1 /* 2 * Copyright © 2008-2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 * Zou Nan hai <nanhai.zou@intel.com> 26 * Xiang Hai hao<haihao.xiang@intel.com> 27 * 28 */ 29 30 #include <linux/log2.h> 31 32 #include <drm/i915_drm.h> 33 34 #include "gem/i915_gem_context.h" 35 36 #include "gen6_ppgtt.h" 37 #include "i915_drv.h" 38 #include "i915_trace.h" 39 #include "intel_context.h" 40 #include "intel_gt.h" 41 #include "intel_gt_irq.h" 42 #include "intel_gt_pm_irq.h" 43 #include "intel_reset.h" 44 #include "intel_ring.h" 45 #include "intel_workarounds.h" 46 47 /* Rough estimate of the typical request size, performing a flush, 48 * set-context and then emitting the batch. 49 */ 50 #define LEGACY_REQUEST_SIZE 200 51 52 static int 53 gen2_render_ring_flush(struct i915_request *rq, u32 mode) 54 { 55 unsigned int num_store_dw; 56 u32 cmd, *cs; 57 58 cmd = MI_FLUSH; 59 num_store_dw = 0; 60 if (mode & EMIT_INVALIDATE) 61 cmd |= MI_READ_FLUSH; 62 if (mode & EMIT_FLUSH) 63 num_store_dw = 4; 64 65 cs = intel_ring_begin(rq, 2 + 3 * num_store_dw); 66 if (IS_ERR(cs)) 67 return PTR_ERR(cs); 68 69 *cs++ = cmd; 70 while (num_store_dw--) { 71 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 72 *cs++ = intel_gt_scratch_offset(rq->engine->gt, 73 INTEL_GT_SCRATCH_FIELD_DEFAULT); 74 *cs++ = 0; 75 } 76 *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH; 77 78 intel_ring_advance(rq, cs); 79 80 return 0; 81 } 82 83 static int 84 gen4_render_ring_flush(struct i915_request *rq, u32 mode) 85 { 86 u32 cmd, *cs; 87 int i; 88 89 /* 90 * read/write caches: 91 * 92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is 93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is 94 * also flushed at 2d versus 3d pipeline switches. 95 * 96 * read-only caches: 97 * 98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if 99 * MI_READ_FLUSH is set, and is always flushed on 965. 100 * 101 * I915_GEM_DOMAIN_COMMAND may not exist? 102 * 103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is 104 * invalidated when MI_EXE_FLUSH is set. 105 * 106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is 107 * invalidated with every MI_FLUSH. 108 * 109 * TLBs: 110 * 111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND 112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and 113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER 114 * are flushed at any MI_FLUSH. 115 */ 116 117 cmd = MI_FLUSH; 118 if (mode & EMIT_INVALIDATE) { 119 cmd |= MI_EXE_FLUSH; 120 if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5)) 121 cmd |= MI_INVALIDATE_ISP; 122 } 123 124 i = 2; 125 if (mode & EMIT_INVALIDATE) 126 i += 20; 127 128 cs = intel_ring_begin(rq, i); 129 if (IS_ERR(cs)) 130 return PTR_ERR(cs); 131 132 *cs++ = cmd; 133 134 /* 135 * A random delay to let the CS invalidate take effect? Without this 136 * delay, the GPU relocation path fails as the CS does not see 137 * the updated contents. Just as important, if we apply the flushes 138 * to the EMIT_FLUSH branch (i.e. immediately after the relocation 139 * write and before the invalidate on the next batch), the relocations 140 * still fail. This implies that is a delay following invalidation 141 * that is required to reset the caches as opposed to a delay to 142 * ensure the memory is written. 143 */ 144 if (mode & EMIT_INVALIDATE) { 145 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE; 146 *cs++ = intel_gt_scratch_offset(rq->engine->gt, 147 INTEL_GT_SCRATCH_FIELD_DEFAULT) | 148 PIPE_CONTROL_GLOBAL_GTT; 149 *cs++ = 0; 150 *cs++ = 0; 151 152 for (i = 0; i < 12; i++) 153 *cs++ = MI_FLUSH; 154 155 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE; 156 *cs++ = intel_gt_scratch_offset(rq->engine->gt, 157 INTEL_GT_SCRATCH_FIELD_DEFAULT) | 158 PIPE_CONTROL_GLOBAL_GTT; 159 *cs++ = 0; 160 *cs++ = 0; 161 } 162 163 *cs++ = cmd; 164 165 intel_ring_advance(rq, cs); 166 167 return 0; 168 } 169 170 /* 171 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for 172 * implementing two workarounds on gen6. From section 1.4.7.1 173 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1: 174 * 175 * [DevSNB-C+{W/A}] Before any depth stall flush (including those 176 * produced by non-pipelined state commands), software needs to first 177 * send a PIPE_CONTROL with no bits set except Post-Sync Operation != 178 * 0. 179 * 180 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable 181 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required. 182 * 183 * And the workaround for these two requires this workaround first: 184 * 185 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent 186 * BEFORE the pipe-control with a post-sync op and no write-cache 187 * flushes. 188 * 189 * And this last workaround is tricky because of the requirements on 190 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM 191 * volume 2 part 1: 192 * 193 * "1 of the following must also be set: 194 * - Render Target Cache Flush Enable ([12] of DW1) 195 * - Depth Cache Flush Enable ([0] of DW1) 196 * - Stall at Pixel Scoreboard ([1] of DW1) 197 * - Depth Stall ([13] of DW1) 198 * - Post-Sync Operation ([13] of DW1) 199 * - Notify Enable ([8] of DW1)" 200 * 201 * The cache flushes require the workaround flush that triggered this 202 * one, so we can't use it. Depth stall would trigger the same. 203 * Post-sync nonzero is what triggered this second workaround, so we 204 * can't use that one either. Notify enable is IRQs, which aren't 205 * really our business. That leaves only stall at scoreboard. 206 */ 207 static int 208 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq) 209 { 210 u32 scratch_addr = 211 intel_gt_scratch_offset(rq->engine->gt, 212 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); 213 u32 *cs; 214 215 cs = intel_ring_begin(rq, 6); 216 if (IS_ERR(cs)) 217 return PTR_ERR(cs); 218 219 *cs++ = GFX_OP_PIPE_CONTROL(5); 220 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; 221 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; 222 *cs++ = 0; /* low dword */ 223 *cs++ = 0; /* high dword */ 224 *cs++ = MI_NOOP; 225 intel_ring_advance(rq, cs); 226 227 cs = intel_ring_begin(rq, 6); 228 if (IS_ERR(cs)) 229 return PTR_ERR(cs); 230 231 *cs++ = GFX_OP_PIPE_CONTROL(5); 232 *cs++ = PIPE_CONTROL_QW_WRITE; 233 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; 234 *cs++ = 0; 235 *cs++ = 0; 236 *cs++ = MI_NOOP; 237 intel_ring_advance(rq, cs); 238 239 return 0; 240 } 241 242 static int 243 gen6_render_ring_flush(struct i915_request *rq, u32 mode) 244 { 245 u32 scratch_addr = 246 intel_gt_scratch_offset(rq->engine->gt, 247 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); 248 u32 *cs, flags = 0; 249 int ret; 250 251 /* Force SNB workarounds for PIPE_CONTROL flushes */ 252 ret = gen6_emit_post_sync_nonzero_flush(rq); 253 if (ret) 254 return ret; 255 256 /* Just flush everything. Experiments have shown that reducing the 257 * number of bits based on the write domains has little performance 258 * impact. 259 */ 260 if (mode & EMIT_FLUSH) { 261 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 262 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 263 /* 264 * Ensure that any following seqno writes only happen 265 * when the render cache is indeed flushed. 266 */ 267 flags |= PIPE_CONTROL_CS_STALL; 268 } 269 if (mode & EMIT_INVALIDATE) { 270 flags |= PIPE_CONTROL_TLB_INVALIDATE; 271 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 272 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 273 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 274 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 275 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 276 /* 277 * TLB invalidate requires a post-sync write. 278 */ 279 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL; 280 } 281 282 cs = intel_ring_begin(rq, 4); 283 if (IS_ERR(cs)) 284 return PTR_ERR(cs); 285 286 *cs++ = GFX_OP_PIPE_CONTROL(4); 287 *cs++ = flags; 288 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT; 289 *cs++ = 0; 290 intel_ring_advance(rq, cs); 291 292 return 0; 293 } 294 295 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs) 296 { 297 /* First we do the gen6_emit_post_sync_nonzero_flush w/a */ 298 *cs++ = GFX_OP_PIPE_CONTROL(4); 299 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; 300 *cs++ = 0; 301 *cs++ = 0; 302 303 *cs++ = GFX_OP_PIPE_CONTROL(4); 304 *cs++ = PIPE_CONTROL_QW_WRITE; 305 *cs++ = intel_gt_scratch_offset(rq->engine->gt, 306 INTEL_GT_SCRATCH_FIELD_DEFAULT) | 307 PIPE_CONTROL_GLOBAL_GTT; 308 *cs++ = 0; 309 310 /* Finally we can flush and with it emit the breadcrumb */ 311 *cs++ = GFX_OP_PIPE_CONTROL(4); 312 *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 313 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 314 PIPE_CONTROL_DC_FLUSH_ENABLE | 315 PIPE_CONTROL_QW_WRITE | 316 PIPE_CONTROL_CS_STALL); 317 *cs++ = i915_request_active_timeline(rq)->hwsp_offset | 318 PIPE_CONTROL_GLOBAL_GTT; 319 *cs++ = rq->fence.seqno; 320 321 *cs++ = MI_USER_INTERRUPT; 322 *cs++ = MI_NOOP; 323 324 rq->tail = intel_ring_offset(rq, cs); 325 assert_ring_tail_valid(rq->ring, rq->tail); 326 327 return cs; 328 } 329 330 static int 331 gen7_render_ring_cs_stall_wa(struct i915_request *rq) 332 { 333 u32 *cs; 334 335 cs = intel_ring_begin(rq, 4); 336 if (IS_ERR(cs)) 337 return PTR_ERR(cs); 338 339 *cs++ = GFX_OP_PIPE_CONTROL(4); 340 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD; 341 *cs++ = 0; 342 *cs++ = 0; 343 intel_ring_advance(rq, cs); 344 345 return 0; 346 } 347 348 static int 349 gen7_render_ring_flush(struct i915_request *rq, u32 mode) 350 { 351 u32 scratch_addr = 352 intel_gt_scratch_offset(rq->engine->gt, 353 INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH); 354 u32 *cs, flags = 0; 355 356 /* 357 * Ensure that any following seqno writes only happen when the render 358 * cache is indeed flushed. 359 * 360 * Workaround: 4th PIPE_CONTROL command (except the ones with only 361 * read-cache invalidate bits set) must have the CS_STALL bit set. We 362 * don't try to be clever and just set it unconditionally. 363 */ 364 flags |= PIPE_CONTROL_CS_STALL; 365 366 /* 367 * CS_STALL suggests at least a post-sync write. 368 */ 369 flags |= PIPE_CONTROL_QW_WRITE; 370 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; 371 372 /* Just flush everything. Experiments have shown that reducing the 373 * number of bits based on the write domains has little performance 374 * impact. 375 */ 376 if (mode & EMIT_FLUSH) { 377 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 378 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 379 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 380 flags |= PIPE_CONTROL_FLUSH_ENABLE; 381 } 382 if (mode & EMIT_INVALIDATE) { 383 flags |= PIPE_CONTROL_TLB_INVALIDATE; 384 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 385 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 386 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 387 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 388 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 389 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR; 390 391 /* Workaround: we must issue a pipe_control with CS-stall bit 392 * set before a pipe_control command that has the state cache 393 * invalidate bit set. */ 394 gen7_render_ring_cs_stall_wa(rq); 395 } 396 397 cs = intel_ring_begin(rq, 4); 398 if (IS_ERR(cs)) 399 return PTR_ERR(cs); 400 401 *cs++ = GFX_OP_PIPE_CONTROL(4); 402 *cs++ = flags; 403 *cs++ = scratch_addr; 404 *cs++ = 0; 405 intel_ring_advance(rq, cs); 406 407 return 0; 408 } 409 410 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs) 411 { 412 *cs++ = GFX_OP_PIPE_CONTROL(4); 413 *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 414 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 415 PIPE_CONTROL_DC_FLUSH_ENABLE | 416 PIPE_CONTROL_FLUSH_ENABLE | 417 PIPE_CONTROL_QW_WRITE | 418 PIPE_CONTROL_GLOBAL_GTT_IVB | 419 PIPE_CONTROL_CS_STALL); 420 *cs++ = i915_request_active_timeline(rq)->hwsp_offset; 421 *cs++ = rq->fence.seqno; 422 423 *cs++ = MI_USER_INTERRUPT; 424 *cs++ = MI_NOOP; 425 426 rq->tail = intel_ring_offset(rq, cs); 427 assert_ring_tail_valid(rq->ring, rq->tail); 428 429 return cs; 430 } 431 432 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs) 433 { 434 GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma); 435 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR); 436 437 *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX; 438 *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT; 439 *cs++ = rq->fence.seqno; 440 441 *cs++ = MI_USER_INTERRUPT; 442 443 rq->tail = intel_ring_offset(rq, cs); 444 assert_ring_tail_valid(rq->ring, rq->tail); 445 446 return cs; 447 } 448 449 #define GEN7_XCS_WA 32 450 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs) 451 { 452 int i; 453 454 GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma); 455 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR); 456 457 *cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB | 458 MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX; 459 *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT; 460 *cs++ = rq->fence.seqno; 461 462 for (i = 0; i < GEN7_XCS_WA; i++) { 463 *cs++ = MI_STORE_DWORD_INDEX; 464 *cs++ = I915_GEM_HWS_SEQNO_ADDR; 465 *cs++ = rq->fence.seqno; 466 } 467 468 *cs++ = MI_FLUSH_DW; 469 *cs++ = 0; 470 *cs++ = 0; 471 472 *cs++ = MI_USER_INTERRUPT; 473 *cs++ = MI_NOOP; 474 475 rq->tail = intel_ring_offset(rq, cs); 476 assert_ring_tail_valid(rq->ring, rq->tail); 477 478 return cs; 479 } 480 #undef GEN7_XCS_WA 481 482 static void set_hwstam(struct intel_engine_cs *engine, u32 mask) 483 { 484 /* 485 * Keep the render interrupt unmasked as this papers over 486 * lost interrupts following a reset. 487 */ 488 if (engine->class == RENDER_CLASS) { 489 if (INTEL_GEN(engine->i915) >= 6) 490 mask &= ~BIT(0); 491 else 492 mask &= ~I915_USER_INTERRUPT; 493 } 494 495 intel_engine_set_hwsp_writemask(engine, mask); 496 } 497 498 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys) 499 { 500 u32 addr; 501 502 addr = lower_32_bits(phys); 503 if (INTEL_GEN(engine->i915) >= 4) 504 addr |= (phys >> 28) & 0xf0; 505 506 intel_uncore_write(engine->uncore, HWS_PGA, addr); 507 } 508 509 static struct page *status_page(struct intel_engine_cs *engine) 510 { 511 struct drm_i915_gem_object *obj = engine->status_page.vma->obj; 512 513 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 514 return sg_page(obj->mm.pages->sgl); 515 } 516 517 static void ring_setup_phys_status_page(struct intel_engine_cs *engine) 518 { 519 set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine)))); 520 set_hwstam(engine, ~0u); 521 } 522 523 static void set_hwsp(struct intel_engine_cs *engine, u32 offset) 524 { 525 i915_reg_t hwsp; 526 527 /* 528 * The ring status page addresses are no longer next to the rest of 529 * the ring registers as of gen7. 530 */ 531 if (IS_GEN(engine->i915, 7)) { 532 switch (engine->id) { 533 /* 534 * No more rings exist on Gen7. Default case is only to shut up 535 * gcc switch check warning. 536 */ 537 default: 538 GEM_BUG_ON(engine->id); 539 /* fallthrough */ 540 case RCS0: 541 hwsp = RENDER_HWS_PGA_GEN7; 542 break; 543 case BCS0: 544 hwsp = BLT_HWS_PGA_GEN7; 545 break; 546 case VCS0: 547 hwsp = BSD_HWS_PGA_GEN7; 548 break; 549 case VECS0: 550 hwsp = VEBOX_HWS_PGA_GEN7; 551 break; 552 } 553 } else if (IS_GEN(engine->i915, 6)) { 554 hwsp = RING_HWS_PGA_GEN6(engine->mmio_base); 555 } else { 556 hwsp = RING_HWS_PGA(engine->mmio_base); 557 } 558 559 intel_uncore_write(engine->uncore, hwsp, offset); 560 intel_uncore_posting_read(engine->uncore, hwsp); 561 } 562 563 static void flush_cs_tlb(struct intel_engine_cs *engine) 564 { 565 struct drm_i915_private *dev_priv = engine->i915; 566 567 if (!IS_GEN_RANGE(dev_priv, 6, 7)) 568 return; 569 570 /* ring should be idle before issuing a sync flush*/ 571 WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0); 572 573 ENGINE_WRITE(engine, RING_INSTPM, 574 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE | 575 INSTPM_SYNC_FLUSH)); 576 if (intel_wait_for_register(engine->uncore, 577 RING_INSTPM(engine->mmio_base), 578 INSTPM_SYNC_FLUSH, 0, 579 1000)) 580 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n", 581 engine->name); 582 } 583 584 static void ring_setup_status_page(struct intel_engine_cs *engine) 585 { 586 set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma)); 587 set_hwstam(engine, ~0u); 588 589 flush_cs_tlb(engine); 590 } 591 592 static bool stop_ring(struct intel_engine_cs *engine) 593 { 594 struct drm_i915_private *dev_priv = engine->i915; 595 596 if (INTEL_GEN(dev_priv) > 2) { 597 ENGINE_WRITE(engine, 598 RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING)); 599 if (intel_wait_for_register(engine->uncore, 600 RING_MI_MODE(engine->mmio_base), 601 MODE_IDLE, 602 MODE_IDLE, 603 1000)) { 604 DRM_ERROR("%s : timed out trying to stop ring\n", 605 engine->name); 606 607 /* 608 * Sometimes we observe that the idle flag is not 609 * set even though the ring is empty. So double 610 * check before giving up. 611 */ 612 if (ENGINE_READ(engine, RING_HEAD) != 613 ENGINE_READ(engine, RING_TAIL)) 614 return false; 615 } 616 } 617 618 ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL)); 619 620 ENGINE_WRITE(engine, RING_HEAD, 0); 621 ENGINE_WRITE(engine, RING_TAIL, 0); 622 623 /* The ring must be empty before it is disabled */ 624 ENGINE_WRITE(engine, RING_CTL, 0); 625 626 return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0; 627 } 628 629 static int xcs_resume(struct intel_engine_cs *engine) 630 { 631 struct drm_i915_private *dev_priv = engine->i915; 632 struct intel_ring *ring = engine->legacy.ring; 633 int ret = 0; 634 635 ENGINE_TRACE(engine, "ring:{HEAD:%04x, TAIL:%04x}\n", 636 ring->head, ring->tail); 637 638 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 639 640 /* WaClearRingBufHeadRegAtInit:ctg,elk */ 641 if (!stop_ring(engine)) { 642 /* G45 ring initialization often fails to reset head to zero */ 643 DRM_DEBUG_DRIVER("%s head not reset to zero " 644 "ctl %08x head %08x tail %08x start %08x\n", 645 engine->name, 646 ENGINE_READ(engine, RING_CTL), 647 ENGINE_READ(engine, RING_HEAD), 648 ENGINE_READ(engine, RING_TAIL), 649 ENGINE_READ(engine, RING_START)); 650 651 if (!stop_ring(engine)) { 652 DRM_ERROR("failed to set %s head to zero " 653 "ctl %08x head %08x tail %08x start %08x\n", 654 engine->name, 655 ENGINE_READ(engine, RING_CTL), 656 ENGINE_READ(engine, RING_HEAD), 657 ENGINE_READ(engine, RING_TAIL), 658 ENGINE_READ(engine, RING_START)); 659 ret = -EIO; 660 goto out; 661 } 662 } 663 664 if (HWS_NEEDS_PHYSICAL(dev_priv)) 665 ring_setup_phys_status_page(engine); 666 else 667 ring_setup_status_page(engine); 668 669 intel_engine_reset_breadcrumbs(engine); 670 671 /* Enforce ordering by reading HEAD register back */ 672 ENGINE_POSTING_READ(engine, RING_HEAD); 673 674 /* 675 * Initialize the ring. This must happen _after_ we've cleared the ring 676 * registers with the above sequence (the readback of the HEAD registers 677 * also enforces ordering), otherwise the hw might lose the new ring 678 * register values. 679 */ 680 ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma)); 681 682 /* Check that the ring offsets point within the ring! */ 683 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head)); 684 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); 685 intel_ring_update_space(ring); 686 687 /* First wake the ring up to an empty/idle ring */ 688 ENGINE_WRITE(engine, RING_HEAD, ring->head); 689 ENGINE_WRITE(engine, RING_TAIL, ring->head); 690 ENGINE_POSTING_READ(engine, RING_TAIL); 691 692 ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID); 693 694 /* If the head is still not zero, the ring is dead */ 695 if (intel_wait_for_register(engine->uncore, 696 RING_CTL(engine->mmio_base), 697 RING_VALID, RING_VALID, 698 50)) { 699 DRM_ERROR("%s initialization failed " 700 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n", 701 engine->name, 702 ENGINE_READ(engine, RING_CTL), 703 ENGINE_READ(engine, RING_CTL) & RING_VALID, 704 ENGINE_READ(engine, RING_HEAD), ring->head, 705 ENGINE_READ(engine, RING_TAIL), ring->tail, 706 ENGINE_READ(engine, RING_START), 707 i915_ggtt_offset(ring->vma)); 708 ret = -EIO; 709 goto out; 710 } 711 712 if (INTEL_GEN(dev_priv) > 2) 713 ENGINE_WRITE(engine, 714 RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 715 716 /* Now awake, let it get started */ 717 if (ring->tail != ring->head) { 718 ENGINE_WRITE(engine, RING_TAIL, ring->tail); 719 ENGINE_POSTING_READ(engine, RING_TAIL); 720 } 721 722 /* Papering over lost _interrupts_ immediately following the restart */ 723 intel_engine_signal_breadcrumbs(engine); 724 out: 725 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 726 727 return ret; 728 } 729 730 static void reset_prepare(struct intel_engine_cs *engine) 731 { 732 struct intel_uncore *uncore = engine->uncore; 733 const u32 base = engine->mmio_base; 734 735 /* 736 * We stop engines, otherwise we might get failed reset and a 737 * dead gpu (on elk). Also as modern gpu as kbl can suffer 738 * from system hang if batchbuffer is progressing when 739 * the reset is issued, regardless of READY_TO_RESET ack. 740 * Thus assume it is best to stop engines on all gens 741 * where we have a gpu reset. 742 * 743 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) 744 * 745 * WaMediaResetMainRingCleanup:ctg,elk (presumably) 746 * 747 * FIXME: Wa for more modern gens needs to be validated 748 */ 749 ENGINE_TRACE(engine, "\n"); 750 751 if (intel_engine_stop_cs(engine)) 752 ENGINE_TRACE(engine, "timed out on STOP_RING\n"); 753 754 intel_uncore_write_fw(uncore, 755 RING_HEAD(base), 756 intel_uncore_read_fw(uncore, RING_TAIL(base))); 757 intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */ 758 759 intel_uncore_write_fw(uncore, RING_HEAD(base), 0); 760 intel_uncore_write_fw(uncore, RING_TAIL(base), 0); 761 intel_uncore_posting_read_fw(uncore, RING_TAIL(base)); 762 763 /* The ring must be empty before it is disabled */ 764 intel_uncore_write_fw(uncore, RING_CTL(base), 0); 765 766 /* Check acts as a post */ 767 if (intel_uncore_read_fw(uncore, RING_HEAD(base))) 768 ENGINE_TRACE(engine, "ring head [%x] not parked\n", 769 intel_uncore_read_fw(uncore, RING_HEAD(base))); 770 } 771 772 static void reset_rewind(struct intel_engine_cs *engine, bool stalled) 773 { 774 struct i915_request *pos, *rq; 775 unsigned long flags; 776 u32 head; 777 778 rq = NULL; 779 spin_lock_irqsave(&engine->active.lock, flags); 780 list_for_each_entry(pos, &engine->active.requests, sched.link) { 781 if (!i915_request_completed(pos)) { 782 rq = pos; 783 break; 784 } 785 } 786 787 /* 788 * The guilty request will get skipped on a hung engine. 789 * 790 * Users of client default contexts do not rely on logical 791 * state preserved between batches so it is safe to execute 792 * queued requests following the hang. Non default contexts 793 * rely on preserved state, so skipping a batch loses the 794 * evolution of the state and it needs to be considered corrupted. 795 * Executing more queued batches on top of corrupted state is 796 * risky. But we take the risk by trying to advance through 797 * the queued requests in order to make the client behaviour 798 * more predictable around resets, by not throwing away random 799 * amount of batches it has prepared for execution. Sophisticated 800 * clients can use gem_reset_stats_ioctl and dma fence status 801 * (exported via sync_file info ioctl on explicit fences) to observe 802 * when it loses the context state and should rebuild accordingly. 803 * 804 * The context ban, and ultimately the client ban, mechanism are safety 805 * valves if client submission ends up resulting in nothing more than 806 * subsequent hangs. 807 */ 808 809 if (rq) { 810 /* 811 * Try to restore the logical GPU state to match the 812 * continuation of the request queue. If we skip the 813 * context/PD restore, then the next request may try to execute 814 * assuming that its context is valid and loaded on the GPU and 815 * so may try to access invalid memory, prompting repeated GPU 816 * hangs. 817 * 818 * If the request was guilty, we still restore the logical 819 * state in case the next request requires it (e.g. the 820 * aliasing ppgtt), but skip over the hung batch. 821 * 822 * If the request was innocent, we try to replay the request 823 * with the restored context. 824 */ 825 __i915_request_reset(rq, stalled); 826 827 GEM_BUG_ON(rq->ring != engine->legacy.ring); 828 head = rq->head; 829 } else { 830 head = engine->legacy.ring->tail; 831 } 832 engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head); 833 834 spin_unlock_irqrestore(&engine->active.lock, flags); 835 } 836 837 static void reset_finish(struct intel_engine_cs *engine) 838 { 839 } 840 841 static int rcs_resume(struct intel_engine_cs *engine) 842 { 843 struct drm_i915_private *i915 = engine->i915; 844 struct intel_uncore *uncore = engine->uncore; 845 846 /* 847 * Disable CONSTANT_BUFFER before it is loaded from the context 848 * image. For as it is loaded, it is executed and the stored 849 * address may no longer be valid, leading to a GPU hang. 850 * 851 * This imposes the requirement that userspace reload their 852 * CONSTANT_BUFFER on every batch, fortunately a requirement 853 * they are already accustomed to from before contexts were 854 * enabled. 855 */ 856 if (IS_GEN(i915, 4)) 857 intel_uncore_write(uncore, ECOSKPD, 858 _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE)); 859 860 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ 861 if (IS_GEN_RANGE(i915, 4, 6)) 862 intel_uncore_write(uncore, MI_MODE, 863 _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH)); 864 865 /* We need to disable the AsyncFlip performance optimisations in order 866 * to use MI_WAIT_FOR_EVENT within the CS. It should already be 867 * programmed to '1' on all products. 868 * 869 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv 870 */ 871 if (IS_GEN_RANGE(i915, 6, 7)) 872 intel_uncore_write(uncore, MI_MODE, 873 _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); 874 875 /* Required for the hardware to program scanline values for waiting */ 876 /* WaEnableFlushTlbInvalidationMode:snb */ 877 if (IS_GEN(i915, 6)) 878 intel_uncore_write(uncore, GFX_MODE, 879 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT)); 880 881 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ 882 if (IS_GEN(i915, 7)) 883 intel_uncore_write(uncore, GFX_MODE_GEN7, 884 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) | 885 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE)); 886 887 if (IS_GEN(i915, 6)) { 888 /* From the Sandybridge PRM, volume 1 part 3, page 24: 889 * "If this bit is set, STCunit will have LRA as replacement 890 * policy. [...] This bit must be reset. LRA replacement 891 * policy is not supported." 892 */ 893 intel_uncore_write(uncore, CACHE_MODE_0, 894 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); 895 } 896 897 if (IS_GEN_RANGE(i915, 6, 7)) 898 intel_uncore_write(uncore, INSTPM, 899 _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); 900 901 return xcs_resume(engine); 902 } 903 904 static void reset_cancel(struct intel_engine_cs *engine) 905 { 906 struct i915_request *request; 907 unsigned long flags; 908 909 spin_lock_irqsave(&engine->active.lock, flags); 910 911 /* Mark all submitted requests as skipped. */ 912 list_for_each_entry(request, &engine->active.requests, sched.link) { 913 if (!i915_request_signaled(request)) 914 dma_fence_set_error(&request->fence, -EIO); 915 916 i915_request_mark_complete(request); 917 } 918 919 /* Remaining _unready_ requests will be nop'ed when submitted */ 920 921 spin_unlock_irqrestore(&engine->active.lock, flags); 922 } 923 924 static void i9xx_submit_request(struct i915_request *request) 925 { 926 i915_request_submit(request); 927 wmb(); /* paranoid flush writes out of the WCB before mmio */ 928 929 ENGINE_WRITE(request->engine, RING_TAIL, 930 intel_ring_set_tail(request->ring, request->tail)); 931 } 932 933 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs) 934 { 935 GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma); 936 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR); 937 938 *cs++ = MI_FLUSH; 939 940 *cs++ = MI_STORE_DWORD_INDEX; 941 *cs++ = I915_GEM_HWS_SEQNO_ADDR; 942 *cs++ = rq->fence.seqno; 943 944 *cs++ = MI_USER_INTERRUPT; 945 *cs++ = MI_NOOP; 946 947 rq->tail = intel_ring_offset(rq, cs); 948 assert_ring_tail_valid(rq->ring, rq->tail); 949 950 return cs; 951 } 952 953 #define GEN5_WA_STORES 8 /* must be at least 1! */ 954 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs) 955 { 956 int i; 957 958 GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma); 959 GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR); 960 961 *cs++ = MI_FLUSH; 962 963 BUILD_BUG_ON(GEN5_WA_STORES < 1); 964 for (i = 0; i < GEN5_WA_STORES; i++) { 965 *cs++ = MI_STORE_DWORD_INDEX; 966 *cs++ = I915_GEM_HWS_SEQNO_ADDR; 967 *cs++ = rq->fence.seqno; 968 } 969 970 *cs++ = MI_USER_INTERRUPT; 971 972 rq->tail = intel_ring_offset(rq, cs); 973 assert_ring_tail_valid(rq->ring, rq->tail); 974 975 return cs; 976 } 977 #undef GEN5_WA_STORES 978 979 static void 980 gen5_irq_enable(struct intel_engine_cs *engine) 981 { 982 gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask); 983 } 984 985 static void 986 gen5_irq_disable(struct intel_engine_cs *engine) 987 { 988 gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask); 989 } 990 991 static void 992 i9xx_irq_enable(struct intel_engine_cs *engine) 993 { 994 engine->i915->irq_mask &= ~engine->irq_enable_mask; 995 intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask); 996 intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR); 997 } 998 999 static void 1000 i9xx_irq_disable(struct intel_engine_cs *engine) 1001 { 1002 engine->i915->irq_mask |= engine->irq_enable_mask; 1003 intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask); 1004 } 1005 1006 static void 1007 i8xx_irq_enable(struct intel_engine_cs *engine) 1008 { 1009 struct drm_i915_private *i915 = engine->i915; 1010 1011 i915->irq_mask &= ~engine->irq_enable_mask; 1012 intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask); 1013 ENGINE_POSTING_READ16(engine, RING_IMR); 1014 } 1015 1016 static void 1017 i8xx_irq_disable(struct intel_engine_cs *engine) 1018 { 1019 struct drm_i915_private *i915 = engine->i915; 1020 1021 i915->irq_mask |= engine->irq_enable_mask; 1022 intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask); 1023 } 1024 1025 static int 1026 bsd_ring_flush(struct i915_request *rq, u32 mode) 1027 { 1028 u32 *cs; 1029 1030 cs = intel_ring_begin(rq, 2); 1031 if (IS_ERR(cs)) 1032 return PTR_ERR(cs); 1033 1034 *cs++ = MI_FLUSH; 1035 *cs++ = MI_NOOP; 1036 intel_ring_advance(rq, cs); 1037 return 0; 1038 } 1039 1040 static void 1041 gen6_irq_enable(struct intel_engine_cs *engine) 1042 { 1043 ENGINE_WRITE(engine, RING_IMR, 1044 ~(engine->irq_enable_mask | engine->irq_keep_mask)); 1045 1046 /* Flush/delay to ensure the RING_IMR is active before the GT IMR */ 1047 ENGINE_POSTING_READ(engine, RING_IMR); 1048 1049 gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask); 1050 } 1051 1052 static void 1053 gen6_irq_disable(struct intel_engine_cs *engine) 1054 { 1055 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); 1056 gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask); 1057 } 1058 1059 static void 1060 hsw_vebox_irq_enable(struct intel_engine_cs *engine) 1061 { 1062 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask); 1063 1064 /* Flush/delay to ensure the RING_IMR is active before the GT IMR */ 1065 ENGINE_POSTING_READ(engine, RING_IMR); 1066 1067 gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask); 1068 } 1069 1070 static void 1071 hsw_vebox_irq_disable(struct intel_engine_cs *engine) 1072 { 1073 ENGINE_WRITE(engine, RING_IMR, ~0); 1074 gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask); 1075 } 1076 1077 static int 1078 i965_emit_bb_start(struct i915_request *rq, 1079 u64 offset, u32 length, 1080 unsigned int dispatch_flags) 1081 { 1082 u32 *cs; 1083 1084 cs = intel_ring_begin(rq, 2); 1085 if (IS_ERR(cs)) 1086 return PTR_ERR(cs); 1087 1088 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags & 1089 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965); 1090 *cs++ = offset; 1091 intel_ring_advance(rq, cs); 1092 1093 return 0; 1094 } 1095 1096 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */ 1097 #define I830_BATCH_LIMIT SZ_256K 1098 #define I830_TLB_ENTRIES (2) 1099 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT) 1100 static int 1101 i830_emit_bb_start(struct i915_request *rq, 1102 u64 offset, u32 len, 1103 unsigned int dispatch_flags) 1104 { 1105 u32 *cs, cs_offset = 1106 intel_gt_scratch_offset(rq->engine->gt, 1107 INTEL_GT_SCRATCH_FIELD_DEFAULT); 1108 1109 GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE); 1110 1111 cs = intel_ring_begin(rq, 6); 1112 if (IS_ERR(cs)) 1113 return PTR_ERR(cs); 1114 1115 /* Evict the invalid PTE TLBs */ 1116 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA; 1117 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096; 1118 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */ 1119 *cs++ = cs_offset; 1120 *cs++ = 0xdeadbeef; 1121 *cs++ = MI_NOOP; 1122 intel_ring_advance(rq, cs); 1123 1124 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) { 1125 if (len > I830_BATCH_LIMIT) 1126 return -ENOSPC; 1127 1128 cs = intel_ring_begin(rq, 6 + 2); 1129 if (IS_ERR(cs)) 1130 return PTR_ERR(cs); 1131 1132 /* Blit the batch (which has now all relocs applied) to the 1133 * stable batch scratch bo area (so that the CS never 1134 * stumbles over its tlb invalidation bug) ... 1135 */ 1136 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); 1137 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096; 1138 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096; 1139 *cs++ = cs_offset; 1140 *cs++ = 4096; 1141 *cs++ = offset; 1142 1143 *cs++ = MI_FLUSH; 1144 *cs++ = MI_NOOP; 1145 intel_ring_advance(rq, cs); 1146 1147 /* ... and execute it. */ 1148 offset = cs_offset; 1149 } 1150 1151 cs = intel_ring_begin(rq, 2); 1152 if (IS_ERR(cs)) 1153 return PTR_ERR(cs); 1154 1155 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; 1156 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : 1157 MI_BATCH_NON_SECURE); 1158 intel_ring_advance(rq, cs); 1159 1160 return 0; 1161 } 1162 1163 static int 1164 i915_emit_bb_start(struct i915_request *rq, 1165 u64 offset, u32 len, 1166 unsigned int dispatch_flags) 1167 { 1168 u32 *cs; 1169 1170 cs = intel_ring_begin(rq, 2); 1171 if (IS_ERR(cs)) 1172 return PTR_ERR(cs); 1173 1174 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; 1175 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : 1176 MI_BATCH_NON_SECURE); 1177 intel_ring_advance(rq, cs); 1178 1179 return 0; 1180 } 1181 1182 static void __ring_context_fini(struct intel_context *ce) 1183 { 1184 i915_vma_put(ce->state); 1185 } 1186 1187 static void ring_context_destroy(struct kref *ref) 1188 { 1189 struct intel_context *ce = container_of(ref, typeof(*ce), ref); 1190 1191 GEM_BUG_ON(intel_context_is_pinned(ce)); 1192 1193 if (ce->state) 1194 __ring_context_fini(ce); 1195 1196 intel_context_fini(ce); 1197 intel_context_free(ce); 1198 } 1199 1200 static struct i915_address_space *vm_alias(struct intel_context *ce) 1201 { 1202 struct i915_address_space *vm; 1203 1204 vm = ce->vm; 1205 if (i915_is_ggtt(vm)) 1206 vm = &i915_vm_to_ggtt(vm)->alias->vm; 1207 1208 return vm; 1209 } 1210 1211 static int __context_pin_ppgtt(struct intel_context *ce) 1212 { 1213 struct i915_address_space *vm; 1214 int err = 0; 1215 1216 vm = vm_alias(ce); 1217 if (vm) 1218 err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm))); 1219 1220 return err; 1221 } 1222 1223 static void __context_unpin_ppgtt(struct intel_context *ce) 1224 { 1225 struct i915_address_space *vm; 1226 1227 vm = vm_alias(ce); 1228 if (vm) 1229 gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm)); 1230 } 1231 1232 static void ring_context_unpin(struct intel_context *ce) 1233 { 1234 __context_unpin_ppgtt(ce); 1235 } 1236 1237 static struct i915_vma * 1238 alloc_context_vma(struct intel_engine_cs *engine) 1239 { 1240 struct drm_i915_private *i915 = engine->i915; 1241 struct drm_i915_gem_object *obj; 1242 struct i915_vma *vma; 1243 int err; 1244 1245 obj = i915_gem_object_create_shmem(i915, engine->context_size); 1246 if (IS_ERR(obj)) 1247 return ERR_CAST(obj); 1248 1249 /* 1250 * Try to make the context utilize L3 as well as LLC. 1251 * 1252 * On VLV we don't have L3 controls in the PTEs so we 1253 * shouldn't touch the cache level, especially as that 1254 * would make the object snooped which might have a 1255 * negative performance impact. 1256 * 1257 * Snooping is required on non-llc platforms in execlist 1258 * mode, but since all GGTT accesses use PAT entry 0 we 1259 * get snooping anyway regardless of cache_level. 1260 * 1261 * This is only applicable for Ivy Bridge devices since 1262 * later platforms don't have L3 control bits in the PTE. 1263 */ 1264 if (IS_IVYBRIDGE(i915)) 1265 i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC); 1266 1267 if (engine->default_state) { 1268 void *defaults, *vaddr; 1269 1270 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 1271 if (IS_ERR(vaddr)) { 1272 err = PTR_ERR(vaddr); 1273 goto err_obj; 1274 } 1275 1276 defaults = i915_gem_object_pin_map(engine->default_state, 1277 I915_MAP_WB); 1278 if (IS_ERR(defaults)) { 1279 err = PTR_ERR(defaults); 1280 goto err_map; 1281 } 1282 1283 memcpy(vaddr, defaults, engine->context_size); 1284 i915_gem_object_unpin_map(engine->default_state); 1285 1286 i915_gem_object_flush_map(obj); 1287 i915_gem_object_unpin_map(obj); 1288 } 1289 1290 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1291 if (IS_ERR(vma)) { 1292 err = PTR_ERR(vma); 1293 goto err_obj; 1294 } 1295 1296 return vma; 1297 1298 err_map: 1299 i915_gem_object_unpin_map(obj); 1300 err_obj: 1301 i915_gem_object_put(obj); 1302 return ERR_PTR(err); 1303 } 1304 1305 static int ring_context_alloc(struct intel_context *ce) 1306 { 1307 struct intel_engine_cs *engine = ce->engine; 1308 1309 /* One ringbuffer to rule them all */ 1310 GEM_BUG_ON(!engine->legacy.ring); 1311 ce->ring = engine->legacy.ring; 1312 ce->timeline = intel_timeline_get(engine->legacy.timeline); 1313 1314 GEM_BUG_ON(ce->state); 1315 if (engine->context_size) { 1316 struct i915_vma *vma; 1317 1318 vma = alloc_context_vma(engine); 1319 if (IS_ERR(vma)) 1320 return PTR_ERR(vma); 1321 1322 ce->state = vma; 1323 if (engine->default_state) 1324 __set_bit(CONTEXT_VALID_BIT, &ce->flags); 1325 } 1326 1327 return 0; 1328 } 1329 1330 static int ring_context_pin(struct intel_context *ce) 1331 { 1332 return __context_pin_ppgtt(ce); 1333 } 1334 1335 static void ring_context_reset(struct intel_context *ce) 1336 { 1337 intel_ring_reset(ce->ring, ce->ring->emit); 1338 } 1339 1340 static const struct intel_context_ops ring_context_ops = { 1341 .alloc = ring_context_alloc, 1342 1343 .pin = ring_context_pin, 1344 .unpin = ring_context_unpin, 1345 1346 .enter = intel_context_enter_engine, 1347 .exit = intel_context_exit_engine, 1348 1349 .reset = ring_context_reset, 1350 .destroy = ring_context_destroy, 1351 }; 1352 1353 static int load_pd_dir(struct i915_request *rq, 1354 const struct i915_ppgtt *ppgtt, 1355 u32 valid) 1356 { 1357 const struct intel_engine_cs * const engine = rq->engine; 1358 u32 *cs; 1359 1360 cs = intel_ring_begin(rq, 12); 1361 if (IS_ERR(cs)) 1362 return PTR_ERR(cs); 1363 1364 *cs++ = MI_LOAD_REGISTER_IMM(1); 1365 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base)); 1366 *cs++ = valid; 1367 1368 *cs++ = MI_LOAD_REGISTER_IMM(1); 1369 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base)); 1370 *cs++ = px_base(ppgtt->pd)->ggtt_offset << 10; 1371 1372 /* Stall until the page table load is complete? */ 1373 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1374 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base)); 1375 *cs++ = intel_gt_scratch_offset(engine->gt, 1376 INTEL_GT_SCRATCH_FIELD_DEFAULT); 1377 1378 *cs++ = MI_LOAD_REGISTER_IMM(1); 1379 *cs++ = i915_mmio_reg_offset(RING_INSTPM(engine->mmio_base)); 1380 *cs++ = _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE); 1381 1382 intel_ring_advance(rq, cs); 1383 1384 return rq->engine->emit_flush(rq, EMIT_FLUSH); 1385 } 1386 1387 static inline int mi_set_context(struct i915_request *rq, u32 flags) 1388 { 1389 struct drm_i915_private *i915 = rq->i915; 1390 struct intel_engine_cs *engine = rq->engine; 1391 enum intel_engine_id id; 1392 const int num_engines = 1393 IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0; 1394 bool force_restore = false; 1395 int len; 1396 u32 *cs; 1397 1398 len = 4; 1399 if (IS_GEN(i915, 7)) 1400 len += 2 + (num_engines ? 4 * num_engines + 6 : 0); 1401 else if (IS_GEN(i915, 5)) 1402 len += 2; 1403 if (flags & MI_FORCE_RESTORE) { 1404 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT); 1405 flags &= ~MI_FORCE_RESTORE; 1406 force_restore = true; 1407 len += 2; 1408 } 1409 1410 cs = intel_ring_begin(rq, len); 1411 if (IS_ERR(cs)) 1412 return PTR_ERR(cs); 1413 1414 /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */ 1415 if (IS_GEN(i915, 7)) { 1416 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1417 if (num_engines) { 1418 struct intel_engine_cs *signaller; 1419 1420 *cs++ = MI_LOAD_REGISTER_IMM(num_engines); 1421 for_each_engine(signaller, engine->gt, id) { 1422 if (signaller == engine) 1423 continue; 1424 1425 *cs++ = i915_mmio_reg_offset( 1426 RING_PSMI_CTL(signaller->mmio_base)); 1427 *cs++ = _MASKED_BIT_ENABLE( 1428 GEN6_PSMI_SLEEP_MSG_DISABLE); 1429 } 1430 } 1431 } else if (IS_GEN(i915, 5)) { 1432 /* 1433 * This w/a is only listed for pre-production ilk a/b steppings, 1434 * but is also mentioned for programming the powerctx. To be 1435 * safe, just apply the workaround; we do not use SyncFlush so 1436 * this should never take effect and so be a no-op! 1437 */ 1438 *cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN; 1439 } 1440 1441 if (force_restore) { 1442 /* 1443 * The HW doesn't handle being told to restore the current 1444 * context very well. Quite often it likes goes to go off and 1445 * sulk, especially when it is meant to be reloading PP_DIR. 1446 * A very simple fix to force the reload is to simply switch 1447 * away from the current context and back again. 1448 * 1449 * Note that the kernel_context will contain random state 1450 * following the INHIBIT_RESTORE. We accept this since we 1451 * never use the kernel_context state; it is merely a 1452 * placeholder we use to flush other contexts. 1453 */ 1454 *cs++ = MI_SET_CONTEXT; 1455 *cs++ = i915_ggtt_offset(engine->kernel_context->state) | 1456 MI_MM_SPACE_GTT | 1457 MI_RESTORE_INHIBIT; 1458 } 1459 1460 *cs++ = MI_NOOP; 1461 *cs++ = MI_SET_CONTEXT; 1462 *cs++ = i915_ggtt_offset(rq->context->state) | flags; 1463 /* 1464 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP 1465 * WaMiSetContext_Hang:snb,ivb,vlv 1466 */ 1467 *cs++ = MI_NOOP; 1468 1469 if (IS_GEN(i915, 7)) { 1470 if (num_engines) { 1471 struct intel_engine_cs *signaller; 1472 i915_reg_t last_reg = {}; /* keep gcc quiet */ 1473 1474 *cs++ = MI_LOAD_REGISTER_IMM(num_engines); 1475 for_each_engine(signaller, engine->gt, id) { 1476 if (signaller == engine) 1477 continue; 1478 1479 last_reg = RING_PSMI_CTL(signaller->mmio_base); 1480 *cs++ = i915_mmio_reg_offset(last_reg); 1481 *cs++ = _MASKED_BIT_DISABLE( 1482 GEN6_PSMI_SLEEP_MSG_DISABLE); 1483 } 1484 1485 /* Insert a delay before the next switch! */ 1486 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1487 *cs++ = i915_mmio_reg_offset(last_reg); 1488 *cs++ = intel_gt_scratch_offset(engine->gt, 1489 INTEL_GT_SCRATCH_FIELD_DEFAULT); 1490 *cs++ = MI_NOOP; 1491 } 1492 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1493 } else if (IS_GEN(i915, 5)) { 1494 *cs++ = MI_SUSPEND_FLUSH; 1495 } 1496 1497 intel_ring_advance(rq, cs); 1498 1499 return 0; 1500 } 1501 1502 static int remap_l3_slice(struct i915_request *rq, int slice) 1503 { 1504 u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice]; 1505 int i; 1506 1507 if (!remap_info) 1508 return 0; 1509 1510 cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2); 1511 if (IS_ERR(cs)) 1512 return PTR_ERR(cs); 1513 1514 /* 1515 * Note: We do not worry about the concurrent register cacheline hang 1516 * here because no other code should access these registers other than 1517 * at initialization time. 1518 */ 1519 *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4); 1520 for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) { 1521 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i)); 1522 *cs++ = remap_info[i]; 1523 } 1524 *cs++ = MI_NOOP; 1525 intel_ring_advance(rq, cs); 1526 1527 return 0; 1528 } 1529 1530 static int remap_l3(struct i915_request *rq) 1531 { 1532 struct i915_gem_context *ctx = i915_request_gem_context(rq); 1533 int i, err; 1534 1535 if (!ctx || !ctx->remap_slice) 1536 return 0; 1537 1538 for (i = 0; i < MAX_L3_SLICES; i++) { 1539 if (!(ctx->remap_slice & BIT(i))) 1540 continue; 1541 1542 err = remap_l3_slice(rq, i); 1543 if (err) 1544 return err; 1545 } 1546 1547 ctx->remap_slice = 0; 1548 return 0; 1549 } 1550 1551 static int switch_mm(struct i915_request *rq, struct i915_address_space *vm) 1552 { 1553 int ret; 1554 1555 if (!vm) 1556 return 0; 1557 1558 ret = rq->engine->emit_flush(rq, EMIT_FLUSH); 1559 if (ret) 1560 return ret; 1561 1562 /* 1563 * Not only do we need a full barrier (post-sync write) after 1564 * invalidating the TLBs, but we need to wait a little bit 1565 * longer. Whether this is merely delaying us, or the 1566 * subsequent flush is a key part of serialising with the 1567 * post-sync op, this extra pass appears vital before a 1568 * mm switch! 1569 */ 1570 ret = load_pd_dir(rq, i915_vm_to_ppgtt(vm), PP_DIR_DCLV_2G); 1571 if (ret) 1572 return ret; 1573 1574 return rq->engine->emit_flush(rq, EMIT_INVALIDATE); 1575 } 1576 1577 static int switch_context(struct i915_request *rq) 1578 { 1579 struct intel_context *ce = rq->context; 1580 int ret; 1581 1582 GEM_BUG_ON(HAS_EXECLISTS(rq->i915)); 1583 1584 ret = switch_mm(rq, vm_alias(ce)); 1585 if (ret) 1586 return ret; 1587 1588 if (ce->state) { 1589 u32 flags; 1590 1591 GEM_BUG_ON(rq->engine->id != RCS0); 1592 1593 /* For resource streamer on HSW+ and power context elsewhere */ 1594 BUILD_BUG_ON(HSW_MI_RS_SAVE_STATE_EN != MI_SAVE_EXT_STATE_EN); 1595 BUILD_BUG_ON(HSW_MI_RS_RESTORE_STATE_EN != MI_RESTORE_EXT_STATE_EN); 1596 1597 flags = MI_SAVE_EXT_STATE_EN | MI_MM_SPACE_GTT; 1598 if (test_bit(CONTEXT_VALID_BIT, &ce->flags)) 1599 flags |= MI_RESTORE_EXT_STATE_EN; 1600 else 1601 flags |= MI_RESTORE_INHIBIT; 1602 1603 ret = mi_set_context(rq, flags); 1604 if (ret) 1605 return ret; 1606 } 1607 1608 ret = remap_l3(rq); 1609 if (ret) 1610 return ret; 1611 1612 return 0; 1613 } 1614 1615 static int ring_request_alloc(struct i915_request *request) 1616 { 1617 int ret; 1618 1619 GEM_BUG_ON(!intel_context_is_pinned(request->context)); 1620 GEM_BUG_ON(i915_request_timeline(request)->has_initial_breadcrumb); 1621 1622 /* 1623 * Flush enough space to reduce the likelihood of waiting after 1624 * we start building the request - in which case we will just 1625 * have to repeat work. 1626 */ 1627 request->reserved_space += LEGACY_REQUEST_SIZE; 1628 1629 /* Unconditionally invalidate GPU caches and TLBs. */ 1630 ret = request->engine->emit_flush(request, EMIT_INVALIDATE); 1631 if (ret) 1632 return ret; 1633 1634 ret = switch_context(request); 1635 if (ret) 1636 return ret; 1637 1638 request->reserved_space -= LEGACY_REQUEST_SIZE; 1639 return 0; 1640 } 1641 1642 static void gen6_bsd_submit_request(struct i915_request *request) 1643 { 1644 struct intel_uncore *uncore = request->engine->uncore; 1645 1646 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 1647 1648 /* Every tail move must follow the sequence below */ 1649 1650 /* Disable notification that the ring is IDLE. The GT 1651 * will then assume that it is busy and bring it out of rc6. 1652 */ 1653 intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL, 1654 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); 1655 1656 /* Clear the context id. Here be magic! */ 1657 intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0); 1658 1659 /* Wait for the ring not to be idle, i.e. for it to wake up. */ 1660 if (__intel_wait_for_register_fw(uncore, 1661 GEN6_BSD_SLEEP_PSMI_CONTROL, 1662 GEN6_BSD_SLEEP_INDICATOR, 1663 0, 1664 1000, 0, NULL)) 1665 DRM_ERROR("timed out waiting for the BSD ring to wake up\n"); 1666 1667 /* Now that the ring is fully powered up, update the tail */ 1668 i9xx_submit_request(request); 1669 1670 /* Let the ring send IDLE messages to the GT again, 1671 * and so let it sleep to conserve power when idle. 1672 */ 1673 intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL, 1674 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); 1675 1676 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 1677 } 1678 1679 static int mi_flush_dw(struct i915_request *rq, u32 flags) 1680 { 1681 u32 cmd, *cs; 1682 1683 cs = intel_ring_begin(rq, 4); 1684 if (IS_ERR(cs)) 1685 return PTR_ERR(cs); 1686 1687 cmd = MI_FLUSH_DW; 1688 1689 /* 1690 * We always require a command barrier so that subsequent 1691 * commands, such as breadcrumb interrupts, are strictly ordered 1692 * wrt the contents of the write cache being flushed to memory 1693 * (and thus being coherent from the CPU). 1694 */ 1695 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 1696 1697 /* 1698 * Bspec vol 1c.3 - blitter engine command streamer: 1699 * "If ENABLED, all TLBs will be invalidated once the flush 1700 * operation is complete. This bit is only valid when the 1701 * Post-Sync Operation field is a value of 1h or 3h." 1702 */ 1703 cmd |= flags; 1704 1705 *cs++ = cmd; 1706 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT; 1707 *cs++ = 0; 1708 *cs++ = MI_NOOP; 1709 1710 intel_ring_advance(rq, cs); 1711 1712 return 0; 1713 } 1714 1715 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags) 1716 { 1717 return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0); 1718 } 1719 1720 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode) 1721 { 1722 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD); 1723 } 1724 1725 static int 1726 hsw_emit_bb_start(struct i915_request *rq, 1727 u64 offset, u32 len, 1728 unsigned int dispatch_flags) 1729 { 1730 u32 *cs; 1731 1732 cs = intel_ring_begin(rq, 2); 1733 if (IS_ERR(cs)) 1734 return PTR_ERR(cs); 1735 1736 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ? 1737 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW); 1738 /* bit0-7 is the length on GEN6+ */ 1739 *cs++ = offset; 1740 intel_ring_advance(rq, cs); 1741 1742 return 0; 1743 } 1744 1745 static int 1746 gen6_emit_bb_start(struct i915_request *rq, 1747 u64 offset, u32 len, 1748 unsigned int dispatch_flags) 1749 { 1750 u32 *cs; 1751 1752 cs = intel_ring_begin(rq, 2); 1753 if (IS_ERR(cs)) 1754 return PTR_ERR(cs); 1755 1756 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ? 1757 0 : MI_BATCH_NON_SECURE_I965); 1758 /* bit0-7 is the length on GEN6+ */ 1759 *cs++ = offset; 1760 intel_ring_advance(rq, cs); 1761 1762 return 0; 1763 } 1764 1765 /* Blitter support (SandyBridge+) */ 1766 1767 static int gen6_ring_flush(struct i915_request *rq, u32 mode) 1768 { 1769 return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB); 1770 } 1771 1772 static void i9xx_set_default_submission(struct intel_engine_cs *engine) 1773 { 1774 engine->submit_request = i9xx_submit_request; 1775 1776 engine->park = NULL; 1777 engine->unpark = NULL; 1778 } 1779 1780 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine) 1781 { 1782 i9xx_set_default_submission(engine); 1783 engine->submit_request = gen6_bsd_submit_request; 1784 } 1785 1786 static void ring_release(struct intel_engine_cs *engine) 1787 { 1788 struct drm_i915_private *dev_priv = engine->i915; 1789 1790 WARN_ON(INTEL_GEN(dev_priv) > 2 && 1791 (ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0); 1792 1793 intel_engine_cleanup_common(engine); 1794 1795 intel_ring_unpin(engine->legacy.ring); 1796 intel_ring_put(engine->legacy.ring); 1797 1798 intel_timeline_unpin(engine->legacy.timeline); 1799 intel_timeline_put(engine->legacy.timeline); 1800 } 1801 1802 static void setup_irq(struct intel_engine_cs *engine) 1803 { 1804 struct drm_i915_private *i915 = engine->i915; 1805 1806 if (INTEL_GEN(i915) >= 6) { 1807 engine->irq_enable = gen6_irq_enable; 1808 engine->irq_disable = gen6_irq_disable; 1809 } else if (INTEL_GEN(i915) >= 5) { 1810 engine->irq_enable = gen5_irq_enable; 1811 engine->irq_disable = gen5_irq_disable; 1812 } else if (INTEL_GEN(i915) >= 3) { 1813 engine->irq_enable = i9xx_irq_enable; 1814 engine->irq_disable = i9xx_irq_disable; 1815 } else { 1816 engine->irq_enable = i8xx_irq_enable; 1817 engine->irq_disable = i8xx_irq_disable; 1818 } 1819 } 1820 1821 static void setup_common(struct intel_engine_cs *engine) 1822 { 1823 struct drm_i915_private *i915 = engine->i915; 1824 1825 /* gen8+ are only supported with execlists */ 1826 GEM_BUG_ON(INTEL_GEN(i915) >= 8); 1827 1828 setup_irq(engine); 1829 1830 engine->resume = xcs_resume; 1831 engine->reset.prepare = reset_prepare; 1832 engine->reset.rewind = reset_rewind; 1833 engine->reset.cancel = reset_cancel; 1834 engine->reset.finish = reset_finish; 1835 1836 engine->cops = &ring_context_ops; 1837 engine->request_alloc = ring_request_alloc; 1838 1839 /* 1840 * Using a global execution timeline; the previous final breadcrumb is 1841 * equivalent to our next initial bread so we can elide 1842 * engine->emit_init_breadcrumb(). 1843 */ 1844 engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb; 1845 if (IS_GEN(i915, 5)) 1846 engine->emit_fini_breadcrumb = gen5_emit_breadcrumb; 1847 1848 engine->set_default_submission = i9xx_set_default_submission; 1849 1850 if (INTEL_GEN(i915) >= 6) 1851 engine->emit_bb_start = gen6_emit_bb_start; 1852 else if (INTEL_GEN(i915) >= 4) 1853 engine->emit_bb_start = i965_emit_bb_start; 1854 else if (IS_I830(i915) || IS_I845G(i915)) 1855 engine->emit_bb_start = i830_emit_bb_start; 1856 else 1857 engine->emit_bb_start = i915_emit_bb_start; 1858 } 1859 1860 static void setup_rcs(struct intel_engine_cs *engine) 1861 { 1862 struct drm_i915_private *i915 = engine->i915; 1863 1864 if (HAS_L3_DPF(i915)) 1865 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT; 1866 1867 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT; 1868 1869 if (INTEL_GEN(i915) >= 7) { 1870 engine->emit_flush = gen7_render_ring_flush; 1871 engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb; 1872 } else if (IS_GEN(i915, 6)) { 1873 engine->emit_flush = gen6_render_ring_flush; 1874 engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb; 1875 } else if (IS_GEN(i915, 5)) { 1876 engine->emit_flush = gen4_render_ring_flush; 1877 } else { 1878 if (INTEL_GEN(i915) < 4) 1879 engine->emit_flush = gen2_render_ring_flush; 1880 else 1881 engine->emit_flush = gen4_render_ring_flush; 1882 engine->irq_enable_mask = I915_USER_INTERRUPT; 1883 } 1884 1885 if (IS_HASWELL(i915)) 1886 engine->emit_bb_start = hsw_emit_bb_start; 1887 1888 engine->resume = rcs_resume; 1889 } 1890 1891 static void setup_vcs(struct intel_engine_cs *engine) 1892 { 1893 struct drm_i915_private *i915 = engine->i915; 1894 1895 if (INTEL_GEN(i915) >= 6) { 1896 /* gen6 bsd needs a special wa for tail updates */ 1897 if (IS_GEN(i915, 6)) 1898 engine->set_default_submission = gen6_bsd_set_default_submission; 1899 engine->emit_flush = gen6_bsd_ring_flush; 1900 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT; 1901 1902 if (IS_GEN(i915, 6)) 1903 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb; 1904 else 1905 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; 1906 } else { 1907 engine->emit_flush = bsd_ring_flush; 1908 if (IS_GEN(i915, 5)) 1909 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT; 1910 else 1911 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT; 1912 } 1913 } 1914 1915 static void setup_bcs(struct intel_engine_cs *engine) 1916 { 1917 struct drm_i915_private *i915 = engine->i915; 1918 1919 engine->emit_flush = gen6_ring_flush; 1920 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT; 1921 1922 if (IS_GEN(i915, 6)) 1923 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb; 1924 else 1925 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; 1926 } 1927 1928 static void setup_vecs(struct intel_engine_cs *engine) 1929 { 1930 struct drm_i915_private *i915 = engine->i915; 1931 1932 GEM_BUG_ON(INTEL_GEN(i915) < 7); 1933 1934 engine->emit_flush = gen6_ring_flush; 1935 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT; 1936 engine->irq_enable = hsw_vebox_irq_enable; 1937 engine->irq_disable = hsw_vebox_irq_disable; 1938 1939 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; 1940 } 1941 1942 int intel_ring_submission_setup(struct intel_engine_cs *engine) 1943 { 1944 struct intel_timeline *timeline; 1945 struct intel_ring *ring; 1946 int err; 1947 1948 setup_common(engine); 1949 1950 switch (engine->class) { 1951 case RENDER_CLASS: 1952 setup_rcs(engine); 1953 break; 1954 case VIDEO_DECODE_CLASS: 1955 setup_vcs(engine); 1956 break; 1957 case COPY_ENGINE_CLASS: 1958 setup_bcs(engine); 1959 break; 1960 case VIDEO_ENHANCEMENT_CLASS: 1961 setup_vecs(engine); 1962 break; 1963 default: 1964 MISSING_CASE(engine->class); 1965 return -ENODEV; 1966 } 1967 1968 timeline = intel_timeline_create(engine->gt, engine->status_page.vma); 1969 if (IS_ERR(timeline)) { 1970 err = PTR_ERR(timeline); 1971 goto err; 1972 } 1973 GEM_BUG_ON(timeline->has_initial_breadcrumb); 1974 1975 err = intel_timeline_pin(timeline); 1976 if (err) 1977 goto err_timeline; 1978 1979 ring = intel_engine_create_ring(engine, SZ_16K); 1980 if (IS_ERR(ring)) { 1981 err = PTR_ERR(ring); 1982 goto err_timeline_unpin; 1983 } 1984 1985 err = intel_ring_pin(ring); 1986 if (err) 1987 goto err_ring; 1988 1989 GEM_BUG_ON(engine->legacy.ring); 1990 engine->legacy.ring = ring; 1991 engine->legacy.timeline = timeline; 1992 1993 GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma); 1994 1995 /* Finally, take ownership and responsibility for cleanup! */ 1996 engine->release = ring_release; 1997 1998 return 0; 1999 2000 err_ring: 2001 intel_ring_put(ring); 2002 err_timeline_unpin: 2003 intel_timeline_unpin(timeline); 2004 err_timeline: 2005 intel_timeline_put(timeline); 2006 err: 2007 intel_engine_cleanup_common(engine); 2008 return err; 2009 } 2010