1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 #include <linux/string_helpers.h> 9 10 #include "display/intel_display.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "gt/intel_gt_regs.h" 16 17 #include "i915_drv.h" 18 #include "i915_file_private.h" 19 #include "i915_gpu_error.h" 20 #include "i915_irq.h" 21 #include "intel_breadcrumbs.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_gt.h" 25 #include "intel_gt_pm.h" 26 #include "intel_gt_requests.h" 27 #include "intel_mchbar_regs.h" 28 #include "intel_pci_config.h" 29 #include "intel_reset.h" 30 31 #include "uc/intel_guc.h" 32 33 #define RESET_MAX_RETRIES 3 34 35 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 36 #define RESET_UNDER_STOP_MACHINE 0 37 38 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 39 { 40 intel_uncore_rmw_fw(uncore, reg, 0, set); 41 } 42 43 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 44 { 45 intel_uncore_rmw_fw(uncore, reg, clr, 0); 46 } 47 48 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 49 { 50 struct drm_i915_file_private *file_priv = ctx->file_priv; 51 unsigned long prev_hang; 52 unsigned int score; 53 54 if (IS_ERR_OR_NULL(file_priv)) 55 return; 56 57 score = 0; 58 if (banned) 59 score = I915_CLIENT_SCORE_CONTEXT_BAN; 60 61 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 62 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 63 score += I915_CLIENT_SCORE_HANG_FAST; 64 65 if (score) { 66 atomic_add(score, &file_priv->ban_score); 67 68 drm_dbg(&ctx->i915->drm, 69 "client %s: gained %u ban score, now %u\n", 70 ctx->name, score, 71 atomic_read(&file_priv->ban_score)); 72 } 73 } 74 75 static bool mark_guilty(struct i915_request *rq) 76 { 77 struct i915_gem_context *ctx; 78 unsigned long prev_hang; 79 bool banned; 80 int i; 81 82 if (intel_context_is_closed(rq->context)) 83 return true; 84 85 rcu_read_lock(); 86 ctx = rcu_dereference(rq->context->gem_context); 87 if (ctx && !kref_get_unless_zero(&ctx->ref)) 88 ctx = NULL; 89 rcu_read_unlock(); 90 if (!ctx) 91 return intel_context_is_banned(rq->context); 92 93 atomic_inc(&ctx->guilty_count); 94 95 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 96 if (!i915_gem_context_is_bannable(ctx)) { 97 banned = false; 98 goto out; 99 } 100 101 drm_notice(&ctx->i915->drm, 102 "%s context reset due to GPU hang\n", 103 ctx->name); 104 105 /* Record the timestamp for the last N hangs */ 106 prev_hang = ctx->hang_timestamp[0]; 107 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 108 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 109 ctx->hang_timestamp[i] = jiffies; 110 111 /* If we have hung N+1 times in rapid succession, we ban the context! */ 112 banned = !i915_gem_context_is_recoverable(ctx); 113 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 114 banned = true; 115 if (banned) 116 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 117 ctx->name, atomic_read(&ctx->guilty_count)); 118 119 client_mark_guilty(ctx, banned); 120 121 out: 122 i915_gem_context_put(ctx); 123 return banned; 124 } 125 126 static void mark_innocent(struct i915_request *rq) 127 { 128 struct i915_gem_context *ctx; 129 130 rcu_read_lock(); 131 ctx = rcu_dereference(rq->context->gem_context); 132 if (ctx) 133 atomic_inc(&ctx->active_count); 134 rcu_read_unlock(); 135 } 136 137 void __i915_request_reset(struct i915_request *rq, bool guilty) 138 { 139 bool banned = false; 140 141 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); 142 GEM_BUG_ON(__i915_request_is_complete(rq)); 143 144 rcu_read_lock(); /* protect the GEM context */ 145 if (guilty) { 146 i915_request_set_error_once(rq, -EIO); 147 __i915_request_skip(rq); 148 banned = mark_guilty(rq); 149 } else { 150 i915_request_set_error_once(rq, -EAGAIN); 151 mark_innocent(rq); 152 } 153 rcu_read_unlock(); 154 155 if (banned) 156 intel_context_ban(rq->context, rq); 157 } 158 159 static bool i915_in_reset(struct pci_dev *pdev) 160 { 161 u8 gdrst; 162 163 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 164 return gdrst & GRDOM_RESET_STATUS; 165 } 166 167 static int i915_do_reset(struct intel_gt *gt, 168 intel_engine_mask_t engine_mask, 169 unsigned int retry) 170 { 171 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 172 int err; 173 174 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 175 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 176 udelay(50); 177 err = wait_for_atomic(i915_in_reset(pdev), 50); 178 179 /* Clear the reset request. */ 180 pci_write_config_byte(pdev, I915_GDRST, 0); 181 udelay(50); 182 if (!err) 183 err = wait_for_atomic(!i915_in_reset(pdev), 50); 184 185 return err; 186 } 187 188 static bool g4x_reset_complete(struct pci_dev *pdev) 189 { 190 u8 gdrst; 191 192 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 193 return (gdrst & GRDOM_RESET_ENABLE) == 0; 194 } 195 196 static int g33_do_reset(struct intel_gt *gt, 197 intel_engine_mask_t engine_mask, 198 unsigned int retry) 199 { 200 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 201 202 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 203 return wait_for_atomic(g4x_reset_complete(pdev), 50); 204 } 205 206 static int g4x_do_reset(struct intel_gt *gt, 207 intel_engine_mask_t engine_mask, 208 unsigned int retry) 209 { 210 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 211 struct intel_uncore *uncore = gt->uncore; 212 int ret; 213 214 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 215 rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 216 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 217 218 pci_write_config_byte(pdev, I915_GDRST, 219 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 220 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 221 if (ret) { 222 GT_TRACE(gt, "Wait for media reset failed\n"); 223 goto out; 224 } 225 226 pci_write_config_byte(pdev, I915_GDRST, 227 GRDOM_RENDER | GRDOM_RESET_ENABLE); 228 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 229 if (ret) { 230 GT_TRACE(gt, "Wait for render reset failed\n"); 231 goto out; 232 } 233 234 out: 235 pci_write_config_byte(pdev, I915_GDRST, 0); 236 237 rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 238 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 239 240 return ret; 241 } 242 243 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 244 unsigned int retry) 245 { 246 struct intel_uncore *uncore = gt->uncore; 247 int ret; 248 249 intel_uncore_write_fw(uncore, ILK_GDSR, 250 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 251 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 252 ILK_GRDOM_RESET_ENABLE, 0, 253 5000, 0, 254 NULL); 255 if (ret) { 256 GT_TRACE(gt, "Wait for render reset failed\n"); 257 goto out; 258 } 259 260 intel_uncore_write_fw(uncore, ILK_GDSR, 261 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 262 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 263 ILK_GRDOM_RESET_ENABLE, 0, 264 5000, 0, 265 NULL); 266 if (ret) { 267 GT_TRACE(gt, "Wait for media reset failed\n"); 268 goto out; 269 } 270 271 out: 272 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 273 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 274 return ret; 275 } 276 277 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 278 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 279 { 280 struct intel_uncore *uncore = gt->uncore; 281 int err; 282 283 /* 284 * GEN6_GDRST is not in the gt power well, no need to check 285 * for fifo space for the write or forcewake the chip for 286 * the read 287 */ 288 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 289 290 /* Wait for the device to ack the reset requests */ 291 err = __intel_wait_for_register_fw(uncore, 292 GEN6_GDRST, hw_domain_mask, 0, 293 500, 0, 294 NULL); 295 if (err) 296 GT_TRACE(gt, 297 "Wait for 0x%08x engines reset failed\n", 298 hw_domain_mask); 299 300 return err; 301 } 302 303 static int gen6_reset_engines(struct intel_gt *gt, 304 intel_engine_mask_t engine_mask, 305 unsigned int retry) 306 { 307 struct intel_engine_cs *engine; 308 u32 hw_mask; 309 310 if (engine_mask == ALL_ENGINES) { 311 hw_mask = GEN6_GRDOM_FULL; 312 } else { 313 intel_engine_mask_t tmp; 314 315 hw_mask = 0; 316 for_each_engine_masked(engine, gt, engine_mask, tmp) { 317 hw_mask |= engine->reset_domain; 318 } 319 } 320 321 return gen6_hw_domain_reset(gt, hw_mask); 322 } 323 324 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 325 { 326 int vecs_id; 327 328 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 329 330 vecs_id = _VECS((engine->instance) / 2); 331 332 return engine->gt->engine[vecs_id]; 333 } 334 335 struct sfc_lock_data { 336 i915_reg_t lock_reg; 337 i915_reg_t ack_reg; 338 i915_reg_t usage_reg; 339 u32 lock_bit; 340 u32 ack_bit; 341 u32 usage_bit; 342 u32 reset_bit; 343 }; 344 345 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 346 struct sfc_lock_data *sfc_lock) 347 { 348 switch (engine->class) { 349 default: 350 MISSING_CASE(engine->class); 351 fallthrough; 352 case VIDEO_DECODE_CLASS: 353 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); 354 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 355 356 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 357 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 358 359 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 360 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 361 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 362 363 break; 364 case VIDEO_ENHANCEMENT_CLASS: 365 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); 366 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 367 368 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); 369 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 370 371 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); 372 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 373 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 374 375 break; 376 } 377 } 378 379 static int gen11_lock_sfc(struct intel_engine_cs *engine, 380 u32 *reset_mask, 381 u32 *unlock_mask) 382 { 383 struct intel_uncore *uncore = engine->uncore; 384 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 385 struct sfc_lock_data sfc_lock; 386 bool lock_obtained, lock_to_other = false; 387 int ret; 388 389 switch (engine->class) { 390 case VIDEO_DECODE_CLASS: 391 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 392 return 0; 393 394 fallthrough; 395 case VIDEO_ENHANCEMENT_CLASS: 396 get_sfc_forced_lock_data(engine, &sfc_lock); 397 398 break; 399 default: 400 return 0; 401 } 402 403 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 404 struct intel_engine_cs *paired_vecs; 405 406 if (engine->class != VIDEO_DECODE_CLASS || 407 GRAPHICS_VER(engine->i915) != 12) 408 return 0; 409 410 /* 411 * Wa_14010733141 412 * 413 * If the VCS-MFX isn't using the SFC, we also need to check 414 * whether VCS-HCP is using it. If so, we need to issue a *VE* 415 * forced lock on the VE engine that shares the same SFC. 416 */ 417 if (!(intel_uncore_read_fw(uncore, 418 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & 419 GEN12_HCP_SFC_USAGE_BIT)) 420 return 0; 421 422 paired_vecs = find_sfc_paired_vecs_engine(engine); 423 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 424 lock_to_other = true; 425 *unlock_mask |= paired_vecs->mask; 426 } else { 427 *unlock_mask |= engine->mask; 428 } 429 430 /* 431 * If the engine is using an SFC, tell the engine that a software reset 432 * is going to happen. The engine will then try to force lock the SFC. 433 * If SFC ends up being locked to the engine we want to reset, we have 434 * to reset it as well (we will unlock it once the reset sequence is 435 * completed). 436 */ 437 rmw_set_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit); 438 439 ret = __intel_wait_for_register_fw(uncore, 440 sfc_lock.ack_reg, 441 sfc_lock.ack_bit, 442 sfc_lock.ack_bit, 443 1000, 0, NULL); 444 445 /* 446 * Was the SFC released while we were trying to lock it? 447 * 448 * We should reset both the engine and the SFC if: 449 * - We were locking the SFC to this engine and the lock succeeded 450 * OR 451 * - We were locking the SFC to a different engine (Wa_14010733141) 452 * but the SFC was released before the lock was obtained. 453 * 454 * Otherwise we need only reset the engine by itself and we can 455 * leave the SFC alone. 456 */ 457 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 458 sfc_lock.usage_bit) != 0; 459 if (lock_obtained == lock_to_other) 460 return 0; 461 462 if (ret) { 463 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 464 return ret; 465 } 466 467 *reset_mask |= sfc_lock.reset_bit; 468 return 0; 469 } 470 471 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 472 { 473 struct intel_uncore *uncore = engine->uncore; 474 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 475 struct sfc_lock_data sfc_lock = {}; 476 477 if (engine->class != VIDEO_DECODE_CLASS && 478 engine->class != VIDEO_ENHANCEMENT_CLASS) 479 return; 480 481 if (engine->class == VIDEO_DECODE_CLASS && 482 (BIT(engine->instance) & vdbox_sfc_access) == 0) 483 return; 484 485 get_sfc_forced_lock_data(engine, &sfc_lock); 486 487 rmw_clear_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit); 488 } 489 490 static int gen11_reset_engines(struct intel_gt *gt, 491 intel_engine_mask_t engine_mask, 492 unsigned int retry) 493 { 494 struct intel_engine_cs *engine; 495 intel_engine_mask_t tmp; 496 u32 reset_mask, unlock_mask = 0; 497 int ret; 498 499 if (engine_mask == ALL_ENGINES) { 500 reset_mask = GEN11_GRDOM_FULL; 501 } else { 502 reset_mask = 0; 503 for_each_engine_masked(engine, gt, engine_mask, tmp) { 504 reset_mask |= engine->reset_domain; 505 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 506 if (ret) 507 goto sfc_unlock; 508 } 509 } 510 511 ret = gen6_hw_domain_reset(gt, reset_mask); 512 513 sfc_unlock: 514 /* 515 * We unlock the SFC based on the lock status and not the result of 516 * gen11_lock_sfc to make sure that we clean properly if something 517 * wrong happened during the lock (e.g. lock acquired after timeout 518 * expiration). 519 * 520 * Due to Wa_14010733141, we may have locked an SFC to an engine that 521 * wasn't being reset. So instead of calling gen11_unlock_sfc() 522 * on engine_mask, we instead call it on the mask of engines that our 523 * gen11_lock_sfc() calls told us actually had locks attempted. 524 */ 525 for_each_engine_masked(engine, gt, unlock_mask, tmp) 526 gen11_unlock_sfc(engine); 527 528 return ret; 529 } 530 531 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 532 { 533 struct intel_uncore *uncore = engine->uncore; 534 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 535 u32 request, mask, ack; 536 int ret; 537 538 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 539 return -ETIMEDOUT; 540 541 ack = intel_uncore_read_fw(uncore, reg); 542 if (ack & RESET_CTL_CAT_ERROR) { 543 /* 544 * For catastrophic errors, ready-for-reset sequence 545 * needs to be bypassed: HAS#396813 546 */ 547 request = RESET_CTL_CAT_ERROR; 548 mask = RESET_CTL_CAT_ERROR; 549 550 /* Catastrophic errors need to be cleared by HW */ 551 ack = 0; 552 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 553 request = RESET_CTL_REQUEST_RESET; 554 mask = RESET_CTL_READY_TO_RESET; 555 ack = RESET_CTL_READY_TO_RESET; 556 } else { 557 return 0; 558 } 559 560 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 561 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 562 700, 0, NULL); 563 if (ret) 564 drm_err(&engine->i915->drm, 565 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 566 engine->name, request, 567 intel_uncore_read_fw(uncore, reg)); 568 569 return ret; 570 } 571 572 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 573 { 574 intel_uncore_write_fw(engine->uncore, 575 RING_RESET_CTL(engine->mmio_base), 576 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 577 } 578 579 static int gen8_reset_engines(struct intel_gt *gt, 580 intel_engine_mask_t engine_mask, 581 unsigned int retry) 582 { 583 struct intel_engine_cs *engine; 584 const bool reset_non_ready = retry >= 1; 585 intel_engine_mask_t tmp; 586 int ret; 587 588 for_each_engine_masked(engine, gt, engine_mask, tmp) { 589 ret = gen8_engine_reset_prepare(engine); 590 if (ret && !reset_non_ready) 591 goto skip_reset; 592 593 /* 594 * If this is not the first failed attempt to prepare, 595 * we decide to proceed anyway. 596 * 597 * By doing so we risk context corruption and with 598 * some gens (kbl), possible system hang if reset 599 * happens during active bb execution. 600 * 601 * We rather take context corruption instead of 602 * failed reset with a wedged driver/gpu. And 603 * active bb execution case should be covered by 604 * stop_engines() we have before the reset. 605 */ 606 } 607 608 /* 609 * Wa_22011100796:dg2, whenever Full soft reset is required, 610 * reset all individual engines firstly, and then do a full soft reset. 611 * 612 * This is best effort, so ignore any error from the initial reset. 613 */ 614 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) 615 gen11_reset_engines(gt, gt->info.engine_mask, 0); 616 617 if (GRAPHICS_VER(gt->i915) >= 11) 618 ret = gen11_reset_engines(gt, engine_mask, retry); 619 else 620 ret = gen6_reset_engines(gt, engine_mask, retry); 621 622 skip_reset: 623 for_each_engine_masked(engine, gt, engine_mask, tmp) 624 gen8_engine_reset_cancel(engine); 625 626 return ret; 627 } 628 629 static int mock_reset(struct intel_gt *gt, 630 intel_engine_mask_t mask, 631 unsigned int retry) 632 { 633 return 0; 634 } 635 636 typedef int (*reset_func)(struct intel_gt *, 637 intel_engine_mask_t engine_mask, 638 unsigned int retry); 639 640 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 641 { 642 struct drm_i915_private *i915 = gt->i915; 643 644 if (is_mock_gt(gt)) 645 return mock_reset; 646 else if (GRAPHICS_VER(i915) >= 8) 647 return gen8_reset_engines; 648 else if (GRAPHICS_VER(i915) >= 6) 649 return gen6_reset_engines; 650 else if (GRAPHICS_VER(i915) >= 5) 651 return ilk_do_reset; 652 else if (IS_G4X(i915)) 653 return g4x_do_reset; 654 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 655 return g33_do_reset; 656 else if (GRAPHICS_VER(i915) >= 3) 657 return i915_do_reset; 658 else 659 return NULL; 660 } 661 662 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 663 { 664 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 665 reset_func reset; 666 int ret = -ETIMEDOUT; 667 int retry; 668 669 reset = intel_get_gpu_reset(gt); 670 if (!reset) 671 return -ENODEV; 672 673 /* 674 * If the power well sleeps during the reset, the reset 675 * request may be dropped and never completes (causing -EIO). 676 */ 677 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 678 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 679 GT_TRACE(gt, "engine_mask=%x\n", engine_mask); 680 preempt_disable(); 681 ret = reset(gt, engine_mask, retry); 682 preempt_enable(); 683 } 684 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 685 686 return ret; 687 } 688 689 bool intel_has_gpu_reset(const struct intel_gt *gt) 690 { 691 if (!gt->i915->params.reset) 692 return NULL; 693 694 return intel_get_gpu_reset(gt); 695 } 696 697 bool intel_has_reset_engine(const struct intel_gt *gt) 698 { 699 if (gt->i915->params.reset < 2) 700 return false; 701 702 return INTEL_INFO(gt->i915)->has_reset_engine; 703 } 704 705 int intel_reset_guc(struct intel_gt *gt) 706 { 707 u32 guc_domain = 708 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 709 int ret; 710 711 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 712 713 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 714 ret = gen6_hw_domain_reset(gt, guc_domain); 715 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 716 717 return ret; 718 } 719 720 /* 721 * Ensure irq handler finishes, and not run again. 722 * Also return the active request so that we only search for it once. 723 */ 724 static void reset_prepare_engine(struct intel_engine_cs *engine) 725 { 726 /* 727 * During the reset sequence, we must prevent the engine from 728 * entering RC6. As the context state is undefined until we restart 729 * the engine, if it does enter RC6 during the reset, the state 730 * written to the powercontext is undefined and so we may lose 731 * GPU state upon resume, i.e. fail to restart after a reset. 732 */ 733 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 734 if (engine->reset.prepare) 735 engine->reset.prepare(engine); 736 } 737 738 static void revoke_mmaps(struct intel_gt *gt) 739 { 740 int i; 741 742 for (i = 0; i < gt->ggtt->num_fences; i++) { 743 struct drm_vma_offset_node *node; 744 struct i915_vma *vma; 745 u64 vma_offset; 746 747 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 748 if (!vma) 749 continue; 750 751 if (!i915_vma_has_userfault(vma)) 752 continue; 753 754 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 755 756 if (!vma->mmo) 757 continue; 758 759 node = &vma->mmo->vma_node; 760 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 761 762 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 763 drm_vma_node_offset_addr(node) + vma_offset, 764 vma->size, 765 1); 766 } 767 } 768 769 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 770 { 771 struct intel_engine_cs *engine; 772 intel_engine_mask_t awake = 0; 773 enum intel_engine_id id; 774 775 /* For GuC mode, ensure submission is disabled before stopping ring */ 776 intel_uc_reset_prepare(>->uc); 777 778 for_each_engine(engine, gt, id) { 779 if (intel_engine_pm_get_if_awake(engine)) 780 awake |= engine->mask; 781 reset_prepare_engine(engine); 782 } 783 784 return awake; 785 } 786 787 static void gt_revoke(struct intel_gt *gt) 788 { 789 revoke_mmaps(gt); 790 } 791 792 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 793 { 794 struct intel_engine_cs *engine; 795 enum intel_engine_id id; 796 int err; 797 798 /* 799 * Everything depends on having the GTT running, so we need to start 800 * there. 801 */ 802 err = i915_ggtt_enable_hw(gt->i915); 803 if (err) 804 return err; 805 806 local_bh_disable(); 807 for_each_engine(engine, gt, id) 808 __intel_engine_reset(engine, stalled_mask & engine->mask); 809 local_bh_enable(); 810 811 intel_uc_reset(>->uc, ALL_ENGINES); 812 813 intel_ggtt_restore_fences(gt->ggtt); 814 815 return err; 816 } 817 818 static void reset_finish_engine(struct intel_engine_cs *engine) 819 { 820 if (engine->reset.finish) 821 engine->reset.finish(engine); 822 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 823 824 intel_engine_signal_breadcrumbs(engine); 825 } 826 827 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 828 { 829 struct intel_engine_cs *engine; 830 enum intel_engine_id id; 831 832 for_each_engine(engine, gt, id) { 833 reset_finish_engine(engine); 834 if (awake & engine->mask) 835 intel_engine_pm_put(engine); 836 } 837 838 intel_uc_reset_finish(>->uc); 839 } 840 841 static void nop_submit_request(struct i915_request *request) 842 { 843 RQ_TRACE(request, "-EIO\n"); 844 845 request = i915_request_mark_eio(request); 846 if (request) { 847 i915_request_submit(request); 848 intel_engine_signal_breadcrumbs(request->engine); 849 850 i915_request_put(request); 851 } 852 } 853 854 static void __intel_gt_set_wedged(struct intel_gt *gt) 855 { 856 struct intel_engine_cs *engine; 857 intel_engine_mask_t awake; 858 enum intel_engine_id id; 859 860 if (test_bit(I915_WEDGED, >->reset.flags)) 861 return; 862 863 GT_TRACE(gt, "start\n"); 864 865 /* 866 * First, stop submission to hw, but do not yet complete requests by 867 * rolling the global seqno forward (since this would complete requests 868 * for which we haven't set the fence error to EIO yet). 869 */ 870 awake = reset_prepare(gt); 871 872 /* Even if the GPU reset fails, it should still stop the engines */ 873 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 874 __intel_gt_reset(gt, ALL_ENGINES); 875 876 for_each_engine(engine, gt, id) 877 engine->submit_request = nop_submit_request; 878 879 /* 880 * Make sure no request can slip through without getting completed by 881 * either this call here to intel_engine_write_global_seqno, or the one 882 * in nop_submit_request. 883 */ 884 synchronize_rcu_expedited(); 885 set_bit(I915_WEDGED, >->reset.flags); 886 887 /* Mark all executing requests as skipped */ 888 local_bh_disable(); 889 for_each_engine(engine, gt, id) 890 if (engine->reset.cancel) 891 engine->reset.cancel(engine); 892 intel_uc_cancel_requests(>->uc); 893 local_bh_enable(); 894 895 reset_finish(gt, awake); 896 897 GT_TRACE(gt, "end\n"); 898 } 899 900 void intel_gt_set_wedged(struct intel_gt *gt) 901 { 902 intel_wakeref_t wakeref; 903 904 if (test_bit(I915_WEDGED, >->reset.flags)) 905 return; 906 907 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 908 mutex_lock(>->reset.mutex); 909 910 if (GEM_SHOW_DEBUG()) { 911 struct drm_printer p = drm_debug_printer(__func__); 912 struct intel_engine_cs *engine; 913 enum intel_engine_id id; 914 915 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 916 for_each_engine(engine, gt, id) { 917 if (intel_engine_is_idle(engine)) 918 continue; 919 920 intel_engine_dump(engine, &p, "%s\n", engine->name); 921 } 922 } 923 924 __intel_gt_set_wedged(gt); 925 926 mutex_unlock(>->reset.mutex); 927 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 928 } 929 930 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 931 { 932 struct intel_gt_timelines *timelines = >->timelines; 933 struct intel_timeline *tl; 934 bool ok; 935 936 if (!test_bit(I915_WEDGED, >->reset.flags)) 937 return true; 938 939 /* Never fully initialised, recovery impossible */ 940 if (intel_gt_has_unrecoverable_error(gt)) 941 return false; 942 943 GT_TRACE(gt, "start\n"); 944 945 /* 946 * Before unwedging, make sure that all pending operations 947 * are flushed and errored out - we may have requests waiting upon 948 * third party fences. We marked all inflight requests as EIO, and 949 * every execbuf since returned EIO, for consistency we want all 950 * the currently pending requests to also be marked as EIO, which 951 * is done inside our nop_submit_request - and so we must wait. 952 * 953 * No more can be submitted until we reset the wedged bit. 954 */ 955 spin_lock(&timelines->lock); 956 list_for_each_entry(tl, &timelines->active_list, link) { 957 struct dma_fence *fence; 958 959 fence = i915_active_fence_get(&tl->last_request); 960 if (!fence) 961 continue; 962 963 spin_unlock(&timelines->lock); 964 965 /* 966 * All internal dependencies (i915_requests) will have 967 * been flushed by the set-wedge, but we may be stuck waiting 968 * for external fences. These should all be capped to 10s 969 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 970 * in the worst case. 971 */ 972 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 973 dma_fence_put(fence); 974 975 /* Restart iteration after droping lock */ 976 spin_lock(&timelines->lock); 977 tl = list_entry(&timelines->active_list, typeof(*tl), link); 978 } 979 spin_unlock(&timelines->lock); 980 981 /* We must reset pending GPU events before restoring our submission */ 982 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 983 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 984 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 985 if (!ok) { 986 /* 987 * Warn CI about the unrecoverable wedged condition. 988 * Time for a reboot. 989 */ 990 add_taint_for_CI(gt->i915, TAINT_WARN); 991 return false; 992 } 993 994 /* 995 * Undo nop_submit_request. We prevent all new i915 requests from 996 * being queued (by disallowing execbuf whilst wedged) so having 997 * waited for all active requests above, we know the system is idle 998 * and do not have to worry about a thread being inside 999 * engine->submit_request() as we swap over. So unlike installing 1000 * the nop_submit_request on reset, we can do this from normal 1001 * context and do not require stop_machine(). 1002 */ 1003 intel_engines_reset_default_submission(gt); 1004 1005 GT_TRACE(gt, "end\n"); 1006 1007 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 1008 clear_bit(I915_WEDGED, >->reset.flags); 1009 1010 return true; 1011 } 1012 1013 bool intel_gt_unset_wedged(struct intel_gt *gt) 1014 { 1015 bool result; 1016 1017 mutex_lock(>->reset.mutex); 1018 result = __intel_gt_unset_wedged(gt); 1019 mutex_unlock(>->reset.mutex); 1020 1021 return result; 1022 } 1023 1024 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1025 { 1026 int err, i; 1027 1028 err = __intel_gt_reset(gt, ALL_ENGINES); 1029 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1030 msleep(10 * (i + 1)); 1031 err = __intel_gt_reset(gt, ALL_ENGINES); 1032 } 1033 if (err) 1034 return err; 1035 1036 return gt_reset(gt, stalled_mask); 1037 } 1038 1039 static int resume(struct intel_gt *gt) 1040 { 1041 struct intel_engine_cs *engine; 1042 enum intel_engine_id id; 1043 int ret; 1044 1045 for_each_engine(engine, gt, id) { 1046 ret = intel_engine_resume(engine); 1047 if (ret) 1048 return ret; 1049 } 1050 1051 return 0; 1052 } 1053 1054 /** 1055 * intel_gt_reset - reset chip after a hang 1056 * @gt: #intel_gt to reset 1057 * @stalled_mask: mask of the stalled engines with the guilty requests 1058 * @reason: user error message for why we are resetting 1059 * 1060 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1061 * on failure. 1062 * 1063 * Procedure is fairly simple: 1064 * - reset the chip using the reset reg 1065 * - re-init context state 1066 * - re-init hardware status page 1067 * - re-init ring buffer 1068 * - re-init interrupt state 1069 * - re-init display 1070 */ 1071 void intel_gt_reset(struct intel_gt *gt, 1072 intel_engine_mask_t stalled_mask, 1073 const char *reason) 1074 { 1075 intel_engine_mask_t awake; 1076 int ret; 1077 1078 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1079 1080 might_sleep(); 1081 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1082 1083 /* 1084 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1085 * critical section like gpu reset. 1086 */ 1087 gt_revoke(gt); 1088 1089 mutex_lock(>->reset.mutex); 1090 1091 /* Clear any previous failed attempts at recovery. Time to try again. */ 1092 if (!__intel_gt_unset_wedged(gt)) 1093 goto unlock; 1094 1095 if (reason) 1096 drm_notice(>->i915->drm, 1097 "Resetting chip for %s\n", reason); 1098 atomic_inc(>->i915->gpu_error.reset_count); 1099 1100 awake = reset_prepare(gt); 1101 1102 if (!intel_has_gpu_reset(gt)) { 1103 if (gt->i915->params.reset) 1104 drm_err(>->i915->drm, "GPU reset not supported\n"); 1105 else 1106 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1107 goto error; 1108 } 1109 1110 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1111 intel_runtime_pm_disable_interrupts(gt->i915); 1112 1113 if (do_reset(gt, stalled_mask)) { 1114 drm_err(>->i915->drm, "Failed to reset chip\n"); 1115 goto taint; 1116 } 1117 1118 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1119 intel_runtime_pm_enable_interrupts(gt->i915); 1120 1121 intel_overlay_reset(gt->i915); 1122 1123 /* 1124 * Next we need to restore the context, but we don't use those 1125 * yet either... 1126 * 1127 * Ring buffer needs to be re-initialized in the KMS case, or if X 1128 * was running at the time of the reset (i.e. we weren't VT 1129 * switched away). 1130 */ 1131 ret = intel_gt_init_hw(gt); 1132 if (ret) { 1133 drm_err(>->i915->drm, 1134 "Failed to initialise HW following reset (%d)\n", 1135 ret); 1136 goto taint; 1137 } 1138 1139 ret = resume(gt); 1140 if (ret) 1141 goto taint; 1142 1143 finish: 1144 reset_finish(gt, awake); 1145 unlock: 1146 mutex_unlock(>->reset.mutex); 1147 return; 1148 1149 taint: 1150 /* 1151 * History tells us that if we cannot reset the GPU now, we 1152 * never will. This then impacts everything that is run 1153 * subsequently. On failing the reset, we mark the driver 1154 * as wedged, preventing further execution on the GPU. 1155 * We also want to go one step further and add a taint to the 1156 * kernel so that any subsequent faults can be traced back to 1157 * this failure. This is important for CI, where if the 1158 * GPU/driver fails we would like to reboot and restart testing 1159 * rather than continue on into oblivion. For everyone else, 1160 * the system should still plod along, but they have been warned! 1161 */ 1162 add_taint_for_CI(gt->i915, TAINT_WARN); 1163 error: 1164 __intel_gt_set_wedged(gt); 1165 goto finish; 1166 } 1167 1168 static int intel_gt_reset_engine(struct intel_engine_cs *engine) 1169 { 1170 return __intel_gt_reset(engine->gt, engine->mask); 1171 } 1172 1173 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1174 { 1175 struct intel_gt *gt = engine->gt; 1176 int ret; 1177 1178 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1179 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1180 1181 if (intel_engine_uses_guc(engine)) 1182 return -ENODEV; 1183 1184 if (!intel_engine_pm_get_if_awake(engine)) 1185 return 0; 1186 1187 reset_prepare_engine(engine); 1188 1189 if (msg) 1190 drm_notice(&engine->i915->drm, 1191 "Resetting %s for %s\n", engine->name, msg); 1192 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1193 1194 ret = intel_gt_reset_engine(engine); 1195 if (ret) { 1196 /* If we fail here, we expect to fallback to a global reset */ 1197 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1198 goto out; 1199 } 1200 1201 /* 1202 * The request that caused the hang is stuck on elsp, we know the 1203 * active request and can drop it, adjust head to skip the offending 1204 * request to resume executing remaining requests in the queue. 1205 */ 1206 __intel_engine_reset(engine, true); 1207 1208 /* 1209 * The engine and its registers (and workarounds in case of render) 1210 * have been reset to their default values. Follow the init_ring 1211 * process to program RING_MODE, HWSP and re-enable submission. 1212 */ 1213 ret = intel_engine_resume(engine); 1214 1215 out: 1216 intel_engine_cancel_stop_cs(engine); 1217 reset_finish_engine(engine); 1218 intel_engine_pm_put_async(engine); 1219 return ret; 1220 } 1221 1222 /** 1223 * intel_engine_reset - reset GPU engine to recover from a hang 1224 * @engine: engine to reset 1225 * @msg: reason for GPU reset; or NULL for no drm_notice() 1226 * 1227 * Reset a specific GPU engine. Useful if a hang is detected. 1228 * Returns zero on successful reset or otherwise an error code. 1229 * 1230 * Procedure is: 1231 * - identifies the request that caused the hang and it is dropped 1232 * - reset engine (which will force the engine to idle) 1233 * - re-init/configure engine 1234 */ 1235 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1236 { 1237 int err; 1238 1239 local_bh_disable(); 1240 err = __intel_engine_reset_bh(engine, msg); 1241 local_bh_enable(); 1242 1243 return err; 1244 } 1245 1246 static void intel_gt_reset_global(struct intel_gt *gt, 1247 u32 engine_mask, 1248 const char *reason) 1249 { 1250 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1251 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1252 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1253 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1254 struct intel_wedge_me w; 1255 1256 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1257 1258 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1259 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1260 1261 /* Use a watchdog to ensure that our reset completes */ 1262 intel_wedge_on_timeout(&w, gt, 5 * HZ) { 1263 intel_display_prepare_reset(gt->i915); 1264 1265 /* Flush everyone using a resource about to be clobbered */ 1266 synchronize_srcu_expedited(>->reset.backoff_srcu); 1267 1268 intel_gt_reset(gt, engine_mask, reason); 1269 1270 intel_display_finish_reset(gt->i915); 1271 } 1272 1273 if (!test_bit(I915_WEDGED, >->reset.flags)) 1274 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1275 } 1276 1277 /** 1278 * intel_gt_handle_error - handle a gpu error 1279 * @gt: the intel_gt 1280 * @engine_mask: mask representing engines that are hung 1281 * @flags: control flags 1282 * @fmt: Error message format string 1283 * 1284 * Do some basic checking of register state at error time and 1285 * dump it to the syslog. Also call i915_capture_error_state() to make 1286 * sure we get a record and make it available in debugfs. Fire a uevent 1287 * so userspace knows something bad happened (should trigger collection 1288 * of a ring dump etc.). 1289 */ 1290 void intel_gt_handle_error(struct intel_gt *gt, 1291 intel_engine_mask_t engine_mask, 1292 unsigned long flags, 1293 const char *fmt, ...) 1294 { 1295 struct intel_engine_cs *engine; 1296 intel_wakeref_t wakeref; 1297 intel_engine_mask_t tmp; 1298 char error_msg[80]; 1299 char *msg = NULL; 1300 1301 if (fmt) { 1302 va_list args; 1303 1304 va_start(args, fmt); 1305 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1306 va_end(args); 1307 1308 msg = error_msg; 1309 } 1310 1311 /* 1312 * In most cases it's guaranteed that we get here with an RPM 1313 * reference held, for example because there is a pending GPU 1314 * request that won't finish until the reset is done. This 1315 * isn't the case at least when we get here by doing a 1316 * simulated reset via debugfs, so get an RPM reference. 1317 */ 1318 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1319 1320 engine_mask &= gt->info.engine_mask; 1321 1322 if (flags & I915_ERROR_CAPTURE) { 1323 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); 1324 intel_gt_clear_error_registers(gt, engine_mask); 1325 } 1326 1327 /* 1328 * Try engine reset when available. We fall back to full reset if 1329 * single reset fails. 1330 */ 1331 if (!intel_uc_uses_guc_submission(>->uc) && 1332 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1333 local_bh_disable(); 1334 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1335 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1336 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1337 >->reset.flags)) 1338 continue; 1339 1340 if (__intel_engine_reset_bh(engine, msg) == 0) 1341 engine_mask &= ~engine->mask; 1342 1343 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1344 >->reset.flags); 1345 } 1346 local_bh_enable(); 1347 } 1348 1349 if (!engine_mask) 1350 goto out; 1351 1352 /* Full reset needs the mutex, stop any other user trying to do so. */ 1353 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1354 wait_event(gt->reset.queue, 1355 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1356 goto out; /* piggy-back on the other reset */ 1357 } 1358 1359 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1360 synchronize_rcu_expedited(); 1361 1362 /* 1363 * Prevent any other reset-engine attempt. We don't do this for GuC 1364 * submission the GuC owns the per-engine reset, not the i915. 1365 */ 1366 if (!intel_uc_uses_guc_submission(>->uc)) { 1367 for_each_engine(engine, gt, tmp) { 1368 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1369 >->reset.flags)) 1370 wait_on_bit(>->reset.flags, 1371 I915_RESET_ENGINE + engine->id, 1372 TASK_UNINTERRUPTIBLE); 1373 } 1374 } 1375 1376 intel_gt_reset_global(gt, engine_mask, msg); 1377 1378 if (!intel_uc_uses_guc_submission(>->uc)) { 1379 for_each_engine(engine, gt, tmp) 1380 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1381 >->reset.flags); 1382 } 1383 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1384 smp_mb__after_atomic(); 1385 wake_up_all(>->reset.queue); 1386 1387 out: 1388 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1389 } 1390 1391 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1392 { 1393 might_lock(>->reset.backoff_srcu); 1394 might_sleep(); 1395 1396 rcu_read_lock(); 1397 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1398 rcu_read_unlock(); 1399 1400 if (wait_event_interruptible(gt->reset.queue, 1401 !test_bit(I915_RESET_BACKOFF, 1402 >->reset.flags))) 1403 return -EINTR; 1404 1405 rcu_read_lock(); 1406 } 1407 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1408 rcu_read_unlock(); 1409 1410 return 0; 1411 } 1412 1413 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1414 __releases(>->reset.backoff_srcu) 1415 { 1416 srcu_read_unlock(>->reset.backoff_srcu, tag); 1417 } 1418 1419 int intel_gt_terminally_wedged(struct intel_gt *gt) 1420 { 1421 might_sleep(); 1422 1423 if (!intel_gt_is_wedged(gt)) 1424 return 0; 1425 1426 if (intel_gt_has_unrecoverable_error(gt)) 1427 return -EIO; 1428 1429 /* Reset still in progress? Maybe we will recover? */ 1430 if (wait_event_interruptible(gt->reset.queue, 1431 !test_bit(I915_RESET_BACKOFF, 1432 >->reset.flags))) 1433 return -EINTR; 1434 1435 return intel_gt_is_wedged(gt) ? -EIO : 0; 1436 } 1437 1438 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1439 { 1440 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1441 I915_WEDGED_ON_INIT); 1442 intel_gt_set_wedged(gt); 1443 i915_disable_error_state(gt->i915, -ENODEV); 1444 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1445 1446 /* Wedged on init is non-recoverable */ 1447 add_taint_for_CI(gt->i915, TAINT_WARN); 1448 } 1449 1450 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1451 { 1452 intel_gt_set_wedged(gt); 1453 i915_disable_error_state(gt->i915, -ENODEV); 1454 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1455 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1456 } 1457 1458 void intel_gt_init_reset(struct intel_gt *gt) 1459 { 1460 init_waitqueue_head(>->reset.queue); 1461 mutex_init(>->reset.mutex); 1462 init_srcu_struct(>->reset.backoff_srcu); 1463 1464 /* 1465 * While undesirable to wait inside the shrinker, complain anyway. 1466 * 1467 * If we have to wait during shrinking, we guarantee forward progress 1468 * by forcing the reset. Therefore during the reset we must not 1469 * re-enter the shrinker. By declaring that we take the reset mutex 1470 * within the shrinker, we forbid ourselves from performing any 1471 * fs-reclaim or taking related locks during reset. 1472 */ 1473 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1474 1475 /* no GPU until we are ready! */ 1476 __set_bit(I915_WEDGED, >->reset.flags); 1477 } 1478 1479 void intel_gt_fini_reset(struct intel_gt *gt) 1480 { 1481 cleanup_srcu_struct(>->reset.backoff_srcu); 1482 } 1483 1484 static void intel_wedge_me(struct work_struct *work) 1485 { 1486 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1487 1488 drm_err(&w->gt->i915->drm, 1489 "%s timed out, cancelling all in-flight rendering.\n", 1490 w->name); 1491 intel_gt_set_wedged(w->gt); 1492 } 1493 1494 void __intel_init_wedge(struct intel_wedge_me *w, 1495 struct intel_gt *gt, 1496 long timeout, 1497 const char *name) 1498 { 1499 w->gt = gt; 1500 w->name = name; 1501 1502 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1503 schedule_delayed_work(&w->work, timeout); 1504 } 1505 1506 void __intel_fini_wedge(struct intel_wedge_me *w) 1507 { 1508 cancel_delayed_work_sync(&w->work); 1509 destroy_delayed_work_on_stack(&w->work); 1510 w->gt = NULL; 1511 } 1512 1513 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1514 #include "selftest_reset.c" 1515 #include "selftest_hangcheck.c" 1516 #endif 1517