1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2018 Intel Corporation 5 */ 6 7 #include <linux/sched/mm.h> 8 #include <linux/stop_machine.h> 9 10 #include "display/intel_display_types.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "i915_drv.h" 16 #include "i915_gpu_error.h" 17 #include "i915_irq.h" 18 #include "intel_engine_pm.h" 19 #include "intel_gt.h" 20 #include "intel_gt_pm.h" 21 #include "intel_reset.h" 22 23 #include "uc/intel_guc.h" 24 25 #define RESET_MAX_RETRIES 3 26 27 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 28 #define RESET_UNDER_STOP_MACHINE 0 29 30 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 31 { 32 intel_uncore_rmw_fw(uncore, reg, 0, set); 33 } 34 35 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 36 { 37 intel_uncore_rmw_fw(uncore, reg, clr, 0); 38 } 39 40 static void engine_skip_context(struct i915_request *rq) 41 { 42 struct intel_engine_cs *engine = rq->engine; 43 struct i915_gem_context *hung_ctx = rq->gem_context; 44 45 if (!i915_request_is_active(rq)) 46 return; 47 48 lockdep_assert_held(&engine->active.lock); 49 list_for_each_entry_continue(rq, &engine->active.requests, sched.link) 50 if (rq->gem_context == hung_ctx) 51 i915_request_skip(rq, -EIO); 52 } 53 54 static void client_mark_guilty(struct drm_i915_file_private *file_priv, 55 const struct i915_gem_context *ctx) 56 { 57 unsigned int score; 58 unsigned long prev_hang; 59 60 if (i915_gem_context_is_banned(ctx)) 61 score = I915_CLIENT_SCORE_CONTEXT_BAN; 62 else 63 score = 0; 64 65 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 66 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 67 score += I915_CLIENT_SCORE_HANG_FAST; 68 69 if (score) { 70 atomic_add(score, &file_priv->ban_score); 71 72 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n", 73 ctx->name, score, 74 atomic_read(&file_priv->ban_score)); 75 } 76 } 77 78 static bool context_mark_guilty(struct i915_gem_context *ctx) 79 { 80 unsigned long prev_hang; 81 bool banned; 82 int i; 83 84 atomic_inc(&ctx->guilty_count); 85 86 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 87 if (!i915_gem_context_is_bannable(ctx)) 88 return false; 89 90 /* Record the timestamp for the last N hangs */ 91 prev_hang = ctx->hang_timestamp[0]; 92 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 93 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 94 ctx->hang_timestamp[i] = jiffies; 95 96 /* If we have hung N+1 times in rapid succession, we ban the context! */ 97 banned = !i915_gem_context_is_recoverable(ctx); 98 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 99 banned = true; 100 if (banned) { 101 DRM_DEBUG_DRIVER("context %s: guilty %d, banned\n", 102 ctx->name, atomic_read(&ctx->guilty_count)); 103 i915_gem_context_set_banned(ctx); 104 } 105 106 if (!IS_ERR_OR_NULL(ctx->file_priv)) 107 client_mark_guilty(ctx->file_priv, ctx); 108 109 return banned; 110 } 111 112 static void context_mark_innocent(struct i915_gem_context *ctx) 113 { 114 atomic_inc(&ctx->active_count); 115 } 116 117 void __i915_request_reset(struct i915_request *rq, bool guilty) 118 { 119 GEM_TRACE("%s rq=%llx:%lld, guilty? %s\n", 120 rq->engine->name, 121 rq->fence.context, 122 rq->fence.seqno, 123 yesno(guilty)); 124 125 GEM_BUG_ON(i915_request_completed(rq)); 126 127 if (guilty) { 128 i915_request_skip(rq, -EIO); 129 if (context_mark_guilty(rq->gem_context)) 130 engine_skip_context(rq); 131 } else { 132 dma_fence_set_error(&rq->fence, -EAGAIN); 133 context_mark_innocent(rq->gem_context); 134 } 135 } 136 137 static bool i915_in_reset(struct pci_dev *pdev) 138 { 139 u8 gdrst; 140 141 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 142 return gdrst & GRDOM_RESET_STATUS; 143 } 144 145 static int i915_do_reset(struct intel_gt *gt, 146 intel_engine_mask_t engine_mask, 147 unsigned int retry) 148 { 149 struct pci_dev *pdev = gt->i915->drm.pdev; 150 int err; 151 152 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 153 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 154 udelay(50); 155 err = wait_for_atomic(i915_in_reset(pdev), 50); 156 157 /* Clear the reset request. */ 158 pci_write_config_byte(pdev, I915_GDRST, 0); 159 udelay(50); 160 if (!err) 161 err = wait_for_atomic(!i915_in_reset(pdev), 50); 162 163 return err; 164 } 165 166 static bool g4x_reset_complete(struct pci_dev *pdev) 167 { 168 u8 gdrst; 169 170 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 171 return (gdrst & GRDOM_RESET_ENABLE) == 0; 172 } 173 174 static int g33_do_reset(struct intel_gt *gt, 175 intel_engine_mask_t engine_mask, 176 unsigned int retry) 177 { 178 struct pci_dev *pdev = gt->i915->drm.pdev; 179 180 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 181 return wait_for_atomic(g4x_reset_complete(pdev), 50); 182 } 183 184 static int g4x_do_reset(struct intel_gt *gt, 185 intel_engine_mask_t engine_mask, 186 unsigned int retry) 187 { 188 struct pci_dev *pdev = gt->i915->drm.pdev; 189 struct intel_uncore *uncore = gt->uncore; 190 int ret; 191 192 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 193 rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 194 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 195 196 pci_write_config_byte(pdev, I915_GDRST, 197 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 198 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 199 if (ret) { 200 DRM_DEBUG_DRIVER("Wait for media reset failed\n"); 201 goto out; 202 } 203 204 pci_write_config_byte(pdev, I915_GDRST, 205 GRDOM_RENDER | GRDOM_RESET_ENABLE); 206 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 207 if (ret) { 208 DRM_DEBUG_DRIVER("Wait for render reset failed\n"); 209 goto out; 210 } 211 212 out: 213 pci_write_config_byte(pdev, I915_GDRST, 0); 214 215 rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 216 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 217 218 return ret; 219 } 220 221 static int ironlake_do_reset(struct intel_gt *gt, 222 intel_engine_mask_t engine_mask, 223 unsigned int retry) 224 { 225 struct intel_uncore *uncore = gt->uncore; 226 int ret; 227 228 intel_uncore_write_fw(uncore, ILK_GDSR, 229 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 230 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 231 ILK_GRDOM_RESET_ENABLE, 0, 232 5000, 0, 233 NULL); 234 if (ret) { 235 DRM_DEBUG_DRIVER("Wait for render reset failed\n"); 236 goto out; 237 } 238 239 intel_uncore_write_fw(uncore, ILK_GDSR, 240 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 241 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 242 ILK_GRDOM_RESET_ENABLE, 0, 243 5000, 0, 244 NULL); 245 if (ret) { 246 DRM_DEBUG_DRIVER("Wait for media reset failed\n"); 247 goto out; 248 } 249 250 out: 251 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 252 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 253 return ret; 254 } 255 256 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 257 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 258 { 259 struct intel_uncore *uncore = gt->uncore; 260 int err; 261 262 /* 263 * GEN6_GDRST is not in the gt power well, no need to check 264 * for fifo space for the write or forcewake the chip for 265 * the read 266 */ 267 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 268 269 /* Wait for the device to ack the reset requests */ 270 err = __intel_wait_for_register_fw(uncore, 271 GEN6_GDRST, hw_domain_mask, 0, 272 500, 0, 273 NULL); 274 if (err) 275 DRM_DEBUG_DRIVER("Wait for 0x%08x engines reset failed\n", 276 hw_domain_mask); 277 278 return err; 279 } 280 281 static int gen6_reset_engines(struct intel_gt *gt, 282 intel_engine_mask_t engine_mask, 283 unsigned int retry) 284 { 285 static const u32 hw_engine_mask[] = { 286 [RCS0] = GEN6_GRDOM_RENDER, 287 [BCS0] = GEN6_GRDOM_BLT, 288 [VCS0] = GEN6_GRDOM_MEDIA, 289 [VCS1] = GEN8_GRDOM_MEDIA2, 290 [VECS0] = GEN6_GRDOM_VECS, 291 }; 292 struct intel_engine_cs *engine; 293 u32 hw_mask; 294 295 if (engine_mask == ALL_ENGINES) { 296 hw_mask = GEN6_GRDOM_FULL; 297 } else { 298 intel_engine_mask_t tmp; 299 300 hw_mask = 0; 301 for_each_engine_masked(engine, gt, engine_mask, tmp) { 302 GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask)); 303 hw_mask |= hw_engine_mask[engine->id]; 304 } 305 } 306 307 return gen6_hw_domain_reset(gt, hw_mask); 308 } 309 310 static int gen11_lock_sfc(struct intel_engine_cs *engine, u32 *hw_mask) 311 { 312 struct intel_uncore *uncore = engine->uncore; 313 u8 vdbox_sfc_access = RUNTIME_INFO(engine->i915)->vdbox_sfc_access; 314 i915_reg_t sfc_forced_lock, sfc_forced_lock_ack; 315 u32 sfc_forced_lock_bit, sfc_forced_lock_ack_bit; 316 i915_reg_t sfc_usage; 317 u32 sfc_usage_bit; 318 u32 sfc_reset_bit; 319 int ret; 320 321 switch (engine->class) { 322 case VIDEO_DECODE_CLASS: 323 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 324 return 0; 325 326 sfc_forced_lock = GEN11_VCS_SFC_FORCED_LOCK(engine); 327 sfc_forced_lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 328 329 sfc_forced_lock_ack = GEN11_VCS_SFC_LOCK_STATUS(engine); 330 sfc_forced_lock_ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 331 332 sfc_usage = GEN11_VCS_SFC_LOCK_STATUS(engine); 333 sfc_usage_bit = GEN11_VCS_SFC_USAGE_BIT; 334 sfc_reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 335 break; 336 337 case VIDEO_ENHANCEMENT_CLASS: 338 sfc_forced_lock = GEN11_VECS_SFC_FORCED_LOCK(engine); 339 sfc_forced_lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 340 341 sfc_forced_lock_ack = GEN11_VECS_SFC_LOCK_ACK(engine); 342 sfc_forced_lock_ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 343 344 sfc_usage = GEN11_VECS_SFC_USAGE(engine); 345 sfc_usage_bit = GEN11_VECS_SFC_USAGE_BIT; 346 sfc_reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 347 break; 348 349 default: 350 return 0; 351 } 352 353 /* 354 * If the engine is using a SFC, tell the engine that a software reset 355 * is going to happen. The engine will then try to force lock the SFC. 356 * If SFC ends up being locked to the engine we want to reset, we have 357 * to reset it as well (we will unlock it once the reset sequence is 358 * completed). 359 */ 360 if (!(intel_uncore_read_fw(uncore, sfc_usage) & sfc_usage_bit)) 361 return 0; 362 363 rmw_set_fw(uncore, sfc_forced_lock, sfc_forced_lock_bit); 364 365 ret = __intel_wait_for_register_fw(uncore, 366 sfc_forced_lock_ack, 367 sfc_forced_lock_ack_bit, 368 sfc_forced_lock_ack_bit, 369 1000, 0, NULL); 370 371 /* Was the SFC released while we were trying to lock it? */ 372 if (!(intel_uncore_read_fw(uncore, sfc_usage) & sfc_usage_bit)) 373 return 0; 374 375 if (ret) { 376 DRM_DEBUG_DRIVER("Wait for SFC forced lock ack failed\n"); 377 return ret; 378 } 379 380 *hw_mask |= sfc_reset_bit; 381 return 0; 382 } 383 384 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 385 { 386 struct intel_uncore *uncore = engine->uncore; 387 u8 vdbox_sfc_access = RUNTIME_INFO(engine->i915)->vdbox_sfc_access; 388 i915_reg_t sfc_forced_lock; 389 u32 sfc_forced_lock_bit; 390 391 switch (engine->class) { 392 case VIDEO_DECODE_CLASS: 393 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 394 return; 395 396 sfc_forced_lock = GEN11_VCS_SFC_FORCED_LOCK(engine); 397 sfc_forced_lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 398 break; 399 400 case VIDEO_ENHANCEMENT_CLASS: 401 sfc_forced_lock = GEN11_VECS_SFC_FORCED_LOCK(engine); 402 sfc_forced_lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 403 break; 404 405 default: 406 return; 407 } 408 409 rmw_clear_fw(uncore, sfc_forced_lock, sfc_forced_lock_bit); 410 } 411 412 static int gen11_reset_engines(struct intel_gt *gt, 413 intel_engine_mask_t engine_mask, 414 unsigned int retry) 415 { 416 static const u32 hw_engine_mask[] = { 417 [RCS0] = GEN11_GRDOM_RENDER, 418 [BCS0] = GEN11_GRDOM_BLT, 419 [VCS0] = GEN11_GRDOM_MEDIA, 420 [VCS1] = GEN11_GRDOM_MEDIA2, 421 [VCS2] = GEN11_GRDOM_MEDIA3, 422 [VCS3] = GEN11_GRDOM_MEDIA4, 423 [VECS0] = GEN11_GRDOM_VECS, 424 [VECS1] = GEN11_GRDOM_VECS2, 425 }; 426 struct intel_engine_cs *engine; 427 intel_engine_mask_t tmp; 428 u32 hw_mask; 429 int ret; 430 431 if (engine_mask == ALL_ENGINES) { 432 hw_mask = GEN11_GRDOM_FULL; 433 } else { 434 hw_mask = 0; 435 for_each_engine_masked(engine, gt, engine_mask, tmp) { 436 GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask)); 437 hw_mask |= hw_engine_mask[engine->id]; 438 ret = gen11_lock_sfc(engine, &hw_mask); 439 if (ret) 440 goto sfc_unlock; 441 } 442 } 443 444 ret = gen6_hw_domain_reset(gt, hw_mask); 445 446 sfc_unlock: 447 /* 448 * We unlock the SFC based on the lock status and not the result of 449 * gen11_lock_sfc to make sure that we clean properly if something 450 * wrong happened during the lock (e.g. lock acquired after timeout 451 * expiration). 452 */ 453 if (engine_mask != ALL_ENGINES) 454 for_each_engine_masked(engine, gt, engine_mask, tmp) 455 gen11_unlock_sfc(engine); 456 457 return ret; 458 } 459 460 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 461 { 462 struct intel_uncore *uncore = engine->uncore; 463 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 464 u32 request, mask, ack; 465 int ret; 466 467 ack = intel_uncore_read_fw(uncore, reg); 468 if (ack & RESET_CTL_CAT_ERROR) { 469 /* 470 * For catastrophic errors, ready-for-reset sequence 471 * needs to be bypassed: HAS#396813 472 */ 473 request = RESET_CTL_CAT_ERROR; 474 mask = RESET_CTL_CAT_ERROR; 475 476 /* Catastrophic errors need to be cleared by HW */ 477 ack = 0; 478 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 479 request = RESET_CTL_REQUEST_RESET; 480 mask = RESET_CTL_READY_TO_RESET; 481 ack = RESET_CTL_READY_TO_RESET; 482 } else { 483 return 0; 484 } 485 486 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 487 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 488 700, 0, NULL); 489 if (ret) 490 DRM_ERROR("%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 491 engine->name, request, 492 intel_uncore_read_fw(uncore, reg)); 493 494 return ret; 495 } 496 497 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 498 { 499 intel_uncore_write_fw(engine->uncore, 500 RING_RESET_CTL(engine->mmio_base), 501 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 502 } 503 504 static int gen8_reset_engines(struct intel_gt *gt, 505 intel_engine_mask_t engine_mask, 506 unsigned int retry) 507 { 508 struct intel_engine_cs *engine; 509 const bool reset_non_ready = retry >= 1; 510 intel_engine_mask_t tmp; 511 int ret; 512 513 for_each_engine_masked(engine, gt, engine_mask, tmp) { 514 ret = gen8_engine_reset_prepare(engine); 515 if (ret && !reset_non_ready) 516 goto skip_reset; 517 518 /* 519 * If this is not the first failed attempt to prepare, 520 * we decide to proceed anyway. 521 * 522 * By doing so we risk context corruption and with 523 * some gens (kbl), possible system hang if reset 524 * happens during active bb execution. 525 * 526 * We rather take context corruption instead of 527 * failed reset with a wedged driver/gpu. And 528 * active bb execution case should be covered by 529 * stop_engines() we have before the reset. 530 */ 531 } 532 533 if (INTEL_GEN(gt->i915) >= 11) 534 ret = gen11_reset_engines(gt, engine_mask, retry); 535 else 536 ret = gen6_reset_engines(gt, engine_mask, retry); 537 538 skip_reset: 539 for_each_engine_masked(engine, gt, engine_mask, tmp) 540 gen8_engine_reset_cancel(engine); 541 542 return ret; 543 } 544 545 static int mock_reset(struct intel_gt *gt, 546 intel_engine_mask_t mask, 547 unsigned int retry) 548 { 549 return 0; 550 } 551 552 typedef int (*reset_func)(struct intel_gt *, 553 intel_engine_mask_t engine_mask, 554 unsigned int retry); 555 556 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 557 { 558 struct drm_i915_private *i915 = gt->i915; 559 560 if (is_mock_gt(gt)) 561 return mock_reset; 562 else if (INTEL_GEN(i915) >= 8) 563 return gen8_reset_engines; 564 else if (INTEL_GEN(i915) >= 6) 565 return gen6_reset_engines; 566 else if (INTEL_GEN(i915) >= 5) 567 return ironlake_do_reset; 568 else if (IS_G4X(i915)) 569 return g4x_do_reset; 570 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 571 return g33_do_reset; 572 else if (INTEL_GEN(i915) >= 3) 573 return i915_do_reset; 574 else 575 return NULL; 576 } 577 578 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 579 { 580 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 581 reset_func reset; 582 int ret = -ETIMEDOUT; 583 int retry; 584 585 reset = intel_get_gpu_reset(gt); 586 if (!reset) 587 return -ENODEV; 588 589 /* 590 * If the power well sleeps during the reset, the reset 591 * request may be dropped and never completes (causing -EIO). 592 */ 593 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 594 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 595 GEM_TRACE("engine_mask=%x\n", engine_mask); 596 preempt_disable(); 597 ret = reset(gt, engine_mask, retry); 598 preempt_enable(); 599 } 600 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 601 602 return ret; 603 } 604 605 bool intel_has_gpu_reset(const struct intel_gt *gt) 606 { 607 if (!i915_modparams.reset) 608 return NULL; 609 610 return intel_get_gpu_reset(gt); 611 } 612 613 bool intel_has_reset_engine(const struct intel_gt *gt) 614 { 615 if (i915_modparams.reset < 2) 616 return false; 617 618 return INTEL_INFO(gt->i915)->has_reset_engine; 619 } 620 621 int intel_reset_guc(struct intel_gt *gt) 622 { 623 u32 guc_domain = 624 INTEL_GEN(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 625 int ret; 626 627 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 628 629 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 630 ret = gen6_hw_domain_reset(gt, guc_domain); 631 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 632 633 return ret; 634 } 635 636 /* 637 * Ensure irq handler finishes, and not run again. 638 * Also return the active request so that we only search for it once. 639 */ 640 static void reset_prepare_engine(struct intel_engine_cs *engine) 641 { 642 /* 643 * During the reset sequence, we must prevent the engine from 644 * entering RC6. As the context state is undefined until we restart 645 * the engine, if it does enter RC6 during the reset, the state 646 * written to the powercontext is undefined and so we may lose 647 * GPU state upon resume, i.e. fail to restart after a reset. 648 */ 649 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 650 engine->reset.prepare(engine); 651 } 652 653 static void revoke_mmaps(struct intel_gt *gt) 654 { 655 int i; 656 657 for (i = 0; i < gt->ggtt->num_fences; i++) { 658 struct drm_vma_offset_node *node; 659 struct i915_vma *vma; 660 u64 vma_offset; 661 662 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 663 if (!vma) 664 continue; 665 666 if (!i915_vma_has_userfault(vma)) 667 continue; 668 669 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 670 node = &vma->obj->base.vma_node; 671 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 672 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 673 drm_vma_node_offset_addr(node) + vma_offset, 674 vma->size, 675 1); 676 } 677 } 678 679 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 680 { 681 struct intel_engine_cs *engine; 682 intel_engine_mask_t awake = 0; 683 enum intel_engine_id id; 684 685 for_each_engine(engine, gt, id) { 686 if (intel_engine_pm_get_if_awake(engine)) 687 awake |= engine->mask; 688 reset_prepare_engine(engine); 689 } 690 691 intel_uc_reset_prepare(>->uc); 692 693 return awake; 694 } 695 696 static void gt_revoke(struct intel_gt *gt) 697 { 698 revoke_mmaps(gt); 699 } 700 701 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 702 { 703 struct intel_engine_cs *engine; 704 enum intel_engine_id id; 705 int err; 706 707 /* 708 * Everything depends on having the GTT running, so we need to start 709 * there. 710 */ 711 err = i915_ggtt_enable_hw(gt->i915); 712 if (err) 713 return err; 714 715 for_each_engine(engine, gt, id) 716 __intel_engine_reset(engine, stalled_mask & engine->mask); 717 718 i915_gem_restore_fences(gt->ggtt); 719 720 return err; 721 } 722 723 static void reset_finish_engine(struct intel_engine_cs *engine) 724 { 725 engine->reset.finish(engine); 726 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 727 728 intel_engine_breadcrumbs_irq(engine); 729 } 730 731 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 732 { 733 struct intel_engine_cs *engine; 734 enum intel_engine_id id; 735 736 for_each_engine(engine, gt, id) { 737 reset_finish_engine(engine); 738 if (awake & engine->mask) 739 intel_engine_pm_put(engine); 740 } 741 } 742 743 static void nop_submit_request(struct i915_request *request) 744 { 745 struct intel_engine_cs *engine = request->engine; 746 unsigned long flags; 747 748 GEM_TRACE("%s fence %llx:%lld -> -EIO\n", 749 engine->name, request->fence.context, request->fence.seqno); 750 dma_fence_set_error(&request->fence, -EIO); 751 752 spin_lock_irqsave(&engine->active.lock, flags); 753 __i915_request_submit(request); 754 i915_request_mark_complete(request); 755 spin_unlock_irqrestore(&engine->active.lock, flags); 756 757 intel_engine_queue_breadcrumbs(engine); 758 } 759 760 static void __intel_gt_set_wedged(struct intel_gt *gt) 761 { 762 struct intel_engine_cs *engine; 763 intel_engine_mask_t awake; 764 enum intel_engine_id id; 765 766 if (test_bit(I915_WEDGED, >->reset.flags)) 767 return; 768 769 if (GEM_SHOW_DEBUG() && !intel_engines_are_idle(gt)) { 770 struct drm_printer p = drm_debug_printer(__func__); 771 772 for_each_engine(engine, gt, id) 773 intel_engine_dump(engine, &p, "%s\n", engine->name); 774 } 775 776 GEM_TRACE("start\n"); 777 778 /* 779 * First, stop submission to hw, but do not yet complete requests by 780 * rolling the global seqno forward (since this would complete requests 781 * for which we haven't set the fence error to EIO yet). 782 */ 783 awake = reset_prepare(gt); 784 785 /* Even if the GPU reset fails, it should still stop the engines */ 786 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 787 __intel_gt_reset(gt, ALL_ENGINES); 788 789 for_each_engine(engine, gt, id) 790 engine->submit_request = nop_submit_request; 791 792 /* 793 * Make sure no request can slip through without getting completed by 794 * either this call here to intel_engine_write_global_seqno, or the one 795 * in nop_submit_request. 796 */ 797 synchronize_rcu_expedited(); 798 set_bit(I915_WEDGED, >->reset.flags); 799 800 /* Mark all executing requests as skipped */ 801 for_each_engine(engine, gt, id) 802 engine->cancel_requests(engine); 803 804 reset_finish(gt, awake); 805 806 GEM_TRACE("end\n"); 807 } 808 809 void intel_gt_set_wedged(struct intel_gt *gt) 810 { 811 intel_wakeref_t wakeref; 812 813 mutex_lock(>->reset.mutex); 814 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 815 __intel_gt_set_wedged(gt); 816 mutex_unlock(>->reset.mutex); 817 } 818 819 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 820 { 821 struct intel_gt_timelines *timelines = >->timelines; 822 struct intel_timeline *tl; 823 unsigned long flags; 824 bool ok; 825 826 if (!test_bit(I915_WEDGED, >->reset.flags)) 827 return true; 828 829 /* Never fully initialised, recovery impossible */ 830 if (test_bit(I915_WEDGED_ON_INIT, >->reset.flags)) 831 return false; 832 833 GEM_TRACE("start\n"); 834 835 /* 836 * Before unwedging, make sure that all pending operations 837 * are flushed and errored out - we may have requests waiting upon 838 * third party fences. We marked all inflight requests as EIO, and 839 * every execbuf since returned EIO, for consistency we want all 840 * the currently pending requests to also be marked as EIO, which 841 * is done inside our nop_submit_request - and so we must wait. 842 * 843 * No more can be submitted until we reset the wedged bit. 844 */ 845 spin_lock_irqsave(&timelines->lock, flags); 846 list_for_each_entry(tl, &timelines->active_list, link) { 847 struct dma_fence *fence; 848 849 fence = i915_active_fence_get(&tl->last_request); 850 if (!fence) 851 continue; 852 853 spin_unlock_irqrestore(&timelines->lock, flags); 854 855 /* 856 * All internal dependencies (i915_requests) will have 857 * been flushed by the set-wedge, but we may be stuck waiting 858 * for external fences. These should all be capped to 10s 859 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 860 * in the worst case. 861 */ 862 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 863 dma_fence_put(fence); 864 865 /* Restart iteration after droping lock */ 866 spin_lock_irqsave(&timelines->lock, flags); 867 tl = list_entry(&timelines->active_list, typeof(*tl), link); 868 } 869 spin_unlock_irqrestore(&timelines->lock, flags); 870 871 /* We must reset pending GPU events before restoring our submission */ 872 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 873 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 874 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 875 if (!ok) { 876 /* 877 * Warn CI about the unrecoverable wedged condition. 878 * Time for a reboot. 879 */ 880 add_taint_for_CI(TAINT_WARN); 881 return false; 882 } 883 884 /* 885 * Undo nop_submit_request. We prevent all new i915 requests from 886 * being queued (by disallowing execbuf whilst wedged) so having 887 * waited for all active requests above, we know the system is idle 888 * and do not have to worry about a thread being inside 889 * engine->submit_request() as we swap over. So unlike installing 890 * the nop_submit_request on reset, we can do this from normal 891 * context and do not require stop_machine(). 892 */ 893 intel_engines_reset_default_submission(gt); 894 895 GEM_TRACE("end\n"); 896 897 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 898 clear_bit(I915_WEDGED, >->reset.flags); 899 900 return true; 901 } 902 903 bool intel_gt_unset_wedged(struct intel_gt *gt) 904 { 905 bool result; 906 907 mutex_lock(>->reset.mutex); 908 result = __intel_gt_unset_wedged(gt); 909 mutex_unlock(>->reset.mutex); 910 911 return result; 912 } 913 914 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 915 { 916 int err, i; 917 918 gt_revoke(gt); 919 920 err = __intel_gt_reset(gt, ALL_ENGINES); 921 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 922 msleep(10 * (i + 1)); 923 err = __intel_gt_reset(gt, ALL_ENGINES); 924 } 925 if (err) 926 return err; 927 928 return gt_reset(gt, stalled_mask); 929 } 930 931 static int resume(struct intel_gt *gt) 932 { 933 struct intel_engine_cs *engine; 934 enum intel_engine_id id; 935 int ret; 936 937 for_each_engine(engine, gt, id) { 938 ret = engine->resume(engine); 939 if (ret) 940 return ret; 941 } 942 943 return 0; 944 } 945 946 /** 947 * intel_gt_reset - reset chip after a hang 948 * @gt: #intel_gt to reset 949 * @stalled_mask: mask of the stalled engines with the guilty requests 950 * @reason: user error message for why we are resetting 951 * 952 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 953 * on failure. 954 * 955 * Procedure is fairly simple: 956 * - reset the chip using the reset reg 957 * - re-init context state 958 * - re-init hardware status page 959 * - re-init ring buffer 960 * - re-init interrupt state 961 * - re-init display 962 */ 963 void intel_gt_reset(struct intel_gt *gt, 964 intel_engine_mask_t stalled_mask, 965 const char *reason) 966 { 967 intel_engine_mask_t awake; 968 int ret; 969 970 GEM_TRACE("flags=%lx\n", gt->reset.flags); 971 972 might_sleep(); 973 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 974 mutex_lock(>->reset.mutex); 975 976 /* Clear any previous failed attempts at recovery. Time to try again. */ 977 if (!__intel_gt_unset_wedged(gt)) 978 goto unlock; 979 980 if (reason) 981 dev_notice(gt->i915->drm.dev, 982 "Resetting chip for %s\n", reason); 983 atomic_inc(>->i915->gpu_error.reset_count); 984 985 awake = reset_prepare(gt); 986 987 if (!intel_has_gpu_reset(gt)) { 988 if (i915_modparams.reset) 989 dev_err(gt->i915->drm.dev, "GPU reset not supported\n"); 990 else 991 DRM_DEBUG_DRIVER("GPU reset disabled\n"); 992 goto error; 993 } 994 995 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 996 intel_runtime_pm_disable_interrupts(gt->i915); 997 998 if (do_reset(gt, stalled_mask)) { 999 dev_err(gt->i915->drm.dev, "Failed to reset chip\n"); 1000 goto taint; 1001 } 1002 1003 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1004 intel_runtime_pm_enable_interrupts(gt->i915); 1005 1006 intel_overlay_reset(gt->i915); 1007 1008 /* 1009 * Next we need to restore the context, but we don't use those 1010 * yet either... 1011 * 1012 * Ring buffer needs to be re-initialized in the KMS case, or if X 1013 * was running at the time of the reset (i.e. we weren't VT 1014 * switched away). 1015 */ 1016 ret = intel_gt_init_hw(gt); 1017 if (ret) { 1018 DRM_ERROR("Failed to initialise HW following reset (%d)\n", 1019 ret); 1020 goto taint; 1021 } 1022 1023 ret = resume(gt); 1024 if (ret) 1025 goto taint; 1026 1027 finish: 1028 reset_finish(gt, awake); 1029 unlock: 1030 mutex_unlock(>->reset.mutex); 1031 return; 1032 1033 taint: 1034 /* 1035 * History tells us that if we cannot reset the GPU now, we 1036 * never will. This then impacts everything that is run 1037 * subsequently. On failing the reset, we mark the driver 1038 * as wedged, preventing further execution on the GPU. 1039 * We also want to go one step further and add a taint to the 1040 * kernel so that any subsequent faults can be traced back to 1041 * this failure. This is important for CI, where if the 1042 * GPU/driver fails we would like to reboot and restart testing 1043 * rather than continue on into oblivion. For everyone else, 1044 * the system should still plod along, but they have been warned! 1045 */ 1046 add_taint_for_CI(TAINT_WARN); 1047 error: 1048 __intel_gt_set_wedged(gt); 1049 goto finish; 1050 } 1051 1052 static inline int intel_gt_reset_engine(struct intel_engine_cs *engine) 1053 { 1054 return __intel_gt_reset(engine->gt, engine->mask); 1055 } 1056 1057 /** 1058 * intel_engine_reset - reset GPU engine to recover from a hang 1059 * @engine: engine to reset 1060 * @msg: reason for GPU reset; or NULL for no dev_notice() 1061 * 1062 * Reset a specific GPU engine. Useful if a hang is detected. 1063 * Returns zero on successful reset or otherwise an error code. 1064 * 1065 * Procedure is: 1066 * - identifies the request that caused the hang and it is dropped 1067 * - reset engine (which will force the engine to idle) 1068 * - re-init/configure engine 1069 */ 1070 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1071 { 1072 struct intel_gt *gt = engine->gt; 1073 int ret; 1074 1075 GEM_TRACE("%s flags=%lx\n", engine->name, gt->reset.flags); 1076 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1077 1078 if (!intel_engine_pm_get_if_awake(engine)) 1079 return 0; 1080 1081 reset_prepare_engine(engine); 1082 1083 if (msg) 1084 dev_notice(engine->i915->drm.dev, 1085 "Resetting %s for %s\n", engine->name, msg); 1086 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1087 1088 if (!engine->gt->uc.guc.execbuf_client) 1089 ret = intel_gt_reset_engine(engine); 1090 else 1091 ret = intel_guc_reset_engine(&engine->gt->uc.guc, engine); 1092 if (ret) { 1093 /* If we fail here, we expect to fallback to a global reset */ 1094 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n", 1095 engine->gt->uc.guc.execbuf_client ? "GuC " : "", 1096 engine->name, ret); 1097 goto out; 1098 } 1099 1100 /* 1101 * The request that caused the hang is stuck on elsp, we know the 1102 * active request and can drop it, adjust head to skip the offending 1103 * request to resume executing remaining requests in the queue. 1104 */ 1105 __intel_engine_reset(engine, true); 1106 1107 /* 1108 * The engine and its registers (and workarounds in case of render) 1109 * have been reset to their default values. Follow the init_ring 1110 * process to program RING_MODE, HWSP and re-enable submission. 1111 */ 1112 ret = engine->resume(engine); 1113 1114 out: 1115 intel_engine_cancel_stop_cs(engine); 1116 reset_finish_engine(engine); 1117 intel_engine_pm_put_async(engine); 1118 return ret; 1119 } 1120 1121 static void intel_gt_reset_global(struct intel_gt *gt, 1122 u32 engine_mask, 1123 const char *reason) 1124 { 1125 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1126 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1127 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1128 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1129 struct intel_wedge_me w; 1130 1131 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1132 1133 DRM_DEBUG_DRIVER("resetting chip\n"); 1134 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1135 1136 /* Use a watchdog to ensure that our reset completes */ 1137 intel_wedge_on_timeout(&w, gt, 5 * HZ) { 1138 intel_prepare_reset(gt->i915); 1139 1140 /* Flush everyone using a resource about to be clobbered */ 1141 synchronize_srcu_expedited(>->reset.backoff_srcu); 1142 1143 intel_gt_reset(gt, engine_mask, reason); 1144 1145 intel_finish_reset(gt->i915); 1146 } 1147 1148 if (!test_bit(I915_WEDGED, >->reset.flags)) 1149 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1150 } 1151 1152 /** 1153 * intel_gt_handle_error - handle a gpu error 1154 * @gt: the intel_gt 1155 * @engine_mask: mask representing engines that are hung 1156 * @flags: control flags 1157 * @fmt: Error message format string 1158 * 1159 * Do some basic checking of register state at error time and 1160 * dump it to the syslog. Also call i915_capture_error_state() to make 1161 * sure we get a record and make it available in debugfs. Fire a uevent 1162 * so userspace knows something bad happened (should trigger collection 1163 * of a ring dump etc.). 1164 */ 1165 void intel_gt_handle_error(struct intel_gt *gt, 1166 intel_engine_mask_t engine_mask, 1167 unsigned long flags, 1168 const char *fmt, ...) 1169 { 1170 struct intel_engine_cs *engine; 1171 intel_wakeref_t wakeref; 1172 intel_engine_mask_t tmp; 1173 char error_msg[80]; 1174 char *msg = NULL; 1175 1176 if (fmt) { 1177 va_list args; 1178 1179 va_start(args, fmt); 1180 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1181 va_end(args); 1182 1183 msg = error_msg; 1184 } 1185 1186 /* 1187 * In most cases it's guaranteed that we get here with an RPM 1188 * reference held, for example because there is a pending GPU 1189 * request that won't finish until the reset is done. This 1190 * isn't the case at least when we get here by doing a 1191 * simulated reset via debugfs, so get an RPM reference. 1192 */ 1193 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1194 1195 engine_mask &= INTEL_INFO(gt->i915)->engine_mask; 1196 1197 if (flags & I915_ERROR_CAPTURE) { 1198 i915_capture_error_state(gt->i915, engine_mask, msg); 1199 intel_gt_clear_error_registers(gt, engine_mask); 1200 } 1201 1202 /* 1203 * Try engine reset when available. We fall back to full reset if 1204 * single reset fails. 1205 */ 1206 if (intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1207 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1208 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1209 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1210 >->reset.flags)) 1211 continue; 1212 1213 if (intel_engine_reset(engine, msg) == 0) 1214 engine_mask &= ~engine->mask; 1215 1216 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1217 >->reset.flags); 1218 } 1219 } 1220 1221 if (!engine_mask) 1222 goto out; 1223 1224 /* Full reset needs the mutex, stop any other user trying to do so. */ 1225 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1226 wait_event(gt->reset.queue, 1227 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1228 goto out; /* piggy-back on the other reset */ 1229 } 1230 1231 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1232 synchronize_rcu_expedited(); 1233 1234 /* Prevent any other reset-engine attempt. */ 1235 for_each_engine(engine, gt, tmp) { 1236 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1237 >->reset.flags)) 1238 wait_on_bit(>->reset.flags, 1239 I915_RESET_ENGINE + engine->id, 1240 TASK_UNINTERRUPTIBLE); 1241 } 1242 1243 intel_gt_reset_global(gt, engine_mask, msg); 1244 1245 for_each_engine(engine, gt, tmp) 1246 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1247 >->reset.flags); 1248 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1249 smp_mb__after_atomic(); 1250 wake_up_all(>->reset.queue); 1251 1252 out: 1253 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1254 } 1255 1256 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1257 { 1258 might_lock(>->reset.backoff_srcu); 1259 might_sleep(); 1260 1261 rcu_read_lock(); 1262 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1263 rcu_read_unlock(); 1264 1265 if (wait_event_interruptible(gt->reset.queue, 1266 !test_bit(I915_RESET_BACKOFF, 1267 >->reset.flags))) 1268 return -EINTR; 1269 1270 rcu_read_lock(); 1271 } 1272 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1273 rcu_read_unlock(); 1274 1275 return 0; 1276 } 1277 1278 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1279 __releases(>->reset.backoff_srcu) 1280 { 1281 srcu_read_unlock(>->reset.backoff_srcu, tag); 1282 } 1283 1284 int intel_gt_terminally_wedged(struct intel_gt *gt) 1285 { 1286 might_sleep(); 1287 1288 if (!intel_gt_is_wedged(gt)) 1289 return 0; 1290 1291 /* Reset still in progress? Maybe we will recover? */ 1292 if (!test_bit(I915_RESET_BACKOFF, >->reset.flags)) 1293 return -EIO; 1294 1295 if (wait_event_interruptible(gt->reset.queue, 1296 !test_bit(I915_RESET_BACKOFF, 1297 >->reset.flags))) 1298 return -EINTR; 1299 1300 return intel_gt_is_wedged(gt) ? -EIO : 0; 1301 } 1302 1303 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1304 { 1305 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1306 I915_WEDGED_ON_INIT); 1307 intel_gt_set_wedged(gt); 1308 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1309 } 1310 1311 void intel_gt_init_reset(struct intel_gt *gt) 1312 { 1313 init_waitqueue_head(>->reset.queue); 1314 mutex_init(>->reset.mutex); 1315 init_srcu_struct(>->reset.backoff_srcu); 1316 } 1317 1318 void intel_gt_fini_reset(struct intel_gt *gt) 1319 { 1320 cleanup_srcu_struct(>->reset.backoff_srcu); 1321 } 1322 1323 static void intel_wedge_me(struct work_struct *work) 1324 { 1325 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1326 1327 dev_err(w->gt->i915->drm.dev, 1328 "%s timed out, cancelling all in-flight rendering.\n", 1329 w->name); 1330 intel_gt_set_wedged(w->gt); 1331 } 1332 1333 void __intel_init_wedge(struct intel_wedge_me *w, 1334 struct intel_gt *gt, 1335 long timeout, 1336 const char *name) 1337 { 1338 w->gt = gt; 1339 w->name = name; 1340 1341 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1342 schedule_delayed_work(&w->work, timeout); 1343 } 1344 1345 void __intel_fini_wedge(struct intel_wedge_me *w) 1346 { 1347 cancel_delayed_work_sync(&w->work); 1348 destroy_delayed_work_on_stack(&w->work); 1349 w->gt = NULL; 1350 } 1351 1352 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1353 #include "selftest_reset.c" 1354 #include "selftest_hangcheck.c" 1355 #endif 1356