1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 9 #include "display/intel_display.h" 10 #include "display/intel_overlay.h" 11 12 #include "gem/i915_gem_context.h" 13 14 #include "i915_drv.h" 15 #include "i915_gpu_error.h" 16 #include "i915_irq.h" 17 #include "intel_breadcrumbs.h" 18 #include "intel_engine_pm.h" 19 #include "intel_gt.h" 20 #include "intel_gt_pm.h" 21 #include "intel_gt_requests.h" 22 #include "intel_reset.h" 23 24 #include "uc/intel_guc.h" 25 26 #define RESET_MAX_RETRIES 3 27 28 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 29 #define RESET_UNDER_STOP_MACHINE 0 30 31 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 32 { 33 intel_uncore_rmw_fw(uncore, reg, 0, set); 34 } 35 36 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 37 { 38 intel_uncore_rmw_fw(uncore, reg, clr, 0); 39 } 40 41 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 42 { 43 struct drm_i915_file_private *file_priv = ctx->file_priv; 44 unsigned long prev_hang; 45 unsigned int score; 46 47 if (IS_ERR_OR_NULL(file_priv)) 48 return; 49 50 score = 0; 51 if (banned) 52 score = I915_CLIENT_SCORE_CONTEXT_BAN; 53 54 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 55 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 56 score += I915_CLIENT_SCORE_HANG_FAST; 57 58 if (score) { 59 atomic_add(score, &file_priv->ban_score); 60 61 drm_dbg(&ctx->i915->drm, 62 "client %s: gained %u ban score, now %u\n", 63 ctx->name, score, 64 atomic_read(&file_priv->ban_score)); 65 } 66 } 67 68 static bool mark_guilty(struct i915_request *rq) 69 { 70 struct i915_gem_context *ctx; 71 unsigned long prev_hang; 72 bool banned; 73 int i; 74 75 if (intel_context_is_closed(rq->context)) 76 return true; 77 78 rcu_read_lock(); 79 ctx = rcu_dereference(rq->context->gem_context); 80 if (ctx && !kref_get_unless_zero(&ctx->ref)) 81 ctx = NULL; 82 rcu_read_unlock(); 83 if (!ctx) 84 return intel_context_is_banned(rq->context); 85 86 atomic_inc(&ctx->guilty_count); 87 88 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 89 if (!i915_gem_context_is_bannable(ctx)) { 90 banned = false; 91 goto out; 92 } 93 94 drm_notice(&ctx->i915->drm, 95 "%s context reset due to GPU hang\n", 96 ctx->name); 97 98 /* Record the timestamp for the last N hangs */ 99 prev_hang = ctx->hang_timestamp[0]; 100 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 101 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 102 ctx->hang_timestamp[i] = jiffies; 103 104 /* If we have hung N+1 times in rapid succession, we ban the context! */ 105 banned = !i915_gem_context_is_recoverable(ctx); 106 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 107 banned = true; 108 if (banned) 109 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 110 ctx->name, atomic_read(&ctx->guilty_count)); 111 112 client_mark_guilty(ctx, banned); 113 114 out: 115 i915_gem_context_put(ctx); 116 return banned; 117 } 118 119 static void mark_innocent(struct i915_request *rq) 120 { 121 struct i915_gem_context *ctx; 122 123 rcu_read_lock(); 124 ctx = rcu_dereference(rq->context->gem_context); 125 if (ctx) 126 atomic_inc(&ctx->active_count); 127 rcu_read_unlock(); 128 } 129 130 void __i915_request_reset(struct i915_request *rq, bool guilty) 131 { 132 bool banned = false; 133 134 RQ_TRACE(rq, "guilty? %s\n", yesno(guilty)); 135 GEM_BUG_ON(__i915_request_is_complete(rq)); 136 137 rcu_read_lock(); /* protect the GEM context */ 138 if (guilty) { 139 i915_request_set_error_once(rq, -EIO); 140 __i915_request_skip(rq); 141 banned = mark_guilty(rq); 142 } else { 143 i915_request_set_error_once(rq, -EAGAIN); 144 mark_innocent(rq); 145 } 146 rcu_read_unlock(); 147 148 if (banned) 149 intel_context_ban(rq->context, rq); 150 } 151 152 static bool i915_in_reset(struct pci_dev *pdev) 153 { 154 u8 gdrst; 155 156 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 157 return gdrst & GRDOM_RESET_STATUS; 158 } 159 160 static int i915_do_reset(struct intel_gt *gt, 161 intel_engine_mask_t engine_mask, 162 unsigned int retry) 163 { 164 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 165 int err; 166 167 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 168 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 169 udelay(50); 170 err = wait_for_atomic(i915_in_reset(pdev), 50); 171 172 /* Clear the reset request. */ 173 pci_write_config_byte(pdev, I915_GDRST, 0); 174 udelay(50); 175 if (!err) 176 err = wait_for_atomic(!i915_in_reset(pdev), 50); 177 178 return err; 179 } 180 181 static bool g4x_reset_complete(struct pci_dev *pdev) 182 { 183 u8 gdrst; 184 185 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 186 return (gdrst & GRDOM_RESET_ENABLE) == 0; 187 } 188 189 static int g33_do_reset(struct intel_gt *gt, 190 intel_engine_mask_t engine_mask, 191 unsigned int retry) 192 { 193 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 194 195 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 196 return wait_for_atomic(g4x_reset_complete(pdev), 50); 197 } 198 199 static int g4x_do_reset(struct intel_gt *gt, 200 intel_engine_mask_t engine_mask, 201 unsigned int retry) 202 { 203 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 204 struct intel_uncore *uncore = gt->uncore; 205 int ret; 206 207 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 208 rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 209 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 210 211 pci_write_config_byte(pdev, I915_GDRST, 212 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 213 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 214 if (ret) { 215 GT_TRACE(gt, "Wait for media reset failed\n"); 216 goto out; 217 } 218 219 pci_write_config_byte(pdev, I915_GDRST, 220 GRDOM_RENDER | GRDOM_RESET_ENABLE); 221 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 222 if (ret) { 223 GT_TRACE(gt, "Wait for render reset failed\n"); 224 goto out; 225 } 226 227 out: 228 pci_write_config_byte(pdev, I915_GDRST, 0); 229 230 rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 231 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 232 233 return ret; 234 } 235 236 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 237 unsigned int retry) 238 { 239 struct intel_uncore *uncore = gt->uncore; 240 int ret; 241 242 intel_uncore_write_fw(uncore, ILK_GDSR, 243 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 244 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 245 ILK_GRDOM_RESET_ENABLE, 0, 246 5000, 0, 247 NULL); 248 if (ret) { 249 GT_TRACE(gt, "Wait for render reset failed\n"); 250 goto out; 251 } 252 253 intel_uncore_write_fw(uncore, ILK_GDSR, 254 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 255 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 256 ILK_GRDOM_RESET_ENABLE, 0, 257 5000, 0, 258 NULL); 259 if (ret) { 260 GT_TRACE(gt, "Wait for media reset failed\n"); 261 goto out; 262 } 263 264 out: 265 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 266 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 267 return ret; 268 } 269 270 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 271 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 272 { 273 struct intel_uncore *uncore = gt->uncore; 274 int err; 275 276 /* 277 * GEN6_GDRST is not in the gt power well, no need to check 278 * for fifo space for the write or forcewake the chip for 279 * the read 280 */ 281 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 282 283 /* Wait for the device to ack the reset requests */ 284 err = __intel_wait_for_register_fw(uncore, 285 GEN6_GDRST, hw_domain_mask, 0, 286 500, 0, 287 NULL); 288 if (err) 289 GT_TRACE(gt, 290 "Wait for 0x%08x engines reset failed\n", 291 hw_domain_mask); 292 293 return err; 294 } 295 296 static int gen6_reset_engines(struct intel_gt *gt, 297 intel_engine_mask_t engine_mask, 298 unsigned int retry) 299 { 300 struct intel_engine_cs *engine; 301 u32 hw_mask; 302 303 if (engine_mask == ALL_ENGINES) { 304 hw_mask = GEN6_GRDOM_FULL; 305 } else { 306 intel_engine_mask_t tmp; 307 308 hw_mask = 0; 309 for_each_engine_masked(engine, gt, engine_mask, tmp) { 310 hw_mask |= engine->reset_domain; 311 } 312 } 313 314 return gen6_hw_domain_reset(gt, hw_mask); 315 } 316 317 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 318 { 319 int vecs_id; 320 321 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 322 323 vecs_id = _VECS((engine->instance) / 2); 324 325 return engine->gt->engine[vecs_id]; 326 } 327 328 struct sfc_lock_data { 329 i915_reg_t lock_reg; 330 i915_reg_t ack_reg; 331 i915_reg_t usage_reg; 332 u32 lock_bit; 333 u32 ack_bit; 334 u32 usage_bit; 335 u32 reset_bit; 336 }; 337 338 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 339 struct sfc_lock_data *sfc_lock) 340 { 341 switch (engine->class) { 342 default: 343 MISSING_CASE(engine->class); 344 fallthrough; 345 case VIDEO_DECODE_CLASS: 346 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine); 347 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 348 349 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine); 350 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 351 352 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine); 353 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 354 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 355 356 break; 357 case VIDEO_ENHANCEMENT_CLASS: 358 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine); 359 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 360 361 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine); 362 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 363 364 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine); 365 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 366 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 367 368 break; 369 } 370 } 371 372 static int gen11_lock_sfc(struct intel_engine_cs *engine, 373 u32 *reset_mask, 374 u32 *unlock_mask) 375 { 376 struct intel_uncore *uncore = engine->uncore; 377 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 378 struct sfc_lock_data sfc_lock; 379 bool lock_obtained, lock_to_other = false; 380 int ret; 381 382 switch (engine->class) { 383 case VIDEO_DECODE_CLASS: 384 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 385 return 0; 386 387 fallthrough; 388 case VIDEO_ENHANCEMENT_CLASS: 389 get_sfc_forced_lock_data(engine, &sfc_lock); 390 391 break; 392 default: 393 return 0; 394 } 395 396 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 397 struct intel_engine_cs *paired_vecs; 398 399 if (engine->class != VIDEO_DECODE_CLASS || 400 GRAPHICS_VER(engine->i915) != 12) 401 return 0; 402 403 /* 404 * Wa_14010733141 405 * 406 * If the VCS-MFX isn't using the SFC, we also need to check 407 * whether VCS-HCP is using it. If so, we need to issue a *VE* 408 * forced lock on the VE engine that shares the same SFC. 409 */ 410 if (!(intel_uncore_read_fw(uncore, 411 GEN12_HCP_SFC_LOCK_STATUS(engine)) & 412 GEN12_HCP_SFC_USAGE_BIT)) 413 return 0; 414 415 paired_vecs = find_sfc_paired_vecs_engine(engine); 416 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 417 lock_to_other = true; 418 *unlock_mask |= paired_vecs->mask; 419 } else { 420 *unlock_mask |= engine->mask; 421 } 422 423 /* 424 * If the engine is using an SFC, tell the engine that a software reset 425 * is going to happen. The engine will then try to force lock the SFC. 426 * If SFC ends up being locked to the engine we want to reset, we have 427 * to reset it as well (we will unlock it once the reset sequence is 428 * completed). 429 */ 430 rmw_set_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit); 431 432 ret = __intel_wait_for_register_fw(uncore, 433 sfc_lock.ack_reg, 434 sfc_lock.ack_bit, 435 sfc_lock.ack_bit, 436 1000, 0, NULL); 437 438 /* 439 * Was the SFC released while we were trying to lock it? 440 * 441 * We should reset both the engine and the SFC if: 442 * - We were locking the SFC to this engine and the lock succeeded 443 * OR 444 * - We were locking the SFC to a different engine (Wa_14010733141) 445 * but the SFC was released before the lock was obtained. 446 * 447 * Otherwise we need only reset the engine by itself and we can 448 * leave the SFC alone. 449 */ 450 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 451 sfc_lock.usage_bit) != 0; 452 if (lock_obtained == lock_to_other) 453 return 0; 454 455 if (ret) { 456 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 457 return ret; 458 } 459 460 *reset_mask |= sfc_lock.reset_bit; 461 return 0; 462 } 463 464 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 465 { 466 struct intel_uncore *uncore = engine->uncore; 467 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 468 struct sfc_lock_data sfc_lock = {}; 469 470 if (engine->class != VIDEO_DECODE_CLASS && 471 engine->class != VIDEO_ENHANCEMENT_CLASS) 472 return; 473 474 if (engine->class == VIDEO_DECODE_CLASS && 475 (BIT(engine->instance) & vdbox_sfc_access) == 0) 476 return; 477 478 get_sfc_forced_lock_data(engine, &sfc_lock); 479 480 rmw_clear_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit); 481 } 482 483 static int gen11_reset_engines(struct intel_gt *gt, 484 intel_engine_mask_t engine_mask, 485 unsigned int retry) 486 { 487 struct intel_engine_cs *engine; 488 intel_engine_mask_t tmp; 489 u32 reset_mask, unlock_mask = 0; 490 int ret; 491 492 if (engine_mask == ALL_ENGINES) { 493 reset_mask = GEN11_GRDOM_FULL; 494 } else { 495 reset_mask = 0; 496 for_each_engine_masked(engine, gt, engine_mask, tmp) { 497 reset_mask |= engine->reset_domain; 498 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 499 if (ret) 500 goto sfc_unlock; 501 } 502 } 503 504 ret = gen6_hw_domain_reset(gt, reset_mask); 505 506 sfc_unlock: 507 /* 508 * We unlock the SFC based on the lock status and not the result of 509 * gen11_lock_sfc to make sure that we clean properly if something 510 * wrong happened during the lock (e.g. lock acquired after timeout 511 * expiration). 512 * 513 * Due to Wa_14010733141, we may have locked an SFC to an engine that 514 * wasn't being reset. So instead of calling gen11_unlock_sfc() 515 * on engine_mask, we instead call it on the mask of engines that our 516 * gen11_lock_sfc() calls told us actually had locks attempted. 517 */ 518 for_each_engine_masked(engine, gt, unlock_mask, tmp) 519 gen11_unlock_sfc(engine); 520 521 return ret; 522 } 523 524 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 525 { 526 struct intel_uncore *uncore = engine->uncore; 527 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 528 u32 request, mask, ack; 529 int ret; 530 531 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 532 return -ETIMEDOUT; 533 534 ack = intel_uncore_read_fw(uncore, reg); 535 if (ack & RESET_CTL_CAT_ERROR) { 536 /* 537 * For catastrophic errors, ready-for-reset sequence 538 * needs to be bypassed: HAS#396813 539 */ 540 request = RESET_CTL_CAT_ERROR; 541 mask = RESET_CTL_CAT_ERROR; 542 543 /* Catastrophic errors need to be cleared by HW */ 544 ack = 0; 545 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 546 request = RESET_CTL_REQUEST_RESET; 547 mask = RESET_CTL_READY_TO_RESET; 548 ack = RESET_CTL_READY_TO_RESET; 549 } else { 550 return 0; 551 } 552 553 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 554 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 555 700, 0, NULL); 556 if (ret) 557 drm_err(&engine->i915->drm, 558 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 559 engine->name, request, 560 intel_uncore_read_fw(uncore, reg)); 561 562 return ret; 563 } 564 565 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 566 { 567 intel_uncore_write_fw(engine->uncore, 568 RING_RESET_CTL(engine->mmio_base), 569 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 570 } 571 572 static int gen8_reset_engines(struct intel_gt *gt, 573 intel_engine_mask_t engine_mask, 574 unsigned int retry) 575 { 576 struct intel_engine_cs *engine; 577 const bool reset_non_ready = retry >= 1; 578 intel_engine_mask_t tmp; 579 int ret; 580 581 for_each_engine_masked(engine, gt, engine_mask, tmp) { 582 ret = gen8_engine_reset_prepare(engine); 583 if (ret && !reset_non_ready) 584 goto skip_reset; 585 586 /* 587 * If this is not the first failed attempt to prepare, 588 * we decide to proceed anyway. 589 * 590 * By doing so we risk context corruption and with 591 * some gens (kbl), possible system hang if reset 592 * happens during active bb execution. 593 * 594 * We rather take context corruption instead of 595 * failed reset with a wedged driver/gpu. And 596 * active bb execution case should be covered by 597 * stop_engines() we have before the reset. 598 */ 599 } 600 601 if (GRAPHICS_VER(gt->i915) >= 11) 602 ret = gen11_reset_engines(gt, engine_mask, retry); 603 else 604 ret = gen6_reset_engines(gt, engine_mask, retry); 605 606 skip_reset: 607 for_each_engine_masked(engine, gt, engine_mask, tmp) 608 gen8_engine_reset_cancel(engine); 609 610 return ret; 611 } 612 613 static int mock_reset(struct intel_gt *gt, 614 intel_engine_mask_t mask, 615 unsigned int retry) 616 { 617 return 0; 618 } 619 620 typedef int (*reset_func)(struct intel_gt *, 621 intel_engine_mask_t engine_mask, 622 unsigned int retry); 623 624 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 625 { 626 struct drm_i915_private *i915 = gt->i915; 627 628 if (is_mock_gt(gt)) 629 return mock_reset; 630 else if (GRAPHICS_VER(i915) >= 8) 631 return gen8_reset_engines; 632 else if (GRAPHICS_VER(i915) >= 6) 633 return gen6_reset_engines; 634 else if (GRAPHICS_VER(i915) >= 5) 635 return ilk_do_reset; 636 else if (IS_G4X(i915)) 637 return g4x_do_reset; 638 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 639 return g33_do_reset; 640 else if (GRAPHICS_VER(i915) >= 3) 641 return i915_do_reset; 642 else 643 return NULL; 644 } 645 646 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 647 { 648 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 649 reset_func reset; 650 int ret = -ETIMEDOUT; 651 int retry; 652 653 reset = intel_get_gpu_reset(gt); 654 if (!reset) 655 return -ENODEV; 656 657 /* 658 * If the power well sleeps during the reset, the reset 659 * request may be dropped and never completes (causing -EIO). 660 */ 661 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 662 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 663 GT_TRACE(gt, "engine_mask=%x\n", engine_mask); 664 preempt_disable(); 665 ret = reset(gt, engine_mask, retry); 666 preempt_enable(); 667 } 668 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 669 670 return ret; 671 } 672 673 bool intel_has_gpu_reset(const struct intel_gt *gt) 674 { 675 if (!gt->i915->params.reset) 676 return NULL; 677 678 return intel_get_gpu_reset(gt); 679 } 680 681 bool intel_has_reset_engine(const struct intel_gt *gt) 682 { 683 if (gt->i915->params.reset < 2) 684 return false; 685 686 return INTEL_INFO(gt->i915)->has_reset_engine; 687 } 688 689 int intel_reset_guc(struct intel_gt *gt) 690 { 691 u32 guc_domain = 692 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 693 int ret; 694 695 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 696 697 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 698 ret = gen6_hw_domain_reset(gt, guc_domain); 699 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 700 701 return ret; 702 } 703 704 /* 705 * Ensure irq handler finishes, and not run again. 706 * Also return the active request so that we only search for it once. 707 */ 708 static void reset_prepare_engine(struct intel_engine_cs *engine) 709 { 710 /* 711 * During the reset sequence, we must prevent the engine from 712 * entering RC6. As the context state is undefined until we restart 713 * the engine, if it does enter RC6 during the reset, the state 714 * written to the powercontext is undefined and so we may lose 715 * GPU state upon resume, i.e. fail to restart after a reset. 716 */ 717 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 718 if (engine->reset.prepare) 719 engine->reset.prepare(engine); 720 } 721 722 static void revoke_mmaps(struct intel_gt *gt) 723 { 724 int i; 725 726 for (i = 0; i < gt->ggtt->num_fences; i++) { 727 struct drm_vma_offset_node *node; 728 struct i915_vma *vma; 729 u64 vma_offset; 730 731 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 732 if (!vma) 733 continue; 734 735 if (!i915_vma_has_userfault(vma)) 736 continue; 737 738 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 739 740 if (!vma->mmo) 741 continue; 742 743 node = &vma->mmo->vma_node; 744 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 745 746 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 747 drm_vma_node_offset_addr(node) + vma_offset, 748 vma->size, 749 1); 750 } 751 } 752 753 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 754 { 755 struct intel_engine_cs *engine; 756 intel_engine_mask_t awake = 0; 757 enum intel_engine_id id; 758 759 for_each_engine(engine, gt, id) { 760 if (intel_engine_pm_get_if_awake(engine)) 761 awake |= engine->mask; 762 reset_prepare_engine(engine); 763 } 764 765 intel_uc_reset_prepare(>->uc); 766 767 return awake; 768 } 769 770 static void gt_revoke(struct intel_gt *gt) 771 { 772 revoke_mmaps(gt); 773 } 774 775 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 776 { 777 struct intel_engine_cs *engine; 778 enum intel_engine_id id; 779 int err; 780 781 /* 782 * Everything depends on having the GTT running, so we need to start 783 * there. 784 */ 785 err = i915_ggtt_enable_hw(gt->i915); 786 if (err) 787 return err; 788 789 local_bh_disable(); 790 for_each_engine(engine, gt, id) 791 __intel_engine_reset(engine, stalled_mask & engine->mask); 792 local_bh_enable(); 793 794 intel_uc_reset(>->uc, true); 795 796 intel_ggtt_restore_fences(gt->ggtt); 797 798 return err; 799 } 800 801 static void reset_finish_engine(struct intel_engine_cs *engine) 802 { 803 if (engine->reset.finish) 804 engine->reset.finish(engine); 805 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 806 807 intel_engine_signal_breadcrumbs(engine); 808 } 809 810 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 811 { 812 struct intel_engine_cs *engine; 813 enum intel_engine_id id; 814 815 for_each_engine(engine, gt, id) { 816 reset_finish_engine(engine); 817 if (awake & engine->mask) 818 intel_engine_pm_put(engine); 819 } 820 821 intel_uc_reset_finish(>->uc); 822 } 823 824 static void nop_submit_request(struct i915_request *request) 825 { 826 RQ_TRACE(request, "-EIO\n"); 827 828 request = i915_request_mark_eio(request); 829 if (request) { 830 i915_request_submit(request); 831 intel_engine_signal_breadcrumbs(request->engine); 832 833 i915_request_put(request); 834 } 835 } 836 837 static void __intel_gt_set_wedged(struct intel_gt *gt) 838 { 839 struct intel_engine_cs *engine; 840 intel_engine_mask_t awake; 841 enum intel_engine_id id; 842 843 if (test_bit(I915_WEDGED, >->reset.flags)) 844 return; 845 846 GT_TRACE(gt, "start\n"); 847 848 /* 849 * First, stop submission to hw, but do not yet complete requests by 850 * rolling the global seqno forward (since this would complete requests 851 * for which we haven't set the fence error to EIO yet). 852 */ 853 awake = reset_prepare(gt); 854 855 /* Even if the GPU reset fails, it should still stop the engines */ 856 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 857 __intel_gt_reset(gt, ALL_ENGINES); 858 859 for_each_engine(engine, gt, id) 860 engine->submit_request = nop_submit_request; 861 862 /* 863 * Make sure no request can slip through without getting completed by 864 * either this call here to intel_engine_write_global_seqno, or the one 865 * in nop_submit_request. 866 */ 867 synchronize_rcu_expedited(); 868 set_bit(I915_WEDGED, >->reset.flags); 869 870 /* Mark all executing requests as skipped */ 871 local_bh_disable(); 872 for_each_engine(engine, gt, id) 873 if (engine->reset.cancel) 874 engine->reset.cancel(engine); 875 intel_uc_cancel_requests(>->uc); 876 local_bh_enable(); 877 878 reset_finish(gt, awake); 879 880 GT_TRACE(gt, "end\n"); 881 } 882 883 void intel_gt_set_wedged(struct intel_gt *gt) 884 { 885 intel_wakeref_t wakeref; 886 887 if (test_bit(I915_WEDGED, >->reset.flags)) 888 return; 889 890 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 891 mutex_lock(>->reset.mutex); 892 893 if (GEM_SHOW_DEBUG()) { 894 struct drm_printer p = drm_debug_printer(__func__); 895 struct intel_engine_cs *engine; 896 enum intel_engine_id id; 897 898 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 899 for_each_engine(engine, gt, id) { 900 if (intel_engine_is_idle(engine)) 901 continue; 902 903 intel_engine_dump(engine, &p, "%s\n", engine->name); 904 } 905 } 906 907 __intel_gt_set_wedged(gt); 908 909 mutex_unlock(>->reset.mutex); 910 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 911 } 912 913 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 914 { 915 struct intel_gt_timelines *timelines = >->timelines; 916 struct intel_timeline *tl; 917 bool ok; 918 919 if (!test_bit(I915_WEDGED, >->reset.flags)) 920 return true; 921 922 /* Never fully initialised, recovery impossible */ 923 if (intel_gt_has_unrecoverable_error(gt)) 924 return false; 925 926 GT_TRACE(gt, "start\n"); 927 928 /* 929 * Before unwedging, make sure that all pending operations 930 * are flushed and errored out - we may have requests waiting upon 931 * third party fences. We marked all inflight requests as EIO, and 932 * every execbuf since returned EIO, for consistency we want all 933 * the currently pending requests to also be marked as EIO, which 934 * is done inside our nop_submit_request - and so we must wait. 935 * 936 * No more can be submitted until we reset the wedged bit. 937 */ 938 spin_lock(&timelines->lock); 939 list_for_each_entry(tl, &timelines->active_list, link) { 940 struct dma_fence *fence; 941 942 fence = i915_active_fence_get(&tl->last_request); 943 if (!fence) 944 continue; 945 946 spin_unlock(&timelines->lock); 947 948 /* 949 * All internal dependencies (i915_requests) will have 950 * been flushed by the set-wedge, but we may be stuck waiting 951 * for external fences. These should all be capped to 10s 952 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 953 * in the worst case. 954 */ 955 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 956 dma_fence_put(fence); 957 958 /* Restart iteration after droping lock */ 959 spin_lock(&timelines->lock); 960 tl = list_entry(&timelines->active_list, typeof(*tl), link); 961 } 962 spin_unlock(&timelines->lock); 963 964 /* We must reset pending GPU events before restoring our submission */ 965 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 966 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 967 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 968 if (!ok) { 969 /* 970 * Warn CI about the unrecoverable wedged condition. 971 * Time for a reboot. 972 */ 973 add_taint_for_CI(gt->i915, TAINT_WARN); 974 return false; 975 } 976 977 /* 978 * Undo nop_submit_request. We prevent all new i915 requests from 979 * being queued (by disallowing execbuf whilst wedged) so having 980 * waited for all active requests above, we know the system is idle 981 * and do not have to worry about a thread being inside 982 * engine->submit_request() as we swap over. So unlike installing 983 * the nop_submit_request on reset, we can do this from normal 984 * context and do not require stop_machine(). 985 */ 986 intel_engines_reset_default_submission(gt); 987 988 GT_TRACE(gt, "end\n"); 989 990 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 991 clear_bit(I915_WEDGED, >->reset.flags); 992 993 return true; 994 } 995 996 bool intel_gt_unset_wedged(struct intel_gt *gt) 997 { 998 bool result; 999 1000 mutex_lock(>->reset.mutex); 1001 result = __intel_gt_unset_wedged(gt); 1002 mutex_unlock(>->reset.mutex); 1003 1004 return result; 1005 } 1006 1007 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1008 { 1009 int err, i; 1010 1011 err = __intel_gt_reset(gt, ALL_ENGINES); 1012 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1013 msleep(10 * (i + 1)); 1014 err = __intel_gt_reset(gt, ALL_ENGINES); 1015 } 1016 if (err) 1017 return err; 1018 1019 return gt_reset(gt, stalled_mask); 1020 } 1021 1022 static int resume(struct intel_gt *gt) 1023 { 1024 struct intel_engine_cs *engine; 1025 enum intel_engine_id id; 1026 int ret; 1027 1028 for_each_engine(engine, gt, id) { 1029 ret = intel_engine_resume(engine); 1030 if (ret) 1031 return ret; 1032 } 1033 1034 return 0; 1035 } 1036 1037 /** 1038 * intel_gt_reset - reset chip after a hang 1039 * @gt: #intel_gt to reset 1040 * @stalled_mask: mask of the stalled engines with the guilty requests 1041 * @reason: user error message for why we are resetting 1042 * 1043 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1044 * on failure. 1045 * 1046 * Procedure is fairly simple: 1047 * - reset the chip using the reset reg 1048 * - re-init context state 1049 * - re-init hardware status page 1050 * - re-init ring buffer 1051 * - re-init interrupt state 1052 * - re-init display 1053 */ 1054 void intel_gt_reset(struct intel_gt *gt, 1055 intel_engine_mask_t stalled_mask, 1056 const char *reason) 1057 { 1058 intel_engine_mask_t awake; 1059 int ret; 1060 1061 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1062 1063 might_sleep(); 1064 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1065 1066 /* 1067 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1068 * critical section like gpu reset. 1069 */ 1070 gt_revoke(gt); 1071 1072 mutex_lock(>->reset.mutex); 1073 1074 /* Clear any previous failed attempts at recovery. Time to try again. */ 1075 if (!__intel_gt_unset_wedged(gt)) 1076 goto unlock; 1077 1078 if (reason) 1079 drm_notice(>->i915->drm, 1080 "Resetting chip for %s\n", reason); 1081 atomic_inc(>->i915->gpu_error.reset_count); 1082 1083 awake = reset_prepare(gt); 1084 1085 if (!intel_has_gpu_reset(gt)) { 1086 if (gt->i915->params.reset) 1087 drm_err(>->i915->drm, "GPU reset not supported\n"); 1088 else 1089 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1090 goto error; 1091 } 1092 1093 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1094 intel_runtime_pm_disable_interrupts(gt->i915); 1095 1096 if (do_reset(gt, stalled_mask)) { 1097 drm_err(>->i915->drm, "Failed to reset chip\n"); 1098 goto taint; 1099 } 1100 1101 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1102 intel_runtime_pm_enable_interrupts(gt->i915); 1103 1104 intel_overlay_reset(gt->i915); 1105 1106 /* 1107 * Next we need to restore the context, but we don't use those 1108 * yet either... 1109 * 1110 * Ring buffer needs to be re-initialized in the KMS case, or if X 1111 * was running at the time of the reset (i.e. we weren't VT 1112 * switched away). 1113 */ 1114 ret = intel_gt_init_hw(gt); 1115 if (ret) { 1116 drm_err(>->i915->drm, 1117 "Failed to initialise HW following reset (%d)\n", 1118 ret); 1119 goto taint; 1120 } 1121 1122 ret = resume(gt); 1123 if (ret) 1124 goto taint; 1125 1126 finish: 1127 reset_finish(gt, awake); 1128 unlock: 1129 mutex_unlock(>->reset.mutex); 1130 return; 1131 1132 taint: 1133 /* 1134 * History tells us that if we cannot reset the GPU now, we 1135 * never will. This then impacts everything that is run 1136 * subsequently. On failing the reset, we mark the driver 1137 * as wedged, preventing further execution on the GPU. 1138 * We also want to go one step further and add a taint to the 1139 * kernel so that any subsequent faults can be traced back to 1140 * this failure. This is important for CI, where if the 1141 * GPU/driver fails we would like to reboot and restart testing 1142 * rather than continue on into oblivion. For everyone else, 1143 * the system should still plod along, but they have been warned! 1144 */ 1145 add_taint_for_CI(gt->i915, TAINT_WARN); 1146 error: 1147 __intel_gt_set_wedged(gt); 1148 goto finish; 1149 } 1150 1151 static int intel_gt_reset_engine(struct intel_engine_cs *engine) 1152 { 1153 return __intel_gt_reset(engine->gt, engine->mask); 1154 } 1155 1156 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1157 { 1158 struct intel_gt *gt = engine->gt; 1159 int ret; 1160 1161 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1162 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1163 1164 if (intel_engine_uses_guc(engine)) 1165 return -ENODEV; 1166 1167 if (!intel_engine_pm_get_if_awake(engine)) 1168 return 0; 1169 1170 reset_prepare_engine(engine); 1171 1172 if (msg) 1173 drm_notice(&engine->i915->drm, 1174 "Resetting %s for %s\n", engine->name, msg); 1175 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1176 1177 ret = intel_gt_reset_engine(engine); 1178 if (ret) { 1179 /* If we fail here, we expect to fallback to a global reset */ 1180 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1181 goto out; 1182 } 1183 1184 /* 1185 * The request that caused the hang is stuck on elsp, we know the 1186 * active request and can drop it, adjust head to skip the offending 1187 * request to resume executing remaining requests in the queue. 1188 */ 1189 __intel_engine_reset(engine, true); 1190 1191 /* 1192 * The engine and its registers (and workarounds in case of render) 1193 * have been reset to their default values. Follow the init_ring 1194 * process to program RING_MODE, HWSP and re-enable submission. 1195 */ 1196 ret = intel_engine_resume(engine); 1197 1198 out: 1199 intel_engine_cancel_stop_cs(engine); 1200 reset_finish_engine(engine); 1201 intel_engine_pm_put_async(engine); 1202 return ret; 1203 } 1204 1205 /** 1206 * intel_engine_reset - reset GPU engine to recover from a hang 1207 * @engine: engine to reset 1208 * @msg: reason for GPU reset; or NULL for no drm_notice() 1209 * 1210 * Reset a specific GPU engine. Useful if a hang is detected. 1211 * Returns zero on successful reset or otherwise an error code. 1212 * 1213 * Procedure is: 1214 * - identifies the request that caused the hang and it is dropped 1215 * - reset engine (which will force the engine to idle) 1216 * - re-init/configure engine 1217 */ 1218 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1219 { 1220 int err; 1221 1222 local_bh_disable(); 1223 err = __intel_engine_reset_bh(engine, msg); 1224 local_bh_enable(); 1225 1226 return err; 1227 } 1228 1229 static void intel_gt_reset_global(struct intel_gt *gt, 1230 u32 engine_mask, 1231 const char *reason) 1232 { 1233 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1234 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1235 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1236 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1237 struct intel_wedge_me w; 1238 1239 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1240 1241 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1242 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1243 1244 /* Use a watchdog to ensure that our reset completes */ 1245 intel_wedge_on_timeout(&w, gt, 5 * HZ) { 1246 intel_display_prepare_reset(gt->i915); 1247 1248 /* Flush everyone using a resource about to be clobbered */ 1249 synchronize_srcu_expedited(>->reset.backoff_srcu); 1250 1251 intel_gt_reset(gt, engine_mask, reason); 1252 1253 intel_display_finish_reset(gt->i915); 1254 } 1255 1256 if (!test_bit(I915_WEDGED, >->reset.flags)) 1257 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1258 } 1259 1260 /** 1261 * intel_gt_handle_error - handle a gpu error 1262 * @gt: the intel_gt 1263 * @engine_mask: mask representing engines that are hung 1264 * @flags: control flags 1265 * @fmt: Error message format string 1266 * 1267 * Do some basic checking of register state at error time and 1268 * dump it to the syslog. Also call i915_capture_error_state() to make 1269 * sure we get a record and make it available in debugfs. Fire a uevent 1270 * so userspace knows something bad happened (should trigger collection 1271 * of a ring dump etc.). 1272 */ 1273 void intel_gt_handle_error(struct intel_gt *gt, 1274 intel_engine_mask_t engine_mask, 1275 unsigned long flags, 1276 const char *fmt, ...) 1277 { 1278 struct intel_engine_cs *engine; 1279 intel_wakeref_t wakeref; 1280 intel_engine_mask_t tmp; 1281 char error_msg[80]; 1282 char *msg = NULL; 1283 1284 if (fmt) { 1285 va_list args; 1286 1287 va_start(args, fmt); 1288 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1289 va_end(args); 1290 1291 msg = error_msg; 1292 } 1293 1294 /* 1295 * In most cases it's guaranteed that we get here with an RPM 1296 * reference held, for example because there is a pending GPU 1297 * request that won't finish until the reset is done. This 1298 * isn't the case at least when we get here by doing a 1299 * simulated reset via debugfs, so get an RPM reference. 1300 */ 1301 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1302 1303 engine_mask &= gt->info.engine_mask; 1304 1305 if (flags & I915_ERROR_CAPTURE) { 1306 i915_capture_error_state(gt, engine_mask); 1307 intel_gt_clear_error_registers(gt, engine_mask); 1308 } 1309 1310 /* 1311 * Try engine reset when available. We fall back to full reset if 1312 * single reset fails. 1313 */ 1314 if (!intel_uc_uses_guc_submission(>->uc) && 1315 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1316 local_bh_disable(); 1317 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1318 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1319 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1320 >->reset.flags)) 1321 continue; 1322 1323 if (__intel_engine_reset_bh(engine, msg) == 0) 1324 engine_mask &= ~engine->mask; 1325 1326 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1327 >->reset.flags); 1328 } 1329 local_bh_enable(); 1330 } 1331 1332 if (!engine_mask) 1333 goto out; 1334 1335 /* Full reset needs the mutex, stop any other user trying to do so. */ 1336 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1337 wait_event(gt->reset.queue, 1338 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1339 goto out; /* piggy-back on the other reset */ 1340 } 1341 1342 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1343 synchronize_rcu_expedited(); 1344 1345 /* 1346 * Prevent any other reset-engine attempt. We don't do this for GuC 1347 * submission the GuC owns the per-engine reset, not the i915. 1348 */ 1349 if (!intel_uc_uses_guc_submission(>->uc)) { 1350 for_each_engine(engine, gt, tmp) { 1351 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1352 >->reset.flags)) 1353 wait_on_bit(>->reset.flags, 1354 I915_RESET_ENGINE + engine->id, 1355 TASK_UNINTERRUPTIBLE); 1356 } 1357 } 1358 1359 intel_gt_reset_global(gt, engine_mask, msg); 1360 1361 if (!intel_uc_uses_guc_submission(>->uc)) { 1362 for_each_engine(engine, gt, tmp) 1363 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1364 >->reset.flags); 1365 } 1366 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1367 smp_mb__after_atomic(); 1368 wake_up_all(>->reset.queue); 1369 1370 out: 1371 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1372 } 1373 1374 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1375 { 1376 might_lock(>->reset.backoff_srcu); 1377 might_sleep(); 1378 1379 rcu_read_lock(); 1380 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1381 rcu_read_unlock(); 1382 1383 if (wait_event_interruptible(gt->reset.queue, 1384 !test_bit(I915_RESET_BACKOFF, 1385 >->reset.flags))) 1386 return -EINTR; 1387 1388 rcu_read_lock(); 1389 } 1390 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1391 rcu_read_unlock(); 1392 1393 return 0; 1394 } 1395 1396 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1397 __releases(>->reset.backoff_srcu) 1398 { 1399 srcu_read_unlock(>->reset.backoff_srcu, tag); 1400 } 1401 1402 int intel_gt_terminally_wedged(struct intel_gt *gt) 1403 { 1404 might_sleep(); 1405 1406 if (!intel_gt_is_wedged(gt)) 1407 return 0; 1408 1409 if (intel_gt_has_unrecoverable_error(gt)) 1410 return -EIO; 1411 1412 /* Reset still in progress? Maybe we will recover? */ 1413 if (wait_event_interruptible(gt->reset.queue, 1414 !test_bit(I915_RESET_BACKOFF, 1415 >->reset.flags))) 1416 return -EINTR; 1417 1418 return intel_gt_is_wedged(gt) ? -EIO : 0; 1419 } 1420 1421 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1422 { 1423 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1424 I915_WEDGED_ON_INIT); 1425 intel_gt_set_wedged(gt); 1426 i915_disable_error_state(gt->i915, -ENODEV); 1427 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1428 1429 /* Wedged on init is non-recoverable */ 1430 add_taint_for_CI(gt->i915, TAINT_WARN); 1431 } 1432 1433 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1434 { 1435 intel_gt_set_wedged(gt); 1436 i915_disable_error_state(gt->i915, -ENODEV); 1437 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1438 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1439 } 1440 1441 void intel_gt_init_reset(struct intel_gt *gt) 1442 { 1443 init_waitqueue_head(>->reset.queue); 1444 mutex_init(>->reset.mutex); 1445 init_srcu_struct(>->reset.backoff_srcu); 1446 1447 /* 1448 * While undesirable to wait inside the shrinker, complain anyway. 1449 * 1450 * If we have to wait during shrinking, we guarantee forward progress 1451 * by forcing the reset. Therefore during the reset we must not 1452 * re-enter the shrinker. By declaring that we take the reset mutex 1453 * within the shrinker, we forbid ourselves from performing any 1454 * fs-reclaim or taking related locks during reset. 1455 */ 1456 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1457 1458 /* no GPU until we are ready! */ 1459 __set_bit(I915_WEDGED, >->reset.flags); 1460 } 1461 1462 void intel_gt_fini_reset(struct intel_gt *gt) 1463 { 1464 cleanup_srcu_struct(>->reset.backoff_srcu); 1465 } 1466 1467 static void intel_wedge_me(struct work_struct *work) 1468 { 1469 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1470 1471 drm_err(&w->gt->i915->drm, 1472 "%s timed out, cancelling all in-flight rendering.\n", 1473 w->name); 1474 intel_gt_set_wedged(w->gt); 1475 } 1476 1477 void __intel_init_wedge(struct intel_wedge_me *w, 1478 struct intel_gt *gt, 1479 long timeout, 1480 const char *name) 1481 { 1482 w->gt = gt; 1483 w->name = name; 1484 1485 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1486 schedule_delayed_work(&w->work, timeout); 1487 } 1488 1489 void __intel_fini_wedge(struct intel_wedge_me *w) 1490 { 1491 cancel_delayed_work_sync(&w->work); 1492 destroy_delayed_work_on_stack(&w->work); 1493 w->gt = NULL; 1494 } 1495 1496 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1497 #include "selftest_reset.c" 1498 #include "selftest_hangcheck.c" 1499 #endif 1500