
1230 	struct drm_i915_private *i915 = rps_to_i915(rps);
1231 	u32 val;
1232 
1233 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1234 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1235 
1236 	return val & FB_GFX_FREQ_FUSE_MASK;
1237 }
1238 
1239 static bool chv_rps_enable(struct intel_rps *rps)
1240 {
1241 	struct intel_uncore *uncore = rps_to_uncore(rps);
1242 	struct drm_i915_private *i915 = rps_to_i915(rps);
1243 	u32 val;
1244 
1245 	/* 1: Program defaults and thresholds for RPS*/
1246 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1247 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1248 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1249 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1250 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1251 
1252 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1253 
1254 	/* 2: Enable RPS */
1255 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1256 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1257 			      GEN6_RP_MEDIA_IS_GFX |
1258 			      GEN6_RP_ENABLE |
1259 			      GEN6_RP_UP_BUSY_AVG |
1260 			      GEN6_RP_DOWN_IDLE_AVG);
1261 
1262 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1263 			  GEN6_PM_RP_DOWN_THRESHOLD |
1264 			  GEN6_PM_RP_DOWN_TIMEOUT);
1265 
1266 	/* Setting Fixed Bias */
1267 	vlv_punit_get(i915);
1268 
1269 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1270 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1271 
1272 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1273 
1274 	vlv_punit_put(i915);
1275 
1276 	/* RPS code assumes GPLL is used */
1277 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1278 		      "GPLL not enabled\n");
1279 
1280 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1281 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1282 
1283 	return rps_reset(rps);
1284 }
1285 
1286 static int vlv_rps_guar_freq(struct intel_rps *rps)
1287 {
1288 	struct drm_i915_private *i915 = rps_to_i915(rps);
1289 	u32 val, rp1;
1290 
1291 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1292 
1293 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1294 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1295 
1296 	return rp1;
1297 }
1298 
1299 static int vlv_rps_max_freq(struct intel_rps *rps)
1300 {
1301 	struct drm_i915_private *i915 = rps_to_i915(rps);
1302 	u32 val, rp0;
1303 
1304 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1305 
1306 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1307 	/* Clamp to max */
1308 	rp0 = min_t(u32, rp0, 0xea);
1309 
1310 	return rp0;
1311 }
1312 
1313 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1314 {
1315 	struct drm_i915_private *i915 = rps_to_i915(rps);
1316 	u32 val, rpe;
1317 
1318 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1319 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1320 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1321 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1322 
1323 	return rpe;
1324 }
1325 
1326 static int vlv_rps_min_freq(struct intel_rps *rps)
1327 {
1328 	struct drm_i915_private *i915 = rps_to_i915(rps);
1329 	u32 val;
1330 
1331 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1332 	/*
1333 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1334 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1335 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1336 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1337 	 * to make sure it matches what Punit accepts.
1338 	 */
1339 	return max_t(u32, val, 0xc0);
1340 }
1341 
1342 static bool vlv_rps_enable(struct intel_rps *rps)
1343 {
1344 	struct intel_uncore *uncore = rps_to_uncore(rps);
1345 	struct drm_i915_private *i915 = rps_to_i915(rps);
1346 	u32 val;
1347 
1348 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1349 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1350 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1351 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1352 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1353 
1354 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1355 
1356 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1357 			      GEN6_RP_MEDIA_TURBO |
1358 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1359 			      GEN6_RP_MEDIA_IS_GFX |
1360 			      GEN6_RP_ENABLE |
1361 			      GEN6_RP_UP_BUSY_AVG |
1362 			      GEN6_RP_DOWN_IDLE_CONT);
1363 
1364 	/* WaGsvRC0ResidencyMethod:vlv */
1365 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1366 
1367 	vlv_punit_get(i915);
1368 
1369 	/* Setting Fixed Bias */
1370 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1371 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1372 
1373 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1374 
1375 	vlv_punit_put(i915);
1376 
1377 	/* RPS code assumes GPLL is used */
1378 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1379 		      "GPLL not enabled\n");
1380 
1381 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1382 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1383 
1384 	return rps_reset(rps);
1385 }
1386 
1387 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1388 {
1389 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1390 	struct intel_uncore *uncore = rps_to_uncore(rps);
1391 	unsigned int t, state1, state2;
1392 	u32 pxvid, ext_v;
1393 	u64 corr, corr2;
1394 
1395 	lockdep_assert_held(&mchdev_lock);
1396 
1397 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1398 	pxvid = (pxvid >> 24) & 0x7f;
1399 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1400 
1401 	state1 = ext_v;
1402 
1403 	/* Revel in the empirically derived constants */
1404 
1405 	/* Correction factor in 1/100000 units */
1406 	t = ips_mch_val(uncore);
1407 	if (t > 80)
1408 		corr = t * 2349 + 135940;
1409 	else if (t >= 50)
1410 		corr = t * 964 + 29317;
1411 	else /* < 50 */
1412 		corr = t * 301 + 1004;
1413 
1414 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1415 	corr2 = div_u64(corr, 100000) * ips->corr;
1416 
1417 	state2 = div_u64(corr2 * state1, 10000);
1418 	state2 /= 100; /* convert to mW */
1419 
1420 	__gen5_ips_update(ips);
1421 
1422 	return ips->gfx_power + state2;
1423 }
1424 
1425 static bool has_busy_stats(struct intel_rps *rps)
1426 {
1427 	struct intel_engine_cs *engine;
1428 	enum intel_engine_id id;
1429 
1430 	for_each_engine(engine, rps_to_gt(rps), id) {
1431 		if (!intel_engine_supports_stats(engine))
1432 			return false;
1433 	}
1434 
1435 	return true;
1436 }
1437 
1438 void intel_rps_enable(struct intel_rps *rps)
1439 {
1440 	struct drm_i915_private *i915 = rps_to_i915(rps);
1441 	struct intel_uncore *uncore = rps_to_uncore(rps);
1442 	bool enabled = false;
1443 
1444 	if (!HAS_RPS(i915))
1445 		return;
1446 
1447 	if (rps_uses_slpc(rps))
1448 		return;
1449 
1450 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1451 
1452 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1453 	if (rps->max_freq <= rps->min_freq)
1454 		/* leave disabled, no room for dynamic reclocking */;
1455 	else if (IS_CHERRYVIEW(i915))
1456 		enabled = chv_rps_enable(rps);
1457 	else if (IS_VALLEYVIEW(i915))
1458 		enabled = vlv_rps_enable(rps);
1459 	else if (GRAPHICS_VER(i915) >= 9)
1460 		enabled = gen9_rps_enable(rps);
1461 	else if (GRAPHICS_VER(i915) >= 8)
1462 		enabled = gen8_rps_enable(rps);
1463 	else if (GRAPHICS_VER(i915) >= 6)
1464 		enabled = gen6_rps_enable(rps);
1465 	else if (IS_IRONLAKE_M(i915))
1466 		enabled = gen5_rps_enable(rps);
1467 	else
1468 		MISSING_CASE(GRAPHICS_VER(i915));
1469 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1470 	if (!enabled)
1471 		return;
1472 
1473 	GT_TRACE(rps_to_gt(rps),
1474 		 "min:%x, max:%x, freq:[%d, %d]\n",
1475 		 rps->min_freq, rps->max_freq,
1476 		 intel_gpu_freq(rps, rps->min_freq),
1477 		 intel_gpu_freq(rps, rps->max_freq));
1478 
1479 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1480 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1481 
1482 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1483 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1484 
1485 	if (has_busy_stats(rps))
1486 		intel_rps_set_timer(rps);
1487 	else if (GRAPHICS_VER(i915) >= 6)
1488 		intel_rps_set_interrupts(rps);
1489 	else
1490 		/* Ironlake currently uses intel_ips.ko */ {}
1491 
1492 	intel_rps_set_enabled(rps);
1493 }
1494 
1495 static void gen6_rps_disable(struct intel_rps *rps)
1496 {
1497 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1498 }
1499 
1500 void intel_rps_disable(struct intel_rps *rps)
1501 {
1502 	struct drm_i915_private *i915 = rps_to_i915(rps);
1503 
1504 	intel_rps_clear_enabled(rps);
1505 	intel_rps_clear_interrupts(rps);
1506 	intel_rps_clear_timer(rps);
1507 
1508 	if (GRAPHICS_VER(i915) >= 6)
1509 		gen6_rps_disable(rps);
1510 	else if (IS_IRONLAKE_M(i915))
1511 		gen5_rps_disable(rps);
1512 }
1513 
1514 static int byt_gpu_freq(struct intel_rps *rps, int val)
1515 {
1516 	/*
1517 	 * N = val - 0xb7
1518 	 * Slow = Fast = GPLL ref * N
1519 	 */
1520 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1521 }
1522 
1523 static int byt_freq_opcode(struct intel_rps *rps, int val)
1524 {
1525 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1526 }
1527 
1528 static int chv_gpu_freq(struct intel_rps *rps, int val)
1529 {
1530 	/*
1531 	 * N = val / 2
1532 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1533 	 */
1534 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1535 }
1536 
1537 static int chv_freq_opcode(struct intel_rps *rps, int val)
1538 {
1539 	/* CHV needs even values */
1540 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1541 }
1542 
1543 int intel_gpu_freq(struct intel_rps *rps, int val)
1544 {
1545 	struct drm_i915_private *i915 = rps_to_i915(rps);
1546 
1547 	if (GRAPHICS_VER(i915) >= 9)
1548 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1549 					 GEN9_FREQ_SCALER);
1550 	else if (IS_CHERRYVIEW(i915))
1551 		return chv_gpu_freq(rps, val);
1552 	else if (IS_VALLEYVIEW(i915))
1553 		return byt_gpu_freq(rps, val);
1554 	else if (GRAPHICS_VER(i915) >= 6)
1555 		return val * GT_FREQUENCY_MULTIPLIER;
1556 	else
1557 		return val;
1558 }
1559 
1560 int intel_freq_opcode(struct intel_rps *rps, int val)
1561 {
1562 	struct drm_i915_private *i915 = rps_to_i915(rps);
1563 
1564 	if (GRAPHICS_VER(i915) >= 9)
1565 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1566 					 GT_FREQUENCY_MULTIPLIER);
1567 	else if (IS_CHERRYVIEW(i915))
1568 		return chv_freq_opcode(rps, val);
1569 	else if (IS_VALLEYVIEW(i915))
1570 		return byt_freq_opcode(rps, val);
1571 	else if (GRAPHICS_VER(i915) >= 6)
1572 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1573 	else
1574 		return val;
1575 }
1576 
1577 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1578 {
1579 	struct drm_i915_private *i915 = rps_to_i915(rps);
1580 
1581 	rps->gpll_ref_freq =
1582 		vlv_get_cck_clock(i915, "GPLL ref",
1583 				  CCK_GPLL_CLOCK_CONTROL,
1584 				  i915->czclk_freq);
1585 
1586 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1587 		rps->gpll_ref_freq);
1588 }
1589 
1590 static void vlv_rps_init(struct intel_rps *rps)
1591 {
1592 	struct drm_i915_private *i915 = rps_to_i915(rps);
1593 	u32 val;
1594 
1595 	vlv_iosf_sb_get(i915,
1596 			BIT(VLV_IOSF_SB_PUNIT) |
1597 			BIT(VLV_IOSF_SB_NC) |
1598 			BIT(VLV_IOSF_SB_CCK));
1599 
1600 	vlv_init_gpll_ref_freq(rps);
1601 
1602 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1603 	switch ((val >> 6) & 3) {
1604 	case 0:
1605 	case 1:
1606 		i915->mem_freq = 800;
1607 		break;
1608 	case 2:
1609 		i915->mem_freq = 1066;
1610 		break;
1611 	case 3:
1612 		i915->mem_freq = 1333;
1613 		break;
1614 	}
1615 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1616 
1617 	rps->max_freq = vlv_rps_max_freq(rps);
1618 	rps->rp0_freq = rps->max_freq;
1619 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1620 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1621 
1622 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1623 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1624 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1625 
1626 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1627 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1628 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1629 
1630 	rps->min_freq = vlv_rps_min_freq(rps);
1631 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1632 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1633 
1634 	vlv_iosf_sb_put(i915,
1635 			BIT(VLV_IOSF_SB_PUNIT) |
1636 			BIT(VLV_IOSF_SB_NC) |
1637 			BIT(VLV_IOSF_SB_CCK));
1638 }
1639 
1640 static void chv_rps_init(struct intel_rps *rps)
1641 {
1642 	struct drm_i915_private *i915 = rps_to_i915(rps);
1643 	u32 val;
1644 
1645 	vlv_iosf_sb_get(i915,
1646 			BIT(VLV_IOSF_SB_PUNIT) |
1647 			BIT(VLV_IOSF_SB_NC) |
1648 			BIT(VLV_IOSF_SB_CCK));
1649 
1650 	vlv_init_gpll_ref_freq(rps);
1651 
1652 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1653 
1654 	switch ((val >> 2) & 0x7) {
1655 	case 3:
1656 		i915->mem_freq = 2000;
1657 		break;
1658 	default:
1659 		i915->mem_freq = 1600;
1660 		break;
1661 	}
1662 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1663 
1664 	rps->max_freq = chv_rps_max_freq(rps);
1665 	rps->rp0_freq = rps->max_freq;
1666 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1667 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1668 
1669 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1670 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1671 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1672 
1673 	rps->rp1_freq = chv_rps_guar_freq(rps);
1674 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1675 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1676 
1677 	rps->min_freq = chv_rps_min_freq(rps);
1678 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1679 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1680 
1681 	vlv_iosf_sb_put(i915,
1682 			BIT(VLV_IOSF_SB_PUNIT) |
1683 			BIT(VLV_IOSF_SB_NC) |
1684 			BIT(VLV_IOSF_SB_CCK));
1685 
1686 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1687 				   rps->rp1_freq | rps->min_freq) & 1,
1688 		      "Odd GPU freq values\n");
1689 }
1690 
1691 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1692 {
1693 	ei->ktime = ktime_get_raw();
1694 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1695 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1696 }
1697 
1698 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1699 {
1700 	struct intel_uncore *uncore = rps_to_uncore(rps);
1701 	const struct intel_rps_ei *prev = &rps->ei;
1702 	struct intel_rps_ei now;
1703 	u32 events = 0;
1704 
1705 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1706 		return 0;
1707 
1708 	vlv_c0_read(uncore, &now);
1709 
1710 	if (prev->ktime) {
1711 		u64 time, c0;
1712 		u32 render, media;
1713 
1714 		time = ktime_us_delta(now.ktime, prev->ktime);
1715 
1716 		time *= rps_to_i915(rps)->czclk_freq;
1717 
1718 		/* Workload can be split between render + media,
1719 		 * e.g. SwapBuffers being blitted in X after being rendered in
1720 		 * mesa. To account for this we need to combine both engines
1721 		 * into our activity counter.
1722 		 */
1723 		render = now.render_c0 - prev->render_c0;
1724 		media = now.media_c0 - prev->media_c0;
1725 		c0 = max(render, media);
1726 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1727 
1728 		if (c0 > time * rps->power.up_threshold)
1729 			events = GEN6_PM_RP_UP_THRESHOLD;
1730 		else if (c0 < time * rps->power.down_threshold)
1731 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1732 	}
1733 
1734 	rps->ei = now;
1735 	return events;
1736 }
1737 
1738 static void rps_work(struct work_struct *work)
1739 {
1740 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1741 	struct intel_gt *gt = rps_to_gt(rps);
1742 	struct drm_i915_private *i915 = rps_to_i915(rps);
1743 	bool client_boost = false;
1744 	int new_freq, adj, min, max;
1745 	u32 pm_iir = 0;
1746 
1747 	spin_lock_irq(&gt->irq_lock);
1748 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1749 	client_boost = atomic_read(&rps->num_waiters);
1750 	spin_unlock_irq(&gt->irq_lock);
1751 
1752 	/* Make sure we didn't queue anything we're not going to process. */
1753 	if (!pm_iir && !client_boost)
1754 		goto out;
1755 
1756 	mutex_lock(&rps->lock);
1757 	if (!intel_rps_is_active(rps)) {
1758 		mutex_unlock(&rps->lock);
1759 		return;
1760 	}
1761 
1762 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1763 
1764 	adj = rps->last_adj;
1765 	new_freq = rps->cur_freq;
1766 	min = rps->min_freq_softlimit;
1767 	max = rps->max_freq_softlimit;
1768 	if (client_boost)
1769 		max = rps->max_freq;
1770 
1771 	GT_TRACE(gt,
1772 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1773 		 pm_iir, yesno(client_boost),
1774 		 adj, new_freq, min, max);
1775 
1776 	if (client_boost && new_freq < rps->boost_freq) {
1777 		new_freq = rps->boost_freq;
1778 		adj = 0;
1779 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1780 		if (adj > 0)
1781 			adj *= 2;
1782 		else /* CHV needs even encode values */
1783 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1784 
1785 		if (new_freq >= rps->max_freq_softlimit)
1786 			adj = 0;
1787 	} else if (client_boost) {
1788 		adj = 0;
1789 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1790 		if (rps->cur_freq > rps->efficient_freq)
1791 			new_freq = rps->efficient_freq;
1792 		else if (rps->cur_freq > rps->min_freq_softlimit)
1793 			new_freq = rps->min_freq_softlimit;
1794 		adj = 0;
1795 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1796 		if (adj < 0)
1797 			adj *= 2;
1798 		else /* CHV needs even encode values */
1799 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1800 
1801 		if (new_freq <= rps->min_freq_softlimit)
1802 			adj = 0;
1803 	} else { /* unknown event */
1804 		adj = 0;
1805 	}
1806 
1807 	/*
1808 	 * sysfs frequency limits may have snuck in while
1809 	 * servicing the interrupt
1810 	 */
1811 	new_freq += adj;
1812 	new_freq = clamp_t(int, new_freq, min, max);
1813 
1814 	if (intel_rps_set(rps, new_freq)) {
1815 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1816 		adj = 0;
1817 	}
1818 	rps->last_adj = adj;
1819 
1820 	mutex_unlock(&rps->lock);
1821 
1822 out:
1823 	spin_lock_irq(&gt->irq_lock);
1824 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1825 	spin_unlock_irq(&gt->irq_lock);
1826 }
1827 
1828 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1829 {
1830 	struct intel_gt *gt = rps_to_gt(rps);
1831 	const u32 events = rps->pm_events & pm_iir;
1832 
1833 	lockdep_assert_held(&gt->irq_lock);
1834 
1835 	if (unlikely(!events))
1836 		return;
1837 
1838 	GT_TRACE(gt, "irq events:%x\n", events);
1839 
1840 	gen6_gt_pm_mask_irq(gt, events);
1841 
1842 	rps->pm_iir |= events;
1843 	schedule_work(&rps->work);
1844 }
1845 
1846 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1847 {
1848 	struct intel_gt *gt = rps_to_gt(rps);
1849 	u32 events;
1850 
1851 	events = pm_iir & rps->pm_events;
1852 	if (events) {
1853 		spin_lock(&gt->irq_lock);
1854 
1855 		GT_TRACE(gt, "irq events:%x\n", events);
1856 
1857 		gen6_gt_pm_mask_irq(gt, events);
1858 		rps->pm_iir |= events;
1859 
1860 		schedule_work(&rps->work);
1861 		spin_unlock(&gt->irq_lock);
1862 	}
1863 
1864 	if (GRAPHICS_VER(gt->i915) >= 8)
1865 		return;
1866 
1867 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1868 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1869 
1870 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1871 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1872 }
1873 
1874 void gen5_rps_irq_handler(struct intel_rps *rps)
1875 {
1876 	struct intel_uncore *uncore = rps_to_uncore(rps);
1877 	u32 busy_up, busy_down, max_avg, min_avg;
1878 	u8 new_freq;
1879 
1880 	spin_lock(&mchdev_lock);
1881 
1882 	intel_uncore_write16(uncore,
1883 			     MEMINTRSTS,
1884 			     intel_uncore_read(uncore, MEMINTRSTS));
1885 
1886 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1887 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1888 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1889 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1890 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1891 
1892 	/* Handle RCS change request from hw */
1893 	new_freq = rps->cur_freq;
1894 	if (busy_up > max_avg)
1895 		new_freq++;
1896 	else if (busy_down < min_avg)
1897 		new_freq--;
1898 	new_freq = clamp(new_freq,
1899 			 rps->min_freq_softlimit,
1900 			 rps->max_freq_softlimit);
1901 
1902 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1903 		rps->cur_freq = new_freq;
1904 
1905 	spin_unlock(&mchdev_lock);
1906 }
1907 
1908 void intel_rps_init_early(struct intel_rps *rps)
1909 {
1910 	mutex_init(&rps->lock);
1911 	mutex_init(&rps->power.mutex);
1912 
1913 	INIT_WORK(&rps->work, rps_work);
1914 	timer_setup(&rps->timer, rps_timer, 0);
1915 
1916 	atomic_set(&rps->num_waiters, 0);
1917 }
1918 
1919 void intel_rps_init(struct intel_rps *rps)
1920 {
1921 	struct drm_i915_private *i915 = rps_to_i915(rps);
1922 
1923 	if (rps_uses_slpc(rps))
1924 		return;
1925 
1926 	if (IS_CHERRYVIEW(i915))
1927 		chv_rps_init(rps);
1928 	else if (IS_VALLEYVIEW(i915))
1929 		vlv_rps_init(rps);
1930 	else if (GRAPHICS_VER(i915) >= 6)
1931 		gen6_rps_init(rps);
1932 	else if (IS_IRONLAKE_M(i915))
1933 		gen5_rps_init(rps);
1934 
1935 	/* Derive initial user preferences/limits from the hardware limits */
1936 	rps->max_freq_softlimit = rps->max_freq;
1937 	rps->min_freq_softlimit = rps->min_freq;
1938 
1939 	/* After setting max-softlimit, find the overclock max freq */
1940 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1941 		u32 params = 0;
1942 
1943 		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1944 				       &params, NULL);
1945 		if (params & BIT(31)) { /* OC supported */
1946 			drm_dbg(&i915->drm,
1947 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1948 				(rps->max_freq & 0xff) * 50,
1949 				(params & 0xff) * 50);
1950 			rps->max_freq = params & 0xff;
1951 		}
1952 	}
1953 
1954 	/* Finally allow us to boost to max by default */
1955 	rps->boost_freq = rps->max_freq;
1956 	rps->idle_freq = rps->min_freq;
1957 
1958 	/* Start in the middle, from here we will autotune based on workload */
1959 	rps->cur_freq = rps->efficient_freq;
1960 
1961 	rps->pm_intrmsk_mbz = 0;
1962 
1963 	/*
1964 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1965 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1966 	 *
1967 	 * TODO: verify if this can be reproduced on VLV,CHV.
1968 	 */
1969 	if (GRAPHICS_VER(i915) <= 7)
1970 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1971 
1972 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
1973 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1974 
1975 	/* GuC needs ARAT expired interrupt unmasked */
1976 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
1977 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1978 }
1979 
1980 void intel_rps_sanitize(struct intel_rps *rps)
1981 {
1982 	if (rps_uses_slpc(rps))
1983 		return;
1984 
1985 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
1986 		rps_disable_interrupts(rps);
1987 }
1988 
1989 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1990 {
1991 	struct drm_i915_private *i915 = rps_to_i915(rps);
1992 	u32 cagf;
1993 
1994 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1995 		cagf = (rpstat >> 8) & 0xff;
1996 	else if (GRAPHICS_VER(i915) >= 9)
1997 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1998 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1999 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
2000 	else if (GRAPHICS_VER(i915) >= 6)
2001 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
2002 	else
2003 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
2004 					MEMSTAT_PSTATE_SHIFT);
2005 
2006 	return cagf;
2007 }
2008 
2009 static u32 read_cagf(struct intel_rps *rps)
2010 {
2011 	struct drm_i915_private *i915 = rps_to_i915(rps);
2012 	struct intel_uncore *uncore = rps_to_uncore(rps);
2013 	u32 freq;
2014 
2015 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2016 		vlv_punit_get(i915);
2017 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2018 		vlv_punit_put(i915);
2019 	} else if (GRAPHICS_VER(i915) >= 6) {
2020 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
2021 	} else {
2022 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
2023 	}
2024 
2025 	return intel_rps_get_cagf(rps, freq);
2026 }
2027 
2028 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2029 {
2030 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2031 	intel_wakeref_t wakeref;
2032 	u32 freq = 0;
2033 
2034 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2035 		freq = intel_gpu_freq(rps, read_cagf(rps));
2036 
2037 	return freq;
2038 }
2039 
2040 u32 intel_rps_read_punit_req(struct intel_rps *rps)
2041 {
2042 	struct intel_uncore *uncore = rps_to_uncore(rps);
2043 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2044 	intel_wakeref_t wakeref;
2045 	u32 freq = 0;
2046 
2047 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2048 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2049 
2050 	return freq;
2051 }
2052 
2053 static u32 intel_rps_get_req(u32 pureq)
2054 {
2055 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2056 
2057 	return req;
2058 }
2059 
2060 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2061 {
2062 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2063 
2064 	return intel_gpu_freq(rps, freq);
2065 }
2066 
2067 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2068 {
2069 	if (rps_uses_slpc(rps))
2070 		return intel_rps_read_punit_req_frequency(rps);
2071 	else
2072 		return intel_gpu_freq(rps, rps->cur_freq);
2073 }
2074 
2075 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2076 {
2077 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2078 
2079 	if (rps_uses_slpc(rps))
2080 		return slpc->max_freq_softlimit;
2081 	else
2082 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2083 }
2084 
2085 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2086 {
2087 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2088 
2089 	if (rps_uses_slpc(rps))
2090 		return slpc->rp0_freq;
2091 	else
2092 		return intel_gpu_freq(rps, rps->rp0_freq);
2093 }
2094 
2095 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2096 {
2097 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2098 
2099 	if (rps_uses_slpc(rps))
2100 		return slpc->rp1_freq;
2101 	else
2102 		return intel_gpu_freq(rps, rps->rp1_freq);
2103 }
2104 
2105 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2106 {
2107 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2108 
2109 	if (rps_uses_slpc(rps))
2110 		return slpc->min_freq;
2111 	else
2112 		return intel_gpu_freq(rps, rps->min_freq);
2113 }
2114 
2115 static int set_max_freq(struct intel_rps *rps, u32 val)
2116 {
2117 	struct drm_i915_private *i915 = rps_to_i915(rps);
2118 	int ret = 0;
2119 
2120 	mutex_lock(&rps->lock);
2121 
2122 	val = intel_freq_opcode(rps, val);
2123 	if (val < rps->min_freq ||
2124 	    val > rps->max_freq ||
2125 	    val < rps->min_freq_softlimit) {
2126 		ret = -EINVAL;
2127 		goto unlock;
2128 	}
2129 
2130 	if (val > rps->rp0_freq)
2131 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2132 			intel_gpu_freq(rps, val));
2133 
2134 	rps->max_freq_softlimit = val;
2135 
2136 	val = clamp_t(int, rps->cur_freq,
2137 		      rps->min_freq_softlimit,
2138 		      rps->max_freq_softlimit);
2139 
2140 	/*
2141 	 * We still need *_set_rps to process the new max_delay and
2142 	 * update the interrupt limits and PMINTRMSK even though
2143 	 * frequency request may be unchanged.
2144 	 */
2145 	intel_rps_set(rps, val);
2146 
2147 unlock:
2148 	mutex_unlock(&rps->lock);
2149 
2150 	return ret;
2151 }
2152 
2153 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2154 {
2155 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2156 
2157 	if (rps_uses_slpc(rps))
2158 		return intel_guc_slpc_set_max_freq(slpc, val);
2159 	else
2160 		return set_max_freq(rps, val);
2161 }
2162 
2163 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2164 {
2165 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2166 
2167 	if (rps_uses_slpc(rps))
2168 		return slpc->min_freq_softlimit;
2169 	else
2170 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2171 }
2172 
2173 static int set_min_freq(struct intel_rps *rps, u32 val)
2174 {
2175 	int ret = 0;
2176 
2177 	mutex_lock(&rps->lock);
2178 
2179 	val = intel_freq_opcode(rps, val);
2180 	if (val < rps->min_freq ||
2181 	    val > rps->max_freq ||
2182 	    val > rps->max_freq_softlimit) {
2183 		ret = -EINVAL;
2184 		goto unlock;
2185 	}
2186 
2187 	rps->min_freq_softlimit = val;
2188 
2189 	val = clamp_t(int, rps->cur_freq,
2190 		      rps->min_freq_softlimit,
2191 		      rps->max_freq_softlimit);
2192 
2193 	/*
2194 	 * We still need *_set_rps to process the new min_delay and
2195 	 * update the interrupt limits and PMINTRMSK even though
2196 	 * frequency request may be unchanged.
2197 	 */
2198 	intel_rps_set(rps, val);
2199 
2200 unlock:
2201 	mutex_unlock(&rps->lock);
2202 
2203 	return ret;
2204 }
2205 
2206 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2207 {
2208 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2209 
2210 	if (rps_uses_slpc(rps))
2211 		return intel_guc_slpc_set_min_freq(slpc, val);
2212 	else
2213 		return set_min_freq(rps, val);
2214 }
2215 
2216 u32 intel_rps_read_state_cap(struct intel_rps *rps)
2217 {
2218 	struct drm_i915_private *i915 = rps_to_i915(rps);
2219 	struct intel_uncore *uncore = rps_to_uncore(rps);
2220 
2221 	if (IS_XEHPSDV(i915))
2222 		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
2223 	else if (IS_GEN9_LP(i915))
2224 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
2225 	else
2226 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
2227 }
2228 
2229 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2230 {
2231 	struct intel_uncore *uncore = rps_to_uncore(rps);
2232 	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2233 
2234 	/* Allow punit to process software requests */
2235 	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2236 }
2237 
2238 void intel_rps_raise_unslice(struct intel_rps *rps)
2239 {
2240 	struct intel_uncore *uncore = rps_to_uncore(rps);
2241 	u32 rp0_unslice_req;
2242 
2243 	mutex_lock(&rps->lock);
2244 
2245 	if (rps_uses_slpc(rps)) {
2246 		/* RP limits have not been initialized yet for SLPC path */
2247 		rp0_unslice_req = ((intel_rps_read_state_cap(rps) >> 0)
2248 				   & 0xff) * GEN9_FREQ_SCALER;
2249 
2250 		intel_rps_set_manual(rps, true);
2251 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2252 				   ((rp0_unslice_req <<
2253 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2254 				   GEN9_IGNORE_SLICE_RATIO));
2255 		intel_rps_set_manual(rps, false);
2256 	} else {
2257 		intel_rps_set(rps, rps->rp0_freq);
2258 	}
2259 
2260 	mutex_unlock(&rps->lock);
2261 }
2262 
2263 void intel_rps_lower_unslice(struct intel_rps *rps)
2264 {
2265 	struct intel_uncore *uncore = rps_to_uncore(rps);
2266 	u32 rpn_unslice_req;
2267 
2268 	mutex_lock(&rps->lock);
2269 
2270 	if (rps_uses_slpc(rps)) {
2271 		/* RP limits have not been initialized yet for SLPC path */
2272 		rpn_unslice_req = ((intel_rps_read_state_cap(rps) >> 16)
2273 				   & 0xff) * GEN9_FREQ_SCALER;
2274 
2275 		intel_rps_set_manual(rps, true);
2276 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2277 				   ((rpn_unslice_req <<
2278 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2279 				   GEN9_IGNORE_SLICE_RATIO));
2280 		intel_rps_set_manual(rps, false);
2281 	} else {
2282 		intel_rps_set(rps, rps->min_freq);
2283 	}
2284 
2285 	mutex_unlock(&rps->lock);
2286 }
2287 
2288 /* External interface for intel_ips.ko */
2289 
2290 static struct drm_i915_private __rcu *ips_mchdev;
2291 
2292 /**
2293  * Tells the intel_ips driver that the i915 driver is now loaded, if
2294  * IPS got loaded first.
2295  *
2296  * This awkward dance is so that neither module has to depend on the
2297  * other in order for IPS to do the appropriate communication of
2298  * GPU turbo limits to i915.
2299  */
2300 static void
2301 ips_ping_for_i915_load(void)
2302 {
2303 	void (*link)(void);
2304 
2305 	link = symbol_get(ips_link_to_i915_driver);
2306 	if (link) {
2307 		link();
2308 		symbol_put(ips_link_to_i915_driver);
2309 	}
2310 }
2311 
2312 void intel_rps_driver_register(struct intel_rps *rps)
2313 {
2314 	struct intel_gt *gt = rps_to_gt(rps);
2315 
2316 	/*
2317 	 * We only register the i915 ips part with intel-ips once everything is
2318 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2319 	 */
2320 	if (GRAPHICS_VER(gt->i915) == 5) {
2321 		GEM_BUG_ON(ips_mchdev);
2322 		rcu_assign_pointer(ips_mchdev, gt->i915);
2323 		ips_ping_for_i915_load();
2324 	}
2325 }
2326 
2327 void intel_rps_driver_unregister(struct intel_rps *rps)
2328 {
2329 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2330 		rcu_assign_pointer(ips_mchdev, NULL);
2331 }
2332 
2333 static struct drm_i915_private *mchdev_get(void)
2334 {
2335 	struct drm_i915_private *i915;
2336 
2337 	rcu_read_lock();
2338 	i915 = rcu_dereference(ips_mchdev);
2339 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2340 		i915 = NULL;
2341 	rcu_read_unlock();
2342 
2343 	return i915;
2344 }
2345 
2346 /**
2347  * i915_read_mch_val - return value for IPS use
2348  *
2349  * Calculate and return a value for the IPS driver to use when deciding whether
2350  * we have thermal and power headroom to increase CPU or GPU power budget.
2351  */
2352 unsigned long i915_read_mch_val(void)
2353 {
2354 	struct drm_i915_private *i915;
2355 	unsigned long chipset_val = 0;
2356 	unsigned long graphics_val = 0;
2357 	intel_wakeref_t wakeref;
2358 
2359 	i915 = mchdev_get();
2360 	if (!i915)
2361 		return 0;
2362 
2363 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2364 		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2365 
2366 		spin_lock_irq(&mchdev_lock);
2367 		chipset_val = __ips_chipset_val(ips);
2368 		graphics_val = __ips_gfx_val(ips);
2369 		spin_unlock_irq(&mchdev_lock);
2370 	}
2371 
2372 	drm_dev_put(&i915->drm);
2373 	return chipset_val + graphics_val;
2374 }
2375 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2376 
2377 /**
2378  * i915_gpu_raise - raise GPU frequency limit
2379  *
2380  * Raise the limit; IPS indicates we have thermal headroom.
2381  */
2382 bool i915_gpu_raise(void)
2383 {
2384 	struct drm_i915_private *i915;
2385 	struct intel_rps *rps;
2386 
2387 	i915 = mchdev_get();
2388 	if (!i915)
2389 		return false;
2390 
2391 	rps = &to_gt(i915)->rps;
2392 
2393 	spin_lock_irq(&mchdev_lock);
2394 	if (rps->max_freq_softlimit < rps->max_freq)
2395 		rps->max_freq_softlimit++;
2396 	spin_unlock_irq(&mchdev_lock);
2397 
2398 	drm_dev_put(&i915->drm);
2399 	return true;
2400 }
2401 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2402 
2403 /**
2404  * i915_gpu_lower - lower GPU frequency limit
2405  *
2406  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2407  * frequency maximum.
2408  */
2409 bool i915_gpu_lower(void)
2410 {
2411 	struct drm_i915_private *i915;
2412 	struct intel_rps *rps;
2413 
2414 	i915 = mchdev_get();
2415 	if (!i915)
2416 		return false;
2417 
2418 	rps = &to_gt(i915)->rps;
2419 
2420 	spin_lock_irq(&mchdev_lock);
2421 	if (rps->max_freq_softlimit > rps->min_freq)
2422 		rps->max_freq_softlimit--;
2423 	spin_unlock_irq(&mchdev_lock);
2424 
2425 	drm_dev_put(&i915->drm);
2426 	return true;
2427 }
2428 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2429 
2430 /**
2431  * i915_gpu_busy - indicate GPU business to IPS
2432  *
2433  * Tell the IPS driver whether or not the GPU is busy.
2434  */
2435 bool i915_gpu_busy(void)
2436 {
2437 	struct drm_i915_private *i915;
2438 	bool ret;
2439 
2440 	i915 = mchdev_get();
2441 	if (!i915)
2442 		return false;
2443 
2444 	ret = to_gt(i915)->awake;
2445 
2446 	drm_dev_put(&i915->drm);
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2450 
2451 /**
2452  * i915_gpu_turbo_disable - disable graphics turbo
2453  *
2454  * Disable graphics turbo by resetting the max frequency and setting the
2455  * current frequency to the default.
2456  */
2457 bool i915_gpu_turbo_disable(void)
2458 {
2459 	struct drm_i915_private *i915;
2460 	struct intel_rps *rps;
2461 	bool ret;
2462 
2463 	i915 = mchdev_get();
2464 	if (!i915)
2465 		return false;
2466 
2467 	rps = &to_gt(i915)->rps;
2468 
2469 	spin_lock_irq(&mchdev_lock);
2470 	rps->max_freq_softlimit = rps->min_freq;
2471 	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2472 	spin_unlock_irq(&mchdev_lock);
2473 
2474 	drm_dev_put(&i915->drm);
2475 	return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2478 
2479 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2480 #include "selftest_rps.c"
2481 #include "selftest_slpc.c"
2482 #endif
2483