xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_reset.c (revision d9565bf4)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008-2018 Intel Corporation
4  */
5 
6 #include <linux/sched/mm.h>
7 #include <linux/stop_machine.h>
8 
9 #include "display/intel_display.h"
10 #include "display/intel_overlay.h"
11 
12 #include "gem/i915_gem_context.h"
13 
14 #include "i915_drv.h"
15 #include "i915_gpu_error.h"
16 #include "i915_irq.h"
17 #include "intel_breadcrumbs.h"
18 #include "intel_engine_pm.h"
19 #include "intel_gt.h"
20 #include "intel_gt_pm.h"
21 #include "intel_gt_requests.h"
22 #include "intel_reset.h"
23 
24 #include "uc/intel_guc.h"
25 
26 #define RESET_MAX_RETRIES 3
27 
28 /* XXX How to handle concurrent GGTT updates using tiling registers? */
29 #define RESET_UNDER_STOP_MACHINE 0
30 
31 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
32 {
33 	intel_uncore_rmw_fw(uncore, reg, 0, set);
34 }
35 
36 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
37 {
38 	intel_uncore_rmw_fw(uncore, reg, clr, 0);
39 }
40 
41 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
42 {
43 	struct drm_i915_file_private *file_priv = ctx->file_priv;
44 	unsigned long prev_hang;
45 	unsigned int score;
46 
47 	if (IS_ERR_OR_NULL(file_priv))
48 		return;
49 
50 	score = 0;
51 	if (banned)
52 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
53 
54 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
55 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
56 		score += I915_CLIENT_SCORE_HANG_FAST;
57 
58 	if (score) {
59 		atomic_add(score, &file_priv->ban_score);
60 
61 		drm_dbg(&ctx->i915->drm,
62 			"client %s: gained %u ban score, now %u\n",
63 			ctx->name, score,
64 			atomic_read(&file_priv->ban_score));
65 	}
66 }
67 
68 static bool mark_guilty(struct i915_request *rq)
69 {
70 	struct i915_gem_context *ctx;
71 	unsigned long prev_hang;
72 	bool banned;
73 	int i;
74 
75 	if (intel_context_is_closed(rq->context))
76 		return true;
77 
78 	rcu_read_lock();
79 	ctx = rcu_dereference(rq->context->gem_context);
80 	if (ctx && !kref_get_unless_zero(&ctx->ref))
81 		ctx = NULL;
82 	rcu_read_unlock();
83 	if (!ctx)
84 		return intel_context_is_banned(rq->context);
85 
86 	atomic_inc(&ctx->guilty_count);
87 
88 	/* Cool contexts are too cool to be banned! (Used for reset testing.) */
89 	if (!i915_gem_context_is_bannable(ctx)) {
90 		banned = false;
91 		goto out;
92 	}
93 
94 	drm_notice(&ctx->i915->drm,
95 		   "%s context reset due to GPU hang\n",
96 		   ctx->name);
97 
98 	/* Record the timestamp for the last N hangs */
99 	prev_hang = ctx->hang_timestamp[0];
100 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
101 		ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
102 	ctx->hang_timestamp[i] = jiffies;
103 
104 	/* If we have hung N+1 times in rapid succession, we ban the context! */
105 	banned = !i915_gem_context_is_recoverable(ctx);
106 	if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
107 		banned = true;
108 	if (banned)
109 		drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
110 			ctx->name, atomic_read(&ctx->guilty_count));
111 
112 	client_mark_guilty(ctx, banned);
113 
114 out:
115 	i915_gem_context_put(ctx);
116 	return banned;
117 }
118 
119 static void mark_innocent(struct i915_request *rq)
120 {
121 	struct i915_gem_context *ctx;
122 
123 	rcu_read_lock();
124 	ctx = rcu_dereference(rq->context->gem_context);
125 	if (ctx)
126 		atomic_inc(&ctx->active_count);
127 	rcu_read_unlock();
128 }
129 
130 void __i915_request_reset(struct i915_request *rq, bool guilty)
131 {
132 	bool banned = false;
133 
134 	RQ_TRACE(rq, "guilty? %s\n", yesno(guilty));
135 	GEM_BUG_ON(__i915_request_is_complete(rq));
136 
137 	rcu_read_lock(); /* protect the GEM context */
138 	if (guilty) {
139 		i915_request_set_error_once(rq, -EIO);
140 		__i915_request_skip(rq);
141 		banned = mark_guilty(rq);
142 	} else {
143 		i915_request_set_error_once(rq, -EAGAIN);
144 		mark_innocent(rq);
145 	}
146 	rcu_read_unlock();
147 
148 	if (banned)
149 		intel_context_ban(rq->context, rq);
150 }
151 
152 static bool i915_in_reset(struct pci_dev *pdev)
153 {
154 	u8 gdrst;
155 
156 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
157 	return gdrst & GRDOM_RESET_STATUS;
158 }
159 
160 static int i915_do_reset(struct intel_gt *gt,
161 			 intel_engine_mask_t engine_mask,
162 			 unsigned int retry)
163 {
164 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
165 	int err;
166 
167 	/* Assert reset for at least 20 usec, and wait for acknowledgement. */
168 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
169 	udelay(50);
170 	err = wait_for_atomic(i915_in_reset(pdev), 50);
171 
172 	/* Clear the reset request. */
173 	pci_write_config_byte(pdev, I915_GDRST, 0);
174 	udelay(50);
175 	if (!err)
176 		err = wait_for_atomic(!i915_in_reset(pdev), 50);
177 
178 	return err;
179 }
180 
181 static bool g4x_reset_complete(struct pci_dev *pdev)
182 {
183 	u8 gdrst;
184 
185 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
186 	return (gdrst & GRDOM_RESET_ENABLE) == 0;
187 }
188 
189 static int g33_do_reset(struct intel_gt *gt,
190 			intel_engine_mask_t engine_mask,
191 			unsigned int retry)
192 {
193 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
194 
195 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
196 	return wait_for_atomic(g4x_reset_complete(pdev), 50);
197 }
198 
199 static int g4x_do_reset(struct intel_gt *gt,
200 			intel_engine_mask_t engine_mask,
201 			unsigned int retry)
202 {
203 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
204 	struct intel_uncore *uncore = gt->uncore;
205 	int ret;
206 
207 	/* WaVcpClkGateDisableForMediaReset:ctg,elk */
208 	rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
209 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
210 
211 	pci_write_config_byte(pdev, I915_GDRST,
212 			      GRDOM_MEDIA | GRDOM_RESET_ENABLE);
213 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
214 	if (ret) {
215 		GT_TRACE(gt, "Wait for media reset failed\n");
216 		goto out;
217 	}
218 
219 	pci_write_config_byte(pdev, I915_GDRST,
220 			      GRDOM_RENDER | GRDOM_RESET_ENABLE);
221 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
222 	if (ret) {
223 		GT_TRACE(gt, "Wait for render reset failed\n");
224 		goto out;
225 	}
226 
227 out:
228 	pci_write_config_byte(pdev, I915_GDRST, 0);
229 
230 	rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
231 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
232 
233 	return ret;
234 }
235 
236 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
237 			unsigned int retry)
238 {
239 	struct intel_uncore *uncore = gt->uncore;
240 	int ret;
241 
242 	intel_uncore_write_fw(uncore, ILK_GDSR,
243 			      ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
244 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
245 					   ILK_GRDOM_RESET_ENABLE, 0,
246 					   5000, 0,
247 					   NULL);
248 	if (ret) {
249 		GT_TRACE(gt, "Wait for render reset failed\n");
250 		goto out;
251 	}
252 
253 	intel_uncore_write_fw(uncore, ILK_GDSR,
254 			      ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
255 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
256 					   ILK_GRDOM_RESET_ENABLE, 0,
257 					   5000, 0,
258 					   NULL);
259 	if (ret) {
260 		GT_TRACE(gt, "Wait for media reset failed\n");
261 		goto out;
262 	}
263 
264 out:
265 	intel_uncore_write_fw(uncore, ILK_GDSR, 0);
266 	intel_uncore_posting_read_fw(uncore, ILK_GDSR);
267 	return ret;
268 }
269 
270 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
271 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
272 {
273 	struct intel_uncore *uncore = gt->uncore;
274 	int err;
275 
276 	/*
277 	 * GEN6_GDRST is not in the gt power well, no need to check
278 	 * for fifo space for the write or forcewake the chip for
279 	 * the read
280 	 */
281 	intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
282 
283 	/* Wait for the device to ack the reset requests */
284 	err = __intel_wait_for_register_fw(uncore,
285 					   GEN6_GDRST, hw_domain_mask, 0,
286 					   500, 0,
287 					   NULL);
288 	if (err)
289 		GT_TRACE(gt,
290 			 "Wait for 0x%08x engines reset failed\n",
291 			 hw_domain_mask);
292 
293 	return err;
294 }
295 
296 static int gen6_reset_engines(struct intel_gt *gt,
297 			      intel_engine_mask_t engine_mask,
298 			      unsigned int retry)
299 {
300 	struct intel_engine_cs *engine;
301 	u32 hw_mask;
302 
303 	if (engine_mask == ALL_ENGINES) {
304 		hw_mask = GEN6_GRDOM_FULL;
305 	} else {
306 		intel_engine_mask_t tmp;
307 
308 		hw_mask = 0;
309 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
310 			hw_mask |= engine->reset_domain;
311 		}
312 	}
313 
314 	return gen6_hw_domain_reset(gt, hw_mask);
315 }
316 
317 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine)
318 {
319 	int vecs_id;
320 
321 	GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS);
322 
323 	vecs_id = _VECS((engine->instance) / 2);
324 
325 	return engine->gt->engine[vecs_id];
326 }
327 
328 struct sfc_lock_data {
329 	i915_reg_t lock_reg;
330 	i915_reg_t ack_reg;
331 	i915_reg_t usage_reg;
332 	u32 lock_bit;
333 	u32 ack_bit;
334 	u32 usage_bit;
335 	u32 reset_bit;
336 };
337 
338 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine,
339 				     struct sfc_lock_data *sfc_lock)
340 {
341 	switch (engine->class) {
342 	default:
343 		MISSING_CASE(engine->class);
344 		fallthrough;
345 	case VIDEO_DECODE_CLASS:
346 		sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine);
347 		sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
348 
349 		sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine);
350 		sfc_lock->ack_bit  = GEN11_VCS_SFC_LOCK_ACK_BIT;
351 
352 		sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine);
353 		sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT;
354 		sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
355 
356 		break;
357 	case VIDEO_ENHANCEMENT_CLASS:
358 		sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine);
359 		sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
360 
361 		sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine);
362 		sfc_lock->ack_bit  = GEN11_VECS_SFC_LOCK_ACK_BIT;
363 
364 		sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine);
365 		sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT;
366 		sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
367 
368 		break;
369 	}
370 }
371 
372 static int gen11_lock_sfc(struct intel_engine_cs *engine,
373 			  u32 *reset_mask,
374 			  u32 *unlock_mask)
375 {
376 	struct intel_uncore *uncore = engine->uncore;
377 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
378 	struct sfc_lock_data sfc_lock;
379 	bool lock_obtained, lock_to_other = false;
380 	int ret;
381 
382 	switch (engine->class) {
383 	case VIDEO_DECODE_CLASS:
384 		if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
385 			return 0;
386 
387 		fallthrough;
388 	case VIDEO_ENHANCEMENT_CLASS:
389 		get_sfc_forced_lock_data(engine, &sfc_lock);
390 
391 		break;
392 	default:
393 		return 0;
394 	}
395 
396 	if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) {
397 		struct intel_engine_cs *paired_vecs;
398 
399 		if (engine->class != VIDEO_DECODE_CLASS ||
400 		    GRAPHICS_VER(engine->i915) != 12)
401 			return 0;
402 
403 		/*
404 		 * Wa_14010733141
405 		 *
406 		 * If the VCS-MFX isn't using the SFC, we also need to check
407 		 * whether VCS-HCP is using it.  If so, we need to issue a *VE*
408 		 * forced lock on the VE engine that shares the same SFC.
409 		 */
410 		if (!(intel_uncore_read_fw(uncore,
411 					   GEN12_HCP_SFC_LOCK_STATUS(engine)) &
412 		      GEN12_HCP_SFC_USAGE_BIT))
413 			return 0;
414 
415 		paired_vecs = find_sfc_paired_vecs_engine(engine);
416 		get_sfc_forced_lock_data(paired_vecs, &sfc_lock);
417 		lock_to_other = true;
418 		*unlock_mask |= paired_vecs->mask;
419 	} else {
420 		*unlock_mask |= engine->mask;
421 	}
422 
423 	/*
424 	 * If the engine is using an SFC, tell the engine that a software reset
425 	 * is going to happen. The engine will then try to force lock the SFC.
426 	 * If SFC ends up being locked to the engine we want to reset, we have
427 	 * to reset it as well (we will unlock it once the reset sequence is
428 	 * completed).
429 	 */
430 	rmw_set_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit);
431 
432 	ret = __intel_wait_for_register_fw(uncore,
433 					   sfc_lock.ack_reg,
434 					   sfc_lock.ack_bit,
435 					   sfc_lock.ack_bit,
436 					   1000, 0, NULL);
437 
438 	/*
439 	 * Was the SFC released while we were trying to lock it?
440 	 *
441 	 * We should reset both the engine and the SFC if:
442 	 *  - We were locking the SFC to this engine and the lock succeeded
443 	 *       OR
444 	 *  - We were locking the SFC to a different engine (Wa_14010733141)
445 	 *    but the SFC was released before the lock was obtained.
446 	 *
447 	 * Otherwise we need only reset the engine by itself and we can
448 	 * leave the SFC alone.
449 	 */
450 	lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) &
451 			sfc_lock.usage_bit) != 0;
452 	if (lock_obtained == lock_to_other)
453 		return 0;
454 
455 	if (ret) {
456 		ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n");
457 		return ret;
458 	}
459 
460 	*reset_mask |= sfc_lock.reset_bit;
461 	return 0;
462 }
463 
464 static void gen11_unlock_sfc(struct intel_engine_cs *engine)
465 {
466 	struct intel_uncore *uncore = engine->uncore;
467 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
468 	struct sfc_lock_data sfc_lock = {};
469 
470 	if (engine->class != VIDEO_DECODE_CLASS &&
471 	    engine->class != VIDEO_ENHANCEMENT_CLASS)
472 		return;
473 
474 	if (engine->class == VIDEO_DECODE_CLASS &&
475 	    (BIT(engine->instance) & vdbox_sfc_access) == 0)
476 		return;
477 
478 	get_sfc_forced_lock_data(engine, &sfc_lock);
479 
480 	rmw_clear_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit);
481 }
482 
483 static int gen11_reset_engines(struct intel_gt *gt,
484 			       intel_engine_mask_t engine_mask,
485 			       unsigned int retry)
486 {
487 	struct intel_engine_cs *engine;
488 	intel_engine_mask_t tmp;
489 	u32 reset_mask, unlock_mask = 0;
490 	int ret;
491 
492 	if (engine_mask == ALL_ENGINES) {
493 		reset_mask = GEN11_GRDOM_FULL;
494 	} else {
495 		reset_mask = 0;
496 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
497 			reset_mask |= engine->reset_domain;
498 			ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask);
499 			if (ret)
500 				goto sfc_unlock;
501 		}
502 	}
503 
504 	ret = gen6_hw_domain_reset(gt, reset_mask);
505 
506 sfc_unlock:
507 	/*
508 	 * We unlock the SFC based on the lock status and not the result of
509 	 * gen11_lock_sfc to make sure that we clean properly if something
510 	 * wrong happened during the lock (e.g. lock acquired after timeout
511 	 * expiration).
512 	 *
513 	 * Due to Wa_14010733141, we may have locked an SFC to an engine that
514 	 * wasn't being reset.  So instead of calling gen11_unlock_sfc()
515 	 * on engine_mask, we instead call it on the mask of engines that our
516 	 * gen11_lock_sfc() calls told us actually had locks attempted.
517 	 */
518 	for_each_engine_masked(engine, gt, unlock_mask, tmp)
519 		gen11_unlock_sfc(engine);
520 
521 	return ret;
522 }
523 
524 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
525 {
526 	struct intel_uncore *uncore = engine->uncore;
527 	const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
528 	u32 request, mask, ack;
529 	int ret;
530 
531 	if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1)))
532 		return -ETIMEDOUT;
533 
534 	ack = intel_uncore_read_fw(uncore, reg);
535 	if (ack & RESET_CTL_CAT_ERROR) {
536 		/*
537 		 * For catastrophic errors, ready-for-reset sequence
538 		 * needs to be bypassed: HAS#396813
539 		 */
540 		request = RESET_CTL_CAT_ERROR;
541 		mask = RESET_CTL_CAT_ERROR;
542 
543 		/* Catastrophic errors need to be cleared by HW */
544 		ack = 0;
545 	} else if (!(ack & RESET_CTL_READY_TO_RESET)) {
546 		request = RESET_CTL_REQUEST_RESET;
547 		mask = RESET_CTL_READY_TO_RESET;
548 		ack = RESET_CTL_READY_TO_RESET;
549 	} else {
550 		return 0;
551 	}
552 
553 	intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
554 	ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
555 					   700, 0, NULL);
556 	if (ret)
557 		drm_err(&engine->i915->drm,
558 			"%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
559 			engine->name, request,
560 			intel_uncore_read_fw(uncore, reg));
561 
562 	return ret;
563 }
564 
565 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
566 {
567 	intel_uncore_write_fw(engine->uncore,
568 			      RING_RESET_CTL(engine->mmio_base),
569 			      _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
570 }
571 
572 static int gen8_reset_engines(struct intel_gt *gt,
573 			      intel_engine_mask_t engine_mask,
574 			      unsigned int retry)
575 {
576 	struct intel_engine_cs *engine;
577 	const bool reset_non_ready = retry >= 1;
578 	intel_engine_mask_t tmp;
579 	int ret;
580 
581 	for_each_engine_masked(engine, gt, engine_mask, tmp) {
582 		ret = gen8_engine_reset_prepare(engine);
583 		if (ret && !reset_non_ready)
584 			goto skip_reset;
585 
586 		/*
587 		 * If this is not the first failed attempt to prepare,
588 		 * we decide to proceed anyway.
589 		 *
590 		 * By doing so we risk context corruption and with
591 		 * some gens (kbl), possible system hang if reset
592 		 * happens during active bb execution.
593 		 *
594 		 * We rather take context corruption instead of
595 		 * failed reset with a wedged driver/gpu. And
596 		 * active bb execution case should be covered by
597 		 * stop_engines() we have before the reset.
598 		 */
599 	}
600 
601 	if (GRAPHICS_VER(gt->i915) >= 11)
602 		ret = gen11_reset_engines(gt, engine_mask, retry);
603 	else
604 		ret = gen6_reset_engines(gt, engine_mask, retry);
605 
606 skip_reset:
607 	for_each_engine_masked(engine, gt, engine_mask, tmp)
608 		gen8_engine_reset_cancel(engine);
609 
610 	return ret;
611 }
612 
613 static int mock_reset(struct intel_gt *gt,
614 		      intel_engine_mask_t mask,
615 		      unsigned int retry)
616 {
617 	return 0;
618 }
619 
620 typedef int (*reset_func)(struct intel_gt *,
621 			  intel_engine_mask_t engine_mask,
622 			  unsigned int retry);
623 
624 static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
625 {
626 	struct drm_i915_private *i915 = gt->i915;
627 
628 	if (is_mock_gt(gt))
629 		return mock_reset;
630 	else if (GRAPHICS_VER(i915) >= 8)
631 		return gen8_reset_engines;
632 	else if (GRAPHICS_VER(i915) >= 6)
633 		return gen6_reset_engines;
634 	else if (GRAPHICS_VER(i915) >= 5)
635 		return ilk_do_reset;
636 	else if (IS_G4X(i915))
637 		return g4x_do_reset;
638 	else if (IS_G33(i915) || IS_PINEVIEW(i915))
639 		return g33_do_reset;
640 	else if (GRAPHICS_VER(i915) >= 3)
641 		return i915_do_reset;
642 	else
643 		return NULL;
644 }
645 
646 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
647 {
648 	const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
649 	reset_func reset;
650 	int ret = -ETIMEDOUT;
651 	int retry;
652 
653 	reset = intel_get_gpu_reset(gt);
654 	if (!reset)
655 		return -ENODEV;
656 
657 	/*
658 	 * If the power well sleeps during the reset, the reset
659 	 * request may be dropped and never completes (causing -EIO).
660 	 */
661 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
662 	for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
663 		GT_TRACE(gt, "engine_mask=%x\n", engine_mask);
664 		preempt_disable();
665 		ret = reset(gt, engine_mask, retry);
666 		preempt_enable();
667 	}
668 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
669 
670 	return ret;
671 }
672 
673 bool intel_has_gpu_reset(const struct intel_gt *gt)
674 {
675 	if (!gt->i915->params.reset)
676 		return NULL;
677 
678 	return intel_get_gpu_reset(gt);
679 }
680 
681 bool intel_has_reset_engine(const struct intel_gt *gt)
682 {
683 	if (gt->i915->params.reset < 2)
684 		return false;
685 
686 	return INTEL_INFO(gt->i915)->has_reset_engine;
687 }
688 
689 int intel_reset_guc(struct intel_gt *gt)
690 {
691 	u32 guc_domain =
692 		GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
693 	int ret;
694 
695 	GEM_BUG_ON(!HAS_GT_UC(gt->i915));
696 
697 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
698 	ret = gen6_hw_domain_reset(gt, guc_domain);
699 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
700 
701 	return ret;
702 }
703 
704 /*
705  * Ensure irq handler finishes, and not run again.
706  * Also return the active request so that we only search for it once.
707  */
708 static void reset_prepare_engine(struct intel_engine_cs *engine)
709 {
710 	/*
711 	 * During the reset sequence, we must prevent the engine from
712 	 * entering RC6. As the context state is undefined until we restart
713 	 * the engine, if it does enter RC6 during the reset, the state
714 	 * written to the powercontext is undefined and so we may lose
715 	 * GPU state upon resume, i.e. fail to restart after a reset.
716 	 */
717 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
718 	if (engine->reset.prepare)
719 		engine->reset.prepare(engine);
720 }
721 
722 static void revoke_mmaps(struct intel_gt *gt)
723 {
724 	int i;
725 
726 	for (i = 0; i < gt->ggtt->num_fences; i++) {
727 		struct drm_vma_offset_node *node;
728 		struct i915_vma *vma;
729 		u64 vma_offset;
730 
731 		vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
732 		if (!vma)
733 			continue;
734 
735 		if (!i915_vma_has_userfault(vma))
736 			continue;
737 
738 		GEM_BUG_ON(vma->fence != &gt->ggtt->fence_regs[i]);
739 
740 		if (!vma->mmo)
741 			continue;
742 
743 		node = &vma->mmo->vma_node;
744 		vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
745 
746 		unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
747 				    drm_vma_node_offset_addr(node) + vma_offset,
748 				    vma->size,
749 				    1);
750 	}
751 }
752 
753 static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
754 {
755 	struct intel_engine_cs *engine;
756 	intel_engine_mask_t awake = 0;
757 	enum intel_engine_id id;
758 
759 	for_each_engine(engine, gt, id) {
760 		if (intel_engine_pm_get_if_awake(engine))
761 			awake |= engine->mask;
762 		reset_prepare_engine(engine);
763 	}
764 
765 	intel_uc_reset_prepare(&gt->uc);
766 
767 	return awake;
768 }
769 
770 static void gt_revoke(struct intel_gt *gt)
771 {
772 	revoke_mmaps(gt);
773 }
774 
775 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
776 {
777 	struct intel_engine_cs *engine;
778 	enum intel_engine_id id;
779 	int err;
780 
781 	/*
782 	 * Everything depends on having the GTT running, so we need to start
783 	 * there.
784 	 */
785 	err = i915_ggtt_enable_hw(gt->i915);
786 	if (err)
787 		return err;
788 
789 	local_bh_disable();
790 	for_each_engine(engine, gt, id)
791 		__intel_engine_reset(engine, stalled_mask & engine->mask);
792 	local_bh_enable();
793 
794 	intel_uc_reset(&gt->uc, true);
795 
796 	intel_ggtt_restore_fences(gt->ggtt);
797 
798 	return err;
799 }
800 
801 static void reset_finish_engine(struct intel_engine_cs *engine)
802 {
803 	if (engine->reset.finish)
804 		engine->reset.finish(engine);
805 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
806 
807 	intel_engine_signal_breadcrumbs(engine);
808 }
809 
810 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
811 {
812 	struct intel_engine_cs *engine;
813 	enum intel_engine_id id;
814 
815 	for_each_engine(engine, gt, id) {
816 		reset_finish_engine(engine);
817 		if (awake & engine->mask)
818 			intel_engine_pm_put(engine);
819 	}
820 
821 	intel_uc_reset_finish(&gt->uc);
822 }
823 
824 static void nop_submit_request(struct i915_request *request)
825 {
826 	RQ_TRACE(request, "-EIO\n");
827 
828 	request = i915_request_mark_eio(request);
829 	if (request) {
830 		i915_request_submit(request);
831 		intel_engine_signal_breadcrumbs(request->engine);
832 
833 		i915_request_put(request);
834 	}
835 }
836 
837 static void __intel_gt_set_wedged(struct intel_gt *gt)
838 {
839 	struct intel_engine_cs *engine;
840 	intel_engine_mask_t awake;
841 	enum intel_engine_id id;
842 
843 	if (test_bit(I915_WEDGED, &gt->reset.flags))
844 		return;
845 
846 	GT_TRACE(gt, "start\n");
847 
848 	/*
849 	 * First, stop submission to hw, but do not yet complete requests by
850 	 * rolling the global seqno forward (since this would complete requests
851 	 * for which we haven't set the fence error to EIO yet).
852 	 */
853 	awake = reset_prepare(gt);
854 
855 	/* Even if the GPU reset fails, it should still stop the engines */
856 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
857 		__intel_gt_reset(gt, ALL_ENGINES);
858 
859 	for_each_engine(engine, gt, id)
860 		engine->submit_request = nop_submit_request;
861 
862 	/*
863 	 * Make sure no request can slip through without getting completed by
864 	 * either this call here to intel_engine_write_global_seqno, or the one
865 	 * in nop_submit_request.
866 	 */
867 	synchronize_rcu_expedited();
868 	set_bit(I915_WEDGED, &gt->reset.flags);
869 
870 	/* Mark all executing requests as skipped */
871 	local_bh_disable();
872 	for_each_engine(engine, gt, id)
873 		if (engine->reset.cancel)
874 			engine->reset.cancel(engine);
875 	intel_uc_cancel_requests(&gt->uc);
876 	local_bh_enable();
877 
878 	reset_finish(gt, awake);
879 
880 	GT_TRACE(gt, "end\n");
881 }
882 
883 void intel_gt_set_wedged(struct intel_gt *gt)
884 {
885 	intel_wakeref_t wakeref;
886 
887 	if (test_bit(I915_WEDGED, &gt->reset.flags))
888 		return;
889 
890 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
891 	mutex_lock(&gt->reset.mutex);
892 
893 	if (GEM_SHOW_DEBUG()) {
894 		struct drm_printer p = drm_debug_printer(__func__);
895 		struct intel_engine_cs *engine;
896 		enum intel_engine_id id;
897 
898 		drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
899 		for_each_engine(engine, gt, id) {
900 			if (intel_engine_is_idle(engine))
901 				continue;
902 
903 			intel_engine_dump(engine, &p, "%s\n", engine->name);
904 		}
905 	}
906 
907 	__intel_gt_set_wedged(gt);
908 
909 	mutex_unlock(&gt->reset.mutex);
910 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
911 }
912 
913 static bool __intel_gt_unset_wedged(struct intel_gt *gt)
914 {
915 	struct intel_gt_timelines *timelines = &gt->timelines;
916 	struct intel_timeline *tl;
917 	bool ok;
918 
919 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
920 		return true;
921 
922 	/* Never fully initialised, recovery impossible */
923 	if (intel_gt_has_unrecoverable_error(gt))
924 		return false;
925 
926 	GT_TRACE(gt, "start\n");
927 
928 	/*
929 	 * Before unwedging, make sure that all pending operations
930 	 * are flushed and errored out - we may have requests waiting upon
931 	 * third party fences. We marked all inflight requests as EIO, and
932 	 * every execbuf since returned EIO, for consistency we want all
933 	 * the currently pending requests to also be marked as EIO, which
934 	 * is done inside our nop_submit_request - and so we must wait.
935 	 *
936 	 * No more can be submitted until we reset the wedged bit.
937 	 */
938 	spin_lock(&timelines->lock);
939 	list_for_each_entry(tl, &timelines->active_list, link) {
940 		struct dma_fence *fence;
941 
942 		fence = i915_active_fence_get(&tl->last_request);
943 		if (!fence)
944 			continue;
945 
946 		spin_unlock(&timelines->lock);
947 
948 		/*
949 		 * All internal dependencies (i915_requests) will have
950 		 * been flushed by the set-wedge, but we may be stuck waiting
951 		 * for external fences. These should all be capped to 10s
952 		 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded
953 		 * in the worst case.
954 		 */
955 		dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
956 		dma_fence_put(fence);
957 
958 		/* Restart iteration after droping lock */
959 		spin_lock(&timelines->lock);
960 		tl = list_entry(&timelines->active_list, typeof(*tl), link);
961 	}
962 	spin_unlock(&timelines->lock);
963 
964 	/* We must reset pending GPU events before restoring our submission */
965 	ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
966 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
967 		ok = __intel_gt_reset(gt, ALL_ENGINES) == 0;
968 	if (!ok) {
969 		/*
970 		 * Warn CI about the unrecoverable wedged condition.
971 		 * Time for a reboot.
972 		 */
973 		add_taint_for_CI(gt->i915, TAINT_WARN);
974 		return false;
975 	}
976 
977 	/*
978 	 * Undo nop_submit_request. We prevent all new i915 requests from
979 	 * being queued (by disallowing execbuf whilst wedged) so having
980 	 * waited for all active requests above, we know the system is idle
981 	 * and do not have to worry about a thread being inside
982 	 * engine->submit_request() as we swap over. So unlike installing
983 	 * the nop_submit_request on reset, we can do this from normal
984 	 * context and do not require stop_machine().
985 	 */
986 	intel_engines_reset_default_submission(gt);
987 
988 	GT_TRACE(gt, "end\n");
989 
990 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
991 	clear_bit(I915_WEDGED, &gt->reset.flags);
992 
993 	return true;
994 }
995 
996 bool intel_gt_unset_wedged(struct intel_gt *gt)
997 {
998 	bool result;
999 
1000 	mutex_lock(&gt->reset.mutex);
1001 	result = __intel_gt_unset_wedged(gt);
1002 	mutex_unlock(&gt->reset.mutex);
1003 
1004 	return result;
1005 }
1006 
1007 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
1008 {
1009 	int err, i;
1010 
1011 	err = __intel_gt_reset(gt, ALL_ENGINES);
1012 	for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
1013 		msleep(10 * (i + 1));
1014 		err = __intel_gt_reset(gt, ALL_ENGINES);
1015 	}
1016 	if (err)
1017 		return err;
1018 
1019 	return gt_reset(gt, stalled_mask);
1020 }
1021 
1022 static int resume(struct intel_gt *gt)
1023 {
1024 	struct intel_engine_cs *engine;
1025 	enum intel_engine_id id;
1026 	int ret;
1027 
1028 	for_each_engine(engine, gt, id) {
1029 		ret = intel_engine_resume(engine);
1030 		if (ret)
1031 			return ret;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 /**
1038  * intel_gt_reset - reset chip after a hang
1039  * @gt: #intel_gt to reset
1040  * @stalled_mask: mask of the stalled engines with the guilty requests
1041  * @reason: user error message for why we are resetting
1042  *
1043  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1044  * on failure.
1045  *
1046  * Procedure is fairly simple:
1047  *   - reset the chip using the reset reg
1048  *   - re-init context state
1049  *   - re-init hardware status page
1050  *   - re-init ring buffer
1051  *   - re-init interrupt state
1052  *   - re-init display
1053  */
1054 void intel_gt_reset(struct intel_gt *gt,
1055 		    intel_engine_mask_t stalled_mask,
1056 		    const char *reason)
1057 {
1058 	intel_engine_mask_t awake;
1059 	int ret;
1060 
1061 	GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
1062 
1063 	might_sleep();
1064 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1065 
1066 	/*
1067 	 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence
1068 	 * critical section like gpu reset.
1069 	 */
1070 	gt_revoke(gt);
1071 
1072 	mutex_lock(&gt->reset.mutex);
1073 
1074 	/* Clear any previous failed attempts at recovery. Time to try again. */
1075 	if (!__intel_gt_unset_wedged(gt))
1076 		goto unlock;
1077 
1078 	if (reason)
1079 		drm_notice(&gt->i915->drm,
1080 			   "Resetting chip for %s\n", reason);
1081 	atomic_inc(&gt->i915->gpu_error.reset_count);
1082 
1083 	awake = reset_prepare(gt);
1084 
1085 	if (!intel_has_gpu_reset(gt)) {
1086 		if (gt->i915->params.reset)
1087 			drm_err(&gt->i915->drm, "GPU reset not supported\n");
1088 		else
1089 			drm_dbg(&gt->i915->drm, "GPU reset disabled\n");
1090 		goto error;
1091 	}
1092 
1093 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1094 		intel_runtime_pm_disable_interrupts(gt->i915);
1095 
1096 	if (do_reset(gt, stalled_mask)) {
1097 		drm_err(&gt->i915->drm, "Failed to reset chip\n");
1098 		goto taint;
1099 	}
1100 
1101 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1102 		intel_runtime_pm_enable_interrupts(gt->i915);
1103 
1104 	intel_overlay_reset(gt->i915);
1105 
1106 	/*
1107 	 * Next we need to restore the context, but we don't use those
1108 	 * yet either...
1109 	 *
1110 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1111 	 * was running at the time of the reset (i.e. we weren't VT
1112 	 * switched away).
1113 	 */
1114 	ret = intel_gt_init_hw(gt);
1115 	if (ret) {
1116 		drm_err(&gt->i915->drm,
1117 			"Failed to initialise HW following reset (%d)\n",
1118 			ret);
1119 		goto taint;
1120 	}
1121 
1122 	ret = resume(gt);
1123 	if (ret)
1124 		goto taint;
1125 
1126 finish:
1127 	reset_finish(gt, awake);
1128 unlock:
1129 	mutex_unlock(&gt->reset.mutex);
1130 	return;
1131 
1132 taint:
1133 	/*
1134 	 * History tells us that if we cannot reset the GPU now, we
1135 	 * never will. This then impacts everything that is run
1136 	 * subsequently. On failing the reset, we mark the driver
1137 	 * as wedged, preventing further execution on the GPU.
1138 	 * We also want to go one step further and add a taint to the
1139 	 * kernel so that any subsequent faults can be traced back to
1140 	 * this failure. This is important for CI, where if the
1141 	 * GPU/driver fails we would like to reboot and restart testing
1142 	 * rather than continue on into oblivion. For everyone else,
1143 	 * the system should still plod along, but they have been warned!
1144 	 */
1145 	add_taint_for_CI(gt->i915, TAINT_WARN);
1146 error:
1147 	__intel_gt_set_wedged(gt);
1148 	goto finish;
1149 }
1150 
1151 static int intel_gt_reset_engine(struct intel_engine_cs *engine)
1152 {
1153 	return __intel_gt_reset(engine->gt, engine->mask);
1154 }
1155 
1156 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg)
1157 {
1158 	struct intel_gt *gt = engine->gt;
1159 	int ret;
1160 
1161 	ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
1162 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags));
1163 
1164 	if (intel_engine_uses_guc(engine))
1165 		return -ENODEV;
1166 
1167 	if (!intel_engine_pm_get_if_awake(engine))
1168 		return 0;
1169 
1170 	reset_prepare_engine(engine);
1171 
1172 	if (msg)
1173 		drm_notice(&engine->i915->drm,
1174 			   "Resetting %s for %s\n", engine->name, msg);
1175 	atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]);
1176 
1177 	ret = intel_gt_reset_engine(engine);
1178 	if (ret) {
1179 		/* If we fail here, we expect to fallback to a global reset */
1180 		ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret);
1181 		goto out;
1182 	}
1183 
1184 	/*
1185 	 * The request that caused the hang is stuck on elsp, we know the
1186 	 * active request and can drop it, adjust head to skip the offending
1187 	 * request to resume executing remaining requests in the queue.
1188 	 */
1189 	__intel_engine_reset(engine, true);
1190 
1191 	/*
1192 	 * The engine and its registers (and workarounds in case of render)
1193 	 * have been reset to their default values. Follow the init_ring
1194 	 * process to program RING_MODE, HWSP and re-enable submission.
1195 	 */
1196 	ret = intel_engine_resume(engine);
1197 
1198 out:
1199 	intel_engine_cancel_stop_cs(engine);
1200 	reset_finish_engine(engine);
1201 	intel_engine_pm_put_async(engine);
1202 	return ret;
1203 }
1204 
1205 /**
1206  * intel_engine_reset - reset GPU engine to recover from a hang
1207  * @engine: engine to reset
1208  * @msg: reason for GPU reset; or NULL for no drm_notice()
1209  *
1210  * Reset a specific GPU engine. Useful if a hang is detected.
1211  * Returns zero on successful reset or otherwise an error code.
1212  *
1213  * Procedure is:
1214  *  - identifies the request that caused the hang and it is dropped
1215  *  - reset engine (which will force the engine to idle)
1216  *  - re-init/configure engine
1217  */
1218 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
1219 {
1220 	int err;
1221 
1222 	local_bh_disable();
1223 	err = __intel_engine_reset_bh(engine, msg);
1224 	local_bh_enable();
1225 
1226 	return err;
1227 }
1228 
1229 static void intel_gt_reset_global(struct intel_gt *gt,
1230 				  u32 engine_mask,
1231 				  const char *reason)
1232 {
1233 	struct kobject *kobj = &gt->i915->drm.primary->kdev->kobj;
1234 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1235 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1236 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1237 	struct intel_wedge_me w;
1238 
1239 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
1240 
1241 	GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask);
1242 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
1243 
1244 	/* Use a watchdog to ensure that our reset completes */
1245 	intel_wedge_on_timeout(&w, gt, 5 * HZ) {
1246 		intel_display_prepare_reset(gt->i915);
1247 
1248 		/* Flush everyone using a resource about to be clobbered */
1249 		synchronize_srcu_expedited(&gt->reset.backoff_srcu);
1250 
1251 		intel_gt_reset(gt, engine_mask, reason);
1252 
1253 		intel_display_finish_reset(gt->i915);
1254 	}
1255 
1256 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
1257 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
1258 }
1259 
1260 /**
1261  * intel_gt_handle_error - handle a gpu error
1262  * @gt: the intel_gt
1263  * @engine_mask: mask representing engines that are hung
1264  * @flags: control flags
1265  * @fmt: Error message format string
1266  *
1267  * Do some basic checking of register state at error time and
1268  * dump it to the syslog.  Also call i915_capture_error_state() to make
1269  * sure we get a record and make it available in debugfs.  Fire a uevent
1270  * so userspace knows something bad happened (should trigger collection
1271  * of a ring dump etc.).
1272  */
1273 void intel_gt_handle_error(struct intel_gt *gt,
1274 			   intel_engine_mask_t engine_mask,
1275 			   unsigned long flags,
1276 			   const char *fmt, ...)
1277 {
1278 	struct intel_engine_cs *engine;
1279 	intel_wakeref_t wakeref;
1280 	intel_engine_mask_t tmp;
1281 	char error_msg[80];
1282 	char *msg = NULL;
1283 
1284 	if (fmt) {
1285 		va_list args;
1286 
1287 		va_start(args, fmt);
1288 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
1289 		va_end(args);
1290 
1291 		msg = error_msg;
1292 	}
1293 
1294 	/*
1295 	 * In most cases it's guaranteed that we get here with an RPM
1296 	 * reference held, for example because there is a pending GPU
1297 	 * request that won't finish until the reset is done. This
1298 	 * isn't the case at least when we get here by doing a
1299 	 * simulated reset via debugfs, so get an RPM reference.
1300 	 */
1301 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1302 
1303 	engine_mask &= gt->info.engine_mask;
1304 
1305 	if (flags & I915_ERROR_CAPTURE) {
1306 		i915_capture_error_state(gt, engine_mask);
1307 		intel_gt_clear_error_registers(gt, engine_mask);
1308 	}
1309 
1310 	/*
1311 	 * Try engine reset when available. We fall back to full reset if
1312 	 * single reset fails.
1313 	 */
1314 	if (!intel_uc_uses_guc_submission(&gt->uc) &&
1315 	    intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
1316 		local_bh_disable();
1317 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
1318 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
1319 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1320 					     &gt->reset.flags))
1321 				continue;
1322 
1323 			if (__intel_engine_reset_bh(engine, msg) == 0)
1324 				engine_mask &= ~engine->mask;
1325 
1326 			clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
1327 					      &gt->reset.flags);
1328 		}
1329 		local_bh_enable();
1330 	}
1331 
1332 	if (!engine_mask)
1333 		goto out;
1334 
1335 	/* Full reset needs the mutex, stop any other user trying to do so. */
1336 	if (test_and_set_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1337 		wait_event(gt->reset.queue,
1338 			   !test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1339 		goto out; /* piggy-back on the other reset */
1340 	}
1341 
1342 	/* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
1343 	synchronize_rcu_expedited();
1344 
1345 	/*
1346 	 * Prevent any other reset-engine attempt. We don't do this for GuC
1347 	 * submission the GuC owns the per-engine reset, not the i915.
1348 	 */
1349 	if (!intel_uc_uses_guc_submission(&gt->uc)) {
1350 		for_each_engine(engine, gt, tmp) {
1351 			while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1352 						&gt->reset.flags))
1353 				wait_on_bit(&gt->reset.flags,
1354 					    I915_RESET_ENGINE + engine->id,
1355 					    TASK_UNINTERRUPTIBLE);
1356 		}
1357 	}
1358 
1359 	intel_gt_reset_global(gt, engine_mask, msg);
1360 
1361 	if (!intel_uc_uses_guc_submission(&gt->uc)) {
1362 		for_each_engine(engine, gt, tmp)
1363 			clear_bit_unlock(I915_RESET_ENGINE + engine->id,
1364 					 &gt->reset.flags);
1365 	}
1366 	clear_bit_unlock(I915_RESET_BACKOFF, &gt->reset.flags);
1367 	smp_mb__after_atomic();
1368 	wake_up_all(&gt->reset.queue);
1369 
1370 out:
1371 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1372 }
1373 
1374 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
1375 {
1376 	might_lock(&gt->reset.backoff_srcu);
1377 	might_sleep();
1378 
1379 	rcu_read_lock();
1380 	while (test_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1381 		rcu_read_unlock();
1382 
1383 		if (wait_event_interruptible(gt->reset.queue,
1384 					     !test_bit(I915_RESET_BACKOFF,
1385 						       &gt->reset.flags)))
1386 			return -EINTR;
1387 
1388 		rcu_read_lock();
1389 	}
1390 	*srcu = srcu_read_lock(&gt->reset.backoff_srcu);
1391 	rcu_read_unlock();
1392 
1393 	return 0;
1394 }
1395 
1396 void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
1397 __releases(&gt->reset.backoff_srcu)
1398 {
1399 	srcu_read_unlock(&gt->reset.backoff_srcu, tag);
1400 }
1401 
1402 int intel_gt_terminally_wedged(struct intel_gt *gt)
1403 {
1404 	might_sleep();
1405 
1406 	if (!intel_gt_is_wedged(gt))
1407 		return 0;
1408 
1409 	if (intel_gt_has_unrecoverable_error(gt))
1410 		return -EIO;
1411 
1412 	/* Reset still in progress? Maybe we will recover? */
1413 	if (wait_event_interruptible(gt->reset.queue,
1414 				     !test_bit(I915_RESET_BACKOFF,
1415 					       &gt->reset.flags)))
1416 		return -EINTR;
1417 
1418 	return intel_gt_is_wedged(gt) ? -EIO : 0;
1419 }
1420 
1421 void intel_gt_set_wedged_on_init(struct intel_gt *gt)
1422 {
1423 	BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
1424 		     I915_WEDGED_ON_INIT);
1425 	intel_gt_set_wedged(gt);
1426 	i915_disable_error_state(gt->i915, -ENODEV);
1427 	set_bit(I915_WEDGED_ON_INIT, &gt->reset.flags);
1428 
1429 	/* Wedged on init is non-recoverable */
1430 	add_taint_for_CI(gt->i915, TAINT_WARN);
1431 }
1432 
1433 void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
1434 {
1435 	intel_gt_set_wedged(gt);
1436 	i915_disable_error_state(gt->i915, -ENODEV);
1437 	set_bit(I915_WEDGED_ON_FINI, &gt->reset.flags);
1438 	intel_gt_retire_requests(gt); /* cleanup any wedged requests */
1439 }
1440 
1441 void intel_gt_init_reset(struct intel_gt *gt)
1442 {
1443 	init_waitqueue_head(&gt->reset.queue);
1444 	mutex_init(&gt->reset.mutex);
1445 	init_srcu_struct(&gt->reset.backoff_srcu);
1446 
1447 	/*
1448 	 * While undesirable to wait inside the shrinker, complain anyway.
1449 	 *
1450 	 * If we have to wait during shrinking, we guarantee forward progress
1451 	 * by forcing the reset. Therefore during the reset we must not
1452 	 * re-enter the shrinker. By declaring that we take the reset mutex
1453 	 * within the shrinker, we forbid ourselves from performing any
1454 	 * fs-reclaim or taking related locks during reset.
1455 	 */
1456 	i915_gem_shrinker_taints_mutex(gt->i915, &gt->reset.mutex);
1457 
1458 	/* no GPU until we are ready! */
1459 	__set_bit(I915_WEDGED, &gt->reset.flags);
1460 }
1461 
1462 void intel_gt_fini_reset(struct intel_gt *gt)
1463 {
1464 	cleanup_srcu_struct(&gt->reset.backoff_srcu);
1465 }
1466 
1467 static void intel_wedge_me(struct work_struct *work)
1468 {
1469 	struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
1470 
1471 	drm_err(&w->gt->i915->drm,
1472 		"%s timed out, cancelling all in-flight rendering.\n",
1473 		w->name);
1474 	intel_gt_set_wedged(w->gt);
1475 }
1476 
1477 void __intel_init_wedge(struct intel_wedge_me *w,
1478 			struct intel_gt *gt,
1479 			long timeout,
1480 			const char *name)
1481 {
1482 	w->gt = gt;
1483 	w->name = name;
1484 
1485 	INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
1486 	schedule_delayed_work(&w->work, timeout);
1487 }
1488 
1489 void __intel_fini_wedge(struct intel_wedge_me *w)
1490 {
1491 	cancel_delayed_work_sync(&w->work);
1492 	destroy_delayed_work_on_stack(&w->work);
1493 	w->gt = NULL;
1494 }
1495 
1496 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1497 #include "selftest_reset.c"
1498 #include "selftest_hangcheck.c"
1499 #endif
1500