1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 
32 #include <drm/i915_drm.h>
33 
34 #include "gem/i915_gem_context.h"
35 
36 #include "gen6_ppgtt.h"
37 #include "i915_drv.h"
38 #include "i915_trace.h"
39 #include "intel_context.h"
40 #include "intel_gt.h"
41 #include "intel_gt_irq.h"
42 #include "intel_gt_pm_irq.h"
43 #include "intel_reset.h"
44 #include "intel_ring.h"
45 #include "intel_workarounds.h"
46 
47 /* Rough estimate of the typical request size, performing a flush,
48  * set-context and then emitting the batch.
49  */
50 #define LEGACY_REQUEST_SIZE 200
51 
52 static int
53 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
54 {
55 	unsigned int num_store_dw;
56 	u32 cmd, *cs;
57 
58 	cmd = MI_FLUSH;
59 	num_store_dw = 0;
60 	if (mode & EMIT_INVALIDATE)
61 		cmd |= MI_READ_FLUSH;
62 	if (mode & EMIT_FLUSH)
63 		num_store_dw = 4;
64 
65 	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
66 	if (IS_ERR(cs))
67 		return PTR_ERR(cs);
68 
69 	*cs++ = cmd;
70 	while (num_store_dw--) {
71 		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
72 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
73 						INTEL_GT_SCRATCH_FIELD_DEFAULT);
74 		*cs++ = 0;
75 	}
76 	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
77 
78 	intel_ring_advance(rq, cs);
79 
80 	return 0;
81 }
82 
83 static int
84 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
85 {
86 	u32 cmd, *cs;
87 	int i;
88 
89 	/*
90 	 * read/write caches:
91 	 *
92 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94 	 * also flushed at 2d versus 3d pipeline switches.
95 	 *
96 	 * read-only caches:
97 	 *
98 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 	 * MI_READ_FLUSH is set, and is always flushed on 965.
100 	 *
101 	 * I915_GEM_DOMAIN_COMMAND may not exist?
102 	 *
103 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 	 * invalidated when MI_EXE_FLUSH is set.
105 	 *
106 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 	 * invalidated with every MI_FLUSH.
108 	 *
109 	 * TLBs:
110 	 *
111 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 	 * are flushed at any MI_FLUSH.
115 	 */
116 
117 	cmd = MI_FLUSH;
118 	if (mode & EMIT_INVALIDATE) {
119 		cmd |= MI_EXE_FLUSH;
120 		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
121 			cmd |= MI_INVALIDATE_ISP;
122 	}
123 
124 	i = 2;
125 	if (mode & EMIT_INVALIDATE)
126 		i += 20;
127 
128 	cs = intel_ring_begin(rq, i);
129 	if (IS_ERR(cs))
130 		return PTR_ERR(cs);
131 
132 	*cs++ = cmd;
133 
134 	/*
135 	 * A random delay to let the CS invalidate take effect? Without this
136 	 * delay, the GPU relocation path fails as the CS does not see
137 	 * the updated contents. Just as important, if we apply the flushes
138 	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
139 	 * write and before the invalidate on the next batch), the relocations
140 	 * still fail. This implies that is a delay following invalidation
141 	 * that is required to reset the caches as opposed to a delay to
142 	 * ensure the memory is written.
143 	 */
144 	if (mode & EMIT_INVALIDATE) {
145 		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
146 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
147 						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
148 			PIPE_CONTROL_GLOBAL_GTT;
149 		*cs++ = 0;
150 		*cs++ = 0;
151 
152 		for (i = 0; i < 12; i++)
153 			*cs++ = MI_FLUSH;
154 
155 		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
156 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
157 						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
158 			PIPE_CONTROL_GLOBAL_GTT;
159 		*cs++ = 0;
160 		*cs++ = 0;
161 	}
162 
163 	*cs++ = cmd;
164 
165 	intel_ring_advance(rq, cs);
166 
167 	return 0;
168 }
169 
170 /*
171  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
172  * implementing two workarounds on gen6.  From section 1.4.7.1
173  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
174  *
175  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
176  * produced by non-pipelined state commands), software needs to first
177  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
178  * 0.
179  *
180  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
181  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
182  *
183  * And the workaround for these two requires this workaround first:
184  *
185  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
186  * BEFORE the pipe-control with a post-sync op and no write-cache
187  * flushes.
188  *
189  * And this last workaround is tricky because of the requirements on
190  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
191  * volume 2 part 1:
192  *
193  *     "1 of the following must also be set:
194  *      - Render Target Cache Flush Enable ([12] of DW1)
195  *      - Depth Cache Flush Enable ([0] of DW1)
196  *      - Stall at Pixel Scoreboard ([1] of DW1)
197  *      - Depth Stall ([13] of DW1)
198  *      - Post-Sync Operation ([13] of DW1)
199  *      - Notify Enable ([8] of DW1)"
200  *
201  * The cache flushes require the workaround flush that triggered this
202  * one, so we can't use it.  Depth stall would trigger the same.
203  * Post-sync nonzero is what triggered this second workaround, so we
204  * can't use that one either.  Notify enable is IRQs, which aren't
205  * really our business.  That leaves only stall at scoreboard.
206  */
207 static int
208 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
209 {
210 	u32 scratch_addr =
211 		intel_gt_scratch_offset(rq->engine->gt,
212 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
213 	u32 *cs;
214 
215 	cs = intel_ring_begin(rq, 6);
216 	if (IS_ERR(cs))
217 		return PTR_ERR(cs);
218 
219 	*cs++ = GFX_OP_PIPE_CONTROL(5);
220 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
221 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
222 	*cs++ = 0; /* low dword */
223 	*cs++ = 0; /* high dword */
224 	*cs++ = MI_NOOP;
225 	intel_ring_advance(rq, cs);
226 
227 	cs = intel_ring_begin(rq, 6);
228 	if (IS_ERR(cs))
229 		return PTR_ERR(cs);
230 
231 	*cs++ = GFX_OP_PIPE_CONTROL(5);
232 	*cs++ = PIPE_CONTROL_QW_WRITE;
233 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
234 	*cs++ = 0;
235 	*cs++ = 0;
236 	*cs++ = MI_NOOP;
237 	intel_ring_advance(rq, cs);
238 
239 	return 0;
240 }
241 
242 static int
243 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
244 {
245 	u32 scratch_addr =
246 		intel_gt_scratch_offset(rq->engine->gt,
247 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
248 	u32 *cs, flags = 0;
249 	int ret;
250 
251 	/* Force SNB workarounds for PIPE_CONTROL flushes */
252 	ret = gen6_emit_post_sync_nonzero_flush(rq);
253 	if (ret)
254 		return ret;
255 
256 	/* Just flush everything.  Experiments have shown that reducing the
257 	 * number of bits based on the write domains has little performance
258 	 * impact.
259 	 */
260 	if (mode & EMIT_FLUSH) {
261 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
262 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
263 		/*
264 		 * Ensure that any following seqno writes only happen
265 		 * when the render cache is indeed flushed.
266 		 */
267 		flags |= PIPE_CONTROL_CS_STALL;
268 	}
269 	if (mode & EMIT_INVALIDATE) {
270 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
271 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
272 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
273 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
274 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
275 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
276 		/*
277 		 * TLB invalidate requires a post-sync write.
278 		 */
279 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
280 	}
281 
282 	cs = intel_ring_begin(rq, 4);
283 	if (IS_ERR(cs))
284 		return PTR_ERR(cs);
285 
286 	*cs++ = GFX_OP_PIPE_CONTROL(4);
287 	*cs++ = flags;
288 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
289 	*cs++ = 0;
290 	intel_ring_advance(rq, cs);
291 
292 	return 0;
293 }
294 
295 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
296 {
297 	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
298 	*cs++ = GFX_OP_PIPE_CONTROL(4);
299 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
300 	*cs++ = 0;
301 	*cs++ = 0;
302 
303 	*cs++ = GFX_OP_PIPE_CONTROL(4);
304 	*cs++ = PIPE_CONTROL_QW_WRITE;
305 	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
306 					INTEL_GT_SCRATCH_FIELD_DEFAULT) |
307 		PIPE_CONTROL_GLOBAL_GTT;
308 	*cs++ = 0;
309 
310 	/* Finally we can flush and with it emit the breadcrumb */
311 	*cs++ = GFX_OP_PIPE_CONTROL(4);
312 	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
313 		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
314 		 PIPE_CONTROL_DC_FLUSH_ENABLE |
315 		 PIPE_CONTROL_QW_WRITE |
316 		 PIPE_CONTROL_CS_STALL);
317 	*cs++ = i915_request_active_timeline(rq)->hwsp_offset |
318 		PIPE_CONTROL_GLOBAL_GTT;
319 	*cs++ = rq->fence.seqno;
320 
321 	*cs++ = MI_USER_INTERRUPT;
322 	*cs++ = MI_NOOP;
323 
324 	rq->tail = intel_ring_offset(rq, cs);
325 	assert_ring_tail_valid(rq->ring, rq->tail);
326 
327 	return cs;
328 }
329 
330 static int
331 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
332 {
333 	u32 *cs;
334 
335 	cs = intel_ring_begin(rq, 4);
336 	if (IS_ERR(cs))
337 		return PTR_ERR(cs);
338 
339 	*cs++ = GFX_OP_PIPE_CONTROL(4);
340 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
341 	*cs++ = 0;
342 	*cs++ = 0;
343 	intel_ring_advance(rq, cs);
344 
345 	return 0;
346 }
347 
348 static int
349 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
350 {
351 	u32 scratch_addr =
352 		intel_gt_scratch_offset(rq->engine->gt,
353 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
354 	u32 *cs, flags = 0;
355 
356 	/*
357 	 * Ensure that any following seqno writes only happen when the render
358 	 * cache is indeed flushed.
359 	 *
360 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
361 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
362 	 * don't try to be clever and just set it unconditionally.
363 	 */
364 	flags |= PIPE_CONTROL_CS_STALL;
365 
366 	/*
367 	 * CS_STALL suggests at least a post-sync write.
368 	 */
369 	flags |= PIPE_CONTROL_QW_WRITE;
370 	flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
371 
372 	/* Just flush everything.  Experiments have shown that reducing the
373 	 * number of bits based on the write domains has little performance
374 	 * impact.
375 	 */
376 	if (mode & EMIT_FLUSH) {
377 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
378 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
379 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
380 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
381 	}
382 	if (mode & EMIT_INVALIDATE) {
383 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
384 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
385 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
386 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
387 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
388 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
389 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
390 
391 		/* Workaround: we must issue a pipe_control with CS-stall bit
392 		 * set before a pipe_control command that has the state cache
393 		 * invalidate bit set. */
394 		gen7_render_ring_cs_stall_wa(rq);
395 	}
396 
397 	cs = intel_ring_begin(rq, 4);
398 	if (IS_ERR(cs))
399 		return PTR_ERR(cs);
400 
401 	*cs++ = GFX_OP_PIPE_CONTROL(4);
402 	*cs++ = flags;
403 	*cs++ = scratch_addr;
404 	*cs++ = 0;
405 	intel_ring_advance(rq, cs);
406 
407 	return 0;
408 }
409 
410 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
411 {
412 	*cs++ = GFX_OP_PIPE_CONTROL(4);
413 	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
414 		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
415 		 PIPE_CONTROL_DC_FLUSH_ENABLE |
416 		 PIPE_CONTROL_FLUSH_ENABLE |
417 		 PIPE_CONTROL_QW_WRITE |
418 		 PIPE_CONTROL_GLOBAL_GTT_IVB |
419 		 PIPE_CONTROL_CS_STALL);
420 	*cs++ = i915_request_active_timeline(rq)->hwsp_offset;
421 	*cs++ = rq->fence.seqno;
422 
423 	*cs++ = MI_USER_INTERRUPT;
424 	*cs++ = MI_NOOP;
425 
426 	rq->tail = intel_ring_offset(rq, cs);
427 	assert_ring_tail_valid(rq->ring, rq->tail);
428 
429 	return cs;
430 }
431 
432 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
433 {
434 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
435 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
436 
437 	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
438 	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
439 	*cs++ = rq->fence.seqno;
440 
441 	*cs++ = MI_USER_INTERRUPT;
442 
443 	rq->tail = intel_ring_offset(rq, cs);
444 	assert_ring_tail_valid(rq->ring, rq->tail);
445 
446 	return cs;
447 }
448 
449 #define GEN7_XCS_WA 32
450 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
451 {
452 	int i;
453 
454 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
455 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
456 
457 	*cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB |
458 		MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
459 	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
460 	*cs++ = rq->fence.seqno;
461 
462 	for (i = 0; i < GEN7_XCS_WA; i++) {
463 		*cs++ = MI_STORE_DWORD_INDEX;
464 		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
465 		*cs++ = rq->fence.seqno;
466 	}
467 
468 	*cs++ = MI_FLUSH_DW;
469 	*cs++ = 0;
470 	*cs++ = 0;
471 
472 	*cs++ = MI_USER_INTERRUPT;
473 	*cs++ = MI_NOOP;
474 
475 	rq->tail = intel_ring_offset(rq, cs);
476 	assert_ring_tail_valid(rq->ring, rq->tail);
477 
478 	return cs;
479 }
480 #undef GEN7_XCS_WA
481 
482 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
483 {
484 	/*
485 	 * Keep the render interrupt unmasked as this papers over
486 	 * lost interrupts following a reset.
487 	 */
488 	if (engine->class == RENDER_CLASS) {
489 		if (INTEL_GEN(engine->i915) >= 6)
490 			mask &= ~BIT(0);
491 		else
492 			mask &= ~I915_USER_INTERRUPT;
493 	}
494 
495 	intel_engine_set_hwsp_writemask(engine, mask);
496 }
497 
498 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
499 {
500 	u32 addr;
501 
502 	addr = lower_32_bits(phys);
503 	if (INTEL_GEN(engine->i915) >= 4)
504 		addr |= (phys >> 28) & 0xf0;
505 
506 	intel_uncore_write(engine->uncore, HWS_PGA, addr);
507 }
508 
509 static struct page *status_page(struct intel_engine_cs *engine)
510 {
511 	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
512 
513 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
514 	return sg_page(obj->mm.pages->sgl);
515 }
516 
517 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
518 {
519 	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
520 	set_hwstam(engine, ~0u);
521 }
522 
523 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
524 {
525 	i915_reg_t hwsp;
526 
527 	/*
528 	 * The ring status page addresses are no longer next to the rest of
529 	 * the ring registers as of gen7.
530 	 */
531 	if (IS_GEN(engine->i915, 7)) {
532 		switch (engine->id) {
533 		/*
534 		 * No more rings exist on Gen7. Default case is only to shut up
535 		 * gcc switch check warning.
536 		 */
537 		default:
538 			GEM_BUG_ON(engine->id);
539 			/* fallthrough */
540 		case RCS0:
541 			hwsp = RENDER_HWS_PGA_GEN7;
542 			break;
543 		case BCS0:
544 			hwsp = BLT_HWS_PGA_GEN7;
545 			break;
546 		case VCS0:
547 			hwsp = BSD_HWS_PGA_GEN7;
548 			break;
549 		case VECS0:
550 			hwsp = VEBOX_HWS_PGA_GEN7;
551 			break;
552 		}
553 	} else if (IS_GEN(engine->i915, 6)) {
554 		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
555 	} else {
556 		hwsp = RING_HWS_PGA(engine->mmio_base);
557 	}
558 
559 	intel_uncore_write(engine->uncore, hwsp, offset);
560 	intel_uncore_posting_read(engine->uncore, hwsp);
561 }
562 
563 static void flush_cs_tlb(struct intel_engine_cs *engine)
564 {
565 	struct drm_i915_private *dev_priv = engine->i915;
566 
567 	if (!IS_GEN_RANGE(dev_priv, 6, 7))
568 		return;
569 
570 	/* ring should be idle before issuing a sync flush*/
571 	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
572 
573 	ENGINE_WRITE(engine, RING_INSTPM,
574 		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
575 					INSTPM_SYNC_FLUSH));
576 	if (intel_wait_for_register(engine->uncore,
577 				    RING_INSTPM(engine->mmio_base),
578 				    INSTPM_SYNC_FLUSH, 0,
579 				    1000))
580 		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
581 			  engine->name);
582 }
583 
584 static void ring_setup_status_page(struct intel_engine_cs *engine)
585 {
586 	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
587 	set_hwstam(engine, ~0u);
588 
589 	flush_cs_tlb(engine);
590 }
591 
592 static bool stop_ring(struct intel_engine_cs *engine)
593 {
594 	struct drm_i915_private *dev_priv = engine->i915;
595 
596 	if (INTEL_GEN(dev_priv) > 2) {
597 		ENGINE_WRITE(engine,
598 			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
599 		if (intel_wait_for_register(engine->uncore,
600 					    RING_MI_MODE(engine->mmio_base),
601 					    MODE_IDLE,
602 					    MODE_IDLE,
603 					    1000)) {
604 			DRM_ERROR("%s : timed out trying to stop ring\n",
605 				  engine->name);
606 
607 			/*
608 			 * Sometimes we observe that the idle flag is not
609 			 * set even though the ring is empty. So double
610 			 * check before giving up.
611 			 */
612 			if (ENGINE_READ(engine, RING_HEAD) !=
613 			    ENGINE_READ(engine, RING_TAIL))
614 				return false;
615 		}
616 	}
617 
618 	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
619 
620 	ENGINE_WRITE(engine, RING_HEAD, 0);
621 	ENGINE_WRITE(engine, RING_TAIL, 0);
622 
623 	/* The ring must be empty before it is disabled */
624 	ENGINE_WRITE(engine, RING_CTL, 0);
625 
626 	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
627 }
628 
629 static int xcs_resume(struct intel_engine_cs *engine)
630 {
631 	struct drm_i915_private *dev_priv = engine->i915;
632 	struct intel_ring *ring = engine->legacy.ring;
633 	int ret = 0;
634 
635 	ENGINE_TRACE(engine, "ring:{HEAD:%04x, TAIL:%04x}\n",
636 		     ring->head, ring->tail);
637 
638 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
639 
640 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
641 	if (!stop_ring(engine)) {
642 		/* G45 ring initialization often fails to reset head to zero */
643 		DRM_DEBUG_DRIVER("%s head not reset to zero "
644 				"ctl %08x head %08x tail %08x start %08x\n",
645 				engine->name,
646 				ENGINE_READ(engine, RING_CTL),
647 				ENGINE_READ(engine, RING_HEAD),
648 				ENGINE_READ(engine, RING_TAIL),
649 				ENGINE_READ(engine, RING_START));
650 
651 		if (!stop_ring(engine)) {
652 			DRM_ERROR("failed to set %s head to zero "
653 				  "ctl %08x head %08x tail %08x start %08x\n",
654 				  engine->name,
655 				  ENGINE_READ(engine, RING_CTL),
656 				  ENGINE_READ(engine, RING_HEAD),
657 				  ENGINE_READ(engine, RING_TAIL),
658 				  ENGINE_READ(engine, RING_START));
659 			ret = -EIO;
660 			goto out;
661 		}
662 	}
663 
664 	if (HWS_NEEDS_PHYSICAL(dev_priv))
665 		ring_setup_phys_status_page(engine);
666 	else
667 		ring_setup_status_page(engine);
668 
669 	intel_engine_reset_breadcrumbs(engine);
670 
671 	/* Enforce ordering by reading HEAD register back */
672 	ENGINE_POSTING_READ(engine, RING_HEAD);
673 
674 	/*
675 	 * Initialize the ring. This must happen _after_ we've cleared the ring
676 	 * registers with the above sequence (the readback of the HEAD registers
677 	 * also enforces ordering), otherwise the hw might lose the new ring
678 	 * register values.
679 	 */
680 	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
681 
682 	/* Check that the ring offsets point within the ring! */
683 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
684 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
685 	intel_ring_update_space(ring);
686 
687 	/* First wake the ring up to an empty/idle ring */
688 	ENGINE_WRITE(engine, RING_HEAD, ring->head);
689 	ENGINE_WRITE(engine, RING_TAIL, ring->head);
690 	ENGINE_POSTING_READ(engine, RING_TAIL);
691 
692 	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
693 
694 	/* If the head is still not zero, the ring is dead */
695 	if (intel_wait_for_register(engine->uncore,
696 				    RING_CTL(engine->mmio_base),
697 				    RING_VALID, RING_VALID,
698 				    50)) {
699 		DRM_ERROR("%s initialization failed "
700 			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
701 			  engine->name,
702 			  ENGINE_READ(engine, RING_CTL),
703 			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
704 			  ENGINE_READ(engine, RING_HEAD), ring->head,
705 			  ENGINE_READ(engine, RING_TAIL), ring->tail,
706 			  ENGINE_READ(engine, RING_START),
707 			  i915_ggtt_offset(ring->vma));
708 		ret = -EIO;
709 		goto out;
710 	}
711 
712 	if (INTEL_GEN(dev_priv) > 2)
713 		ENGINE_WRITE(engine,
714 			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
715 
716 	/* Now awake, let it get started */
717 	if (ring->tail != ring->head) {
718 		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
719 		ENGINE_POSTING_READ(engine, RING_TAIL);
720 	}
721 
722 	/* Papering over lost _interrupts_ immediately following the restart */
723 	intel_engine_signal_breadcrumbs(engine);
724 out:
725 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
726 
727 	return ret;
728 }
729 
730 static void reset_prepare(struct intel_engine_cs *engine)
731 {
732 	struct intel_uncore *uncore = engine->uncore;
733 	const u32 base = engine->mmio_base;
734 
735 	/*
736 	 * We stop engines, otherwise we might get failed reset and a
737 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
738 	 * from system hang if batchbuffer is progressing when
739 	 * the reset is issued, regardless of READY_TO_RESET ack.
740 	 * Thus assume it is best to stop engines on all gens
741 	 * where we have a gpu reset.
742 	 *
743 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
744 	 *
745 	 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
746 	 *
747 	 * FIXME: Wa for more modern gens needs to be validated
748 	 */
749 	ENGINE_TRACE(engine, "\n");
750 
751 	if (intel_engine_stop_cs(engine))
752 		ENGINE_TRACE(engine, "timed out on STOP_RING\n");
753 
754 	intel_uncore_write_fw(uncore,
755 			      RING_HEAD(base),
756 			      intel_uncore_read_fw(uncore, RING_TAIL(base)));
757 	intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */
758 
759 	intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
760 	intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
761 	intel_uncore_posting_read_fw(uncore, RING_TAIL(base));
762 
763 	/* The ring must be empty before it is disabled */
764 	intel_uncore_write_fw(uncore, RING_CTL(base), 0);
765 
766 	/* Check acts as a post */
767 	if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
768 		ENGINE_TRACE(engine, "ring head [%x] not parked\n",
769 			     intel_uncore_read_fw(uncore, RING_HEAD(base)));
770 }
771 
772 static void reset_rewind(struct intel_engine_cs *engine, bool stalled)
773 {
774 	struct i915_request *pos, *rq;
775 	unsigned long flags;
776 	u32 head;
777 
778 	rq = NULL;
779 	spin_lock_irqsave(&engine->active.lock, flags);
780 	list_for_each_entry(pos, &engine->active.requests, sched.link) {
781 		if (!i915_request_completed(pos)) {
782 			rq = pos;
783 			break;
784 		}
785 	}
786 
787 	/*
788 	 * The guilty request will get skipped on a hung engine.
789 	 *
790 	 * Users of client default contexts do not rely on logical
791 	 * state preserved between batches so it is safe to execute
792 	 * queued requests following the hang. Non default contexts
793 	 * rely on preserved state, so skipping a batch loses the
794 	 * evolution of the state and it needs to be considered corrupted.
795 	 * Executing more queued batches on top of corrupted state is
796 	 * risky. But we take the risk by trying to advance through
797 	 * the queued requests in order to make the client behaviour
798 	 * more predictable around resets, by not throwing away random
799 	 * amount of batches it has prepared for execution. Sophisticated
800 	 * clients can use gem_reset_stats_ioctl and dma fence status
801 	 * (exported via sync_file info ioctl on explicit fences) to observe
802 	 * when it loses the context state and should rebuild accordingly.
803 	 *
804 	 * The context ban, and ultimately the client ban, mechanism are safety
805 	 * valves if client submission ends up resulting in nothing more than
806 	 * subsequent hangs.
807 	 */
808 
809 	if (rq) {
810 		/*
811 		 * Try to restore the logical GPU state to match the
812 		 * continuation of the request queue. If we skip the
813 		 * context/PD restore, then the next request may try to execute
814 		 * assuming that its context is valid and loaded on the GPU and
815 		 * so may try to access invalid memory, prompting repeated GPU
816 		 * hangs.
817 		 *
818 		 * If the request was guilty, we still restore the logical
819 		 * state in case the next request requires it (e.g. the
820 		 * aliasing ppgtt), but skip over the hung batch.
821 		 *
822 		 * If the request was innocent, we try to replay the request
823 		 * with the restored context.
824 		 */
825 		__i915_request_reset(rq, stalled);
826 
827 		GEM_BUG_ON(rq->ring != engine->legacy.ring);
828 		head = rq->head;
829 	} else {
830 		head = engine->legacy.ring->tail;
831 	}
832 	engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
833 
834 	spin_unlock_irqrestore(&engine->active.lock, flags);
835 }
836 
837 static void reset_finish(struct intel_engine_cs *engine)
838 {
839 }
840 
841 static int rcs_resume(struct intel_engine_cs *engine)
842 {
843 	struct drm_i915_private *i915 = engine->i915;
844 	struct intel_uncore *uncore = engine->uncore;
845 
846 	/*
847 	 * Disable CONSTANT_BUFFER before it is loaded from the context
848 	 * image. For as it is loaded, it is executed and the stored
849 	 * address may no longer be valid, leading to a GPU hang.
850 	 *
851 	 * This imposes the requirement that userspace reload their
852 	 * CONSTANT_BUFFER on every batch, fortunately a requirement
853 	 * they are already accustomed to from before contexts were
854 	 * enabled.
855 	 */
856 	if (IS_GEN(i915, 4))
857 		intel_uncore_write(uncore, ECOSKPD,
858 			   _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));
859 
860 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
861 	if (IS_GEN_RANGE(i915, 4, 6))
862 		intel_uncore_write(uncore, MI_MODE,
863 				   _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
864 
865 	/* We need to disable the AsyncFlip performance optimisations in order
866 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
867 	 * programmed to '1' on all products.
868 	 *
869 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
870 	 */
871 	if (IS_GEN_RANGE(i915, 6, 7))
872 		intel_uncore_write(uncore, MI_MODE,
873 				   _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
874 
875 	/* Required for the hardware to program scanline values for waiting */
876 	/* WaEnableFlushTlbInvalidationMode:snb */
877 	if (IS_GEN(i915, 6))
878 		intel_uncore_write(uncore, GFX_MODE,
879 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
880 
881 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
882 	if (IS_GEN(i915, 7))
883 		intel_uncore_write(uncore, GFX_MODE_GEN7,
884 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
885 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
886 
887 	if (IS_GEN(i915, 6)) {
888 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
889 		 * "If this bit is set, STCunit will have LRA as replacement
890 		 *  policy. [...] This bit must be reset.  LRA replacement
891 		 *  policy is not supported."
892 		 */
893 		intel_uncore_write(uncore, CACHE_MODE_0,
894 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
895 	}
896 
897 	if (IS_GEN_RANGE(i915, 6, 7))
898 		intel_uncore_write(uncore, INSTPM,
899 				   _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
900 
901 	return xcs_resume(engine);
902 }
903 
904 static void reset_cancel(struct intel_engine_cs *engine)
905 {
906 	struct i915_request *request;
907 	unsigned long flags;
908 
909 	spin_lock_irqsave(&engine->active.lock, flags);
910 
911 	/* Mark all submitted requests as skipped. */
912 	list_for_each_entry(request, &engine->active.requests, sched.link) {
913 		if (!i915_request_signaled(request))
914 			dma_fence_set_error(&request->fence, -EIO);
915 
916 		i915_request_mark_complete(request);
917 	}
918 
919 	/* Remaining _unready_ requests will be nop'ed when submitted */
920 
921 	spin_unlock_irqrestore(&engine->active.lock, flags);
922 }
923 
924 static void i9xx_submit_request(struct i915_request *request)
925 {
926 	i915_request_submit(request);
927 	wmb(); /* paranoid flush writes out of the WCB before mmio */
928 
929 	ENGINE_WRITE(request->engine, RING_TAIL,
930 		     intel_ring_set_tail(request->ring, request->tail));
931 }
932 
933 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
934 {
935 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
936 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
937 
938 	*cs++ = MI_FLUSH;
939 
940 	*cs++ = MI_STORE_DWORD_INDEX;
941 	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
942 	*cs++ = rq->fence.seqno;
943 
944 	*cs++ = MI_USER_INTERRUPT;
945 	*cs++ = MI_NOOP;
946 
947 	rq->tail = intel_ring_offset(rq, cs);
948 	assert_ring_tail_valid(rq->ring, rq->tail);
949 
950 	return cs;
951 }
952 
953 #define GEN5_WA_STORES 8 /* must be at least 1! */
954 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
955 {
956 	int i;
957 
958 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
959 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
960 
961 	*cs++ = MI_FLUSH;
962 
963 	BUILD_BUG_ON(GEN5_WA_STORES < 1);
964 	for (i = 0; i < GEN5_WA_STORES; i++) {
965 		*cs++ = MI_STORE_DWORD_INDEX;
966 		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
967 		*cs++ = rq->fence.seqno;
968 	}
969 
970 	*cs++ = MI_USER_INTERRUPT;
971 
972 	rq->tail = intel_ring_offset(rq, cs);
973 	assert_ring_tail_valid(rq->ring, rq->tail);
974 
975 	return cs;
976 }
977 #undef GEN5_WA_STORES
978 
979 static void
980 gen5_irq_enable(struct intel_engine_cs *engine)
981 {
982 	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
983 }
984 
985 static void
986 gen5_irq_disable(struct intel_engine_cs *engine)
987 {
988 	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
989 }
990 
991 static void
992 i9xx_irq_enable(struct intel_engine_cs *engine)
993 {
994 	engine->i915->irq_mask &= ~engine->irq_enable_mask;
995 	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
996 	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
997 }
998 
999 static void
1000 i9xx_irq_disable(struct intel_engine_cs *engine)
1001 {
1002 	engine->i915->irq_mask |= engine->irq_enable_mask;
1003 	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1004 }
1005 
1006 static void
1007 i8xx_irq_enable(struct intel_engine_cs *engine)
1008 {
1009 	struct drm_i915_private *i915 = engine->i915;
1010 
1011 	i915->irq_mask &= ~engine->irq_enable_mask;
1012 	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1013 	ENGINE_POSTING_READ16(engine, RING_IMR);
1014 }
1015 
1016 static void
1017 i8xx_irq_disable(struct intel_engine_cs *engine)
1018 {
1019 	struct drm_i915_private *i915 = engine->i915;
1020 
1021 	i915->irq_mask |= engine->irq_enable_mask;
1022 	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1023 }
1024 
1025 static int
1026 bsd_ring_flush(struct i915_request *rq, u32 mode)
1027 {
1028 	u32 *cs;
1029 
1030 	cs = intel_ring_begin(rq, 2);
1031 	if (IS_ERR(cs))
1032 		return PTR_ERR(cs);
1033 
1034 	*cs++ = MI_FLUSH;
1035 	*cs++ = MI_NOOP;
1036 	intel_ring_advance(rq, cs);
1037 	return 0;
1038 }
1039 
1040 static void
1041 gen6_irq_enable(struct intel_engine_cs *engine)
1042 {
1043 	ENGINE_WRITE(engine, RING_IMR,
1044 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1045 
1046 	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1047 	ENGINE_POSTING_READ(engine, RING_IMR);
1048 
1049 	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1050 }
1051 
1052 static void
1053 gen6_irq_disable(struct intel_engine_cs *engine)
1054 {
1055 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1056 	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1057 }
1058 
1059 static void
1060 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1061 {
1062 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1063 
1064 	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1065 	ENGINE_POSTING_READ(engine, RING_IMR);
1066 
1067 	gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
1068 }
1069 
1070 static void
1071 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1072 {
1073 	ENGINE_WRITE(engine, RING_IMR, ~0);
1074 	gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
1075 }
1076 
1077 static int
1078 i965_emit_bb_start(struct i915_request *rq,
1079 		   u64 offset, u32 length,
1080 		   unsigned int dispatch_flags)
1081 {
1082 	u32 *cs;
1083 
1084 	cs = intel_ring_begin(rq, 2);
1085 	if (IS_ERR(cs))
1086 		return PTR_ERR(cs);
1087 
1088 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1089 		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1090 	*cs++ = offset;
1091 	intel_ring_advance(rq, cs);
1092 
1093 	return 0;
1094 }
1095 
1096 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1097 #define I830_BATCH_LIMIT SZ_256K
1098 #define I830_TLB_ENTRIES (2)
1099 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1100 static int
1101 i830_emit_bb_start(struct i915_request *rq,
1102 		   u64 offset, u32 len,
1103 		   unsigned int dispatch_flags)
1104 {
1105 	u32 *cs, cs_offset =
1106 		intel_gt_scratch_offset(rq->engine->gt,
1107 					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1108 
1109 	GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1110 
1111 	cs = intel_ring_begin(rq, 6);
1112 	if (IS_ERR(cs))
1113 		return PTR_ERR(cs);
1114 
1115 	/* Evict the invalid PTE TLBs */
1116 	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1117 	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1118 	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1119 	*cs++ = cs_offset;
1120 	*cs++ = 0xdeadbeef;
1121 	*cs++ = MI_NOOP;
1122 	intel_ring_advance(rq, cs);
1123 
1124 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1125 		if (len > I830_BATCH_LIMIT)
1126 			return -ENOSPC;
1127 
1128 		cs = intel_ring_begin(rq, 6 + 2);
1129 		if (IS_ERR(cs))
1130 			return PTR_ERR(cs);
1131 
1132 		/* Blit the batch (which has now all relocs applied) to the
1133 		 * stable batch scratch bo area (so that the CS never
1134 		 * stumbles over its tlb invalidation bug) ...
1135 		 */
1136 		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1137 		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1138 		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1139 		*cs++ = cs_offset;
1140 		*cs++ = 4096;
1141 		*cs++ = offset;
1142 
1143 		*cs++ = MI_FLUSH;
1144 		*cs++ = MI_NOOP;
1145 		intel_ring_advance(rq, cs);
1146 
1147 		/* ... and execute it. */
1148 		offset = cs_offset;
1149 	}
1150 
1151 	cs = intel_ring_begin(rq, 2);
1152 	if (IS_ERR(cs))
1153 		return PTR_ERR(cs);
1154 
1155 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1156 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1157 		MI_BATCH_NON_SECURE);
1158 	intel_ring_advance(rq, cs);
1159 
1160 	return 0;
1161 }
1162 
1163 static int
1164 i915_emit_bb_start(struct i915_request *rq,
1165 		   u64 offset, u32 len,
1166 		   unsigned int dispatch_flags)
1167 {
1168 	u32 *cs;
1169 
1170 	cs = intel_ring_begin(rq, 2);
1171 	if (IS_ERR(cs))
1172 		return PTR_ERR(cs);
1173 
1174 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1175 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1176 		MI_BATCH_NON_SECURE);
1177 	intel_ring_advance(rq, cs);
1178 
1179 	return 0;
1180 }
1181 
1182 static void __ring_context_fini(struct intel_context *ce)
1183 {
1184 	i915_vma_put(ce->state);
1185 }
1186 
1187 static void ring_context_destroy(struct kref *ref)
1188 {
1189 	struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1190 
1191 	GEM_BUG_ON(intel_context_is_pinned(ce));
1192 
1193 	if (ce->state)
1194 		__ring_context_fini(ce);
1195 
1196 	intel_context_fini(ce);
1197 	intel_context_free(ce);
1198 }
1199 
1200 static struct i915_address_space *vm_alias(struct intel_context *ce)
1201 {
1202 	struct i915_address_space *vm;
1203 
1204 	vm = ce->vm;
1205 	if (i915_is_ggtt(vm))
1206 		vm = &i915_vm_to_ggtt(vm)->alias->vm;
1207 
1208 	return vm;
1209 }
1210 
1211 static int __context_pin_ppgtt(struct intel_context *ce)
1212 {
1213 	struct i915_address_space *vm;
1214 	int err = 0;
1215 
1216 	vm = vm_alias(ce);
1217 	if (vm)
1218 		err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1219 
1220 	return err;
1221 }
1222 
1223 static void __context_unpin_ppgtt(struct intel_context *ce)
1224 {
1225 	struct i915_address_space *vm;
1226 
1227 	vm = vm_alias(ce);
1228 	if (vm)
1229 		gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1230 }
1231 
1232 static void ring_context_unpin(struct intel_context *ce)
1233 {
1234 	__context_unpin_ppgtt(ce);
1235 }
1236 
1237 static struct i915_vma *
1238 alloc_context_vma(struct intel_engine_cs *engine)
1239 {
1240 	struct drm_i915_private *i915 = engine->i915;
1241 	struct drm_i915_gem_object *obj;
1242 	struct i915_vma *vma;
1243 	int err;
1244 
1245 	obj = i915_gem_object_create_shmem(i915, engine->context_size);
1246 	if (IS_ERR(obj))
1247 		return ERR_CAST(obj);
1248 
1249 	/*
1250 	 * Try to make the context utilize L3 as well as LLC.
1251 	 *
1252 	 * On VLV we don't have L3 controls in the PTEs so we
1253 	 * shouldn't touch the cache level, especially as that
1254 	 * would make the object snooped which might have a
1255 	 * negative performance impact.
1256 	 *
1257 	 * Snooping is required on non-llc platforms in execlist
1258 	 * mode, but since all GGTT accesses use PAT entry 0 we
1259 	 * get snooping anyway regardless of cache_level.
1260 	 *
1261 	 * This is only applicable for Ivy Bridge devices since
1262 	 * later platforms don't have L3 control bits in the PTE.
1263 	 */
1264 	if (IS_IVYBRIDGE(i915))
1265 		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1266 
1267 	if (engine->default_state) {
1268 		void *defaults, *vaddr;
1269 
1270 		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1271 		if (IS_ERR(vaddr)) {
1272 			err = PTR_ERR(vaddr);
1273 			goto err_obj;
1274 		}
1275 
1276 		defaults = i915_gem_object_pin_map(engine->default_state,
1277 						   I915_MAP_WB);
1278 		if (IS_ERR(defaults)) {
1279 			err = PTR_ERR(defaults);
1280 			goto err_map;
1281 		}
1282 
1283 		memcpy(vaddr, defaults, engine->context_size);
1284 		i915_gem_object_unpin_map(engine->default_state);
1285 
1286 		i915_gem_object_flush_map(obj);
1287 		i915_gem_object_unpin_map(obj);
1288 	}
1289 
1290 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1291 	if (IS_ERR(vma)) {
1292 		err = PTR_ERR(vma);
1293 		goto err_obj;
1294 	}
1295 
1296 	return vma;
1297 
1298 err_map:
1299 	i915_gem_object_unpin_map(obj);
1300 err_obj:
1301 	i915_gem_object_put(obj);
1302 	return ERR_PTR(err);
1303 }
1304 
1305 static int ring_context_alloc(struct intel_context *ce)
1306 {
1307 	struct intel_engine_cs *engine = ce->engine;
1308 
1309 	/* One ringbuffer to rule them all */
1310 	GEM_BUG_ON(!engine->legacy.ring);
1311 	ce->ring = engine->legacy.ring;
1312 	ce->timeline = intel_timeline_get(engine->legacy.timeline);
1313 
1314 	GEM_BUG_ON(ce->state);
1315 	if (engine->context_size) {
1316 		struct i915_vma *vma;
1317 
1318 		vma = alloc_context_vma(engine);
1319 		if (IS_ERR(vma))
1320 			return PTR_ERR(vma);
1321 
1322 		ce->state = vma;
1323 		if (engine->default_state)
1324 			__set_bit(CONTEXT_VALID_BIT, &ce->flags);
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 static int ring_context_pin(struct intel_context *ce)
1331 {
1332 	return __context_pin_ppgtt(ce);
1333 }
1334 
1335 static void ring_context_reset(struct intel_context *ce)
1336 {
1337 	intel_ring_reset(ce->ring, ce->ring->emit);
1338 }
1339 
1340 static const struct intel_context_ops ring_context_ops = {
1341 	.alloc = ring_context_alloc,
1342 
1343 	.pin = ring_context_pin,
1344 	.unpin = ring_context_unpin,
1345 
1346 	.enter = intel_context_enter_engine,
1347 	.exit = intel_context_exit_engine,
1348 
1349 	.reset = ring_context_reset,
1350 	.destroy = ring_context_destroy,
1351 };
1352 
1353 static int load_pd_dir(struct i915_request *rq,
1354 		       const struct i915_ppgtt *ppgtt,
1355 		       u32 valid)
1356 {
1357 	const struct intel_engine_cs * const engine = rq->engine;
1358 	u32 *cs;
1359 
1360 	cs = intel_ring_begin(rq, 12);
1361 	if (IS_ERR(cs))
1362 		return PTR_ERR(cs);
1363 
1364 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1365 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1366 	*cs++ = valid;
1367 
1368 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1369 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1370 	*cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1371 
1372 	/* Stall until the page table load is complete? */
1373 	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1374 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1375 	*cs++ = intel_gt_scratch_offset(engine->gt,
1376 					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1377 
1378 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1379 	*cs++ = i915_mmio_reg_offset(RING_INSTPM(engine->mmio_base));
1380 	*cs++ = _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE);
1381 
1382 	intel_ring_advance(rq, cs);
1383 
1384 	return rq->engine->emit_flush(rq, EMIT_FLUSH);
1385 }
1386 
1387 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1388 {
1389 	struct drm_i915_private *i915 = rq->i915;
1390 	struct intel_engine_cs *engine = rq->engine;
1391 	enum intel_engine_id id;
1392 	const int num_engines =
1393 		IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1394 	bool force_restore = false;
1395 	int len;
1396 	u32 *cs;
1397 
1398 	len = 4;
1399 	if (IS_GEN(i915, 7))
1400 		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1401 	else if (IS_GEN(i915, 5))
1402 		len += 2;
1403 	if (flags & MI_FORCE_RESTORE) {
1404 		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1405 		flags &= ~MI_FORCE_RESTORE;
1406 		force_restore = true;
1407 		len += 2;
1408 	}
1409 
1410 	cs = intel_ring_begin(rq, len);
1411 	if (IS_ERR(cs))
1412 		return PTR_ERR(cs);
1413 
1414 	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1415 	if (IS_GEN(i915, 7)) {
1416 		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1417 		if (num_engines) {
1418 			struct intel_engine_cs *signaller;
1419 
1420 			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1421 			for_each_engine(signaller, engine->gt, id) {
1422 				if (signaller == engine)
1423 					continue;
1424 
1425 				*cs++ = i915_mmio_reg_offset(
1426 					   RING_PSMI_CTL(signaller->mmio_base));
1427 				*cs++ = _MASKED_BIT_ENABLE(
1428 						GEN6_PSMI_SLEEP_MSG_DISABLE);
1429 			}
1430 		}
1431 	} else if (IS_GEN(i915, 5)) {
1432 		/*
1433 		 * This w/a is only listed for pre-production ilk a/b steppings,
1434 		 * but is also mentioned for programming the powerctx. To be
1435 		 * safe, just apply the workaround; we do not use SyncFlush so
1436 		 * this should never take effect and so be a no-op!
1437 		 */
1438 		*cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1439 	}
1440 
1441 	if (force_restore) {
1442 		/*
1443 		 * The HW doesn't handle being told to restore the current
1444 		 * context very well. Quite often it likes goes to go off and
1445 		 * sulk, especially when it is meant to be reloading PP_DIR.
1446 		 * A very simple fix to force the reload is to simply switch
1447 		 * away from the current context and back again.
1448 		 *
1449 		 * Note that the kernel_context will contain random state
1450 		 * following the INHIBIT_RESTORE. We accept this since we
1451 		 * never use the kernel_context state; it is merely a
1452 		 * placeholder we use to flush other contexts.
1453 		 */
1454 		*cs++ = MI_SET_CONTEXT;
1455 		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1456 			MI_MM_SPACE_GTT |
1457 			MI_RESTORE_INHIBIT;
1458 	}
1459 
1460 	*cs++ = MI_NOOP;
1461 	*cs++ = MI_SET_CONTEXT;
1462 	*cs++ = i915_ggtt_offset(rq->context->state) | flags;
1463 	/*
1464 	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1465 	 * WaMiSetContext_Hang:snb,ivb,vlv
1466 	 */
1467 	*cs++ = MI_NOOP;
1468 
1469 	if (IS_GEN(i915, 7)) {
1470 		if (num_engines) {
1471 			struct intel_engine_cs *signaller;
1472 			i915_reg_t last_reg = {}; /* keep gcc quiet */
1473 
1474 			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1475 			for_each_engine(signaller, engine->gt, id) {
1476 				if (signaller == engine)
1477 					continue;
1478 
1479 				last_reg = RING_PSMI_CTL(signaller->mmio_base);
1480 				*cs++ = i915_mmio_reg_offset(last_reg);
1481 				*cs++ = _MASKED_BIT_DISABLE(
1482 						GEN6_PSMI_SLEEP_MSG_DISABLE);
1483 			}
1484 
1485 			/* Insert a delay before the next switch! */
1486 			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1487 			*cs++ = i915_mmio_reg_offset(last_reg);
1488 			*cs++ = intel_gt_scratch_offset(engine->gt,
1489 							INTEL_GT_SCRATCH_FIELD_DEFAULT);
1490 			*cs++ = MI_NOOP;
1491 		}
1492 		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1493 	} else if (IS_GEN(i915, 5)) {
1494 		*cs++ = MI_SUSPEND_FLUSH;
1495 	}
1496 
1497 	intel_ring_advance(rq, cs);
1498 
1499 	return 0;
1500 }
1501 
1502 static int remap_l3_slice(struct i915_request *rq, int slice)
1503 {
1504 	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1505 	int i;
1506 
1507 	if (!remap_info)
1508 		return 0;
1509 
1510 	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1511 	if (IS_ERR(cs))
1512 		return PTR_ERR(cs);
1513 
1514 	/*
1515 	 * Note: We do not worry about the concurrent register cacheline hang
1516 	 * here because no other code should access these registers other than
1517 	 * at initialization time.
1518 	 */
1519 	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1520 	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1521 		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1522 		*cs++ = remap_info[i];
1523 	}
1524 	*cs++ = MI_NOOP;
1525 	intel_ring_advance(rq, cs);
1526 
1527 	return 0;
1528 }
1529 
1530 static int remap_l3(struct i915_request *rq)
1531 {
1532 	struct i915_gem_context *ctx = i915_request_gem_context(rq);
1533 	int i, err;
1534 
1535 	if (!ctx || !ctx->remap_slice)
1536 		return 0;
1537 
1538 	for (i = 0; i < MAX_L3_SLICES; i++) {
1539 		if (!(ctx->remap_slice & BIT(i)))
1540 			continue;
1541 
1542 		err = remap_l3_slice(rq, i);
1543 		if (err)
1544 			return err;
1545 	}
1546 
1547 	ctx->remap_slice = 0;
1548 	return 0;
1549 }
1550 
1551 static int switch_mm(struct i915_request *rq, struct i915_address_space *vm)
1552 {
1553 	int ret;
1554 
1555 	if (!vm)
1556 		return 0;
1557 
1558 	ret = rq->engine->emit_flush(rq, EMIT_FLUSH);
1559 	if (ret)
1560 		return ret;
1561 
1562 	/*
1563 	 * Not only do we need a full barrier (post-sync write) after
1564 	 * invalidating the TLBs, but we need to wait a little bit
1565 	 * longer. Whether this is merely delaying us, or the
1566 	 * subsequent flush is a key part of serialising with the
1567 	 * post-sync op, this extra pass appears vital before a
1568 	 * mm switch!
1569 	 */
1570 	ret = load_pd_dir(rq, i915_vm_to_ppgtt(vm), PP_DIR_DCLV_2G);
1571 	if (ret)
1572 		return ret;
1573 
1574 	return rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1575 }
1576 
1577 static int switch_context(struct i915_request *rq)
1578 {
1579 	struct intel_context *ce = rq->context;
1580 	int ret;
1581 
1582 	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1583 
1584 	ret = switch_mm(rq, vm_alias(ce));
1585 	if (ret)
1586 		return ret;
1587 
1588 	if (ce->state) {
1589 		u32 flags;
1590 
1591 		GEM_BUG_ON(rq->engine->id != RCS0);
1592 
1593 		/* For resource streamer on HSW+ and power context elsewhere */
1594 		BUILD_BUG_ON(HSW_MI_RS_SAVE_STATE_EN != MI_SAVE_EXT_STATE_EN);
1595 		BUILD_BUG_ON(HSW_MI_RS_RESTORE_STATE_EN != MI_RESTORE_EXT_STATE_EN);
1596 
1597 		flags = MI_SAVE_EXT_STATE_EN | MI_MM_SPACE_GTT;
1598 		if (test_bit(CONTEXT_VALID_BIT, &ce->flags))
1599 			flags |= MI_RESTORE_EXT_STATE_EN;
1600 		else
1601 			flags |= MI_RESTORE_INHIBIT;
1602 
1603 		ret = mi_set_context(rq, flags);
1604 		if (ret)
1605 			return ret;
1606 	}
1607 
1608 	ret = remap_l3(rq);
1609 	if (ret)
1610 		return ret;
1611 
1612 	return 0;
1613 }
1614 
1615 static int ring_request_alloc(struct i915_request *request)
1616 {
1617 	int ret;
1618 
1619 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
1620 	GEM_BUG_ON(i915_request_timeline(request)->has_initial_breadcrumb);
1621 
1622 	/*
1623 	 * Flush enough space to reduce the likelihood of waiting after
1624 	 * we start building the request - in which case we will just
1625 	 * have to repeat work.
1626 	 */
1627 	request->reserved_space += LEGACY_REQUEST_SIZE;
1628 
1629 	/* Unconditionally invalidate GPU caches and TLBs. */
1630 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1631 	if (ret)
1632 		return ret;
1633 
1634 	ret = switch_context(request);
1635 	if (ret)
1636 		return ret;
1637 
1638 	request->reserved_space -= LEGACY_REQUEST_SIZE;
1639 	return 0;
1640 }
1641 
1642 static void gen6_bsd_submit_request(struct i915_request *request)
1643 {
1644 	struct intel_uncore *uncore = request->engine->uncore;
1645 
1646 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1647 
1648        /* Every tail move must follow the sequence below */
1649 
1650 	/* Disable notification that the ring is IDLE. The GT
1651 	 * will then assume that it is busy and bring it out of rc6.
1652 	 */
1653 	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1654 			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1655 
1656 	/* Clear the context id. Here be magic! */
1657 	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
1658 
1659 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1660 	if (__intel_wait_for_register_fw(uncore,
1661 					 GEN6_BSD_SLEEP_PSMI_CONTROL,
1662 					 GEN6_BSD_SLEEP_INDICATOR,
1663 					 0,
1664 					 1000, 0, NULL))
1665 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1666 
1667 	/* Now that the ring is fully powered up, update the tail */
1668 	i9xx_submit_request(request);
1669 
1670 	/* Let the ring send IDLE messages to the GT again,
1671 	 * and so let it sleep to conserve power when idle.
1672 	 */
1673 	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1674 			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1675 
1676 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1677 }
1678 
1679 static int mi_flush_dw(struct i915_request *rq, u32 flags)
1680 {
1681 	u32 cmd, *cs;
1682 
1683 	cs = intel_ring_begin(rq, 4);
1684 	if (IS_ERR(cs))
1685 		return PTR_ERR(cs);
1686 
1687 	cmd = MI_FLUSH_DW;
1688 
1689 	/*
1690 	 * We always require a command barrier so that subsequent
1691 	 * commands, such as breadcrumb interrupts, are strictly ordered
1692 	 * wrt the contents of the write cache being flushed to memory
1693 	 * (and thus being coherent from the CPU).
1694 	 */
1695 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1696 
1697 	/*
1698 	 * Bspec vol 1c.3 - blitter engine command streamer:
1699 	 * "If ENABLED, all TLBs will be invalidated once the flush
1700 	 * operation is complete. This bit is only valid when the
1701 	 * Post-Sync Operation field is a value of 1h or 3h."
1702 	 */
1703 	cmd |= flags;
1704 
1705 	*cs++ = cmd;
1706 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1707 	*cs++ = 0;
1708 	*cs++ = MI_NOOP;
1709 
1710 	intel_ring_advance(rq, cs);
1711 
1712 	return 0;
1713 }
1714 
1715 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
1716 {
1717 	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
1718 }
1719 
1720 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1721 {
1722 	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
1723 }
1724 
1725 static int
1726 hsw_emit_bb_start(struct i915_request *rq,
1727 		  u64 offset, u32 len,
1728 		  unsigned int dispatch_flags)
1729 {
1730 	u32 *cs;
1731 
1732 	cs = intel_ring_begin(rq, 2);
1733 	if (IS_ERR(cs))
1734 		return PTR_ERR(cs);
1735 
1736 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1737 		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
1738 	/* bit0-7 is the length on GEN6+ */
1739 	*cs++ = offset;
1740 	intel_ring_advance(rq, cs);
1741 
1742 	return 0;
1743 }
1744 
1745 static int
1746 gen6_emit_bb_start(struct i915_request *rq,
1747 		   u64 offset, u32 len,
1748 		   unsigned int dispatch_flags)
1749 {
1750 	u32 *cs;
1751 
1752 	cs = intel_ring_begin(rq, 2);
1753 	if (IS_ERR(cs))
1754 		return PTR_ERR(cs);
1755 
1756 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1757 		0 : MI_BATCH_NON_SECURE_I965);
1758 	/* bit0-7 is the length on GEN6+ */
1759 	*cs++ = offset;
1760 	intel_ring_advance(rq, cs);
1761 
1762 	return 0;
1763 }
1764 
1765 /* Blitter support (SandyBridge+) */
1766 
1767 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1768 {
1769 	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
1770 }
1771 
1772 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1773 {
1774 	engine->submit_request = i9xx_submit_request;
1775 
1776 	engine->park = NULL;
1777 	engine->unpark = NULL;
1778 }
1779 
1780 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1781 {
1782 	i9xx_set_default_submission(engine);
1783 	engine->submit_request = gen6_bsd_submit_request;
1784 }
1785 
1786 static void ring_release(struct intel_engine_cs *engine)
1787 {
1788 	struct drm_i915_private *dev_priv = engine->i915;
1789 
1790 	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1791 		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
1792 
1793 	intel_engine_cleanup_common(engine);
1794 
1795 	intel_ring_unpin(engine->legacy.ring);
1796 	intel_ring_put(engine->legacy.ring);
1797 
1798 	intel_timeline_unpin(engine->legacy.timeline);
1799 	intel_timeline_put(engine->legacy.timeline);
1800 }
1801 
1802 static void setup_irq(struct intel_engine_cs *engine)
1803 {
1804 	struct drm_i915_private *i915 = engine->i915;
1805 
1806 	if (INTEL_GEN(i915) >= 6) {
1807 		engine->irq_enable = gen6_irq_enable;
1808 		engine->irq_disable = gen6_irq_disable;
1809 	} else if (INTEL_GEN(i915) >= 5) {
1810 		engine->irq_enable = gen5_irq_enable;
1811 		engine->irq_disable = gen5_irq_disable;
1812 	} else if (INTEL_GEN(i915) >= 3) {
1813 		engine->irq_enable = i9xx_irq_enable;
1814 		engine->irq_disable = i9xx_irq_disable;
1815 	} else {
1816 		engine->irq_enable = i8xx_irq_enable;
1817 		engine->irq_disable = i8xx_irq_disable;
1818 	}
1819 }
1820 
1821 static void setup_common(struct intel_engine_cs *engine)
1822 {
1823 	struct drm_i915_private *i915 = engine->i915;
1824 
1825 	/* gen8+ are only supported with execlists */
1826 	GEM_BUG_ON(INTEL_GEN(i915) >= 8);
1827 
1828 	setup_irq(engine);
1829 
1830 	engine->resume = xcs_resume;
1831 	engine->reset.prepare = reset_prepare;
1832 	engine->reset.rewind = reset_rewind;
1833 	engine->reset.cancel = reset_cancel;
1834 	engine->reset.finish = reset_finish;
1835 
1836 	engine->cops = &ring_context_ops;
1837 	engine->request_alloc = ring_request_alloc;
1838 
1839 	/*
1840 	 * Using a global execution timeline; the previous final breadcrumb is
1841 	 * equivalent to our next initial bread so we can elide
1842 	 * engine->emit_init_breadcrumb().
1843 	 */
1844 	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
1845 	if (IS_GEN(i915, 5))
1846 		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
1847 
1848 	engine->set_default_submission = i9xx_set_default_submission;
1849 
1850 	if (INTEL_GEN(i915) >= 6)
1851 		engine->emit_bb_start = gen6_emit_bb_start;
1852 	else if (INTEL_GEN(i915) >= 4)
1853 		engine->emit_bb_start = i965_emit_bb_start;
1854 	else if (IS_I830(i915) || IS_I845G(i915))
1855 		engine->emit_bb_start = i830_emit_bb_start;
1856 	else
1857 		engine->emit_bb_start = i915_emit_bb_start;
1858 }
1859 
1860 static void setup_rcs(struct intel_engine_cs *engine)
1861 {
1862 	struct drm_i915_private *i915 = engine->i915;
1863 
1864 	if (HAS_L3_DPF(i915))
1865 		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1866 
1867 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1868 
1869 	if (INTEL_GEN(i915) >= 7) {
1870 		engine->emit_flush = gen7_render_ring_flush;
1871 		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
1872 	} else if (IS_GEN(i915, 6)) {
1873 		engine->emit_flush = gen6_render_ring_flush;
1874 		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
1875 	} else if (IS_GEN(i915, 5)) {
1876 		engine->emit_flush = gen4_render_ring_flush;
1877 	} else {
1878 		if (INTEL_GEN(i915) < 4)
1879 			engine->emit_flush = gen2_render_ring_flush;
1880 		else
1881 			engine->emit_flush = gen4_render_ring_flush;
1882 		engine->irq_enable_mask = I915_USER_INTERRUPT;
1883 	}
1884 
1885 	if (IS_HASWELL(i915))
1886 		engine->emit_bb_start = hsw_emit_bb_start;
1887 
1888 	engine->resume = rcs_resume;
1889 }
1890 
1891 static void setup_vcs(struct intel_engine_cs *engine)
1892 {
1893 	struct drm_i915_private *i915 = engine->i915;
1894 
1895 	if (INTEL_GEN(i915) >= 6) {
1896 		/* gen6 bsd needs a special wa for tail updates */
1897 		if (IS_GEN(i915, 6))
1898 			engine->set_default_submission = gen6_bsd_set_default_submission;
1899 		engine->emit_flush = gen6_bsd_ring_flush;
1900 		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1901 
1902 		if (IS_GEN(i915, 6))
1903 			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1904 		else
1905 			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1906 	} else {
1907 		engine->emit_flush = bsd_ring_flush;
1908 		if (IS_GEN(i915, 5))
1909 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1910 		else
1911 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1912 	}
1913 }
1914 
1915 static void setup_bcs(struct intel_engine_cs *engine)
1916 {
1917 	struct drm_i915_private *i915 = engine->i915;
1918 
1919 	engine->emit_flush = gen6_ring_flush;
1920 	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1921 
1922 	if (IS_GEN(i915, 6))
1923 		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1924 	else
1925 		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1926 }
1927 
1928 static void setup_vecs(struct intel_engine_cs *engine)
1929 {
1930 	struct drm_i915_private *i915 = engine->i915;
1931 
1932 	GEM_BUG_ON(INTEL_GEN(i915) < 7);
1933 
1934 	engine->emit_flush = gen6_ring_flush;
1935 	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1936 	engine->irq_enable = hsw_vebox_irq_enable;
1937 	engine->irq_disable = hsw_vebox_irq_disable;
1938 
1939 	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1940 }
1941 
1942 int intel_ring_submission_setup(struct intel_engine_cs *engine)
1943 {
1944 	struct intel_timeline *timeline;
1945 	struct intel_ring *ring;
1946 	int err;
1947 
1948 	setup_common(engine);
1949 
1950 	switch (engine->class) {
1951 	case RENDER_CLASS:
1952 		setup_rcs(engine);
1953 		break;
1954 	case VIDEO_DECODE_CLASS:
1955 		setup_vcs(engine);
1956 		break;
1957 	case COPY_ENGINE_CLASS:
1958 		setup_bcs(engine);
1959 		break;
1960 	case VIDEO_ENHANCEMENT_CLASS:
1961 		setup_vecs(engine);
1962 		break;
1963 	default:
1964 		MISSING_CASE(engine->class);
1965 		return -ENODEV;
1966 	}
1967 
1968 	timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
1969 	if (IS_ERR(timeline)) {
1970 		err = PTR_ERR(timeline);
1971 		goto err;
1972 	}
1973 	GEM_BUG_ON(timeline->has_initial_breadcrumb);
1974 
1975 	err = intel_timeline_pin(timeline);
1976 	if (err)
1977 		goto err_timeline;
1978 
1979 	ring = intel_engine_create_ring(engine, SZ_16K);
1980 	if (IS_ERR(ring)) {
1981 		err = PTR_ERR(ring);
1982 		goto err_timeline_unpin;
1983 	}
1984 
1985 	err = intel_ring_pin(ring);
1986 	if (err)
1987 		goto err_ring;
1988 
1989 	GEM_BUG_ON(engine->legacy.ring);
1990 	engine->legacy.ring = ring;
1991 	engine->legacy.timeline = timeline;
1992 
1993 	GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
1994 
1995 	/* Finally, take ownership and responsibility for cleanup! */
1996 	engine->release = ring_release;
1997 
1998 	return 0;
1999 
2000 err_ring:
2001 	intel_ring_put(ring);
2002 err_timeline_unpin:
2003 	intel_timeline_unpin(timeline);
2004 err_timeline:
2005 	intel_timeline_put(timeline);
2006 err:
2007 	intel_engine_cleanup_common(engine);
2008 	return err;
2009 }
2010