1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29 
30 #include <linux/log2.h>
31 
32 #include <drm/i915_drm.h>
33 
34 #include "gem/i915_gem_context.h"
35 
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_context.h"
39 #include "intel_gt.h"
40 #include "intel_gt_irq.h"
41 #include "intel_gt_pm_irq.h"
42 #include "intel_reset.h"
43 #include "intel_ring.h"
44 #include "intel_workarounds.h"
45 
46 /* Rough estimate of the typical request size, performing a flush,
47  * set-context and then emitting the batch.
48  */
49 #define LEGACY_REQUEST_SIZE 200
50 
51 static int
52 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
53 {
54 	unsigned int num_store_dw;
55 	u32 cmd, *cs;
56 
57 	cmd = MI_FLUSH;
58 	num_store_dw = 0;
59 	if (mode & EMIT_INVALIDATE)
60 		cmd |= MI_READ_FLUSH;
61 	if (mode & EMIT_FLUSH)
62 		num_store_dw = 4;
63 
64 	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
65 	if (IS_ERR(cs))
66 		return PTR_ERR(cs);
67 
68 	*cs++ = cmd;
69 	while (num_store_dw--) {
70 		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
71 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
72 						INTEL_GT_SCRATCH_FIELD_DEFAULT);
73 		*cs++ = 0;
74 	}
75 	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
76 
77 	intel_ring_advance(rq, cs);
78 
79 	return 0;
80 }
81 
82 static int
83 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
84 {
85 	u32 cmd, *cs;
86 	int i;
87 
88 	/*
89 	 * read/write caches:
90 	 *
91 	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
92 	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
93 	 * also flushed at 2d versus 3d pipeline switches.
94 	 *
95 	 * read-only caches:
96 	 *
97 	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
98 	 * MI_READ_FLUSH is set, and is always flushed on 965.
99 	 *
100 	 * I915_GEM_DOMAIN_COMMAND may not exist?
101 	 *
102 	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
103 	 * invalidated when MI_EXE_FLUSH is set.
104 	 *
105 	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
106 	 * invalidated with every MI_FLUSH.
107 	 *
108 	 * TLBs:
109 	 *
110 	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
111 	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
112 	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
113 	 * are flushed at any MI_FLUSH.
114 	 */
115 
116 	cmd = MI_FLUSH;
117 	if (mode & EMIT_INVALIDATE) {
118 		cmd |= MI_EXE_FLUSH;
119 		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
120 			cmd |= MI_INVALIDATE_ISP;
121 	}
122 
123 	i = 2;
124 	if (mode & EMIT_INVALIDATE)
125 		i += 20;
126 
127 	cs = intel_ring_begin(rq, i);
128 	if (IS_ERR(cs))
129 		return PTR_ERR(cs);
130 
131 	*cs++ = cmd;
132 
133 	/*
134 	 * A random delay to let the CS invalidate take effect? Without this
135 	 * delay, the GPU relocation path fails as the CS does not see
136 	 * the updated contents. Just as important, if we apply the flushes
137 	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
138 	 * write and before the invalidate on the next batch), the relocations
139 	 * still fail. This implies that is a delay following invalidation
140 	 * that is required to reset the caches as opposed to a delay to
141 	 * ensure the memory is written.
142 	 */
143 	if (mode & EMIT_INVALIDATE) {
144 		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
145 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
146 						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
147 			PIPE_CONTROL_GLOBAL_GTT;
148 		*cs++ = 0;
149 		*cs++ = 0;
150 
151 		for (i = 0; i < 12; i++)
152 			*cs++ = MI_FLUSH;
153 
154 		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
155 		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
156 						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
157 			PIPE_CONTROL_GLOBAL_GTT;
158 		*cs++ = 0;
159 		*cs++ = 0;
160 	}
161 
162 	*cs++ = cmd;
163 
164 	intel_ring_advance(rq, cs);
165 
166 	return 0;
167 }
168 
169 /*
170  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
171  * implementing two workarounds on gen6.  From section 1.4.7.1
172  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
173  *
174  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
175  * produced by non-pipelined state commands), software needs to first
176  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
177  * 0.
178  *
179  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
180  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
181  *
182  * And the workaround for these two requires this workaround first:
183  *
184  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
185  * BEFORE the pipe-control with a post-sync op and no write-cache
186  * flushes.
187  *
188  * And this last workaround is tricky because of the requirements on
189  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
190  * volume 2 part 1:
191  *
192  *     "1 of the following must also be set:
193  *      - Render Target Cache Flush Enable ([12] of DW1)
194  *      - Depth Cache Flush Enable ([0] of DW1)
195  *      - Stall at Pixel Scoreboard ([1] of DW1)
196  *      - Depth Stall ([13] of DW1)
197  *      - Post-Sync Operation ([13] of DW1)
198  *      - Notify Enable ([8] of DW1)"
199  *
200  * The cache flushes require the workaround flush that triggered this
201  * one, so we can't use it.  Depth stall would trigger the same.
202  * Post-sync nonzero is what triggered this second workaround, so we
203  * can't use that one either.  Notify enable is IRQs, which aren't
204  * really our business.  That leaves only stall at scoreboard.
205  */
206 static int
207 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
208 {
209 	u32 scratch_addr =
210 		intel_gt_scratch_offset(rq->engine->gt,
211 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
212 	u32 *cs;
213 
214 	cs = intel_ring_begin(rq, 6);
215 	if (IS_ERR(cs))
216 		return PTR_ERR(cs);
217 
218 	*cs++ = GFX_OP_PIPE_CONTROL(5);
219 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
220 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
221 	*cs++ = 0; /* low dword */
222 	*cs++ = 0; /* high dword */
223 	*cs++ = MI_NOOP;
224 	intel_ring_advance(rq, cs);
225 
226 	cs = intel_ring_begin(rq, 6);
227 	if (IS_ERR(cs))
228 		return PTR_ERR(cs);
229 
230 	*cs++ = GFX_OP_PIPE_CONTROL(5);
231 	*cs++ = PIPE_CONTROL_QW_WRITE;
232 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
233 	*cs++ = 0;
234 	*cs++ = 0;
235 	*cs++ = MI_NOOP;
236 	intel_ring_advance(rq, cs);
237 
238 	return 0;
239 }
240 
241 static int
242 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
243 {
244 	u32 scratch_addr =
245 		intel_gt_scratch_offset(rq->engine->gt,
246 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
247 	u32 *cs, flags = 0;
248 	int ret;
249 
250 	/* Force SNB workarounds for PIPE_CONTROL flushes */
251 	ret = gen6_emit_post_sync_nonzero_flush(rq);
252 	if (ret)
253 		return ret;
254 
255 	/* Just flush everything.  Experiments have shown that reducing the
256 	 * number of bits based on the write domains has little performance
257 	 * impact.
258 	 */
259 	if (mode & EMIT_FLUSH) {
260 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
261 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
262 		/*
263 		 * Ensure that any following seqno writes only happen
264 		 * when the render cache is indeed flushed.
265 		 */
266 		flags |= PIPE_CONTROL_CS_STALL;
267 	}
268 	if (mode & EMIT_INVALIDATE) {
269 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
270 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
271 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
272 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
273 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
274 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
275 		/*
276 		 * TLB invalidate requires a post-sync write.
277 		 */
278 		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
279 	}
280 
281 	cs = intel_ring_begin(rq, 4);
282 	if (IS_ERR(cs))
283 		return PTR_ERR(cs);
284 
285 	*cs++ = GFX_OP_PIPE_CONTROL(4);
286 	*cs++ = flags;
287 	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
288 	*cs++ = 0;
289 	intel_ring_advance(rq, cs);
290 
291 	return 0;
292 }
293 
294 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
295 {
296 	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
297 	*cs++ = GFX_OP_PIPE_CONTROL(4);
298 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
299 	*cs++ = 0;
300 	*cs++ = 0;
301 
302 	*cs++ = GFX_OP_PIPE_CONTROL(4);
303 	*cs++ = PIPE_CONTROL_QW_WRITE;
304 	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
305 					INTEL_GT_SCRATCH_FIELD_DEFAULT) |
306 		PIPE_CONTROL_GLOBAL_GTT;
307 	*cs++ = 0;
308 
309 	/* Finally we can flush and with it emit the breadcrumb */
310 	*cs++ = GFX_OP_PIPE_CONTROL(4);
311 	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
312 		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
313 		 PIPE_CONTROL_DC_FLUSH_ENABLE |
314 		 PIPE_CONTROL_QW_WRITE |
315 		 PIPE_CONTROL_CS_STALL);
316 	*cs++ = i915_request_active_timeline(rq)->hwsp_offset |
317 		PIPE_CONTROL_GLOBAL_GTT;
318 	*cs++ = rq->fence.seqno;
319 
320 	*cs++ = MI_USER_INTERRUPT;
321 	*cs++ = MI_NOOP;
322 
323 	rq->tail = intel_ring_offset(rq, cs);
324 	assert_ring_tail_valid(rq->ring, rq->tail);
325 
326 	return cs;
327 }
328 
329 static int
330 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
331 {
332 	u32 *cs;
333 
334 	cs = intel_ring_begin(rq, 4);
335 	if (IS_ERR(cs))
336 		return PTR_ERR(cs);
337 
338 	*cs++ = GFX_OP_PIPE_CONTROL(4);
339 	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
340 	*cs++ = 0;
341 	*cs++ = 0;
342 	intel_ring_advance(rq, cs);
343 
344 	return 0;
345 }
346 
347 static int
348 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
349 {
350 	u32 scratch_addr =
351 		intel_gt_scratch_offset(rq->engine->gt,
352 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
353 	u32 *cs, flags = 0;
354 
355 	/*
356 	 * Ensure that any following seqno writes only happen when the render
357 	 * cache is indeed flushed.
358 	 *
359 	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
360 	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
361 	 * don't try to be clever and just set it unconditionally.
362 	 */
363 	flags |= PIPE_CONTROL_CS_STALL;
364 
365 	/* Just flush everything.  Experiments have shown that reducing the
366 	 * number of bits based on the write domains has little performance
367 	 * impact.
368 	 */
369 	if (mode & EMIT_FLUSH) {
370 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
371 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
372 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
373 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
374 	}
375 	if (mode & EMIT_INVALIDATE) {
376 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
377 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
378 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
379 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
380 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
381 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
382 		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
383 		/*
384 		 * TLB invalidate requires a post-sync write.
385 		 */
386 		flags |= PIPE_CONTROL_QW_WRITE;
387 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388 
389 		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
390 
391 		/* Workaround: we must issue a pipe_control with CS-stall bit
392 		 * set before a pipe_control command that has the state cache
393 		 * invalidate bit set. */
394 		gen7_render_ring_cs_stall_wa(rq);
395 	}
396 
397 	cs = intel_ring_begin(rq, 4);
398 	if (IS_ERR(cs))
399 		return PTR_ERR(cs);
400 
401 	*cs++ = GFX_OP_PIPE_CONTROL(4);
402 	*cs++ = flags;
403 	*cs++ = scratch_addr;
404 	*cs++ = 0;
405 	intel_ring_advance(rq, cs);
406 
407 	return 0;
408 }
409 
410 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
411 {
412 	*cs++ = GFX_OP_PIPE_CONTROL(4);
413 	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
414 		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
415 		 PIPE_CONTROL_DC_FLUSH_ENABLE |
416 		 PIPE_CONTROL_FLUSH_ENABLE |
417 		 PIPE_CONTROL_QW_WRITE |
418 		 PIPE_CONTROL_GLOBAL_GTT_IVB |
419 		 PIPE_CONTROL_CS_STALL);
420 	*cs++ = i915_request_active_timeline(rq)->hwsp_offset;
421 	*cs++ = rq->fence.seqno;
422 
423 	*cs++ = MI_USER_INTERRUPT;
424 	*cs++ = MI_NOOP;
425 
426 	rq->tail = intel_ring_offset(rq, cs);
427 	assert_ring_tail_valid(rq->ring, rq->tail);
428 
429 	return cs;
430 }
431 
432 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
433 {
434 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
435 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
436 
437 	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
438 	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
439 	*cs++ = rq->fence.seqno;
440 
441 	*cs++ = MI_USER_INTERRUPT;
442 
443 	rq->tail = intel_ring_offset(rq, cs);
444 	assert_ring_tail_valid(rq->ring, rq->tail);
445 
446 	return cs;
447 }
448 
449 #define GEN7_XCS_WA 32
450 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
451 {
452 	int i;
453 
454 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
455 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
456 
457 	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
458 	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
459 	*cs++ = rq->fence.seqno;
460 
461 	for (i = 0; i < GEN7_XCS_WA; i++) {
462 		*cs++ = MI_STORE_DWORD_INDEX;
463 		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
464 		*cs++ = rq->fence.seqno;
465 	}
466 
467 	*cs++ = MI_FLUSH_DW;
468 	*cs++ = 0;
469 	*cs++ = 0;
470 
471 	*cs++ = MI_USER_INTERRUPT;
472 	*cs++ = MI_NOOP;
473 
474 	rq->tail = intel_ring_offset(rq, cs);
475 	assert_ring_tail_valid(rq->ring, rq->tail);
476 
477 	return cs;
478 }
479 #undef GEN7_XCS_WA
480 
481 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
482 {
483 	/*
484 	 * Keep the render interrupt unmasked as this papers over
485 	 * lost interrupts following a reset.
486 	 */
487 	if (engine->class == RENDER_CLASS) {
488 		if (INTEL_GEN(engine->i915) >= 6)
489 			mask &= ~BIT(0);
490 		else
491 			mask &= ~I915_USER_INTERRUPT;
492 	}
493 
494 	intel_engine_set_hwsp_writemask(engine, mask);
495 }
496 
497 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
498 {
499 	struct drm_i915_private *dev_priv = engine->i915;
500 	u32 addr;
501 
502 	addr = lower_32_bits(phys);
503 	if (INTEL_GEN(dev_priv) >= 4)
504 		addr |= (phys >> 28) & 0xf0;
505 
506 	I915_WRITE(HWS_PGA, addr);
507 }
508 
509 static struct page *status_page(struct intel_engine_cs *engine)
510 {
511 	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
512 
513 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
514 	return sg_page(obj->mm.pages->sgl);
515 }
516 
517 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
518 {
519 	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
520 	set_hwstam(engine, ~0u);
521 }
522 
523 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
524 {
525 	struct drm_i915_private *dev_priv = engine->i915;
526 	i915_reg_t hwsp;
527 
528 	/*
529 	 * The ring status page addresses are no longer next to the rest of
530 	 * the ring registers as of gen7.
531 	 */
532 	if (IS_GEN(dev_priv, 7)) {
533 		switch (engine->id) {
534 		/*
535 		 * No more rings exist on Gen7. Default case is only to shut up
536 		 * gcc switch check warning.
537 		 */
538 		default:
539 			GEM_BUG_ON(engine->id);
540 			/* fallthrough */
541 		case RCS0:
542 			hwsp = RENDER_HWS_PGA_GEN7;
543 			break;
544 		case BCS0:
545 			hwsp = BLT_HWS_PGA_GEN7;
546 			break;
547 		case VCS0:
548 			hwsp = BSD_HWS_PGA_GEN7;
549 			break;
550 		case VECS0:
551 			hwsp = VEBOX_HWS_PGA_GEN7;
552 			break;
553 		}
554 	} else if (IS_GEN(dev_priv, 6)) {
555 		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
556 	} else {
557 		hwsp = RING_HWS_PGA(engine->mmio_base);
558 	}
559 
560 	I915_WRITE(hwsp, offset);
561 	POSTING_READ(hwsp);
562 }
563 
564 static void flush_cs_tlb(struct intel_engine_cs *engine)
565 {
566 	struct drm_i915_private *dev_priv = engine->i915;
567 
568 	if (!IS_GEN_RANGE(dev_priv, 6, 7))
569 		return;
570 
571 	/* ring should be idle before issuing a sync flush*/
572 	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
573 
574 	ENGINE_WRITE(engine, RING_INSTPM,
575 		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
576 					INSTPM_SYNC_FLUSH));
577 	if (intel_wait_for_register(engine->uncore,
578 				    RING_INSTPM(engine->mmio_base),
579 				    INSTPM_SYNC_FLUSH, 0,
580 				    1000))
581 		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
582 			  engine->name);
583 }
584 
585 static void ring_setup_status_page(struct intel_engine_cs *engine)
586 {
587 	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
588 	set_hwstam(engine, ~0u);
589 
590 	flush_cs_tlb(engine);
591 }
592 
593 static bool stop_ring(struct intel_engine_cs *engine)
594 {
595 	struct drm_i915_private *dev_priv = engine->i915;
596 
597 	if (INTEL_GEN(dev_priv) > 2) {
598 		ENGINE_WRITE(engine,
599 			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
600 		if (intel_wait_for_register(engine->uncore,
601 					    RING_MI_MODE(engine->mmio_base),
602 					    MODE_IDLE,
603 					    MODE_IDLE,
604 					    1000)) {
605 			DRM_ERROR("%s : timed out trying to stop ring\n",
606 				  engine->name);
607 
608 			/*
609 			 * Sometimes we observe that the idle flag is not
610 			 * set even though the ring is empty. So double
611 			 * check before giving up.
612 			 */
613 			if (ENGINE_READ(engine, RING_HEAD) !=
614 			    ENGINE_READ(engine, RING_TAIL))
615 				return false;
616 		}
617 	}
618 
619 	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
620 
621 	ENGINE_WRITE(engine, RING_HEAD, 0);
622 	ENGINE_WRITE(engine, RING_TAIL, 0);
623 
624 	/* The ring must be empty before it is disabled */
625 	ENGINE_WRITE(engine, RING_CTL, 0);
626 
627 	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
628 }
629 
630 static int xcs_resume(struct intel_engine_cs *engine)
631 {
632 	struct drm_i915_private *dev_priv = engine->i915;
633 	struct intel_ring *ring = engine->legacy.ring;
634 	int ret = 0;
635 
636 	GEM_TRACE("%s: ring:{HEAD:%04x, TAIL:%04x}\n",
637 		  engine->name, ring->head, ring->tail);
638 
639 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
640 
641 	/* WaClearRingBufHeadRegAtInit:ctg,elk */
642 	if (!stop_ring(engine)) {
643 		/* G45 ring initialization often fails to reset head to zero */
644 		DRM_DEBUG_DRIVER("%s head not reset to zero "
645 				"ctl %08x head %08x tail %08x start %08x\n",
646 				engine->name,
647 				ENGINE_READ(engine, RING_CTL),
648 				ENGINE_READ(engine, RING_HEAD),
649 				ENGINE_READ(engine, RING_TAIL),
650 				ENGINE_READ(engine, RING_START));
651 
652 		if (!stop_ring(engine)) {
653 			DRM_ERROR("failed to set %s head to zero "
654 				  "ctl %08x head %08x tail %08x start %08x\n",
655 				  engine->name,
656 				  ENGINE_READ(engine, RING_CTL),
657 				  ENGINE_READ(engine, RING_HEAD),
658 				  ENGINE_READ(engine, RING_TAIL),
659 				  ENGINE_READ(engine, RING_START));
660 			ret = -EIO;
661 			goto out;
662 		}
663 	}
664 
665 	if (HWS_NEEDS_PHYSICAL(dev_priv))
666 		ring_setup_phys_status_page(engine);
667 	else
668 		ring_setup_status_page(engine);
669 
670 	intel_engine_reset_breadcrumbs(engine);
671 
672 	/* Enforce ordering by reading HEAD register back */
673 	ENGINE_POSTING_READ(engine, RING_HEAD);
674 
675 	/*
676 	 * Initialize the ring. This must happen _after_ we've cleared the ring
677 	 * registers with the above sequence (the readback of the HEAD registers
678 	 * also enforces ordering), otherwise the hw might lose the new ring
679 	 * register values.
680 	 */
681 	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
682 
683 	/* Check that the ring offsets point within the ring! */
684 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
685 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
686 	intel_ring_update_space(ring);
687 
688 	/* First wake the ring up to an empty/idle ring */
689 	ENGINE_WRITE(engine, RING_HEAD, ring->head);
690 	ENGINE_WRITE(engine, RING_TAIL, ring->head);
691 	ENGINE_POSTING_READ(engine, RING_TAIL);
692 
693 	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
694 
695 	/* If the head is still not zero, the ring is dead */
696 	if (intel_wait_for_register(engine->uncore,
697 				    RING_CTL(engine->mmio_base),
698 				    RING_VALID, RING_VALID,
699 				    50)) {
700 		DRM_ERROR("%s initialization failed "
701 			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
702 			  engine->name,
703 			  ENGINE_READ(engine, RING_CTL),
704 			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
705 			  ENGINE_READ(engine, RING_HEAD), ring->head,
706 			  ENGINE_READ(engine, RING_TAIL), ring->tail,
707 			  ENGINE_READ(engine, RING_START),
708 			  i915_ggtt_offset(ring->vma));
709 		ret = -EIO;
710 		goto out;
711 	}
712 
713 	if (INTEL_GEN(dev_priv) > 2)
714 		ENGINE_WRITE(engine,
715 			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
716 
717 	/* Now awake, let it get started */
718 	if (ring->tail != ring->head) {
719 		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
720 		ENGINE_POSTING_READ(engine, RING_TAIL);
721 	}
722 
723 	/* Papering over lost _interrupts_ immediately following the restart */
724 	intel_engine_queue_breadcrumbs(engine);
725 out:
726 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
727 
728 	return ret;
729 }
730 
731 static void reset_prepare(struct intel_engine_cs *engine)
732 {
733 	struct intel_uncore *uncore = engine->uncore;
734 	const u32 base = engine->mmio_base;
735 
736 	/*
737 	 * We stop engines, otherwise we might get failed reset and a
738 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
739 	 * from system hang if batchbuffer is progressing when
740 	 * the reset is issued, regardless of READY_TO_RESET ack.
741 	 * Thus assume it is best to stop engines on all gens
742 	 * where we have a gpu reset.
743 	 *
744 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
745 	 *
746 	 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
747 	 *
748 	 * FIXME: Wa for more modern gens needs to be validated
749 	 */
750 	GEM_TRACE("%s\n", engine->name);
751 
752 	if (intel_engine_stop_cs(engine))
753 		GEM_TRACE("%s: timed out on STOP_RING\n", engine->name);
754 
755 	intel_uncore_write_fw(uncore,
756 			      RING_HEAD(base),
757 			      intel_uncore_read_fw(uncore, RING_TAIL(base)));
758 	intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */
759 
760 	intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
761 	intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
762 	intel_uncore_posting_read_fw(uncore, RING_TAIL(base));
763 
764 	/* The ring must be empty before it is disabled */
765 	intel_uncore_write_fw(uncore, RING_CTL(base), 0);
766 
767 	/* Check acts as a post */
768 	if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
769 		GEM_TRACE("%s: ring head [%x] not parked\n",
770 			  engine->name,
771 			  intel_uncore_read_fw(uncore, RING_HEAD(base)));
772 }
773 
774 static void reset_ring(struct intel_engine_cs *engine, bool stalled)
775 {
776 	struct i915_request *pos, *rq;
777 	unsigned long flags;
778 	u32 head;
779 
780 	rq = NULL;
781 	spin_lock_irqsave(&engine->active.lock, flags);
782 	list_for_each_entry(pos, &engine->active.requests, sched.link) {
783 		if (!i915_request_completed(pos)) {
784 			rq = pos;
785 			break;
786 		}
787 	}
788 
789 	/*
790 	 * The guilty request will get skipped on a hung engine.
791 	 *
792 	 * Users of client default contexts do not rely on logical
793 	 * state preserved between batches so it is safe to execute
794 	 * queued requests following the hang. Non default contexts
795 	 * rely on preserved state, so skipping a batch loses the
796 	 * evolution of the state and it needs to be considered corrupted.
797 	 * Executing more queued batches on top of corrupted state is
798 	 * risky. But we take the risk by trying to advance through
799 	 * the queued requests in order to make the client behaviour
800 	 * more predictable around resets, by not throwing away random
801 	 * amount of batches it has prepared for execution. Sophisticated
802 	 * clients can use gem_reset_stats_ioctl and dma fence status
803 	 * (exported via sync_file info ioctl on explicit fences) to observe
804 	 * when it loses the context state and should rebuild accordingly.
805 	 *
806 	 * The context ban, and ultimately the client ban, mechanism are safety
807 	 * valves if client submission ends up resulting in nothing more than
808 	 * subsequent hangs.
809 	 */
810 
811 	if (rq) {
812 		/*
813 		 * Try to restore the logical GPU state to match the
814 		 * continuation of the request queue. If we skip the
815 		 * context/PD restore, then the next request may try to execute
816 		 * assuming that its context is valid and loaded on the GPU and
817 		 * so may try to access invalid memory, prompting repeated GPU
818 		 * hangs.
819 		 *
820 		 * If the request was guilty, we still restore the logical
821 		 * state in case the next request requires it (e.g. the
822 		 * aliasing ppgtt), but skip over the hung batch.
823 		 *
824 		 * If the request was innocent, we try to replay the request
825 		 * with the restored context.
826 		 */
827 		__i915_request_reset(rq, stalled);
828 
829 		GEM_BUG_ON(rq->ring != engine->legacy.ring);
830 		head = rq->head;
831 	} else {
832 		head = engine->legacy.ring->tail;
833 	}
834 	engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
835 
836 	spin_unlock_irqrestore(&engine->active.lock, flags);
837 }
838 
839 static void reset_finish(struct intel_engine_cs *engine)
840 {
841 }
842 
843 static int rcs_resume(struct intel_engine_cs *engine)
844 {
845 	struct drm_i915_private *dev_priv = engine->i915;
846 
847 	/*
848 	 * Disable CONSTANT_BUFFER before it is loaded from the context
849 	 * image. For as it is loaded, it is executed and the stored
850 	 * address may no longer be valid, leading to a GPU hang.
851 	 *
852 	 * This imposes the requirement that userspace reload their
853 	 * CONSTANT_BUFFER on every batch, fortunately a requirement
854 	 * they are already accustomed to from before contexts were
855 	 * enabled.
856 	 */
857 	if (IS_GEN(dev_priv, 4))
858 		I915_WRITE(ECOSKPD,
859 			   _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));
860 
861 	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
862 	if (IS_GEN_RANGE(dev_priv, 4, 6))
863 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
864 
865 	/* We need to disable the AsyncFlip performance optimisations in order
866 	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
867 	 * programmed to '1' on all products.
868 	 *
869 	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
870 	 */
871 	if (IS_GEN_RANGE(dev_priv, 6, 7))
872 		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
873 
874 	/* Required for the hardware to program scanline values for waiting */
875 	/* WaEnableFlushTlbInvalidationMode:snb */
876 	if (IS_GEN(dev_priv, 6))
877 		I915_WRITE(GFX_MODE,
878 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
879 
880 	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
881 	if (IS_GEN(dev_priv, 7))
882 		I915_WRITE(GFX_MODE_GEN7,
883 			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
884 			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
885 
886 	if (IS_GEN(dev_priv, 6)) {
887 		/* From the Sandybridge PRM, volume 1 part 3, page 24:
888 		 * "If this bit is set, STCunit will have LRA as replacement
889 		 *  policy. [...] This bit must be reset.  LRA replacement
890 		 *  policy is not supported."
891 		 */
892 		I915_WRITE(CACHE_MODE_0,
893 			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
894 	}
895 
896 	if (IS_GEN_RANGE(dev_priv, 6, 7))
897 		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
898 
899 	return xcs_resume(engine);
900 }
901 
902 static void cancel_requests(struct intel_engine_cs *engine)
903 {
904 	struct i915_request *request;
905 	unsigned long flags;
906 
907 	spin_lock_irqsave(&engine->active.lock, flags);
908 
909 	/* Mark all submitted requests as skipped. */
910 	list_for_each_entry(request, &engine->active.requests, sched.link) {
911 		if (!i915_request_signaled(request))
912 			dma_fence_set_error(&request->fence, -EIO);
913 
914 		i915_request_mark_complete(request);
915 	}
916 
917 	/* Remaining _unready_ requests will be nop'ed when submitted */
918 
919 	spin_unlock_irqrestore(&engine->active.lock, flags);
920 }
921 
922 static void i9xx_submit_request(struct i915_request *request)
923 {
924 	i915_request_submit(request);
925 	wmb(); /* paranoid flush writes out of the WCB before mmio */
926 
927 	ENGINE_WRITE(request->engine, RING_TAIL,
928 		     intel_ring_set_tail(request->ring, request->tail));
929 }
930 
931 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
932 {
933 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
934 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
935 
936 	*cs++ = MI_FLUSH;
937 
938 	*cs++ = MI_STORE_DWORD_INDEX;
939 	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
940 	*cs++ = rq->fence.seqno;
941 
942 	*cs++ = MI_USER_INTERRUPT;
943 	*cs++ = MI_NOOP;
944 
945 	rq->tail = intel_ring_offset(rq, cs);
946 	assert_ring_tail_valid(rq->ring, rq->tail);
947 
948 	return cs;
949 }
950 
951 #define GEN5_WA_STORES 8 /* must be at least 1! */
952 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
953 {
954 	int i;
955 
956 	GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
957 	GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
958 
959 	*cs++ = MI_FLUSH;
960 
961 	BUILD_BUG_ON(GEN5_WA_STORES < 1);
962 	for (i = 0; i < GEN5_WA_STORES; i++) {
963 		*cs++ = MI_STORE_DWORD_INDEX;
964 		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
965 		*cs++ = rq->fence.seqno;
966 	}
967 
968 	*cs++ = MI_USER_INTERRUPT;
969 
970 	rq->tail = intel_ring_offset(rq, cs);
971 	assert_ring_tail_valid(rq->ring, rq->tail);
972 
973 	return cs;
974 }
975 #undef GEN5_WA_STORES
976 
977 static void
978 gen5_irq_enable(struct intel_engine_cs *engine)
979 {
980 	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
981 }
982 
983 static void
984 gen5_irq_disable(struct intel_engine_cs *engine)
985 {
986 	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
987 }
988 
989 static void
990 i9xx_irq_enable(struct intel_engine_cs *engine)
991 {
992 	engine->i915->irq_mask &= ~engine->irq_enable_mask;
993 	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
994 	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
995 }
996 
997 static void
998 i9xx_irq_disable(struct intel_engine_cs *engine)
999 {
1000 	engine->i915->irq_mask |= engine->irq_enable_mask;
1001 	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1002 }
1003 
1004 static void
1005 i8xx_irq_enable(struct intel_engine_cs *engine)
1006 {
1007 	struct drm_i915_private *i915 = engine->i915;
1008 
1009 	i915->irq_mask &= ~engine->irq_enable_mask;
1010 	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1011 	ENGINE_POSTING_READ16(engine, RING_IMR);
1012 }
1013 
1014 static void
1015 i8xx_irq_disable(struct intel_engine_cs *engine)
1016 {
1017 	struct drm_i915_private *i915 = engine->i915;
1018 
1019 	i915->irq_mask |= engine->irq_enable_mask;
1020 	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1021 }
1022 
1023 static int
1024 bsd_ring_flush(struct i915_request *rq, u32 mode)
1025 {
1026 	u32 *cs;
1027 
1028 	cs = intel_ring_begin(rq, 2);
1029 	if (IS_ERR(cs))
1030 		return PTR_ERR(cs);
1031 
1032 	*cs++ = MI_FLUSH;
1033 	*cs++ = MI_NOOP;
1034 	intel_ring_advance(rq, cs);
1035 	return 0;
1036 }
1037 
1038 static void
1039 gen6_irq_enable(struct intel_engine_cs *engine)
1040 {
1041 	ENGINE_WRITE(engine, RING_IMR,
1042 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1043 
1044 	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1045 	ENGINE_POSTING_READ(engine, RING_IMR);
1046 
1047 	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1048 }
1049 
1050 static void
1051 gen6_irq_disable(struct intel_engine_cs *engine)
1052 {
1053 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1054 	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1055 }
1056 
1057 static void
1058 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1059 {
1060 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1061 
1062 	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1063 	ENGINE_POSTING_READ(engine, RING_IMR);
1064 
1065 	gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
1066 }
1067 
1068 static void
1069 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1070 {
1071 	ENGINE_WRITE(engine, RING_IMR, ~0);
1072 	gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
1073 }
1074 
1075 static int
1076 i965_emit_bb_start(struct i915_request *rq,
1077 		   u64 offset, u32 length,
1078 		   unsigned int dispatch_flags)
1079 {
1080 	u32 *cs;
1081 
1082 	cs = intel_ring_begin(rq, 2);
1083 	if (IS_ERR(cs))
1084 		return PTR_ERR(cs);
1085 
1086 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1087 		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1088 	*cs++ = offset;
1089 	intel_ring_advance(rq, cs);
1090 
1091 	return 0;
1092 }
1093 
1094 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1095 #define I830_BATCH_LIMIT SZ_256K
1096 #define I830_TLB_ENTRIES (2)
1097 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1098 static int
1099 i830_emit_bb_start(struct i915_request *rq,
1100 		   u64 offset, u32 len,
1101 		   unsigned int dispatch_flags)
1102 {
1103 	u32 *cs, cs_offset =
1104 		intel_gt_scratch_offset(rq->engine->gt,
1105 					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1106 
1107 	GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1108 
1109 	cs = intel_ring_begin(rq, 6);
1110 	if (IS_ERR(cs))
1111 		return PTR_ERR(cs);
1112 
1113 	/* Evict the invalid PTE TLBs */
1114 	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1115 	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1116 	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1117 	*cs++ = cs_offset;
1118 	*cs++ = 0xdeadbeef;
1119 	*cs++ = MI_NOOP;
1120 	intel_ring_advance(rq, cs);
1121 
1122 	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1123 		if (len > I830_BATCH_LIMIT)
1124 			return -ENOSPC;
1125 
1126 		cs = intel_ring_begin(rq, 6 + 2);
1127 		if (IS_ERR(cs))
1128 			return PTR_ERR(cs);
1129 
1130 		/* Blit the batch (which has now all relocs applied) to the
1131 		 * stable batch scratch bo area (so that the CS never
1132 		 * stumbles over its tlb invalidation bug) ...
1133 		 */
1134 		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1135 		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1136 		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1137 		*cs++ = cs_offset;
1138 		*cs++ = 4096;
1139 		*cs++ = offset;
1140 
1141 		*cs++ = MI_FLUSH;
1142 		*cs++ = MI_NOOP;
1143 		intel_ring_advance(rq, cs);
1144 
1145 		/* ... and execute it. */
1146 		offset = cs_offset;
1147 	}
1148 
1149 	cs = intel_ring_begin(rq, 2);
1150 	if (IS_ERR(cs))
1151 		return PTR_ERR(cs);
1152 
1153 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1154 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1155 		MI_BATCH_NON_SECURE);
1156 	intel_ring_advance(rq, cs);
1157 
1158 	return 0;
1159 }
1160 
1161 static int
1162 i915_emit_bb_start(struct i915_request *rq,
1163 		   u64 offset, u32 len,
1164 		   unsigned int dispatch_flags)
1165 {
1166 	u32 *cs;
1167 
1168 	cs = intel_ring_begin(rq, 2);
1169 	if (IS_ERR(cs))
1170 		return PTR_ERR(cs);
1171 
1172 	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1173 	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1174 		MI_BATCH_NON_SECURE);
1175 	intel_ring_advance(rq, cs);
1176 
1177 	return 0;
1178 }
1179 
1180 static void __ring_context_fini(struct intel_context *ce)
1181 {
1182 	i915_vma_put(ce->state);
1183 }
1184 
1185 static void ring_context_destroy(struct kref *ref)
1186 {
1187 	struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1188 
1189 	GEM_BUG_ON(intel_context_is_pinned(ce));
1190 
1191 	if (ce->state)
1192 		__ring_context_fini(ce);
1193 
1194 	intel_context_fini(ce);
1195 	intel_context_free(ce);
1196 }
1197 
1198 static struct i915_address_space *vm_alias(struct intel_context *ce)
1199 {
1200 	struct i915_address_space *vm;
1201 
1202 	vm = ce->vm;
1203 	if (i915_is_ggtt(vm))
1204 		vm = &i915_vm_to_ggtt(vm)->alias->vm;
1205 
1206 	return vm;
1207 }
1208 
1209 static int __context_pin_ppgtt(struct intel_context *ce)
1210 {
1211 	struct i915_address_space *vm;
1212 	int err = 0;
1213 
1214 	vm = vm_alias(ce);
1215 	if (vm)
1216 		err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1217 
1218 	return err;
1219 }
1220 
1221 static void __context_unpin_ppgtt(struct intel_context *ce)
1222 {
1223 	struct i915_address_space *vm;
1224 
1225 	vm = vm_alias(ce);
1226 	if (vm)
1227 		gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1228 }
1229 
1230 static void ring_context_unpin(struct intel_context *ce)
1231 {
1232 	__context_unpin_ppgtt(ce);
1233 }
1234 
1235 static struct i915_vma *
1236 alloc_context_vma(struct intel_engine_cs *engine)
1237 {
1238 	struct drm_i915_private *i915 = engine->i915;
1239 	struct drm_i915_gem_object *obj;
1240 	struct i915_vma *vma;
1241 	int err;
1242 
1243 	obj = i915_gem_object_create_shmem(i915, engine->context_size);
1244 	if (IS_ERR(obj))
1245 		return ERR_CAST(obj);
1246 
1247 	/*
1248 	 * Try to make the context utilize L3 as well as LLC.
1249 	 *
1250 	 * On VLV we don't have L3 controls in the PTEs so we
1251 	 * shouldn't touch the cache level, especially as that
1252 	 * would make the object snooped which might have a
1253 	 * negative performance impact.
1254 	 *
1255 	 * Snooping is required on non-llc platforms in execlist
1256 	 * mode, but since all GGTT accesses use PAT entry 0 we
1257 	 * get snooping anyway regardless of cache_level.
1258 	 *
1259 	 * This is only applicable for Ivy Bridge devices since
1260 	 * later platforms don't have L3 control bits in the PTE.
1261 	 */
1262 	if (IS_IVYBRIDGE(i915))
1263 		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1264 
1265 	if (engine->default_state) {
1266 		void *defaults, *vaddr;
1267 
1268 		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1269 		if (IS_ERR(vaddr)) {
1270 			err = PTR_ERR(vaddr);
1271 			goto err_obj;
1272 		}
1273 
1274 		defaults = i915_gem_object_pin_map(engine->default_state,
1275 						   I915_MAP_WB);
1276 		if (IS_ERR(defaults)) {
1277 			err = PTR_ERR(defaults);
1278 			goto err_map;
1279 		}
1280 
1281 		memcpy(vaddr, defaults, engine->context_size);
1282 		i915_gem_object_unpin_map(engine->default_state);
1283 
1284 		i915_gem_object_flush_map(obj);
1285 		i915_gem_object_unpin_map(obj);
1286 	}
1287 
1288 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1289 	if (IS_ERR(vma)) {
1290 		err = PTR_ERR(vma);
1291 		goto err_obj;
1292 	}
1293 
1294 	return vma;
1295 
1296 err_map:
1297 	i915_gem_object_unpin_map(obj);
1298 err_obj:
1299 	i915_gem_object_put(obj);
1300 	return ERR_PTR(err);
1301 }
1302 
1303 static int ring_context_alloc(struct intel_context *ce)
1304 {
1305 	struct intel_engine_cs *engine = ce->engine;
1306 
1307 	/* One ringbuffer to rule them all */
1308 	GEM_BUG_ON(!engine->legacy.ring);
1309 	ce->ring = engine->legacy.ring;
1310 	ce->timeline = intel_timeline_get(engine->legacy.timeline);
1311 
1312 	GEM_BUG_ON(ce->state);
1313 	if (engine->context_size) {
1314 		struct i915_vma *vma;
1315 
1316 		vma = alloc_context_vma(engine);
1317 		if (IS_ERR(vma))
1318 			return PTR_ERR(vma);
1319 
1320 		ce->state = vma;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 static int ring_context_pin(struct intel_context *ce)
1327 {
1328 	int err;
1329 
1330 	err = intel_context_active_acquire(ce);
1331 	if (err)
1332 		return err;
1333 
1334 	err = __context_pin_ppgtt(ce);
1335 	if (err)
1336 		goto err_active;
1337 
1338 	return 0;
1339 
1340 err_active:
1341 	intel_context_active_release(ce);
1342 	return err;
1343 }
1344 
1345 static void ring_context_reset(struct intel_context *ce)
1346 {
1347 	intel_ring_reset(ce->ring, 0);
1348 }
1349 
1350 static const struct intel_context_ops ring_context_ops = {
1351 	.alloc = ring_context_alloc,
1352 
1353 	.pin = ring_context_pin,
1354 	.unpin = ring_context_unpin,
1355 
1356 	.enter = intel_context_enter_engine,
1357 	.exit = intel_context_exit_engine,
1358 
1359 	.reset = ring_context_reset,
1360 	.destroy = ring_context_destroy,
1361 };
1362 
1363 static int load_pd_dir(struct i915_request *rq, const struct i915_ppgtt *ppgtt)
1364 {
1365 	const struct intel_engine_cs * const engine = rq->engine;
1366 	u32 *cs;
1367 
1368 	cs = intel_ring_begin(rq, 6);
1369 	if (IS_ERR(cs))
1370 		return PTR_ERR(cs);
1371 
1372 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1373 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1374 	*cs++ = PP_DIR_DCLV_2G;
1375 
1376 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1377 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1378 	*cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1379 
1380 	intel_ring_advance(rq, cs);
1381 
1382 	return 0;
1383 }
1384 
1385 static int flush_pd_dir(struct i915_request *rq)
1386 {
1387 	const struct intel_engine_cs * const engine = rq->engine;
1388 	u32 *cs;
1389 
1390 	cs = intel_ring_begin(rq, 4);
1391 	if (IS_ERR(cs))
1392 		return PTR_ERR(cs);
1393 
1394 	/* Stall until the page table load is complete */
1395 	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1396 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1397 	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
1398 					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1399 	*cs++ = MI_NOOP;
1400 
1401 	intel_ring_advance(rq, cs);
1402 	return 0;
1403 }
1404 
1405 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1406 {
1407 	struct drm_i915_private *i915 = rq->i915;
1408 	struct intel_engine_cs *engine = rq->engine;
1409 	enum intel_engine_id id;
1410 	const int num_engines =
1411 		IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1412 	bool force_restore = false;
1413 	int len;
1414 	u32 *cs;
1415 
1416 	len = 4;
1417 	if (IS_GEN(i915, 7))
1418 		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1419 	else if (IS_GEN(i915, 5))
1420 		len += 2;
1421 	if (flags & MI_FORCE_RESTORE) {
1422 		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1423 		flags &= ~MI_FORCE_RESTORE;
1424 		force_restore = true;
1425 		len += 2;
1426 	}
1427 
1428 	cs = intel_ring_begin(rq, len);
1429 	if (IS_ERR(cs))
1430 		return PTR_ERR(cs);
1431 
1432 	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1433 	if (IS_GEN(i915, 7)) {
1434 		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1435 		if (num_engines) {
1436 			struct intel_engine_cs *signaller;
1437 
1438 			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1439 			for_each_engine(signaller, engine->gt, id) {
1440 				if (signaller == engine)
1441 					continue;
1442 
1443 				*cs++ = i915_mmio_reg_offset(
1444 					   RING_PSMI_CTL(signaller->mmio_base));
1445 				*cs++ = _MASKED_BIT_ENABLE(
1446 						GEN6_PSMI_SLEEP_MSG_DISABLE);
1447 			}
1448 		}
1449 	} else if (IS_GEN(i915, 5)) {
1450 		/*
1451 		 * This w/a is only listed for pre-production ilk a/b steppings,
1452 		 * but is also mentioned for programming the powerctx. To be
1453 		 * safe, just apply the workaround; we do not use SyncFlush so
1454 		 * this should never take effect and so be a no-op!
1455 		 */
1456 		*cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1457 	}
1458 
1459 	if (force_restore) {
1460 		/*
1461 		 * The HW doesn't handle being told to restore the current
1462 		 * context very well. Quite often it likes goes to go off and
1463 		 * sulk, especially when it is meant to be reloading PP_DIR.
1464 		 * A very simple fix to force the reload is to simply switch
1465 		 * away from the current context and back again.
1466 		 *
1467 		 * Note that the kernel_context will contain random state
1468 		 * following the INHIBIT_RESTORE. We accept this since we
1469 		 * never use the kernel_context state; it is merely a
1470 		 * placeholder we use to flush other contexts.
1471 		 */
1472 		*cs++ = MI_SET_CONTEXT;
1473 		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1474 			MI_MM_SPACE_GTT |
1475 			MI_RESTORE_INHIBIT;
1476 	}
1477 
1478 	*cs++ = MI_NOOP;
1479 	*cs++ = MI_SET_CONTEXT;
1480 	*cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1481 	/*
1482 	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1483 	 * WaMiSetContext_Hang:snb,ivb,vlv
1484 	 */
1485 	*cs++ = MI_NOOP;
1486 
1487 	if (IS_GEN(i915, 7)) {
1488 		if (num_engines) {
1489 			struct intel_engine_cs *signaller;
1490 			i915_reg_t last_reg = {}; /* keep gcc quiet */
1491 
1492 			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1493 			for_each_engine(signaller, engine->gt, id) {
1494 				if (signaller == engine)
1495 					continue;
1496 
1497 				last_reg = RING_PSMI_CTL(signaller->mmio_base);
1498 				*cs++ = i915_mmio_reg_offset(last_reg);
1499 				*cs++ = _MASKED_BIT_DISABLE(
1500 						GEN6_PSMI_SLEEP_MSG_DISABLE);
1501 			}
1502 
1503 			/* Insert a delay before the next switch! */
1504 			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1505 			*cs++ = i915_mmio_reg_offset(last_reg);
1506 			*cs++ = intel_gt_scratch_offset(engine->gt,
1507 							INTEL_GT_SCRATCH_FIELD_DEFAULT);
1508 			*cs++ = MI_NOOP;
1509 		}
1510 		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1511 	} else if (IS_GEN(i915, 5)) {
1512 		*cs++ = MI_SUSPEND_FLUSH;
1513 	}
1514 
1515 	intel_ring_advance(rq, cs);
1516 
1517 	return 0;
1518 }
1519 
1520 static int remap_l3_slice(struct i915_request *rq, int slice)
1521 {
1522 	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1523 	int i;
1524 
1525 	if (!remap_info)
1526 		return 0;
1527 
1528 	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1529 	if (IS_ERR(cs))
1530 		return PTR_ERR(cs);
1531 
1532 	/*
1533 	 * Note: We do not worry about the concurrent register cacheline hang
1534 	 * here because no other code should access these registers other than
1535 	 * at initialization time.
1536 	 */
1537 	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1538 	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1539 		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1540 		*cs++ = remap_info[i];
1541 	}
1542 	*cs++ = MI_NOOP;
1543 	intel_ring_advance(rq, cs);
1544 
1545 	return 0;
1546 }
1547 
1548 static int remap_l3(struct i915_request *rq)
1549 {
1550 	struct i915_gem_context *ctx = rq->gem_context;
1551 	int i, err;
1552 
1553 	if (!ctx->remap_slice)
1554 		return 0;
1555 
1556 	for (i = 0; i < MAX_L3_SLICES; i++) {
1557 		if (!(ctx->remap_slice & BIT(i)))
1558 			continue;
1559 
1560 		err = remap_l3_slice(rq, i);
1561 		if (err)
1562 			return err;
1563 	}
1564 
1565 	ctx->remap_slice = 0;
1566 	return 0;
1567 }
1568 
1569 static int switch_context(struct i915_request *rq)
1570 {
1571 	struct intel_context *ce = rq->hw_context;
1572 	struct i915_address_space *vm = vm_alias(ce);
1573 	int ret;
1574 
1575 	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1576 
1577 	if (vm) {
1578 		ret = load_pd_dir(rq, i915_vm_to_ppgtt(vm));
1579 		if (ret)
1580 			return ret;
1581 	}
1582 
1583 	if (ce->state) {
1584 		u32 flags;
1585 
1586 		GEM_BUG_ON(rq->engine->id != RCS0);
1587 
1588 		/* For resource streamer on HSW+ and power context elsewhere */
1589 		BUILD_BUG_ON(HSW_MI_RS_SAVE_STATE_EN != MI_SAVE_EXT_STATE_EN);
1590 		BUILD_BUG_ON(HSW_MI_RS_RESTORE_STATE_EN != MI_RESTORE_EXT_STATE_EN);
1591 
1592 		flags = MI_SAVE_EXT_STATE_EN | MI_MM_SPACE_GTT;
1593 		if (!i915_gem_context_is_kernel(rq->gem_context))
1594 			flags |= MI_RESTORE_EXT_STATE_EN;
1595 		else
1596 			flags |= MI_RESTORE_INHIBIT;
1597 
1598 		ret = mi_set_context(rq, flags);
1599 		if (ret)
1600 			return ret;
1601 	}
1602 
1603 	if (vm) {
1604 		struct intel_engine_cs *engine = rq->engine;
1605 
1606 		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1607 		if (ret)
1608 			return ret;
1609 
1610 		ret = flush_pd_dir(rq);
1611 		if (ret)
1612 			return ret;
1613 
1614 		/*
1615 		 * Not only do we need a full barrier (post-sync write) after
1616 		 * invalidating the TLBs, but we need to wait a little bit
1617 		 * longer. Whether this is merely delaying us, or the
1618 		 * subsequent flush is a key part of serialising with the
1619 		 * post-sync op, this extra pass appears vital before a
1620 		 * mm switch!
1621 		 */
1622 		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1623 		if (ret)
1624 			return ret;
1625 
1626 		ret = engine->emit_flush(rq, EMIT_FLUSH);
1627 		if (ret)
1628 			return ret;
1629 	}
1630 
1631 	ret = remap_l3(rq);
1632 	if (ret)
1633 		return ret;
1634 
1635 	return 0;
1636 }
1637 
1638 static int ring_request_alloc(struct i915_request *request)
1639 {
1640 	int ret;
1641 
1642 	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1643 	GEM_BUG_ON(i915_request_timeline(request)->has_initial_breadcrumb);
1644 
1645 	/*
1646 	 * Flush enough space to reduce the likelihood of waiting after
1647 	 * we start building the request - in which case we will just
1648 	 * have to repeat work.
1649 	 */
1650 	request->reserved_space += LEGACY_REQUEST_SIZE;
1651 
1652 	/* Unconditionally invalidate GPU caches and TLBs. */
1653 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1654 	if (ret)
1655 		return ret;
1656 
1657 	ret = switch_context(request);
1658 	if (ret)
1659 		return ret;
1660 
1661 	request->reserved_space -= LEGACY_REQUEST_SIZE;
1662 	return 0;
1663 }
1664 
1665 static void gen6_bsd_submit_request(struct i915_request *request)
1666 {
1667 	struct intel_uncore *uncore = request->engine->uncore;
1668 
1669 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1670 
1671        /* Every tail move must follow the sequence below */
1672 
1673 	/* Disable notification that the ring is IDLE. The GT
1674 	 * will then assume that it is busy and bring it out of rc6.
1675 	 */
1676 	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1677 			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1678 
1679 	/* Clear the context id. Here be magic! */
1680 	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
1681 
1682 	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1683 	if (__intel_wait_for_register_fw(uncore,
1684 					 GEN6_BSD_SLEEP_PSMI_CONTROL,
1685 					 GEN6_BSD_SLEEP_INDICATOR,
1686 					 0,
1687 					 1000, 0, NULL))
1688 		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1689 
1690 	/* Now that the ring is fully powered up, update the tail */
1691 	i9xx_submit_request(request);
1692 
1693 	/* Let the ring send IDLE messages to the GT again,
1694 	 * and so let it sleep to conserve power when idle.
1695 	 */
1696 	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
1697 			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1698 
1699 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1700 }
1701 
1702 static int mi_flush_dw(struct i915_request *rq, u32 flags)
1703 {
1704 	u32 cmd, *cs;
1705 
1706 	cs = intel_ring_begin(rq, 4);
1707 	if (IS_ERR(cs))
1708 		return PTR_ERR(cs);
1709 
1710 	cmd = MI_FLUSH_DW;
1711 
1712 	/*
1713 	 * We always require a command barrier so that subsequent
1714 	 * commands, such as breadcrumb interrupts, are strictly ordered
1715 	 * wrt the contents of the write cache being flushed to memory
1716 	 * (and thus being coherent from the CPU).
1717 	 */
1718 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1719 
1720 	/*
1721 	 * Bspec vol 1c.3 - blitter engine command streamer:
1722 	 * "If ENABLED, all TLBs will be invalidated once the flush
1723 	 * operation is complete. This bit is only valid when the
1724 	 * Post-Sync Operation field is a value of 1h or 3h."
1725 	 */
1726 	cmd |= flags;
1727 
1728 	*cs++ = cmd;
1729 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1730 	*cs++ = 0;
1731 	*cs++ = MI_NOOP;
1732 
1733 	intel_ring_advance(rq, cs);
1734 
1735 	return 0;
1736 }
1737 
1738 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
1739 {
1740 	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
1741 }
1742 
1743 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1744 {
1745 	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
1746 }
1747 
1748 static int
1749 hsw_emit_bb_start(struct i915_request *rq,
1750 		  u64 offset, u32 len,
1751 		  unsigned int dispatch_flags)
1752 {
1753 	u32 *cs;
1754 
1755 	cs = intel_ring_begin(rq, 2);
1756 	if (IS_ERR(cs))
1757 		return PTR_ERR(cs);
1758 
1759 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1760 		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
1761 	/* bit0-7 is the length on GEN6+ */
1762 	*cs++ = offset;
1763 	intel_ring_advance(rq, cs);
1764 
1765 	return 0;
1766 }
1767 
1768 static int
1769 gen6_emit_bb_start(struct i915_request *rq,
1770 		   u64 offset, u32 len,
1771 		   unsigned int dispatch_flags)
1772 {
1773 	u32 *cs;
1774 
1775 	cs = intel_ring_begin(rq, 2);
1776 	if (IS_ERR(cs))
1777 		return PTR_ERR(cs);
1778 
1779 	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1780 		0 : MI_BATCH_NON_SECURE_I965);
1781 	/* bit0-7 is the length on GEN6+ */
1782 	*cs++ = offset;
1783 	intel_ring_advance(rq, cs);
1784 
1785 	return 0;
1786 }
1787 
1788 /* Blitter support (SandyBridge+) */
1789 
1790 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1791 {
1792 	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
1793 }
1794 
1795 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1796 {
1797 	engine->submit_request = i9xx_submit_request;
1798 	engine->cancel_requests = cancel_requests;
1799 
1800 	engine->park = NULL;
1801 	engine->unpark = NULL;
1802 }
1803 
1804 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1805 {
1806 	i9xx_set_default_submission(engine);
1807 	engine->submit_request = gen6_bsd_submit_request;
1808 }
1809 
1810 static void ring_destroy(struct intel_engine_cs *engine)
1811 {
1812 	struct drm_i915_private *dev_priv = engine->i915;
1813 
1814 	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1815 		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
1816 
1817 	intel_engine_cleanup_common(engine);
1818 
1819 	intel_ring_unpin(engine->legacy.ring);
1820 	intel_ring_put(engine->legacy.ring);
1821 
1822 	intel_timeline_unpin(engine->legacy.timeline);
1823 	intel_timeline_put(engine->legacy.timeline);
1824 
1825 	kfree(engine);
1826 }
1827 
1828 static void setup_irq(struct intel_engine_cs *engine)
1829 {
1830 	struct drm_i915_private *i915 = engine->i915;
1831 
1832 	if (INTEL_GEN(i915) >= 6) {
1833 		engine->irq_enable = gen6_irq_enable;
1834 		engine->irq_disable = gen6_irq_disable;
1835 	} else if (INTEL_GEN(i915) >= 5) {
1836 		engine->irq_enable = gen5_irq_enable;
1837 		engine->irq_disable = gen5_irq_disable;
1838 	} else if (INTEL_GEN(i915) >= 3) {
1839 		engine->irq_enable = i9xx_irq_enable;
1840 		engine->irq_disable = i9xx_irq_disable;
1841 	} else {
1842 		engine->irq_enable = i8xx_irq_enable;
1843 		engine->irq_disable = i8xx_irq_disable;
1844 	}
1845 }
1846 
1847 static void setup_common(struct intel_engine_cs *engine)
1848 {
1849 	struct drm_i915_private *i915 = engine->i915;
1850 
1851 	/* gen8+ are only supported with execlists */
1852 	GEM_BUG_ON(INTEL_GEN(i915) >= 8);
1853 
1854 	setup_irq(engine);
1855 
1856 	engine->destroy = ring_destroy;
1857 
1858 	engine->resume = xcs_resume;
1859 	engine->reset.prepare = reset_prepare;
1860 	engine->reset.reset = reset_ring;
1861 	engine->reset.finish = reset_finish;
1862 
1863 	engine->cops = &ring_context_ops;
1864 	engine->request_alloc = ring_request_alloc;
1865 
1866 	/*
1867 	 * Using a global execution timeline; the previous final breadcrumb is
1868 	 * equivalent to our next initial bread so we can elide
1869 	 * engine->emit_init_breadcrumb().
1870 	 */
1871 	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
1872 	if (IS_GEN(i915, 5))
1873 		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
1874 
1875 	engine->set_default_submission = i9xx_set_default_submission;
1876 
1877 	if (INTEL_GEN(i915) >= 6)
1878 		engine->emit_bb_start = gen6_emit_bb_start;
1879 	else if (INTEL_GEN(i915) >= 4)
1880 		engine->emit_bb_start = i965_emit_bb_start;
1881 	else if (IS_I830(i915) || IS_I845G(i915))
1882 		engine->emit_bb_start = i830_emit_bb_start;
1883 	else
1884 		engine->emit_bb_start = i915_emit_bb_start;
1885 }
1886 
1887 static void setup_rcs(struct intel_engine_cs *engine)
1888 {
1889 	struct drm_i915_private *i915 = engine->i915;
1890 
1891 	if (HAS_L3_DPF(i915))
1892 		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1893 
1894 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1895 
1896 	if (INTEL_GEN(i915) >= 7) {
1897 		engine->emit_flush = gen7_render_ring_flush;
1898 		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
1899 	} else if (IS_GEN(i915, 6)) {
1900 		engine->emit_flush = gen6_render_ring_flush;
1901 		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
1902 	} else if (IS_GEN(i915, 5)) {
1903 		engine->emit_flush = gen4_render_ring_flush;
1904 	} else {
1905 		if (INTEL_GEN(i915) < 4)
1906 			engine->emit_flush = gen2_render_ring_flush;
1907 		else
1908 			engine->emit_flush = gen4_render_ring_flush;
1909 		engine->irq_enable_mask = I915_USER_INTERRUPT;
1910 	}
1911 
1912 	if (IS_HASWELL(i915))
1913 		engine->emit_bb_start = hsw_emit_bb_start;
1914 
1915 	engine->resume = rcs_resume;
1916 }
1917 
1918 static void setup_vcs(struct intel_engine_cs *engine)
1919 {
1920 	struct drm_i915_private *i915 = engine->i915;
1921 
1922 	if (INTEL_GEN(i915) >= 6) {
1923 		/* gen6 bsd needs a special wa for tail updates */
1924 		if (IS_GEN(i915, 6))
1925 			engine->set_default_submission = gen6_bsd_set_default_submission;
1926 		engine->emit_flush = gen6_bsd_ring_flush;
1927 		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1928 
1929 		if (IS_GEN(i915, 6))
1930 			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1931 		else
1932 			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1933 	} else {
1934 		engine->emit_flush = bsd_ring_flush;
1935 		if (IS_GEN(i915, 5))
1936 			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1937 		else
1938 			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1939 	}
1940 }
1941 
1942 static void setup_bcs(struct intel_engine_cs *engine)
1943 {
1944 	struct drm_i915_private *i915 = engine->i915;
1945 
1946 	engine->emit_flush = gen6_ring_flush;
1947 	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1948 
1949 	if (IS_GEN(i915, 6))
1950 		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
1951 	else
1952 		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1953 }
1954 
1955 static void setup_vecs(struct intel_engine_cs *engine)
1956 {
1957 	struct drm_i915_private *i915 = engine->i915;
1958 
1959 	GEM_BUG_ON(INTEL_GEN(i915) < 7);
1960 
1961 	engine->emit_flush = gen6_ring_flush;
1962 	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1963 	engine->irq_enable = hsw_vebox_irq_enable;
1964 	engine->irq_disable = hsw_vebox_irq_disable;
1965 
1966 	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
1967 }
1968 
1969 int intel_ring_submission_setup(struct intel_engine_cs *engine)
1970 {
1971 	setup_common(engine);
1972 
1973 	switch (engine->class) {
1974 	case RENDER_CLASS:
1975 		setup_rcs(engine);
1976 		break;
1977 	case VIDEO_DECODE_CLASS:
1978 		setup_vcs(engine);
1979 		break;
1980 	case COPY_ENGINE_CLASS:
1981 		setup_bcs(engine);
1982 		break;
1983 	case VIDEO_ENHANCEMENT_CLASS:
1984 		setup_vecs(engine);
1985 		break;
1986 	default:
1987 		MISSING_CASE(engine->class);
1988 		return -ENODEV;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 int intel_ring_submission_init(struct intel_engine_cs *engine)
1995 {
1996 	struct intel_timeline *timeline;
1997 	struct intel_ring *ring;
1998 	int err;
1999 
2000 	timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
2001 	if (IS_ERR(timeline)) {
2002 		err = PTR_ERR(timeline);
2003 		goto err;
2004 	}
2005 	GEM_BUG_ON(timeline->has_initial_breadcrumb);
2006 
2007 	err = intel_timeline_pin(timeline);
2008 	if (err)
2009 		goto err_timeline;
2010 
2011 	ring = intel_engine_create_ring(engine, SZ_16K);
2012 	if (IS_ERR(ring)) {
2013 		err = PTR_ERR(ring);
2014 		goto err_timeline_unpin;
2015 	}
2016 
2017 	err = intel_ring_pin(ring);
2018 	if (err)
2019 		goto err_ring;
2020 
2021 	GEM_BUG_ON(engine->legacy.ring);
2022 	engine->legacy.ring = ring;
2023 	engine->legacy.timeline = timeline;
2024 
2025 	err = intel_engine_init_common(engine);
2026 	if (err)
2027 		goto err_ring_unpin;
2028 
2029 	GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
2030 
2031 	return 0;
2032 
2033 err_ring_unpin:
2034 	intel_ring_unpin(ring);
2035 err_ring:
2036 	intel_ring_put(ring);
2037 err_timeline_unpin:
2038 	intel_timeline_unpin(timeline);
2039 err_timeline:
2040 	intel_timeline_put(timeline);
2041 err:
2042 	intel_engine_cleanup_common(engine);
2043 	return err;
2044 }
2045