xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_reset.c (revision fa0dadde)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008-2018 Intel Corporation
4  */
5 
6 #include <linux/sched/mm.h>
7 #include <linux/stop_machine.h>
8 #include <linux/string_helpers.h>
9 
10 #include "display/intel_display.h"
11 #include "display/intel_overlay.h"
12 
13 #include "gem/i915_gem_context.h"
14 
15 #include "gt/intel_gt_regs.h"
16 
17 #include "gt/uc/intel_gsc_fw.h"
18 
19 #include "i915_drv.h"
20 #include "i915_file_private.h"
21 #include "i915_gpu_error.h"
22 #include "i915_irq.h"
23 #include "intel_breadcrumbs.h"
24 #include "intel_engine_pm.h"
25 #include "intel_engine_regs.h"
26 #include "intel_gt.h"
27 #include "intel_gt_pm.h"
28 #include "intel_gt_requests.h"
29 #include "intel_mchbar_regs.h"
30 #include "intel_pci_config.h"
31 #include "intel_reset.h"
32 
33 #include "uc/intel_guc.h"
34 
35 #define RESET_MAX_RETRIES 3
36 
37 /* XXX How to handle concurrent GGTT updates using tiling registers? */
38 #define RESET_UNDER_STOP_MACHINE 0
39 
40 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
41 {
42 	struct drm_i915_file_private *file_priv = ctx->file_priv;
43 	unsigned long prev_hang;
44 	unsigned int score;
45 
46 	if (IS_ERR_OR_NULL(file_priv))
47 		return;
48 
49 	score = 0;
50 	if (banned)
51 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
52 
53 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
54 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
55 		score += I915_CLIENT_SCORE_HANG_FAST;
56 
57 	if (score) {
58 		atomic_add(score, &file_priv->ban_score);
59 
60 		drm_dbg(&ctx->i915->drm,
61 			"client %s: gained %u ban score, now %u\n",
62 			ctx->name, score,
63 			atomic_read(&file_priv->ban_score));
64 	}
65 }
66 
67 static bool mark_guilty(struct i915_request *rq)
68 {
69 	struct i915_gem_context *ctx;
70 	unsigned long prev_hang;
71 	bool banned;
72 	int i;
73 
74 	if (intel_context_is_closed(rq->context))
75 		return true;
76 
77 	rcu_read_lock();
78 	ctx = rcu_dereference(rq->context->gem_context);
79 	if (ctx && !kref_get_unless_zero(&ctx->ref))
80 		ctx = NULL;
81 	rcu_read_unlock();
82 	if (!ctx)
83 		return intel_context_is_banned(rq->context);
84 
85 	atomic_inc(&ctx->guilty_count);
86 
87 	/* Cool contexts are too cool to be banned! (Used for reset testing.) */
88 	if (!i915_gem_context_is_bannable(ctx)) {
89 		banned = false;
90 		goto out;
91 	}
92 
93 	drm_notice(&ctx->i915->drm,
94 		   "%s context reset due to GPU hang\n",
95 		   ctx->name);
96 
97 	/* Record the timestamp for the last N hangs */
98 	prev_hang = ctx->hang_timestamp[0];
99 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
100 		ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
101 	ctx->hang_timestamp[i] = jiffies;
102 
103 	/* If we have hung N+1 times in rapid succession, we ban the context! */
104 	banned = !i915_gem_context_is_recoverable(ctx);
105 	if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
106 		banned = true;
107 	if (banned)
108 		drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
109 			ctx->name, atomic_read(&ctx->guilty_count));
110 
111 	client_mark_guilty(ctx, banned);
112 
113 out:
114 	i915_gem_context_put(ctx);
115 	return banned;
116 }
117 
118 static void mark_innocent(struct i915_request *rq)
119 {
120 	struct i915_gem_context *ctx;
121 
122 	rcu_read_lock();
123 	ctx = rcu_dereference(rq->context->gem_context);
124 	if (ctx)
125 		atomic_inc(&ctx->active_count);
126 	rcu_read_unlock();
127 }
128 
129 void __i915_request_reset(struct i915_request *rq, bool guilty)
130 {
131 	bool banned = false;
132 
133 	RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty));
134 	GEM_BUG_ON(__i915_request_is_complete(rq));
135 
136 	rcu_read_lock(); /* protect the GEM context */
137 	if (guilty) {
138 		i915_request_set_error_once(rq, -EIO);
139 		__i915_request_skip(rq);
140 		banned = mark_guilty(rq);
141 	} else {
142 		i915_request_set_error_once(rq, -EAGAIN);
143 		mark_innocent(rq);
144 	}
145 	rcu_read_unlock();
146 
147 	if (banned)
148 		intel_context_ban(rq->context, rq);
149 }
150 
151 static bool i915_in_reset(struct pci_dev *pdev)
152 {
153 	u8 gdrst;
154 
155 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
156 	return gdrst & GRDOM_RESET_STATUS;
157 }
158 
159 static int i915_do_reset(struct intel_gt *gt,
160 			 intel_engine_mask_t engine_mask,
161 			 unsigned int retry)
162 {
163 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
164 	int err;
165 
166 	/* Assert reset for at least 20 usec, and wait for acknowledgement. */
167 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
168 	udelay(50);
169 	err = wait_for_atomic(i915_in_reset(pdev), 50);
170 
171 	/* Clear the reset request. */
172 	pci_write_config_byte(pdev, I915_GDRST, 0);
173 	udelay(50);
174 	if (!err)
175 		err = wait_for_atomic(!i915_in_reset(pdev), 50);
176 
177 	return err;
178 }
179 
180 static bool g4x_reset_complete(struct pci_dev *pdev)
181 {
182 	u8 gdrst;
183 
184 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
185 	return (gdrst & GRDOM_RESET_ENABLE) == 0;
186 }
187 
188 static int g33_do_reset(struct intel_gt *gt,
189 			intel_engine_mask_t engine_mask,
190 			unsigned int retry)
191 {
192 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
193 
194 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
195 	return wait_for_atomic(g4x_reset_complete(pdev), 50);
196 }
197 
198 static int g4x_do_reset(struct intel_gt *gt,
199 			intel_engine_mask_t engine_mask,
200 			unsigned int retry)
201 {
202 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
203 	struct intel_uncore *uncore = gt->uncore;
204 	int ret;
205 
206 	/* WaVcpClkGateDisableForMediaReset:ctg,elk */
207 	intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE);
208 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
209 
210 	pci_write_config_byte(pdev, I915_GDRST,
211 			      GRDOM_MEDIA | GRDOM_RESET_ENABLE);
212 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
213 	if (ret) {
214 		GT_TRACE(gt, "Wait for media reset failed\n");
215 		goto out;
216 	}
217 
218 	pci_write_config_byte(pdev, I915_GDRST,
219 			      GRDOM_RENDER | GRDOM_RESET_ENABLE);
220 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
221 	if (ret) {
222 		GT_TRACE(gt, "Wait for render reset failed\n");
223 		goto out;
224 	}
225 
226 out:
227 	pci_write_config_byte(pdev, I915_GDRST, 0);
228 
229 	intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0);
230 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
231 
232 	return ret;
233 }
234 
235 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
236 			unsigned int retry)
237 {
238 	struct intel_uncore *uncore = gt->uncore;
239 	int ret;
240 
241 	intel_uncore_write_fw(uncore, ILK_GDSR,
242 			      ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
243 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
244 					   ILK_GRDOM_RESET_ENABLE, 0,
245 					   5000, 0,
246 					   NULL);
247 	if (ret) {
248 		GT_TRACE(gt, "Wait for render reset failed\n");
249 		goto out;
250 	}
251 
252 	intel_uncore_write_fw(uncore, ILK_GDSR,
253 			      ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
254 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
255 					   ILK_GRDOM_RESET_ENABLE, 0,
256 					   5000, 0,
257 					   NULL);
258 	if (ret) {
259 		GT_TRACE(gt, "Wait for media reset failed\n");
260 		goto out;
261 	}
262 
263 out:
264 	intel_uncore_write_fw(uncore, ILK_GDSR, 0);
265 	intel_uncore_posting_read_fw(uncore, ILK_GDSR);
266 	return ret;
267 }
268 
269 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
270 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
271 {
272 	struct intel_uncore *uncore = gt->uncore;
273 	int loops;
274 	int err;
275 
276 	/*
277 	 * On some platforms, e.g. Jasperlake, we see that the engine register
278 	 * state is not cleared until shortly after GDRST reports completion,
279 	 * causing a failure as we try to immediately resume while the internal
280 	 * state is still in flux. If we immediately repeat the reset, the
281 	 * second reset appears to serialise with the first, and since it is a
282 	 * no-op, the registers should retain their reset value. However, there
283 	 * is still a concern that upon leaving the second reset, the internal
284 	 * engine state is still in flux and not ready for resuming.
285 	 *
286 	 * Starting on MTL, there are some prep steps that we need to do when
287 	 * resetting some engines that need to be applied every time we write to
288 	 * GEN6_GDRST. As those are time consuming (tens of ms), we don't want
289 	 * to perform that twice, so, since the Jasperlake issue hasn't been
290 	 * observed on MTL, we avoid repeating the reset on newer platforms.
291 	 */
292 	loops = GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70) ? 2 : 1;
293 
294 	/*
295 	 * GEN6_GDRST is not in the gt power well, no need to check
296 	 * for fifo space for the write or forcewake the chip for
297 	 * the read
298 	 */
299 	do {
300 		intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
301 
302 		/* Wait for the device to ack the reset requests. */
303 		err = __intel_wait_for_register_fw(uncore, GEN6_GDRST,
304 						   hw_domain_mask, 0,
305 						   2000, 0,
306 						   NULL);
307 	} while (err == 0 && --loops);
308 	if (err)
309 		GT_TRACE(gt,
310 			 "Wait for 0x%08x engines reset failed\n",
311 			 hw_domain_mask);
312 
313 	/*
314 	 * As we have observed that the engine state is still volatile
315 	 * after GDRST is acked, impose a small delay to let everything settle.
316 	 */
317 	udelay(50);
318 
319 	return err;
320 }
321 
322 static int __gen6_reset_engines(struct intel_gt *gt,
323 				intel_engine_mask_t engine_mask,
324 				unsigned int retry)
325 {
326 	struct intel_engine_cs *engine;
327 	u32 hw_mask;
328 
329 	if (engine_mask == ALL_ENGINES) {
330 		hw_mask = GEN6_GRDOM_FULL;
331 	} else {
332 		intel_engine_mask_t tmp;
333 
334 		hw_mask = 0;
335 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
336 			hw_mask |= engine->reset_domain;
337 		}
338 	}
339 
340 	return gen6_hw_domain_reset(gt, hw_mask);
341 }
342 
343 static int gen6_reset_engines(struct intel_gt *gt,
344 			      intel_engine_mask_t engine_mask,
345 			      unsigned int retry)
346 {
347 	unsigned long flags;
348 	int ret;
349 
350 	spin_lock_irqsave(&gt->uncore->lock, flags);
351 	ret = __gen6_reset_engines(gt, engine_mask, retry);
352 	spin_unlock_irqrestore(&gt->uncore->lock, flags);
353 
354 	return ret;
355 }
356 
357 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine)
358 {
359 	int vecs_id;
360 
361 	GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS);
362 
363 	vecs_id = _VECS((engine->instance) / 2);
364 
365 	return engine->gt->engine[vecs_id];
366 }
367 
368 struct sfc_lock_data {
369 	i915_reg_t lock_reg;
370 	i915_reg_t ack_reg;
371 	i915_reg_t usage_reg;
372 	u32 lock_bit;
373 	u32 ack_bit;
374 	u32 usage_bit;
375 	u32 reset_bit;
376 };
377 
378 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine,
379 				     struct sfc_lock_data *sfc_lock)
380 {
381 	switch (engine->class) {
382 	default:
383 		MISSING_CASE(engine->class);
384 		fallthrough;
385 	case VIDEO_DECODE_CLASS:
386 		sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base);
387 		sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
388 
389 		sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
390 		sfc_lock->ack_bit  = GEN11_VCS_SFC_LOCK_ACK_BIT;
391 
392 		sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
393 		sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT;
394 		sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
395 
396 		break;
397 	case VIDEO_ENHANCEMENT_CLASS:
398 		sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base);
399 		sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
400 
401 		sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base);
402 		sfc_lock->ack_bit  = GEN11_VECS_SFC_LOCK_ACK_BIT;
403 
404 		sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base);
405 		sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT;
406 		sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
407 
408 		break;
409 	}
410 }
411 
412 static int gen11_lock_sfc(struct intel_engine_cs *engine,
413 			  u32 *reset_mask,
414 			  u32 *unlock_mask)
415 {
416 	struct intel_uncore *uncore = engine->uncore;
417 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
418 	struct sfc_lock_data sfc_lock;
419 	bool lock_obtained, lock_to_other = false;
420 	int ret;
421 
422 	switch (engine->class) {
423 	case VIDEO_DECODE_CLASS:
424 		if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
425 			return 0;
426 
427 		fallthrough;
428 	case VIDEO_ENHANCEMENT_CLASS:
429 		get_sfc_forced_lock_data(engine, &sfc_lock);
430 
431 		break;
432 	default:
433 		return 0;
434 	}
435 
436 	if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) {
437 		struct intel_engine_cs *paired_vecs;
438 
439 		if (engine->class != VIDEO_DECODE_CLASS ||
440 		    GRAPHICS_VER(engine->i915) != 12)
441 			return 0;
442 
443 		/*
444 		 * Wa_14010733141
445 		 *
446 		 * If the VCS-MFX isn't using the SFC, we also need to check
447 		 * whether VCS-HCP is using it.  If so, we need to issue a *VE*
448 		 * forced lock on the VE engine that shares the same SFC.
449 		 */
450 		if (!(intel_uncore_read_fw(uncore,
451 					   GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) &
452 		      GEN12_HCP_SFC_USAGE_BIT))
453 			return 0;
454 
455 		paired_vecs = find_sfc_paired_vecs_engine(engine);
456 		get_sfc_forced_lock_data(paired_vecs, &sfc_lock);
457 		lock_to_other = true;
458 		*unlock_mask |= paired_vecs->mask;
459 	} else {
460 		*unlock_mask |= engine->mask;
461 	}
462 
463 	/*
464 	 * If the engine is using an SFC, tell the engine that a software reset
465 	 * is going to happen. The engine will then try to force lock the SFC.
466 	 * If SFC ends up being locked to the engine we want to reset, we have
467 	 * to reset it as well (we will unlock it once the reset sequence is
468 	 * completed).
469 	 */
470 	intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit);
471 
472 	ret = __intel_wait_for_register_fw(uncore,
473 					   sfc_lock.ack_reg,
474 					   sfc_lock.ack_bit,
475 					   sfc_lock.ack_bit,
476 					   1000, 0, NULL);
477 
478 	/*
479 	 * Was the SFC released while we were trying to lock it?
480 	 *
481 	 * We should reset both the engine and the SFC if:
482 	 *  - We were locking the SFC to this engine and the lock succeeded
483 	 *       OR
484 	 *  - We were locking the SFC to a different engine (Wa_14010733141)
485 	 *    but the SFC was released before the lock was obtained.
486 	 *
487 	 * Otherwise we need only reset the engine by itself and we can
488 	 * leave the SFC alone.
489 	 */
490 	lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) &
491 			sfc_lock.usage_bit) != 0;
492 	if (lock_obtained == lock_to_other)
493 		return 0;
494 
495 	if (ret) {
496 		ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n");
497 		return ret;
498 	}
499 
500 	*reset_mask |= sfc_lock.reset_bit;
501 	return 0;
502 }
503 
504 static void gen11_unlock_sfc(struct intel_engine_cs *engine)
505 {
506 	struct intel_uncore *uncore = engine->uncore;
507 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
508 	struct sfc_lock_data sfc_lock = {};
509 
510 	if (engine->class != VIDEO_DECODE_CLASS &&
511 	    engine->class != VIDEO_ENHANCEMENT_CLASS)
512 		return;
513 
514 	if (engine->class == VIDEO_DECODE_CLASS &&
515 	    (BIT(engine->instance) & vdbox_sfc_access) == 0)
516 		return;
517 
518 	get_sfc_forced_lock_data(engine, &sfc_lock);
519 
520 	intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0);
521 }
522 
523 static int __gen11_reset_engines(struct intel_gt *gt,
524 				 intel_engine_mask_t engine_mask,
525 				 unsigned int retry)
526 {
527 	struct intel_engine_cs *engine;
528 	intel_engine_mask_t tmp;
529 	u32 reset_mask, unlock_mask = 0;
530 	int ret;
531 
532 	if (engine_mask == ALL_ENGINES) {
533 		reset_mask = GEN11_GRDOM_FULL;
534 	} else {
535 		reset_mask = 0;
536 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
537 			reset_mask |= engine->reset_domain;
538 			ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask);
539 			if (ret)
540 				goto sfc_unlock;
541 		}
542 	}
543 
544 	ret = gen6_hw_domain_reset(gt, reset_mask);
545 
546 sfc_unlock:
547 	/*
548 	 * We unlock the SFC based on the lock status and not the result of
549 	 * gen11_lock_sfc to make sure that we clean properly if something
550 	 * wrong happened during the lock (e.g. lock acquired after timeout
551 	 * expiration).
552 	 *
553 	 * Due to Wa_14010733141, we may have locked an SFC to an engine that
554 	 * wasn't being reset.  So instead of calling gen11_unlock_sfc()
555 	 * on engine_mask, we instead call it on the mask of engines that our
556 	 * gen11_lock_sfc() calls told us actually had locks attempted.
557 	 */
558 	for_each_engine_masked(engine, gt, unlock_mask, tmp)
559 		gen11_unlock_sfc(engine);
560 
561 	return ret;
562 }
563 
564 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
565 {
566 	struct intel_uncore *uncore = engine->uncore;
567 	const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
568 	u32 request, mask, ack;
569 	int ret;
570 
571 	if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1)))
572 		return -ETIMEDOUT;
573 
574 	ack = intel_uncore_read_fw(uncore, reg);
575 	if (ack & RESET_CTL_CAT_ERROR) {
576 		/*
577 		 * For catastrophic errors, ready-for-reset sequence
578 		 * needs to be bypassed: HAS#396813
579 		 */
580 		request = RESET_CTL_CAT_ERROR;
581 		mask = RESET_CTL_CAT_ERROR;
582 
583 		/* Catastrophic errors need to be cleared by HW */
584 		ack = 0;
585 	} else if (!(ack & RESET_CTL_READY_TO_RESET)) {
586 		request = RESET_CTL_REQUEST_RESET;
587 		mask = RESET_CTL_READY_TO_RESET;
588 		ack = RESET_CTL_READY_TO_RESET;
589 	} else {
590 		return 0;
591 	}
592 
593 	intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
594 	ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
595 					   700, 0, NULL);
596 	if (ret)
597 		drm_err(&engine->i915->drm,
598 			"%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
599 			engine->name, request,
600 			intel_uncore_read_fw(uncore, reg));
601 
602 	return ret;
603 }
604 
605 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
606 {
607 	intel_uncore_write_fw(engine->uncore,
608 			      RING_RESET_CTL(engine->mmio_base),
609 			      _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
610 }
611 
612 static int gen8_reset_engines(struct intel_gt *gt,
613 			      intel_engine_mask_t engine_mask,
614 			      unsigned int retry)
615 {
616 	struct intel_engine_cs *engine;
617 	const bool reset_non_ready = retry >= 1;
618 	intel_engine_mask_t tmp;
619 	unsigned long flags;
620 	int ret;
621 
622 	spin_lock_irqsave(&gt->uncore->lock, flags);
623 
624 	for_each_engine_masked(engine, gt, engine_mask, tmp) {
625 		ret = gen8_engine_reset_prepare(engine);
626 		if (ret && !reset_non_ready)
627 			goto skip_reset;
628 
629 		/*
630 		 * If this is not the first failed attempt to prepare,
631 		 * we decide to proceed anyway.
632 		 *
633 		 * By doing so we risk context corruption and with
634 		 * some gens (kbl), possible system hang if reset
635 		 * happens during active bb execution.
636 		 *
637 		 * We rather take context corruption instead of
638 		 * failed reset with a wedged driver/gpu. And
639 		 * active bb execution case should be covered by
640 		 * stop_engines() we have before the reset.
641 		 */
642 	}
643 
644 	/*
645 	 * Wa_22011100796:dg2, whenever Full soft reset is required,
646 	 * reset all individual engines firstly, and then do a full soft reset.
647 	 *
648 	 * This is best effort, so ignore any error from the initial reset.
649 	 */
650 	if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES)
651 		__gen11_reset_engines(gt, gt->info.engine_mask, 0);
652 
653 	if (GRAPHICS_VER(gt->i915) >= 11)
654 		ret = __gen11_reset_engines(gt, engine_mask, retry);
655 	else
656 		ret = __gen6_reset_engines(gt, engine_mask, retry);
657 
658 skip_reset:
659 	for_each_engine_masked(engine, gt, engine_mask, tmp)
660 		gen8_engine_reset_cancel(engine);
661 
662 	spin_unlock_irqrestore(&gt->uncore->lock, flags);
663 
664 	return ret;
665 }
666 
667 static int mock_reset(struct intel_gt *gt,
668 		      intel_engine_mask_t mask,
669 		      unsigned int retry)
670 {
671 	return 0;
672 }
673 
674 typedef int (*reset_func)(struct intel_gt *,
675 			  intel_engine_mask_t engine_mask,
676 			  unsigned int retry);
677 
678 static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
679 {
680 	struct drm_i915_private *i915 = gt->i915;
681 
682 	if (is_mock_gt(gt))
683 		return mock_reset;
684 	else if (GRAPHICS_VER(i915) >= 8)
685 		return gen8_reset_engines;
686 	else if (GRAPHICS_VER(i915) >= 6)
687 		return gen6_reset_engines;
688 	else if (GRAPHICS_VER(i915) >= 5)
689 		return ilk_do_reset;
690 	else if (IS_G4X(i915))
691 		return g4x_do_reset;
692 	else if (IS_G33(i915) || IS_PINEVIEW(i915))
693 		return g33_do_reset;
694 	else if (GRAPHICS_VER(i915) >= 3)
695 		return i915_do_reset;
696 	else
697 		return NULL;
698 }
699 
700 static int __reset_guc(struct intel_gt *gt)
701 {
702 	u32 guc_domain =
703 		GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
704 
705 	return gen6_hw_domain_reset(gt, guc_domain);
706 }
707 
708 static bool needs_wa_14015076503(struct intel_gt *gt, intel_engine_mask_t engine_mask)
709 {
710 	if (!IS_METEORLAKE(gt->i915) || !HAS_ENGINE(gt, GSC0))
711 		return false;
712 
713 	if (!__HAS_ENGINE(engine_mask, GSC0))
714 		return false;
715 
716 	return intel_gsc_uc_fw_init_done(&gt->uc.gsc);
717 }
718 
719 static intel_engine_mask_t
720 wa_14015076503_start(struct intel_gt *gt, intel_engine_mask_t engine_mask, bool first)
721 {
722 	if (!needs_wa_14015076503(gt, engine_mask))
723 		return engine_mask;
724 
725 	/*
726 	 * wa_14015076503: if the GSC FW is loaded, we need to alert it that
727 	 * we're going to do a GSC engine reset and then wait for 200ms for the
728 	 * FW to get ready for it. However, if this is the first ALL_ENGINES
729 	 * reset attempt and the GSC is not busy, we can try to instead reset
730 	 * the GuC and all the other engines individually to avoid the 200ms
731 	 * wait.
732 	 * Skipping the GSC engine is safe because, differently from other
733 	 * engines, the GSCCS only role is to forward the commands to the GSC
734 	 * FW, so it doesn't have any HW outside of the CS itself and therefore
735 	 * it has no state that we don't explicitly re-init on resume or on
736 	 * context switch LRC or power context). The HW for the GSC uC is
737 	 * managed by the GSC FW so we don't need to care about that.
738 	 */
739 	if (engine_mask == ALL_ENGINES && first && intel_engine_is_idle(gt->engine[GSC0])) {
740 		__reset_guc(gt);
741 		engine_mask = gt->info.engine_mask & ~BIT(GSC0);
742 	} else {
743 		intel_uncore_rmw(gt->uncore,
744 				 HECI_H_GS1(MTL_GSC_HECI2_BASE),
745 				 0, HECI_H_GS1_ER_PREP);
746 
747 		/* make sure the reset bit is clear when writing the CSR reg */
748 		intel_uncore_rmw(gt->uncore,
749 				 HECI_H_CSR(MTL_GSC_HECI2_BASE),
750 				 HECI_H_CSR_RST, HECI_H_CSR_IG);
751 		msleep(200);
752 	}
753 
754 	return engine_mask;
755 }
756 
757 static void
758 wa_14015076503_end(struct intel_gt *gt, intel_engine_mask_t engine_mask)
759 {
760 	if (!needs_wa_14015076503(gt, engine_mask))
761 		return;
762 
763 	intel_uncore_rmw(gt->uncore,
764 			 HECI_H_GS1(MTL_GSC_HECI2_BASE),
765 			 HECI_H_GS1_ER_PREP, 0);
766 }
767 
768 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
769 {
770 	const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
771 	reset_func reset;
772 	int ret = -ETIMEDOUT;
773 	int retry;
774 
775 	reset = intel_get_gpu_reset(gt);
776 	if (!reset)
777 		return -ENODEV;
778 
779 	/*
780 	 * If the power well sleeps during the reset, the reset
781 	 * request may be dropped and never completes (causing -EIO).
782 	 */
783 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
784 	for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
785 		intel_engine_mask_t reset_mask;
786 
787 		reset_mask = wa_14015076503_start(gt, engine_mask, !retry);
788 
789 		GT_TRACE(gt, "engine_mask=%x\n", reset_mask);
790 		preempt_disable();
791 		ret = reset(gt, reset_mask, retry);
792 		preempt_enable();
793 
794 		wa_14015076503_end(gt, reset_mask);
795 	}
796 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
797 
798 	return ret;
799 }
800 
801 bool intel_has_gpu_reset(const struct intel_gt *gt)
802 {
803 	if (!gt->i915->params.reset)
804 		return NULL;
805 
806 	return intel_get_gpu_reset(gt);
807 }
808 
809 bool intel_has_reset_engine(const struct intel_gt *gt)
810 {
811 	if (gt->i915->params.reset < 2)
812 		return false;
813 
814 	return INTEL_INFO(gt->i915)->has_reset_engine;
815 }
816 
817 int intel_reset_guc(struct intel_gt *gt)
818 {
819 	int ret;
820 
821 	GEM_BUG_ON(!HAS_GT_UC(gt->i915));
822 
823 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
824 	ret = __reset_guc(gt);
825 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
826 
827 	return ret;
828 }
829 
830 /*
831  * Ensure irq handler finishes, and not run again.
832  * Also return the active request so that we only search for it once.
833  */
834 static void reset_prepare_engine(struct intel_engine_cs *engine)
835 {
836 	/*
837 	 * During the reset sequence, we must prevent the engine from
838 	 * entering RC6. As the context state is undefined until we restart
839 	 * the engine, if it does enter RC6 during the reset, the state
840 	 * written to the powercontext is undefined and so we may lose
841 	 * GPU state upon resume, i.e. fail to restart after a reset.
842 	 */
843 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
844 	if (engine->reset.prepare)
845 		engine->reset.prepare(engine);
846 }
847 
848 static void revoke_mmaps(struct intel_gt *gt)
849 {
850 	int i;
851 
852 	for (i = 0; i < gt->ggtt->num_fences; i++) {
853 		struct drm_vma_offset_node *node;
854 		struct i915_vma *vma;
855 		u64 vma_offset;
856 
857 		vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
858 		if (!vma)
859 			continue;
860 
861 		if (!i915_vma_has_userfault(vma))
862 			continue;
863 
864 		GEM_BUG_ON(vma->fence != &gt->ggtt->fence_regs[i]);
865 
866 		if (!vma->mmo)
867 			continue;
868 
869 		node = &vma->mmo->vma_node;
870 		vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
871 
872 		unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
873 				    drm_vma_node_offset_addr(node) + vma_offset,
874 				    vma->size,
875 				    1);
876 	}
877 }
878 
879 static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
880 {
881 	struct intel_engine_cs *engine;
882 	intel_engine_mask_t awake = 0;
883 	enum intel_engine_id id;
884 
885 	/* For GuC mode, ensure submission is disabled before stopping ring */
886 	intel_uc_reset_prepare(&gt->uc);
887 
888 	for_each_engine(engine, gt, id) {
889 		if (intel_engine_pm_get_if_awake(engine))
890 			awake |= engine->mask;
891 		reset_prepare_engine(engine);
892 	}
893 
894 	return awake;
895 }
896 
897 static void gt_revoke(struct intel_gt *gt)
898 {
899 	revoke_mmaps(gt);
900 }
901 
902 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
903 {
904 	struct intel_engine_cs *engine;
905 	enum intel_engine_id id;
906 	int err;
907 
908 	/*
909 	 * Everything depends on having the GTT running, so we need to start
910 	 * there.
911 	 */
912 	err = i915_ggtt_enable_hw(gt->i915);
913 	if (err)
914 		return err;
915 
916 	local_bh_disable();
917 	for_each_engine(engine, gt, id)
918 		__intel_engine_reset(engine, stalled_mask & engine->mask);
919 	local_bh_enable();
920 
921 	intel_uc_reset(&gt->uc, ALL_ENGINES);
922 
923 	intel_ggtt_restore_fences(gt->ggtt);
924 
925 	return err;
926 }
927 
928 static void reset_finish_engine(struct intel_engine_cs *engine)
929 {
930 	if (engine->reset.finish)
931 		engine->reset.finish(engine);
932 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
933 
934 	intel_engine_signal_breadcrumbs(engine);
935 }
936 
937 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
938 {
939 	struct intel_engine_cs *engine;
940 	enum intel_engine_id id;
941 
942 	for_each_engine(engine, gt, id) {
943 		reset_finish_engine(engine);
944 		if (awake & engine->mask)
945 			intel_engine_pm_put(engine);
946 	}
947 
948 	intel_uc_reset_finish(&gt->uc);
949 }
950 
951 static void nop_submit_request(struct i915_request *request)
952 {
953 	RQ_TRACE(request, "-EIO\n");
954 
955 	request = i915_request_mark_eio(request);
956 	if (request) {
957 		i915_request_submit(request);
958 		intel_engine_signal_breadcrumbs(request->engine);
959 
960 		i915_request_put(request);
961 	}
962 }
963 
964 static void __intel_gt_set_wedged(struct intel_gt *gt)
965 {
966 	struct intel_engine_cs *engine;
967 	intel_engine_mask_t awake;
968 	enum intel_engine_id id;
969 
970 	if (test_bit(I915_WEDGED, &gt->reset.flags))
971 		return;
972 
973 	GT_TRACE(gt, "start\n");
974 
975 	/*
976 	 * First, stop submission to hw, but do not yet complete requests by
977 	 * rolling the global seqno forward (since this would complete requests
978 	 * for which we haven't set the fence error to EIO yet).
979 	 */
980 	awake = reset_prepare(gt);
981 
982 	/* Even if the GPU reset fails, it should still stop the engines */
983 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
984 		__intel_gt_reset(gt, ALL_ENGINES);
985 
986 	for_each_engine(engine, gt, id)
987 		engine->submit_request = nop_submit_request;
988 
989 	/*
990 	 * Make sure no request can slip through without getting completed by
991 	 * either this call here to intel_engine_write_global_seqno, or the one
992 	 * in nop_submit_request.
993 	 */
994 	synchronize_rcu_expedited();
995 	set_bit(I915_WEDGED, &gt->reset.flags);
996 
997 	/* Mark all executing requests as skipped */
998 	local_bh_disable();
999 	for_each_engine(engine, gt, id)
1000 		if (engine->reset.cancel)
1001 			engine->reset.cancel(engine);
1002 	intel_uc_cancel_requests(&gt->uc);
1003 	local_bh_enable();
1004 
1005 	reset_finish(gt, awake);
1006 
1007 	GT_TRACE(gt, "end\n");
1008 }
1009 
1010 void intel_gt_set_wedged(struct intel_gt *gt)
1011 {
1012 	intel_wakeref_t wakeref;
1013 
1014 	if (test_bit(I915_WEDGED, &gt->reset.flags))
1015 		return;
1016 
1017 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1018 	mutex_lock(&gt->reset.mutex);
1019 
1020 	if (GEM_SHOW_DEBUG()) {
1021 		struct drm_printer p = drm_debug_printer(__func__);
1022 		struct intel_engine_cs *engine;
1023 		enum intel_engine_id id;
1024 
1025 		drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
1026 		for_each_engine(engine, gt, id) {
1027 			if (intel_engine_is_idle(engine))
1028 				continue;
1029 
1030 			intel_engine_dump(engine, &p, "%s\n", engine->name);
1031 		}
1032 	}
1033 
1034 	__intel_gt_set_wedged(gt);
1035 
1036 	mutex_unlock(&gt->reset.mutex);
1037 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1038 }
1039 
1040 static bool __intel_gt_unset_wedged(struct intel_gt *gt)
1041 {
1042 	struct intel_gt_timelines *timelines = &gt->timelines;
1043 	struct intel_timeline *tl;
1044 	bool ok;
1045 
1046 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
1047 		return true;
1048 
1049 	/* Never fully initialised, recovery impossible */
1050 	if (intel_gt_has_unrecoverable_error(gt))
1051 		return false;
1052 
1053 	GT_TRACE(gt, "start\n");
1054 
1055 	/*
1056 	 * Before unwedging, make sure that all pending operations
1057 	 * are flushed and errored out - we may have requests waiting upon
1058 	 * third party fences. We marked all inflight requests as EIO, and
1059 	 * every execbuf since returned EIO, for consistency we want all
1060 	 * the currently pending requests to also be marked as EIO, which
1061 	 * is done inside our nop_submit_request - and so we must wait.
1062 	 *
1063 	 * No more can be submitted until we reset the wedged bit.
1064 	 */
1065 	spin_lock(&timelines->lock);
1066 	list_for_each_entry(tl, &timelines->active_list, link) {
1067 		struct dma_fence *fence;
1068 
1069 		fence = i915_active_fence_get(&tl->last_request);
1070 		if (!fence)
1071 			continue;
1072 
1073 		spin_unlock(&timelines->lock);
1074 
1075 		/*
1076 		 * All internal dependencies (i915_requests) will have
1077 		 * been flushed by the set-wedge, but we may be stuck waiting
1078 		 * for external fences. These should all be capped to 10s
1079 		 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded
1080 		 * in the worst case.
1081 		 */
1082 		dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
1083 		dma_fence_put(fence);
1084 
1085 		/* Restart iteration after droping lock */
1086 		spin_lock(&timelines->lock);
1087 		tl = list_entry(&timelines->active_list, typeof(*tl), link);
1088 	}
1089 	spin_unlock(&timelines->lock);
1090 
1091 	/* We must reset pending GPU events before restoring our submission */
1092 	ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
1093 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1094 		ok = __intel_gt_reset(gt, ALL_ENGINES) == 0;
1095 	if (!ok) {
1096 		/*
1097 		 * Warn CI about the unrecoverable wedged condition.
1098 		 * Time for a reboot.
1099 		 */
1100 		add_taint_for_CI(gt->i915, TAINT_WARN);
1101 		return false;
1102 	}
1103 
1104 	/*
1105 	 * Undo nop_submit_request. We prevent all new i915 requests from
1106 	 * being queued (by disallowing execbuf whilst wedged) so having
1107 	 * waited for all active requests above, we know the system is idle
1108 	 * and do not have to worry about a thread being inside
1109 	 * engine->submit_request() as we swap over. So unlike installing
1110 	 * the nop_submit_request on reset, we can do this from normal
1111 	 * context and do not require stop_machine().
1112 	 */
1113 	intel_engines_reset_default_submission(gt);
1114 
1115 	GT_TRACE(gt, "end\n");
1116 
1117 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
1118 	clear_bit(I915_WEDGED, &gt->reset.flags);
1119 
1120 	return true;
1121 }
1122 
1123 bool intel_gt_unset_wedged(struct intel_gt *gt)
1124 {
1125 	bool result;
1126 
1127 	mutex_lock(&gt->reset.mutex);
1128 	result = __intel_gt_unset_wedged(gt);
1129 	mutex_unlock(&gt->reset.mutex);
1130 
1131 	return result;
1132 }
1133 
1134 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
1135 {
1136 	int err, i;
1137 
1138 	err = __intel_gt_reset(gt, ALL_ENGINES);
1139 	for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
1140 		msleep(10 * (i + 1));
1141 		err = __intel_gt_reset(gt, ALL_ENGINES);
1142 	}
1143 	if (err)
1144 		return err;
1145 
1146 	return gt_reset(gt, stalled_mask);
1147 }
1148 
1149 static int resume(struct intel_gt *gt)
1150 {
1151 	struct intel_engine_cs *engine;
1152 	enum intel_engine_id id;
1153 	int ret;
1154 
1155 	for_each_engine(engine, gt, id) {
1156 		ret = intel_engine_resume(engine);
1157 		if (ret)
1158 			return ret;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 /**
1165  * intel_gt_reset - reset chip after a hang
1166  * @gt: #intel_gt to reset
1167  * @stalled_mask: mask of the stalled engines with the guilty requests
1168  * @reason: user error message for why we are resetting
1169  *
1170  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1171  * on failure.
1172  *
1173  * Procedure is fairly simple:
1174  *   - reset the chip using the reset reg
1175  *   - re-init context state
1176  *   - re-init hardware status page
1177  *   - re-init ring buffer
1178  *   - re-init interrupt state
1179  *   - re-init display
1180  */
1181 void intel_gt_reset(struct intel_gt *gt,
1182 		    intel_engine_mask_t stalled_mask,
1183 		    const char *reason)
1184 {
1185 	intel_engine_mask_t awake;
1186 	int ret;
1187 
1188 	GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
1189 
1190 	might_sleep();
1191 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1192 
1193 	/*
1194 	 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence
1195 	 * critical section like gpu reset.
1196 	 */
1197 	gt_revoke(gt);
1198 
1199 	mutex_lock(&gt->reset.mutex);
1200 
1201 	/* Clear any previous failed attempts at recovery. Time to try again. */
1202 	if (!__intel_gt_unset_wedged(gt))
1203 		goto unlock;
1204 
1205 	if (reason)
1206 		drm_notice(&gt->i915->drm,
1207 			   "Resetting chip for %s\n", reason);
1208 	atomic_inc(&gt->i915->gpu_error.reset_count);
1209 
1210 	awake = reset_prepare(gt);
1211 
1212 	if (!intel_has_gpu_reset(gt)) {
1213 		if (gt->i915->params.reset)
1214 			drm_err(&gt->i915->drm, "GPU reset not supported\n");
1215 		else
1216 			drm_dbg(&gt->i915->drm, "GPU reset disabled\n");
1217 		goto error;
1218 	}
1219 
1220 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1221 		intel_runtime_pm_disable_interrupts(gt->i915);
1222 
1223 	if (do_reset(gt, stalled_mask)) {
1224 		drm_err(&gt->i915->drm, "Failed to reset chip\n");
1225 		goto taint;
1226 	}
1227 
1228 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1229 		intel_runtime_pm_enable_interrupts(gt->i915);
1230 
1231 	intel_overlay_reset(gt->i915);
1232 
1233 	/*
1234 	 * Next we need to restore the context, but we don't use those
1235 	 * yet either...
1236 	 *
1237 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1238 	 * was running at the time of the reset (i.e. we weren't VT
1239 	 * switched away).
1240 	 */
1241 	ret = intel_gt_init_hw(gt);
1242 	if (ret) {
1243 		drm_err(&gt->i915->drm,
1244 			"Failed to initialise HW following reset (%d)\n",
1245 			ret);
1246 		goto taint;
1247 	}
1248 
1249 	ret = resume(gt);
1250 	if (ret)
1251 		goto taint;
1252 
1253 finish:
1254 	reset_finish(gt, awake);
1255 unlock:
1256 	mutex_unlock(&gt->reset.mutex);
1257 	return;
1258 
1259 taint:
1260 	/*
1261 	 * History tells us that if we cannot reset the GPU now, we
1262 	 * never will. This then impacts everything that is run
1263 	 * subsequently. On failing the reset, we mark the driver
1264 	 * as wedged, preventing further execution on the GPU.
1265 	 * We also want to go one step further and add a taint to the
1266 	 * kernel so that any subsequent faults can be traced back to
1267 	 * this failure. This is important for CI, where if the
1268 	 * GPU/driver fails we would like to reboot and restart testing
1269 	 * rather than continue on into oblivion. For everyone else,
1270 	 * the system should still plod along, but they have been warned!
1271 	 */
1272 	add_taint_for_CI(gt->i915, TAINT_WARN);
1273 error:
1274 	__intel_gt_set_wedged(gt);
1275 	goto finish;
1276 }
1277 
1278 static int intel_gt_reset_engine(struct intel_engine_cs *engine)
1279 {
1280 	return __intel_gt_reset(engine->gt, engine->mask);
1281 }
1282 
1283 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg)
1284 {
1285 	struct intel_gt *gt = engine->gt;
1286 	int ret;
1287 
1288 	ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
1289 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags));
1290 
1291 	if (intel_engine_uses_guc(engine))
1292 		return -ENODEV;
1293 
1294 	if (!intel_engine_pm_get_if_awake(engine))
1295 		return 0;
1296 
1297 	reset_prepare_engine(engine);
1298 
1299 	if (msg)
1300 		drm_notice(&engine->i915->drm,
1301 			   "Resetting %s for %s\n", engine->name, msg);
1302 	atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]);
1303 
1304 	ret = intel_gt_reset_engine(engine);
1305 	if (ret) {
1306 		/* If we fail here, we expect to fallback to a global reset */
1307 		ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret);
1308 		goto out;
1309 	}
1310 
1311 	/*
1312 	 * The request that caused the hang is stuck on elsp, we know the
1313 	 * active request and can drop it, adjust head to skip the offending
1314 	 * request to resume executing remaining requests in the queue.
1315 	 */
1316 	__intel_engine_reset(engine, true);
1317 
1318 	/*
1319 	 * The engine and its registers (and workarounds in case of render)
1320 	 * have been reset to their default values. Follow the init_ring
1321 	 * process to program RING_MODE, HWSP and re-enable submission.
1322 	 */
1323 	ret = intel_engine_resume(engine);
1324 
1325 out:
1326 	intel_engine_cancel_stop_cs(engine);
1327 	reset_finish_engine(engine);
1328 	intel_engine_pm_put_async(engine);
1329 	return ret;
1330 }
1331 
1332 /**
1333  * intel_engine_reset - reset GPU engine to recover from a hang
1334  * @engine: engine to reset
1335  * @msg: reason for GPU reset; or NULL for no drm_notice()
1336  *
1337  * Reset a specific GPU engine. Useful if a hang is detected.
1338  * Returns zero on successful reset or otherwise an error code.
1339  *
1340  * Procedure is:
1341  *  - identifies the request that caused the hang and it is dropped
1342  *  - reset engine (which will force the engine to idle)
1343  *  - re-init/configure engine
1344  */
1345 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
1346 {
1347 	int err;
1348 
1349 	local_bh_disable();
1350 	err = __intel_engine_reset_bh(engine, msg);
1351 	local_bh_enable();
1352 
1353 	return err;
1354 }
1355 
1356 static void intel_gt_reset_global(struct intel_gt *gt,
1357 				  u32 engine_mask,
1358 				  const char *reason)
1359 {
1360 	struct kobject *kobj = &gt->i915->drm.primary->kdev->kobj;
1361 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1362 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1363 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1364 	struct intel_wedge_me w;
1365 
1366 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
1367 
1368 	GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask);
1369 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
1370 
1371 	/* Use a watchdog to ensure that our reset completes */
1372 	intel_wedge_on_timeout(&w, gt, 60 * HZ) {
1373 		intel_display_prepare_reset(gt->i915);
1374 
1375 		intel_gt_reset(gt, engine_mask, reason);
1376 
1377 		intel_display_finish_reset(gt->i915);
1378 	}
1379 
1380 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
1381 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
1382 }
1383 
1384 /**
1385  * intel_gt_handle_error - handle a gpu error
1386  * @gt: the intel_gt
1387  * @engine_mask: mask representing engines that are hung
1388  * @flags: control flags
1389  * @fmt: Error message format string
1390  *
1391  * Do some basic checking of register state at error time and
1392  * dump it to the syslog.  Also call i915_capture_error_state() to make
1393  * sure we get a record and make it available in debugfs.  Fire a uevent
1394  * so userspace knows something bad happened (should trigger collection
1395  * of a ring dump etc.).
1396  */
1397 void intel_gt_handle_error(struct intel_gt *gt,
1398 			   intel_engine_mask_t engine_mask,
1399 			   unsigned long flags,
1400 			   const char *fmt, ...)
1401 {
1402 	struct intel_engine_cs *engine;
1403 	intel_wakeref_t wakeref;
1404 	intel_engine_mask_t tmp;
1405 	char error_msg[80];
1406 	char *msg = NULL;
1407 
1408 	if (fmt) {
1409 		va_list args;
1410 
1411 		va_start(args, fmt);
1412 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
1413 		va_end(args);
1414 
1415 		msg = error_msg;
1416 	}
1417 
1418 	/*
1419 	 * In most cases it's guaranteed that we get here with an RPM
1420 	 * reference held, for example because there is a pending GPU
1421 	 * request that won't finish until the reset is done. This
1422 	 * isn't the case at least when we get here by doing a
1423 	 * simulated reset via debugfs, so get an RPM reference.
1424 	 */
1425 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1426 
1427 	engine_mask &= gt->info.engine_mask;
1428 
1429 	if (flags & I915_ERROR_CAPTURE) {
1430 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE);
1431 		intel_gt_clear_error_registers(gt, engine_mask);
1432 	}
1433 
1434 	/*
1435 	 * Try engine reset when available. We fall back to full reset if
1436 	 * single reset fails.
1437 	 */
1438 	if (!intel_uc_uses_guc_submission(&gt->uc) &&
1439 	    intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
1440 		local_bh_disable();
1441 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
1442 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
1443 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1444 					     &gt->reset.flags))
1445 				continue;
1446 
1447 			if (__intel_engine_reset_bh(engine, msg) == 0)
1448 				engine_mask &= ~engine->mask;
1449 
1450 			clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
1451 					      &gt->reset.flags);
1452 		}
1453 		local_bh_enable();
1454 	}
1455 
1456 	if (!engine_mask)
1457 		goto out;
1458 
1459 	/* Full reset needs the mutex, stop any other user trying to do so. */
1460 	if (test_and_set_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1461 		wait_event(gt->reset.queue,
1462 			   !test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1463 		goto out; /* piggy-back on the other reset */
1464 	}
1465 
1466 	/* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
1467 	synchronize_rcu_expedited();
1468 
1469 	/*
1470 	 * Prevent any other reset-engine attempt. We don't do this for GuC
1471 	 * submission the GuC owns the per-engine reset, not the i915.
1472 	 */
1473 	if (!intel_uc_uses_guc_submission(&gt->uc)) {
1474 		for_each_engine(engine, gt, tmp) {
1475 			while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1476 						&gt->reset.flags))
1477 				wait_on_bit(&gt->reset.flags,
1478 					    I915_RESET_ENGINE + engine->id,
1479 					    TASK_UNINTERRUPTIBLE);
1480 		}
1481 	}
1482 
1483 	/* Flush everyone using a resource about to be clobbered */
1484 	synchronize_srcu_expedited(&gt->reset.backoff_srcu);
1485 
1486 	intel_gt_reset_global(gt, engine_mask, msg);
1487 
1488 	if (!intel_uc_uses_guc_submission(&gt->uc)) {
1489 		for_each_engine(engine, gt, tmp)
1490 			clear_bit_unlock(I915_RESET_ENGINE + engine->id,
1491 					 &gt->reset.flags);
1492 	}
1493 	clear_bit_unlock(I915_RESET_BACKOFF, &gt->reset.flags);
1494 	smp_mb__after_atomic();
1495 	wake_up_all(&gt->reset.queue);
1496 
1497 out:
1498 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1499 }
1500 
1501 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry)
1502 {
1503 	might_lock(&gt->reset.backoff_srcu);
1504 	if (retry)
1505 		might_sleep();
1506 
1507 	rcu_read_lock();
1508 	while (test_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1509 		rcu_read_unlock();
1510 
1511 		if (!retry)
1512 			return -EBUSY;
1513 
1514 		if (wait_event_interruptible(gt->reset.queue,
1515 					     !test_bit(I915_RESET_BACKOFF,
1516 						       &gt->reset.flags)))
1517 			return -EINTR;
1518 
1519 		rcu_read_lock();
1520 	}
1521 	*srcu = srcu_read_lock(&gt->reset.backoff_srcu);
1522 	rcu_read_unlock();
1523 
1524 	return 0;
1525 }
1526 
1527 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
1528 {
1529 	return _intel_gt_reset_lock(gt, srcu, false);
1530 }
1531 
1532 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu)
1533 {
1534 	return _intel_gt_reset_lock(gt, srcu, true);
1535 }
1536 
1537 void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
1538 __releases(&gt->reset.backoff_srcu)
1539 {
1540 	srcu_read_unlock(&gt->reset.backoff_srcu, tag);
1541 }
1542 
1543 int intel_gt_terminally_wedged(struct intel_gt *gt)
1544 {
1545 	might_sleep();
1546 
1547 	if (!intel_gt_is_wedged(gt))
1548 		return 0;
1549 
1550 	if (intel_gt_has_unrecoverable_error(gt))
1551 		return -EIO;
1552 
1553 	/* Reset still in progress? Maybe we will recover? */
1554 	if (wait_event_interruptible(gt->reset.queue,
1555 				     !test_bit(I915_RESET_BACKOFF,
1556 					       &gt->reset.flags)))
1557 		return -EINTR;
1558 
1559 	return intel_gt_is_wedged(gt) ? -EIO : 0;
1560 }
1561 
1562 void intel_gt_set_wedged_on_init(struct intel_gt *gt)
1563 {
1564 	BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
1565 		     I915_WEDGED_ON_INIT);
1566 	intel_gt_set_wedged(gt);
1567 	i915_disable_error_state(gt->i915, -ENODEV);
1568 	set_bit(I915_WEDGED_ON_INIT, &gt->reset.flags);
1569 
1570 	/* Wedged on init is non-recoverable */
1571 	add_taint_for_CI(gt->i915, TAINT_WARN);
1572 }
1573 
1574 void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
1575 {
1576 	intel_gt_set_wedged(gt);
1577 	i915_disable_error_state(gt->i915, -ENODEV);
1578 	set_bit(I915_WEDGED_ON_FINI, &gt->reset.flags);
1579 	intel_gt_retire_requests(gt); /* cleanup any wedged requests */
1580 }
1581 
1582 void intel_gt_init_reset(struct intel_gt *gt)
1583 {
1584 	init_waitqueue_head(&gt->reset.queue);
1585 	mutex_init(&gt->reset.mutex);
1586 	init_srcu_struct(&gt->reset.backoff_srcu);
1587 
1588 	/*
1589 	 * While undesirable to wait inside the shrinker, complain anyway.
1590 	 *
1591 	 * If we have to wait during shrinking, we guarantee forward progress
1592 	 * by forcing the reset. Therefore during the reset we must not
1593 	 * re-enter the shrinker. By declaring that we take the reset mutex
1594 	 * within the shrinker, we forbid ourselves from performing any
1595 	 * fs-reclaim or taking related locks during reset.
1596 	 */
1597 	i915_gem_shrinker_taints_mutex(gt->i915, &gt->reset.mutex);
1598 
1599 	/* no GPU until we are ready! */
1600 	__set_bit(I915_WEDGED, &gt->reset.flags);
1601 }
1602 
1603 void intel_gt_fini_reset(struct intel_gt *gt)
1604 {
1605 	cleanup_srcu_struct(&gt->reset.backoff_srcu);
1606 }
1607 
1608 static void intel_wedge_me(struct work_struct *work)
1609 {
1610 	struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
1611 
1612 	drm_err(&w->gt->i915->drm,
1613 		"%s timed out, cancelling all in-flight rendering.\n",
1614 		w->name);
1615 	intel_gt_set_wedged(w->gt);
1616 }
1617 
1618 void __intel_init_wedge(struct intel_wedge_me *w,
1619 			struct intel_gt *gt,
1620 			long timeout,
1621 			const char *name)
1622 {
1623 	w->gt = gt;
1624 	w->name = name;
1625 
1626 	INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
1627 	schedule_delayed_work(&w->work, timeout);
1628 }
1629 
1630 void __intel_fini_wedge(struct intel_wedge_me *w)
1631 {
1632 	cancel_delayed_work_sync(&w->work);
1633 	destroy_delayed_work_on_stack(&w->work);
1634 	w->gt = NULL;
1635 }
1636 
1637 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1638 #include "selftest_reset.c"
1639 #include "selftest_hangcheck.c"
1640 #endif
1641