1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 #include <linux/string_helpers.h> 9 10 #include "display/intel_display_reset.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "gt/intel_gt_regs.h" 16 17 #include "gt/uc/intel_gsc_fw.h" 18 19 #include "i915_drv.h" 20 #include "i915_file_private.h" 21 #include "i915_gpu_error.h" 22 #include "i915_irq.h" 23 #include "i915_reg.h" 24 #include "intel_breadcrumbs.h" 25 #include "intel_engine_pm.h" 26 #include "intel_engine_regs.h" 27 #include "intel_gt.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_requests.h" 30 #include "intel_mchbar_regs.h" 31 #include "intel_pci_config.h" 32 #include "intel_reset.h" 33 34 #include "uc/intel_guc.h" 35 36 #define RESET_MAX_RETRIES 3 37 38 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 39 { 40 struct drm_i915_file_private *file_priv = ctx->file_priv; 41 unsigned long prev_hang; 42 unsigned int score; 43 44 if (IS_ERR_OR_NULL(file_priv)) 45 return; 46 47 score = 0; 48 if (banned) 49 score = I915_CLIENT_SCORE_CONTEXT_BAN; 50 51 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 52 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 53 score += I915_CLIENT_SCORE_HANG_FAST; 54 55 if (score) { 56 atomic_add(score, &file_priv->ban_score); 57 58 drm_dbg(&ctx->i915->drm, 59 "client %s: gained %u ban score, now %u\n", 60 ctx->name, score, 61 atomic_read(&file_priv->ban_score)); 62 } 63 } 64 65 static bool mark_guilty(struct i915_request *rq) 66 { 67 struct i915_gem_context *ctx; 68 unsigned long prev_hang; 69 bool banned; 70 int i; 71 72 if (intel_context_is_closed(rq->context)) 73 return true; 74 75 rcu_read_lock(); 76 ctx = rcu_dereference(rq->context->gem_context); 77 if (ctx && !kref_get_unless_zero(&ctx->ref)) 78 ctx = NULL; 79 rcu_read_unlock(); 80 if (!ctx) 81 return intel_context_is_banned(rq->context); 82 83 atomic_inc(&ctx->guilty_count); 84 85 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 86 if (!i915_gem_context_is_bannable(ctx)) { 87 banned = false; 88 goto out; 89 } 90 91 drm_notice(&ctx->i915->drm, 92 "%s context reset due to GPU hang\n", 93 ctx->name); 94 95 /* Record the timestamp for the last N hangs */ 96 prev_hang = ctx->hang_timestamp[0]; 97 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 98 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 99 ctx->hang_timestamp[i] = jiffies; 100 101 /* If we have hung N+1 times in rapid succession, we ban the context! */ 102 banned = !i915_gem_context_is_recoverable(ctx); 103 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 104 banned = true; 105 if (banned) 106 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 107 ctx->name, atomic_read(&ctx->guilty_count)); 108 109 client_mark_guilty(ctx, banned); 110 111 out: 112 i915_gem_context_put(ctx); 113 return banned; 114 } 115 116 static void mark_innocent(struct i915_request *rq) 117 { 118 struct i915_gem_context *ctx; 119 120 rcu_read_lock(); 121 ctx = rcu_dereference(rq->context->gem_context); 122 if (ctx) 123 atomic_inc(&ctx->active_count); 124 rcu_read_unlock(); 125 } 126 127 void __i915_request_reset(struct i915_request *rq, bool guilty) 128 { 129 bool banned = false; 130 131 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); 132 GEM_BUG_ON(__i915_request_is_complete(rq)); 133 134 rcu_read_lock(); /* protect the GEM context */ 135 if (guilty) { 136 i915_request_set_error_once(rq, -EIO); 137 __i915_request_skip(rq); 138 banned = mark_guilty(rq); 139 } else { 140 i915_request_set_error_once(rq, -EAGAIN); 141 mark_innocent(rq); 142 } 143 rcu_read_unlock(); 144 145 if (banned) 146 intel_context_ban(rq->context, rq); 147 } 148 149 static bool i915_in_reset(struct pci_dev *pdev) 150 { 151 u8 gdrst; 152 153 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 154 return gdrst & GRDOM_RESET_STATUS; 155 } 156 157 static int i915_do_reset(struct intel_gt *gt, 158 intel_engine_mask_t engine_mask, 159 unsigned int retry) 160 { 161 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 162 int err; 163 164 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 165 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 166 udelay(50); 167 err = wait_for_atomic(i915_in_reset(pdev), 50); 168 169 /* Clear the reset request. */ 170 pci_write_config_byte(pdev, I915_GDRST, 0); 171 udelay(50); 172 if (!err) 173 err = wait_for_atomic(!i915_in_reset(pdev), 50); 174 175 return err; 176 } 177 178 static bool g4x_reset_complete(struct pci_dev *pdev) 179 { 180 u8 gdrst; 181 182 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 183 return (gdrst & GRDOM_RESET_ENABLE) == 0; 184 } 185 186 static int g33_do_reset(struct intel_gt *gt, 187 intel_engine_mask_t engine_mask, 188 unsigned int retry) 189 { 190 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 191 192 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 193 return wait_for_atomic(g4x_reset_complete(pdev), 50); 194 } 195 196 static int g4x_do_reset(struct intel_gt *gt, 197 intel_engine_mask_t engine_mask, 198 unsigned int retry) 199 { 200 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 201 struct intel_uncore *uncore = gt->uncore; 202 int ret; 203 204 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 205 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE); 206 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 207 208 pci_write_config_byte(pdev, I915_GDRST, 209 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 210 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 211 if (ret) { 212 GT_TRACE(gt, "Wait for media reset failed\n"); 213 goto out; 214 } 215 216 pci_write_config_byte(pdev, I915_GDRST, 217 GRDOM_RENDER | GRDOM_RESET_ENABLE); 218 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 219 if (ret) { 220 GT_TRACE(gt, "Wait for render reset failed\n"); 221 goto out; 222 } 223 224 out: 225 pci_write_config_byte(pdev, I915_GDRST, 0); 226 227 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0); 228 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 229 230 return ret; 231 } 232 233 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 234 unsigned int retry) 235 { 236 struct intel_uncore *uncore = gt->uncore; 237 int ret; 238 239 intel_uncore_write_fw(uncore, ILK_GDSR, 240 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 241 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 242 ILK_GRDOM_RESET_ENABLE, 0, 243 5000, 0, 244 NULL); 245 if (ret) { 246 GT_TRACE(gt, "Wait for render reset failed\n"); 247 goto out; 248 } 249 250 intel_uncore_write_fw(uncore, ILK_GDSR, 251 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 252 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 253 ILK_GRDOM_RESET_ENABLE, 0, 254 5000, 0, 255 NULL); 256 if (ret) { 257 GT_TRACE(gt, "Wait for media reset failed\n"); 258 goto out; 259 } 260 261 out: 262 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 263 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 264 return ret; 265 } 266 267 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 268 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 269 { 270 struct intel_uncore *uncore = gt->uncore; 271 int loops; 272 int err; 273 274 /* 275 * On some platforms, e.g. Jasperlake, we see that the engine register 276 * state is not cleared until shortly after GDRST reports completion, 277 * causing a failure as we try to immediately resume while the internal 278 * state is still in flux. If we immediately repeat the reset, the 279 * second reset appears to serialise with the first, and since it is a 280 * no-op, the registers should retain their reset value. However, there 281 * is still a concern that upon leaving the second reset, the internal 282 * engine state is still in flux and not ready for resuming. 283 * 284 * Starting on MTL, there are some prep steps that we need to do when 285 * resetting some engines that need to be applied every time we write to 286 * GEN6_GDRST. As those are time consuming (tens of ms), we don't want 287 * to perform that twice, so, since the Jasperlake issue hasn't been 288 * observed on MTL, we avoid repeating the reset on newer platforms. 289 */ 290 loops = GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70) ? 2 : 1; 291 292 /* 293 * GEN6_GDRST is not in the gt power well, no need to check 294 * for fifo space for the write or forcewake the chip for 295 * the read 296 */ 297 do { 298 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 299 300 /* Wait for the device to ack the reset requests. */ 301 err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, 302 hw_domain_mask, 0, 303 2000, 0, 304 NULL); 305 } while (err == 0 && --loops); 306 if (err) 307 GT_TRACE(gt, 308 "Wait for 0x%08x engines reset failed\n", 309 hw_domain_mask); 310 311 /* 312 * As we have observed that the engine state is still volatile 313 * after GDRST is acked, impose a small delay to let everything settle. 314 */ 315 udelay(50); 316 317 return err; 318 } 319 320 static int __gen6_reset_engines(struct intel_gt *gt, 321 intel_engine_mask_t engine_mask, 322 unsigned int retry) 323 { 324 struct intel_engine_cs *engine; 325 u32 hw_mask; 326 327 if (engine_mask == ALL_ENGINES) { 328 hw_mask = GEN6_GRDOM_FULL; 329 } else { 330 intel_engine_mask_t tmp; 331 332 hw_mask = 0; 333 for_each_engine_masked(engine, gt, engine_mask, tmp) { 334 hw_mask |= engine->reset_domain; 335 } 336 } 337 338 return gen6_hw_domain_reset(gt, hw_mask); 339 } 340 341 static int gen6_reset_engines(struct intel_gt *gt, 342 intel_engine_mask_t engine_mask, 343 unsigned int retry) 344 { 345 unsigned long flags; 346 int ret; 347 348 spin_lock_irqsave(>->uncore->lock, flags); 349 ret = __gen6_reset_engines(gt, engine_mask, retry); 350 spin_unlock_irqrestore(>->uncore->lock, flags); 351 352 return ret; 353 } 354 355 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 356 { 357 int vecs_id; 358 359 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 360 361 vecs_id = _VECS((engine->instance) / 2); 362 363 return engine->gt->engine[vecs_id]; 364 } 365 366 struct sfc_lock_data { 367 i915_reg_t lock_reg; 368 i915_reg_t ack_reg; 369 i915_reg_t usage_reg; 370 u32 lock_bit; 371 u32 ack_bit; 372 u32 usage_bit; 373 u32 reset_bit; 374 }; 375 376 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 377 struct sfc_lock_data *sfc_lock) 378 { 379 switch (engine->class) { 380 default: 381 MISSING_CASE(engine->class); 382 fallthrough; 383 case VIDEO_DECODE_CLASS: 384 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); 385 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 386 387 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 388 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 389 390 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 391 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 392 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 393 394 break; 395 case VIDEO_ENHANCEMENT_CLASS: 396 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); 397 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 398 399 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); 400 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 401 402 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); 403 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 404 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 405 406 break; 407 } 408 } 409 410 static int gen11_lock_sfc(struct intel_engine_cs *engine, 411 u32 *reset_mask, 412 u32 *unlock_mask) 413 { 414 struct intel_uncore *uncore = engine->uncore; 415 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 416 struct sfc_lock_data sfc_lock; 417 bool lock_obtained, lock_to_other = false; 418 int ret; 419 420 switch (engine->class) { 421 case VIDEO_DECODE_CLASS: 422 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 423 return 0; 424 425 fallthrough; 426 case VIDEO_ENHANCEMENT_CLASS: 427 get_sfc_forced_lock_data(engine, &sfc_lock); 428 429 break; 430 default: 431 return 0; 432 } 433 434 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 435 struct intel_engine_cs *paired_vecs; 436 437 if (engine->class != VIDEO_DECODE_CLASS || 438 GRAPHICS_VER(engine->i915) != 12) 439 return 0; 440 441 /* 442 * Wa_14010733141 443 * 444 * If the VCS-MFX isn't using the SFC, we also need to check 445 * whether VCS-HCP is using it. If so, we need to issue a *VE* 446 * forced lock on the VE engine that shares the same SFC. 447 */ 448 if (!(intel_uncore_read_fw(uncore, 449 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & 450 GEN12_HCP_SFC_USAGE_BIT)) 451 return 0; 452 453 paired_vecs = find_sfc_paired_vecs_engine(engine); 454 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 455 lock_to_other = true; 456 *unlock_mask |= paired_vecs->mask; 457 } else { 458 *unlock_mask |= engine->mask; 459 } 460 461 /* 462 * If the engine is using an SFC, tell the engine that a software reset 463 * is going to happen. The engine will then try to force lock the SFC. 464 * If SFC ends up being locked to the engine we want to reset, we have 465 * to reset it as well (we will unlock it once the reset sequence is 466 * completed). 467 */ 468 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit); 469 470 ret = __intel_wait_for_register_fw(uncore, 471 sfc_lock.ack_reg, 472 sfc_lock.ack_bit, 473 sfc_lock.ack_bit, 474 1000, 0, NULL); 475 476 /* 477 * Was the SFC released while we were trying to lock it? 478 * 479 * We should reset both the engine and the SFC if: 480 * - We were locking the SFC to this engine and the lock succeeded 481 * OR 482 * - We were locking the SFC to a different engine (Wa_14010733141) 483 * but the SFC was released before the lock was obtained. 484 * 485 * Otherwise we need only reset the engine by itself and we can 486 * leave the SFC alone. 487 */ 488 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 489 sfc_lock.usage_bit) != 0; 490 if (lock_obtained == lock_to_other) 491 return 0; 492 493 if (ret) { 494 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 495 return ret; 496 } 497 498 *reset_mask |= sfc_lock.reset_bit; 499 return 0; 500 } 501 502 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 503 { 504 struct intel_uncore *uncore = engine->uncore; 505 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 506 struct sfc_lock_data sfc_lock = {}; 507 508 if (engine->class != VIDEO_DECODE_CLASS && 509 engine->class != VIDEO_ENHANCEMENT_CLASS) 510 return; 511 512 if (engine->class == VIDEO_DECODE_CLASS && 513 (BIT(engine->instance) & vdbox_sfc_access) == 0) 514 return; 515 516 get_sfc_forced_lock_data(engine, &sfc_lock); 517 518 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0); 519 } 520 521 static int __gen11_reset_engines(struct intel_gt *gt, 522 intel_engine_mask_t engine_mask, 523 unsigned int retry) 524 { 525 struct intel_engine_cs *engine; 526 intel_engine_mask_t tmp; 527 u32 reset_mask, unlock_mask = 0; 528 int ret; 529 530 if (engine_mask == ALL_ENGINES) { 531 reset_mask = GEN11_GRDOM_FULL; 532 } else { 533 reset_mask = 0; 534 for_each_engine_masked(engine, gt, engine_mask, tmp) { 535 reset_mask |= engine->reset_domain; 536 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 537 if (ret) 538 goto sfc_unlock; 539 } 540 } 541 542 ret = gen6_hw_domain_reset(gt, reset_mask); 543 544 sfc_unlock: 545 /* 546 * We unlock the SFC based on the lock status and not the result of 547 * gen11_lock_sfc to make sure that we clean properly if something 548 * wrong happened during the lock (e.g. lock acquired after timeout 549 * expiration). 550 * 551 * Due to Wa_14010733141, we may have locked an SFC to an engine that 552 * wasn't being reset. So instead of calling gen11_unlock_sfc() 553 * on engine_mask, we instead call it on the mask of engines that our 554 * gen11_lock_sfc() calls told us actually had locks attempted. 555 */ 556 for_each_engine_masked(engine, gt, unlock_mask, tmp) 557 gen11_unlock_sfc(engine); 558 559 return ret; 560 } 561 562 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 563 { 564 struct intel_uncore *uncore = engine->uncore; 565 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 566 u32 request, mask, ack; 567 int ret; 568 569 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 570 return -ETIMEDOUT; 571 572 ack = intel_uncore_read_fw(uncore, reg); 573 if (ack & RESET_CTL_CAT_ERROR) { 574 /* 575 * For catastrophic errors, ready-for-reset sequence 576 * needs to be bypassed: HAS#396813 577 */ 578 request = RESET_CTL_CAT_ERROR; 579 mask = RESET_CTL_CAT_ERROR; 580 581 /* Catastrophic errors need to be cleared by HW */ 582 ack = 0; 583 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 584 request = RESET_CTL_REQUEST_RESET; 585 mask = RESET_CTL_READY_TO_RESET; 586 ack = RESET_CTL_READY_TO_RESET; 587 } else { 588 return 0; 589 } 590 591 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 592 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 593 700, 0, NULL); 594 if (ret) 595 drm_err(&engine->i915->drm, 596 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 597 engine->name, request, 598 intel_uncore_read_fw(uncore, reg)); 599 600 return ret; 601 } 602 603 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 604 { 605 intel_uncore_write_fw(engine->uncore, 606 RING_RESET_CTL(engine->mmio_base), 607 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 608 } 609 610 static int gen8_reset_engines(struct intel_gt *gt, 611 intel_engine_mask_t engine_mask, 612 unsigned int retry) 613 { 614 struct intel_engine_cs *engine; 615 const bool reset_non_ready = retry >= 1; 616 intel_engine_mask_t tmp; 617 unsigned long flags; 618 int ret; 619 620 spin_lock_irqsave(>->uncore->lock, flags); 621 622 for_each_engine_masked(engine, gt, engine_mask, tmp) { 623 ret = gen8_engine_reset_prepare(engine); 624 if (ret && !reset_non_ready) 625 goto skip_reset; 626 627 /* 628 * If this is not the first failed attempt to prepare, 629 * we decide to proceed anyway. 630 * 631 * By doing so we risk context corruption and with 632 * some gens (kbl), possible system hang if reset 633 * happens during active bb execution. 634 * 635 * We rather take context corruption instead of 636 * failed reset with a wedged driver/gpu. And 637 * active bb execution case should be covered by 638 * stop_engines() we have before the reset. 639 */ 640 } 641 642 /* 643 * Wa_22011100796:dg2, whenever Full soft reset is required, 644 * reset all individual engines firstly, and then do a full soft reset. 645 * 646 * This is best effort, so ignore any error from the initial reset. 647 */ 648 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) 649 __gen11_reset_engines(gt, gt->info.engine_mask, 0); 650 651 if (GRAPHICS_VER(gt->i915) >= 11) 652 ret = __gen11_reset_engines(gt, engine_mask, retry); 653 else 654 ret = __gen6_reset_engines(gt, engine_mask, retry); 655 656 skip_reset: 657 for_each_engine_masked(engine, gt, engine_mask, tmp) 658 gen8_engine_reset_cancel(engine); 659 660 spin_unlock_irqrestore(>->uncore->lock, flags); 661 662 return ret; 663 } 664 665 static int mock_reset(struct intel_gt *gt, 666 intel_engine_mask_t mask, 667 unsigned int retry) 668 { 669 return 0; 670 } 671 672 typedef int (*reset_func)(struct intel_gt *, 673 intel_engine_mask_t engine_mask, 674 unsigned int retry); 675 676 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 677 { 678 struct drm_i915_private *i915 = gt->i915; 679 680 if (is_mock_gt(gt)) 681 return mock_reset; 682 else if (GRAPHICS_VER(i915) >= 8) 683 return gen8_reset_engines; 684 else if (GRAPHICS_VER(i915) >= 6) 685 return gen6_reset_engines; 686 else if (GRAPHICS_VER(i915) >= 5) 687 return ilk_do_reset; 688 else if (IS_G4X(i915)) 689 return g4x_do_reset; 690 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 691 return g33_do_reset; 692 else if (GRAPHICS_VER(i915) >= 3) 693 return i915_do_reset; 694 else 695 return NULL; 696 } 697 698 static int __reset_guc(struct intel_gt *gt) 699 { 700 u32 guc_domain = 701 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 702 703 return gen6_hw_domain_reset(gt, guc_domain); 704 } 705 706 static bool needs_wa_14015076503(struct intel_gt *gt, intel_engine_mask_t engine_mask) 707 { 708 if (!IS_METEORLAKE(gt->i915) || !HAS_ENGINE(gt, GSC0)) 709 return false; 710 711 if (!__HAS_ENGINE(engine_mask, GSC0)) 712 return false; 713 714 return intel_gsc_uc_fw_init_done(>->uc.gsc); 715 } 716 717 static intel_engine_mask_t 718 wa_14015076503_start(struct intel_gt *gt, intel_engine_mask_t engine_mask, bool first) 719 { 720 if (!needs_wa_14015076503(gt, engine_mask)) 721 return engine_mask; 722 723 /* 724 * wa_14015076503: if the GSC FW is loaded, we need to alert it that 725 * we're going to do a GSC engine reset and then wait for 200ms for the 726 * FW to get ready for it. However, if this is the first ALL_ENGINES 727 * reset attempt and the GSC is not busy, we can try to instead reset 728 * the GuC and all the other engines individually to avoid the 200ms 729 * wait. 730 * Skipping the GSC engine is safe because, differently from other 731 * engines, the GSCCS only role is to forward the commands to the GSC 732 * FW, so it doesn't have any HW outside of the CS itself and therefore 733 * it has no state that we don't explicitly re-init on resume or on 734 * context switch LRC or power context). The HW for the GSC uC is 735 * managed by the GSC FW so we don't need to care about that. 736 */ 737 if (engine_mask == ALL_ENGINES && first && intel_engine_is_idle(gt->engine[GSC0])) { 738 __reset_guc(gt); 739 engine_mask = gt->info.engine_mask & ~BIT(GSC0); 740 } else { 741 intel_uncore_rmw(gt->uncore, 742 HECI_H_GS1(MTL_GSC_HECI2_BASE), 743 0, HECI_H_GS1_ER_PREP); 744 745 /* make sure the reset bit is clear when writing the CSR reg */ 746 intel_uncore_rmw(gt->uncore, 747 HECI_H_CSR(MTL_GSC_HECI2_BASE), 748 HECI_H_CSR_RST, HECI_H_CSR_IG); 749 msleep(200); 750 } 751 752 return engine_mask; 753 } 754 755 static void 756 wa_14015076503_end(struct intel_gt *gt, intel_engine_mask_t engine_mask) 757 { 758 if (!needs_wa_14015076503(gt, engine_mask)) 759 return; 760 761 intel_uncore_rmw(gt->uncore, 762 HECI_H_GS1(MTL_GSC_HECI2_BASE), 763 HECI_H_GS1_ER_PREP, 0); 764 } 765 766 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 767 { 768 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 769 reset_func reset; 770 int ret = -ETIMEDOUT; 771 int retry; 772 773 reset = intel_get_gpu_reset(gt); 774 if (!reset) 775 return -ENODEV; 776 777 /* 778 * If the power well sleeps during the reset, the reset 779 * request may be dropped and never completes (causing -EIO). 780 */ 781 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 782 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 783 intel_engine_mask_t reset_mask; 784 785 reset_mask = wa_14015076503_start(gt, engine_mask, !retry); 786 787 GT_TRACE(gt, "engine_mask=%x\n", reset_mask); 788 preempt_disable(); 789 ret = reset(gt, reset_mask, retry); 790 preempt_enable(); 791 792 wa_14015076503_end(gt, reset_mask); 793 } 794 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 795 796 return ret; 797 } 798 799 bool intel_has_gpu_reset(const struct intel_gt *gt) 800 { 801 if (!gt->i915->params.reset) 802 return NULL; 803 804 return intel_get_gpu_reset(gt); 805 } 806 807 bool intel_has_reset_engine(const struct intel_gt *gt) 808 { 809 if (gt->i915->params.reset < 2) 810 return false; 811 812 return INTEL_INFO(gt->i915)->has_reset_engine; 813 } 814 815 int intel_reset_guc(struct intel_gt *gt) 816 { 817 int ret; 818 819 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 820 821 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 822 ret = __reset_guc(gt); 823 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 824 825 return ret; 826 } 827 828 /* 829 * Ensure irq handler finishes, and not run again. 830 * Also return the active request so that we only search for it once. 831 */ 832 static void reset_prepare_engine(struct intel_engine_cs *engine) 833 { 834 /* 835 * During the reset sequence, we must prevent the engine from 836 * entering RC6. As the context state is undefined until we restart 837 * the engine, if it does enter RC6 during the reset, the state 838 * written to the powercontext is undefined and so we may lose 839 * GPU state upon resume, i.e. fail to restart after a reset. 840 */ 841 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 842 if (engine->reset.prepare) 843 engine->reset.prepare(engine); 844 } 845 846 static void revoke_mmaps(struct intel_gt *gt) 847 { 848 int i; 849 850 for (i = 0; i < gt->ggtt->num_fences; i++) { 851 struct drm_vma_offset_node *node; 852 struct i915_vma *vma; 853 u64 vma_offset; 854 855 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 856 if (!vma) 857 continue; 858 859 if (!i915_vma_has_userfault(vma)) 860 continue; 861 862 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 863 864 if (!vma->mmo) 865 continue; 866 867 node = &vma->mmo->vma_node; 868 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 869 870 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 871 drm_vma_node_offset_addr(node) + vma_offset, 872 vma->size, 873 1); 874 } 875 } 876 877 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 878 { 879 struct intel_engine_cs *engine; 880 intel_engine_mask_t awake = 0; 881 enum intel_engine_id id; 882 883 /* For GuC mode, ensure submission is disabled before stopping ring */ 884 intel_uc_reset_prepare(>->uc); 885 886 for_each_engine(engine, gt, id) { 887 if (intel_engine_pm_get_if_awake(engine)) 888 awake |= engine->mask; 889 reset_prepare_engine(engine); 890 } 891 892 return awake; 893 } 894 895 static void gt_revoke(struct intel_gt *gt) 896 { 897 revoke_mmaps(gt); 898 } 899 900 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 901 { 902 struct intel_engine_cs *engine; 903 enum intel_engine_id id; 904 int err; 905 906 /* 907 * Everything depends on having the GTT running, so we need to start 908 * there. 909 */ 910 err = i915_ggtt_enable_hw(gt->i915); 911 if (err) 912 return err; 913 914 local_bh_disable(); 915 for_each_engine(engine, gt, id) 916 __intel_engine_reset(engine, stalled_mask & engine->mask); 917 local_bh_enable(); 918 919 intel_uc_reset(>->uc, ALL_ENGINES); 920 921 intel_ggtt_restore_fences(gt->ggtt); 922 923 return err; 924 } 925 926 static void reset_finish_engine(struct intel_engine_cs *engine) 927 { 928 if (engine->reset.finish) 929 engine->reset.finish(engine); 930 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 931 932 intel_engine_signal_breadcrumbs(engine); 933 } 934 935 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 936 { 937 struct intel_engine_cs *engine; 938 enum intel_engine_id id; 939 940 for_each_engine(engine, gt, id) { 941 reset_finish_engine(engine); 942 if (awake & engine->mask) 943 intel_engine_pm_put(engine); 944 } 945 946 intel_uc_reset_finish(>->uc); 947 } 948 949 static void nop_submit_request(struct i915_request *request) 950 { 951 RQ_TRACE(request, "-EIO\n"); 952 953 request = i915_request_mark_eio(request); 954 if (request) { 955 i915_request_submit(request); 956 intel_engine_signal_breadcrumbs(request->engine); 957 958 i915_request_put(request); 959 } 960 } 961 962 static void __intel_gt_set_wedged(struct intel_gt *gt) 963 { 964 struct intel_engine_cs *engine; 965 intel_engine_mask_t awake; 966 enum intel_engine_id id; 967 968 if (test_bit(I915_WEDGED, >->reset.flags)) 969 return; 970 971 GT_TRACE(gt, "start\n"); 972 973 /* 974 * First, stop submission to hw, but do not yet complete requests by 975 * rolling the global seqno forward (since this would complete requests 976 * for which we haven't set the fence error to EIO yet). 977 */ 978 awake = reset_prepare(gt); 979 980 /* Even if the GPU reset fails, it should still stop the engines */ 981 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 982 __intel_gt_reset(gt, ALL_ENGINES); 983 984 for_each_engine(engine, gt, id) 985 engine->submit_request = nop_submit_request; 986 987 /* 988 * Make sure no request can slip through without getting completed by 989 * either this call here to intel_engine_write_global_seqno, or the one 990 * in nop_submit_request. 991 */ 992 synchronize_rcu_expedited(); 993 set_bit(I915_WEDGED, >->reset.flags); 994 995 /* Mark all executing requests as skipped */ 996 local_bh_disable(); 997 for_each_engine(engine, gt, id) 998 if (engine->reset.cancel) 999 engine->reset.cancel(engine); 1000 intel_uc_cancel_requests(>->uc); 1001 local_bh_enable(); 1002 1003 reset_finish(gt, awake); 1004 1005 GT_TRACE(gt, "end\n"); 1006 } 1007 1008 void intel_gt_set_wedged(struct intel_gt *gt) 1009 { 1010 intel_wakeref_t wakeref; 1011 1012 if (test_bit(I915_WEDGED, >->reset.flags)) 1013 return; 1014 1015 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1016 mutex_lock(>->reset.mutex); 1017 1018 if (GEM_SHOW_DEBUG()) { 1019 struct drm_printer p = drm_debug_printer(__func__); 1020 struct intel_engine_cs *engine; 1021 enum intel_engine_id id; 1022 1023 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 1024 for_each_engine(engine, gt, id) { 1025 if (intel_engine_is_idle(engine)) 1026 continue; 1027 1028 intel_engine_dump(engine, &p, "%s\n", engine->name); 1029 } 1030 } 1031 1032 __intel_gt_set_wedged(gt); 1033 1034 mutex_unlock(>->reset.mutex); 1035 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1036 } 1037 1038 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 1039 { 1040 struct intel_gt_timelines *timelines = >->timelines; 1041 struct intel_timeline *tl; 1042 bool ok; 1043 1044 if (!test_bit(I915_WEDGED, >->reset.flags)) 1045 return true; 1046 1047 /* Never fully initialised, recovery impossible */ 1048 if (intel_gt_has_unrecoverable_error(gt)) 1049 return false; 1050 1051 GT_TRACE(gt, "start\n"); 1052 1053 /* 1054 * Before unwedging, make sure that all pending operations 1055 * are flushed and errored out - we may have requests waiting upon 1056 * third party fences. We marked all inflight requests as EIO, and 1057 * every execbuf since returned EIO, for consistency we want all 1058 * the currently pending requests to also be marked as EIO, which 1059 * is done inside our nop_submit_request - and so we must wait. 1060 * 1061 * No more can be submitted until we reset the wedged bit. 1062 */ 1063 spin_lock(&timelines->lock); 1064 list_for_each_entry(tl, &timelines->active_list, link) { 1065 struct dma_fence *fence; 1066 1067 fence = i915_active_fence_get(&tl->last_request); 1068 if (!fence) 1069 continue; 1070 1071 spin_unlock(&timelines->lock); 1072 1073 /* 1074 * All internal dependencies (i915_requests) will have 1075 * been flushed by the set-wedge, but we may be stuck waiting 1076 * for external fences. These should all be capped to 10s 1077 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 1078 * in the worst case. 1079 */ 1080 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 1081 dma_fence_put(fence); 1082 1083 /* Restart iteration after droping lock */ 1084 spin_lock(&timelines->lock); 1085 tl = list_entry(&timelines->active_list, typeof(*tl), link); 1086 } 1087 spin_unlock(&timelines->lock); 1088 1089 /* We must reset pending GPU events before restoring our submission */ 1090 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 1091 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1092 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 1093 if (!ok) { 1094 /* 1095 * Warn CI about the unrecoverable wedged condition. 1096 * Time for a reboot. 1097 */ 1098 add_taint_for_CI(gt->i915, TAINT_WARN); 1099 return false; 1100 } 1101 1102 /* 1103 * Undo nop_submit_request. We prevent all new i915 requests from 1104 * being queued (by disallowing execbuf whilst wedged) so having 1105 * waited for all active requests above, we know the system is idle 1106 * and do not have to worry about a thread being inside 1107 * engine->submit_request() as we swap over. So unlike installing 1108 * the nop_submit_request on reset, we can do this from normal 1109 * context and do not require stop_machine(). 1110 */ 1111 intel_engines_reset_default_submission(gt); 1112 1113 GT_TRACE(gt, "end\n"); 1114 1115 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 1116 clear_bit(I915_WEDGED, >->reset.flags); 1117 1118 return true; 1119 } 1120 1121 bool intel_gt_unset_wedged(struct intel_gt *gt) 1122 { 1123 bool result; 1124 1125 mutex_lock(>->reset.mutex); 1126 result = __intel_gt_unset_wedged(gt); 1127 mutex_unlock(>->reset.mutex); 1128 1129 return result; 1130 } 1131 1132 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1133 { 1134 int err, i; 1135 1136 err = __intel_gt_reset(gt, ALL_ENGINES); 1137 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1138 msleep(10 * (i + 1)); 1139 err = __intel_gt_reset(gt, ALL_ENGINES); 1140 } 1141 if (err) 1142 return err; 1143 1144 return gt_reset(gt, stalled_mask); 1145 } 1146 1147 static int resume(struct intel_gt *gt) 1148 { 1149 struct intel_engine_cs *engine; 1150 enum intel_engine_id id; 1151 int ret; 1152 1153 for_each_engine(engine, gt, id) { 1154 ret = intel_engine_resume(engine); 1155 if (ret) 1156 return ret; 1157 } 1158 1159 return 0; 1160 } 1161 1162 /** 1163 * intel_gt_reset - reset chip after a hang 1164 * @gt: #intel_gt to reset 1165 * @stalled_mask: mask of the stalled engines with the guilty requests 1166 * @reason: user error message for why we are resetting 1167 * 1168 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1169 * on failure. 1170 * 1171 * Procedure is fairly simple: 1172 * - reset the chip using the reset reg 1173 * - re-init context state 1174 * - re-init hardware status page 1175 * - re-init ring buffer 1176 * - re-init interrupt state 1177 * - re-init display 1178 */ 1179 void intel_gt_reset(struct intel_gt *gt, 1180 intel_engine_mask_t stalled_mask, 1181 const char *reason) 1182 { 1183 intel_engine_mask_t awake; 1184 int ret; 1185 1186 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1187 1188 might_sleep(); 1189 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1190 1191 /* 1192 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1193 * critical section like gpu reset. 1194 */ 1195 gt_revoke(gt); 1196 1197 mutex_lock(>->reset.mutex); 1198 1199 /* Clear any previous failed attempts at recovery. Time to try again. */ 1200 if (!__intel_gt_unset_wedged(gt)) 1201 goto unlock; 1202 1203 if (reason) 1204 drm_notice(>->i915->drm, 1205 "Resetting chip for %s\n", reason); 1206 atomic_inc(>->i915->gpu_error.reset_count); 1207 1208 awake = reset_prepare(gt); 1209 1210 if (!intel_has_gpu_reset(gt)) { 1211 if (gt->i915->params.reset) 1212 drm_err(>->i915->drm, "GPU reset not supported\n"); 1213 else 1214 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1215 goto error; 1216 } 1217 1218 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1219 intel_runtime_pm_disable_interrupts(gt->i915); 1220 1221 if (do_reset(gt, stalled_mask)) { 1222 drm_err(>->i915->drm, "Failed to reset chip\n"); 1223 goto taint; 1224 } 1225 1226 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1227 intel_runtime_pm_enable_interrupts(gt->i915); 1228 1229 intel_overlay_reset(gt->i915); 1230 1231 /* 1232 * Next we need to restore the context, but we don't use those 1233 * yet either... 1234 * 1235 * Ring buffer needs to be re-initialized in the KMS case, or if X 1236 * was running at the time of the reset (i.e. we weren't VT 1237 * switched away). 1238 */ 1239 ret = intel_gt_init_hw(gt); 1240 if (ret) { 1241 drm_err(>->i915->drm, 1242 "Failed to initialise HW following reset (%d)\n", 1243 ret); 1244 goto taint; 1245 } 1246 1247 ret = resume(gt); 1248 if (ret) 1249 goto taint; 1250 1251 finish: 1252 reset_finish(gt, awake); 1253 unlock: 1254 mutex_unlock(>->reset.mutex); 1255 return; 1256 1257 taint: 1258 /* 1259 * History tells us that if we cannot reset the GPU now, we 1260 * never will. This then impacts everything that is run 1261 * subsequently. On failing the reset, we mark the driver 1262 * as wedged, preventing further execution on the GPU. 1263 * We also want to go one step further and add a taint to the 1264 * kernel so that any subsequent faults can be traced back to 1265 * this failure. This is important for CI, where if the 1266 * GPU/driver fails we would like to reboot and restart testing 1267 * rather than continue on into oblivion. For everyone else, 1268 * the system should still plod along, but they have been warned! 1269 */ 1270 add_taint_for_CI(gt->i915, TAINT_WARN); 1271 error: 1272 __intel_gt_set_wedged(gt); 1273 goto finish; 1274 } 1275 1276 static int intel_gt_reset_engine(struct intel_engine_cs *engine) 1277 { 1278 return __intel_gt_reset(engine->gt, engine->mask); 1279 } 1280 1281 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1282 { 1283 struct intel_gt *gt = engine->gt; 1284 int ret; 1285 1286 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1287 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1288 1289 if (intel_engine_uses_guc(engine)) 1290 return -ENODEV; 1291 1292 if (!intel_engine_pm_get_if_awake(engine)) 1293 return 0; 1294 1295 reset_prepare_engine(engine); 1296 1297 if (msg) 1298 drm_notice(&engine->i915->drm, 1299 "Resetting %s for %s\n", engine->name, msg); 1300 i915_increase_reset_engine_count(&engine->i915->gpu_error, engine); 1301 1302 ret = intel_gt_reset_engine(engine); 1303 if (ret) { 1304 /* If we fail here, we expect to fallback to a global reset */ 1305 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1306 goto out; 1307 } 1308 1309 /* 1310 * The request that caused the hang is stuck on elsp, we know the 1311 * active request and can drop it, adjust head to skip the offending 1312 * request to resume executing remaining requests in the queue. 1313 */ 1314 __intel_engine_reset(engine, true); 1315 1316 /* 1317 * The engine and its registers (and workarounds in case of render) 1318 * have been reset to their default values. Follow the init_ring 1319 * process to program RING_MODE, HWSP and re-enable submission. 1320 */ 1321 ret = intel_engine_resume(engine); 1322 1323 out: 1324 intel_engine_cancel_stop_cs(engine); 1325 reset_finish_engine(engine); 1326 intel_engine_pm_put_async(engine); 1327 return ret; 1328 } 1329 1330 /** 1331 * intel_engine_reset - reset GPU engine to recover from a hang 1332 * @engine: engine to reset 1333 * @msg: reason for GPU reset; or NULL for no drm_notice() 1334 * 1335 * Reset a specific GPU engine. Useful if a hang is detected. 1336 * Returns zero on successful reset or otherwise an error code. 1337 * 1338 * Procedure is: 1339 * - identifies the request that caused the hang and it is dropped 1340 * - reset engine (which will force the engine to idle) 1341 * - re-init/configure engine 1342 */ 1343 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1344 { 1345 int err; 1346 1347 local_bh_disable(); 1348 err = __intel_engine_reset_bh(engine, msg); 1349 local_bh_enable(); 1350 1351 return err; 1352 } 1353 1354 static void intel_gt_reset_global(struct intel_gt *gt, 1355 u32 engine_mask, 1356 const char *reason) 1357 { 1358 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1359 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1360 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1361 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1362 struct intel_wedge_me w; 1363 1364 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1365 1366 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1367 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1368 1369 /* Use a watchdog to ensure that our reset completes */ 1370 intel_wedge_on_timeout(&w, gt, 60 * HZ) { 1371 intel_display_reset_prepare(gt->i915); 1372 1373 intel_gt_reset(gt, engine_mask, reason); 1374 1375 intel_display_reset_finish(gt->i915); 1376 } 1377 1378 if (!test_bit(I915_WEDGED, >->reset.flags)) 1379 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1380 } 1381 1382 /** 1383 * intel_gt_handle_error - handle a gpu error 1384 * @gt: the intel_gt 1385 * @engine_mask: mask representing engines that are hung 1386 * @flags: control flags 1387 * @fmt: Error message format string 1388 * 1389 * Do some basic checking of register state at error time and 1390 * dump it to the syslog. Also call i915_capture_error_state() to make 1391 * sure we get a record and make it available in debugfs. Fire a uevent 1392 * so userspace knows something bad happened (should trigger collection 1393 * of a ring dump etc.). 1394 */ 1395 void intel_gt_handle_error(struct intel_gt *gt, 1396 intel_engine_mask_t engine_mask, 1397 unsigned long flags, 1398 const char *fmt, ...) 1399 { 1400 struct intel_engine_cs *engine; 1401 intel_wakeref_t wakeref; 1402 intel_engine_mask_t tmp; 1403 char error_msg[80]; 1404 char *msg = NULL; 1405 1406 if (fmt) { 1407 va_list args; 1408 1409 va_start(args, fmt); 1410 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1411 va_end(args); 1412 1413 msg = error_msg; 1414 } 1415 1416 /* 1417 * In most cases it's guaranteed that we get here with an RPM 1418 * reference held, for example because there is a pending GPU 1419 * request that won't finish until the reset is done. This 1420 * isn't the case at least when we get here by doing a 1421 * simulated reset via debugfs, so get an RPM reference. 1422 */ 1423 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1424 1425 engine_mask &= gt->info.engine_mask; 1426 1427 if (flags & I915_ERROR_CAPTURE) { 1428 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); 1429 intel_gt_clear_error_registers(gt, engine_mask); 1430 } 1431 1432 /* 1433 * Try engine reset when available. We fall back to full reset if 1434 * single reset fails. 1435 */ 1436 if (!intel_uc_uses_guc_submission(>->uc) && 1437 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1438 local_bh_disable(); 1439 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1440 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1441 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1442 >->reset.flags)) 1443 continue; 1444 1445 if (__intel_engine_reset_bh(engine, msg) == 0) 1446 engine_mask &= ~engine->mask; 1447 1448 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1449 >->reset.flags); 1450 } 1451 local_bh_enable(); 1452 } 1453 1454 if (!engine_mask) 1455 goto out; 1456 1457 /* Full reset needs the mutex, stop any other user trying to do so. */ 1458 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1459 wait_event(gt->reset.queue, 1460 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1461 goto out; /* piggy-back on the other reset */ 1462 } 1463 1464 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1465 synchronize_rcu_expedited(); 1466 1467 /* 1468 * Prevent any other reset-engine attempt. We don't do this for GuC 1469 * submission the GuC owns the per-engine reset, not the i915. 1470 */ 1471 if (!intel_uc_uses_guc_submission(>->uc)) { 1472 for_each_engine(engine, gt, tmp) { 1473 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1474 >->reset.flags)) 1475 wait_on_bit(>->reset.flags, 1476 I915_RESET_ENGINE + engine->id, 1477 TASK_UNINTERRUPTIBLE); 1478 } 1479 } 1480 1481 /* Flush everyone using a resource about to be clobbered */ 1482 synchronize_srcu_expedited(>->reset.backoff_srcu); 1483 1484 intel_gt_reset_global(gt, engine_mask, msg); 1485 1486 if (!intel_uc_uses_guc_submission(>->uc)) { 1487 for_each_engine(engine, gt, tmp) 1488 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1489 >->reset.flags); 1490 } 1491 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1492 smp_mb__after_atomic(); 1493 wake_up_all(>->reset.queue); 1494 1495 out: 1496 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1497 } 1498 1499 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) 1500 { 1501 might_lock(>->reset.backoff_srcu); 1502 if (retry) 1503 might_sleep(); 1504 1505 rcu_read_lock(); 1506 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1507 rcu_read_unlock(); 1508 1509 if (!retry) 1510 return -EBUSY; 1511 1512 if (wait_event_interruptible(gt->reset.queue, 1513 !test_bit(I915_RESET_BACKOFF, 1514 >->reset.flags))) 1515 return -EINTR; 1516 1517 rcu_read_lock(); 1518 } 1519 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1520 rcu_read_unlock(); 1521 1522 return 0; 1523 } 1524 1525 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1526 { 1527 return _intel_gt_reset_lock(gt, srcu, false); 1528 } 1529 1530 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) 1531 { 1532 return _intel_gt_reset_lock(gt, srcu, true); 1533 } 1534 1535 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1536 __releases(>->reset.backoff_srcu) 1537 { 1538 srcu_read_unlock(>->reset.backoff_srcu, tag); 1539 } 1540 1541 int intel_gt_terminally_wedged(struct intel_gt *gt) 1542 { 1543 might_sleep(); 1544 1545 if (!intel_gt_is_wedged(gt)) 1546 return 0; 1547 1548 if (intel_gt_has_unrecoverable_error(gt)) 1549 return -EIO; 1550 1551 /* Reset still in progress? Maybe we will recover? */ 1552 if (wait_event_interruptible(gt->reset.queue, 1553 !test_bit(I915_RESET_BACKOFF, 1554 >->reset.flags))) 1555 return -EINTR; 1556 1557 return intel_gt_is_wedged(gt) ? -EIO : 0; 1558 } 1559 1560 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1561 { 1562 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1563 I915_WEDGED_ON_INIT); 1564 intel_gt_set_wedged(gt); 1565 i915_disable_error_state(gt->i915, -ENODEV); 1566 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1567 1568 /* Wedged on init is non-recoverable */ 1569 add_taint_for_CI(gt->i915, TAINT_WARN); 1570 } 1571 1572 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1573 { 1574 intel_gt_set_wedged(gt); 1575 i915_disable_error_state(gt->i915, -ENODEV); 1576 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1577 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1578 } 1579 1580 void intel_gt_init_reset(struct intel_gt *gt) 1581 { 1582 init_waitqueue_head(>->reset.queue); 1583 mutex_init(>->reset.mutex); 1584 init_srcu_struct(>->reset.backoff_srcu); 1585 1586 /* 1587 * While undesirable to wait inside the shrinker, complain anyway. 1588 * 1589 * If we have to wait during shrinking, we guarantee forward progress 1590 * by forcing the reset. Therefore during the reset we must not 1591 * re-enter the shrinker. By declaring that we take the reset mutex 1592 * within the shrinker, we forbid ourselves from performing any 1593 * fs-reclaim or taking related locks during reset. 1594 */ 1595 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1596 1597 /* no GPU until we are ready! */ 1598 __set_bit(I915_WEDGED, >->reset.flags); 1599 } 1600 1601 void intel_gt_fini_reset(struct intel_gt *gt) 1602 { 1603 cleanup_srcu_struct(>->reset.backoff_srcu); 1604 } 1605 1606 static void intel_wedge_me(struct work_struct *work) 1607 { 1608 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1609 1610 drm_err(&w->gt->i915->drm, 1611 "%s timed out, cancelling all in-flight rendering.\n", 1612 w->name); 1613 intel_gt_set_wedged(w->gt); 1614 } 1615 1616 void __intel_init_wedge(struct intel_wedge_me *w, 1617 struct intel_gt *gt, 1618 long timeout, 1619 const char *name) 1620 { 1621 w->gt = gt; 1622 w->name = name; 1623 1624 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1625 queue_delayed_work(gt->i915->unordered_wq, &w->work, timeout); 1626 } 1627 1628 void __intel_fini_wedge(struct intel_wedge_me *w) 1629 { 1630 cancel_delayed_work_sync(&w->work); 1631 destroy_delayed_work_on_stack(&w->work); 1632 w->gt = NULL; 1633 } 1634 1635 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1636 #include "selftest_reset.c" 1637 #include "selftest_hangcheck.c" 1638 #endif 1639