1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 #include <linux/string_helpers.h> 9 10 #include "display/intel_display_reset.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "gt/intel_gt_regs.h" 16 17 #include "gt/uc/intel_gsc_fw.h" 18 19 #include "i915_drv.h" 20 #include "i915_file_private.h" 21 #include "i915_gpu_error.h" 22 #include "i915_irq.h" 23 #include "i915_reg.h" 24 #include "intel_breadcrumbs.h" 25 #include "intel_engine_pm.h" 26 #include "intel_engine_regs.h" 27 #include "intel_gt.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_requests.h" 30 #include "intel_mchbar_regs.h" 31 #include "intel_pci_config.h" 32 #include "intel_reset.h" 33 34 #include "uc/intel_guc.h" 35 36 #define RESET_MAX_RETRIES 3 37 38 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 39 #define RESET_UNDER_STOP_MACHINE 0 40 41 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 42 { 43 struct drm_i915_file_private *file_priv = ctx->file_priv; 44 unsigned long prev_hang; 45 unsigned int score; 46 47 if (IS_ERR_OR_NULL(file_priv)) 48 return; 49 50 score = 0; 51 if (banned) 52 score = I915_CLIENT_SCORE_CONTEXT_BAN; 53 54 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 55 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 56 score += I915_CLIENT_SCORE_HANG_FAST; 57 58 if (score) { 59 atomic_add(score, &file_priv->ban_score); 60 61 drm_dbg(&ctx->i915->drm, 62 "client %s: gained %u ban score, now %u\n", 63 ctx->name, score, 64 atomic_read(&file_priv->ban_score)); 65 } 66 } 67 68 static bool mark_guilty(struct i915_request *rq) 69 { 70 struct i915_gem_context *ctx; 71 unsigned long prev_hang; 72 bool banned; 73 int i; 74 75 if (intel_context_is_closed(rq->context)) 76 return true; 77 78 rcu_read_lock(); 79 ctx = rcu_dereference(rq->context->gem_context); 80 if (ctx && !kref_get_unless_zero(&ctx->ref)) 81 ctx = NULL; 82 rcu_read_unlock(); 83 if (!ctx) 84 return intel_context_is_banned(rq->context); 85 86 atomic_inc(&ctx->guilty_count); 87 88 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 89 if (!i915_gem_context_is_bannable(ctx)) { 90 banned = false; 91 goto out; 92 } 93 94 drm_notice(&ctx->i915->drm, 95 "%s context reset due to GPU hang\n", 96 ctx->name); 97 98 /* Record the timestamp for the last N hangs */ 99 prev_hang = ctx->hang_timestamp[0]; 100 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 101 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 102 ctx->hang_timestamp[i] = jiffies; 103 104 /* If we have hung N+1 times in rapid succession, we ban the context! */ 105 banned = !i915_gem_context_is_recoverable(ctx); 106 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 107 banned = true; 108 if (banned) 109 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 110 ctx->name, atomic_read(&ctx->guilty_count)); 111 112 client_mark_guilty(ctx, banned); 113 114 out: 115 i915_gem_context_put(ctx); 116 return banned; 117 } 118 119 static void mark_innocent(struct i915_request *rq) 120 { 121 struct i915_gem_context *ctx; 122 123 rcu_read_lock(); 124 ctx = rcu_dereference(rq->context->gem_context); 125 if (ctx) 126 atomic_inc(&ctx->active_count); 127 rcu_read_unlock(); 128 } 129 130 void __i915_request_reset(struct i915_request *rq, bool guilty) 131 { 132 bool banned = false; 133 134 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); 135 GEM_BUG_ON(__i915_request_is_complete(rq)); 136 137 rcu_read_lock(); /* protect the GEM context */ 138 if (guilty) { 139 i915_request_set_error_once(rq, -EIO); 140 __i915_request_skip(rq); 141 banned = mark_guilty(rq); 142 } else { 143 i915_request_set_error_once(rq, -EAGAIN); 144 mark_innocent(rq); 145 } 146 rcu_read_unlock(); 147 148 if (banned) 149 intel_context_ban(rq->context, rq); 150 } 151 152 static bool i915_in_reset(struct pci_dev *pdev) 153 { 154 u8 gdrst; 155 156 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 157 return gdrst & GRDOM_RESET_STATUS; 158 } 159 160 static int i915_do_reset(struct intel_gt *gt, 161 intel_engine_mask_t engine_mask, 162 unsigned int retry) 163 { 164 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 165 int err; 166 167 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 168 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 169 udelay(50); 170 err = wait_for_atomic(i915_in_reset(pdev), 50); 171 172 /* Clear the reset request. */ 173 pci_write_config_byte(pdev, I915_GDRST, 0); 174 udelay(50); 175 if (!err) 176 err = wait_for_atomic(!i915_in_reset(pdev), 50); 177 178 return err; 179 } 180 181 static bool g4x_reset_complete(struct pci_dev *pdev) 182 { 183 u8 gdrst; 184 185 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 186 return (gdrst & GRDOM_RESET_ENABLE) == 0; 187 } 188 189 static int g33_do_reset(struct intel_gt *gt, 190 intel_engine_mask_t engine_mask, 191 unsigned int retry) 192 { 193 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 194 195 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 196 return wait_for_atomic(g4x_reset_complete(pdev), 50); 197 } 198 199 static int g4x_do_reset(struct intel_gt *gt, 200 intel_engine_mask_t engine_mask, 201 unsigned int retry) 202 { 203 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 204 struct intel_uncore *uncore = gt->uncore; 205 int ret; 206 207 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 208 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE); 209 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 210 211 pci_write_config_byte(pdev, I915_GDRST, 212 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 213 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 214 if (ret) { 215 GT_TRACE(gt, "Wait for media reset failed\n"); 216 goto out; 217 } 218 219 pci_write_config_byte(pdev, I915_GDRST, 220 GRDOM_RENDER | GRDOM_RESET_ENABLE); 221 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 222 if (ret) { 223 GT_TRACE(gt, "Wait for render reset failed\n"); 224 goto out; 225 } 226 227 out: 228 pci_write_config_byte(pdev, I915_GDRST, 0); 229 230 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0); 231 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 232 233 return ret; 234 } 235 236 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 237 unsigned int retry) 238 { 239 struct intel_uncore *uncore = gt->uncore; 240 int ret; 241 242 intel_uncore_write_fw(uncore, ILK_GDSR, 243 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 244 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 245 ILK_GRDOM_RESET_ENABLE, 0, 246 5000, 0, 247 NULL); 248 if (ret) { 249 GT_TRACE(gt, "Wait for render reset failed\n"); 250 goto out; 251 } 252 253 intel_uncore_write_fw(uncore, ILK_GDSR, 254 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 255 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 256 ILK_GRDOM_RESET_ENABLE, 0, 257 5000, 0, 258 NULL); 259 if (ret) { 260 GT_TRACE(gt, "Wait for media reset failed\n"); 261 goto out; 262 } 263 264 out: 265 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 266 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 267 return ret; 268 } 269 270 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 271 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 272 { 273 struct intel_uncore *uncore = gt->uncore; 274 int loops; 275 int err; 276 277 /* 278 * On some platforms, e.g. Jasperlake, we see that the engine register 279 * state is not cleared until shortly after GDRST reports completion, 280 * causing a failure as we try to immediately resume while the internal 281 * state is still in flux. If we immediately repeat the reset, the 282 * second reset appears to serialise with the first, and since it is a 283 * no-op, the registers should retain their reset value. However, there 284 * is still a concern that upon leaving the second reset, the internal 285 * engine state is still in flux and not ready for resuming. 286 * 287 * Starting on MTL, there are some prep steps that we need to do when 288 * resetting some engines that need to be applied every time we write to 289 * GEN6_GDRST. As those are time consuming (tens of ms), we don't want 290 * to perform that twice, so, since the Jasperlake issue hasn't been 291 * observed on MTL, we avoid repeating the reset on newer platforms. 292 */ 293 loops = GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70) ? 2 : 1; 294 295 /* 296 * GEN6_GDRST is not in the gt power well, no need to check 297 * for fifo space for the write or forcewake the chip for 298 * the read 299 */ 300 do { 301 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 302 303 /* Wait for the device to ack the reset requests. */ 304 err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, 305 hw_domain_mask, 0, 306 2000, 0, 307 NULL); 308 } while (err == 0 && --loops); 309 if (err) 310 GT_TRACE(gt, 311 "Wait for 0x%08x engines reset failed\n", 312 hw_domain_mask); 313 314 /* 315 * As we have observed that the engine state is still volatile 316 * after GDRST is acked, impose a small delay to let everything settle. 317 */ 318 udelay(50); 319 320 return err; 321 } 322 323 static int __gen6_reset_engines(struct intel_gt *gt, 324 intel_engine_mask_t engine_mask, 325 unsigned int retry) 326 { 327 struct intel_engine_cs *engine; 328 u32 hw_mask; 329 330 if (engine_mask == ALL_ENGINES) { 331 hw_mask = GEN6_GRDOM_FULL; 332 } else { 333 intel_engine_mask_t tmp; 334 335 hw_mask = 0; 336 for_each_engine_masked(engine, gt, engine_mask, tmp) { 337 hw_mask |= engine->reset_domain; 338 } 339 } 340 341 return gen6_hw_domain_reset(gt, hw_mask); 342 } 343 344 static int gen6_reset_engines(struct intel_gt *gt, 345 intel_engine_mask_t engine_mask, 346 unsigned int retry) 347 { 348 unsigned long flags; 349 int ret; 350 351 spin_lock_irqsave(>->uncore->lock, flags); 352 ret = __gen6_reset_engines(gt, engine_mask, retry); 353 spin_unlock_irqrestore(>->uncore->lock, flags); 354 355 return ret; 356 } 357 358 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 359 { 360 int vecs_id; 361 362 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 363 364 vecs_id = _VECS((engine->instance) / 2); 365 366 return engine->gt->engine[vecs_id]; 367 } 368 369 struct sfc_lock_data { 370 i915_reg_t lock_reg; 371 i915_reg_t ack_reg; 372 i915_reg_t usage_reg; 373 u32 lock_bit; 374 u32 ack_bit; 375 u32 usage_bit; 376 u32 reset_bit; 377 }; 378 379 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 380 struct sfc_lock_data *sfc_lock) 381 { 382 switch (engine->class) { 383 default: 384 MISSING_CASE(engine->class); 385 fallthrough; 386 case VIDEO_DECODE_CLASS: 387 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); 388 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 389 390 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 391 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 392 393 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 394 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 395 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 396 397 break; 398 case VIDEO_ENHANCEMENT_CLASS: 399 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); 400 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 401 402 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); 403 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 404 405 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); 406 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 407 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 408 409 break; 410 } 411 } 412 413 static int gen11_lock_sfc(struct intel_engine_cs *engine, 414 u32 *reset_mask, 415 u32 *unlock_mask) 416 { 417 struct intel_uncore *uncore = engine->uncore; 418 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 419 struct sfc_lock_data sfc_lock; 420 bool lock_obtained, lock_to_other = false; 421 int ret; 422 423 switch (engine->class) { 424 case VIDEO_DECODE_CLASS: 425 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 426 return 0; 427 428 fallthrough; 429 case VIDEO_ENHANCEMENT_CLASS: 430 get_sfc_forced_lock_data(engine, &sfc_lock); 431 432 break; 433 default: 434 return 0; 435 } 436 437 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 438 struct intel_engine_cs *paired_vecs; 439 440 if (engine->class != VIDEO_DECODE_CLASS || 441 GRAPHICS_VER(engine->i915) != 12) 442 return 0; 443 444 /* 445 * Wa_14010733141 446 * 447 * If the VCS-MFX isn't using the SFC, we also need to check 448 * whether VCS-HCP is using it. If so, we need to issue a *VE* 449 * forced lock on the VE engine that shares the same SFC. 450 */ 451 if (!(intel_uncore_read_fw(uncore, 452 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & 453 GEN12_HCP_SFC_USAGE_BIT)) 454 return 0; 455 456 paired_vecs = find_sfc_paired_vecs_engine(engine); 457 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 458 lock_to_other = true; 459 *unlock_mask |= paired_vecs->mask; 460 } else { 461 *unlock_mask |= engine->mask; 462 } 463 464 /* 465 * If the engine is using an SFC, tell the engine that a software reset 466 * is going to happen. The engine will then try to force lock the SFC. 467 * If SFC ends up being locked to the engine we want to reset, we have 468 * to reset it as well (we will unlock it once the reset sequence is 469 * completed). 470 */ 471 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit); 472 473 ret = __intel_wait_for_register_fw(uncore, 474 sfc_lock.ack_reg, 475 sfc_lock.ack_bit, 476 sfc_lock.ack_bit, 477 1000, 0, NULL); 478 479 /* 480 * Was the SFC released while we were trying to lock it? 481 * 482 * We should reset both the engine and the SFC if: 483 * - We were locking the SFC to this engine and the lock succeeded 484 * OR 485 * - We were locking the SFC to a different engine (Wa_14010733141) 486 * but the SFC was released before the lock was obtained. 487 * 488 * Otherwise we need only reset the engine by itself and we can 489 * leave the SFC alone. 490 */ 491 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 492 sfc_lock.usage_bit) != 0; 493 if (lock_obtained == lock_to_other) 494 return 0; 495 496 if (ret) { 497 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 498 return ret; 499 } 500 501 *reset_mask |= sfc_lock.reset_bit; 502 return 0; 503 } 504 505 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 506 { 507 struct intel_uncore *uncore = engine->uncore; 508 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 509 struct sfc_lock_data sfc_lock = {}; 510 511 if (engine->class != VIDEO_DECODE_CLASS && 512 engine->class != VIDEO_ENHANCEMENT_CLASS) 513 return; 514 515 if (engine->class == VIDEO_DECODE_CLASS && 516 (BIT(engine->instance) & vdbox_sfc_access) == 0) 517 return; 518 519 get_sfc_forced_lock_data(engine, &sfc_lock); 520 521 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0); 522 } 523 524 static int __gen11_reset_engines(struct intel_gt *gt, 525 intel_engine_mask_t engine_mask, 526 unsigned int retry) 527 { 528 struct intel_engine_cs *engine; 529 intel_engine_mask_t tmp; 530 u32 reset_mask, unlock_mask = 0; 531 int ret; 532 533 if (engine_mask == ALL_ENGINES) { 534 reset_mask = GEN11_GRDOM_FULL; 535 } else { 536 reset_mask = 0; 537 for_each_engine_masked(engine, gt, engine_mask, tmp) { 538 reset_mask |= engine->reset_domain; 539 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 540 if (ret) 541 goto sfc_unlock; 542 } 543 } 544 545 ret = gen6_hw_domain_reset(gt, reset_mask); 546 547 sfc_unlock: 548 /* 549 * We unlock the SFC based on the lock status and not the result of 550 * gen11_lock_sfc to make sure that we clean properly if something 551 * wrong happened during the lock (e.g. lock acquired after timeout 552 * expiration). 553 * 554 * Due to Wa_14010733141, we may have locked an SFC to an engine that 555 * wasn't being reset. So instead of calling gen11_unlock_sfc() 556 * on engine_mask, we instead call it on the mask of engines that our 557 * gen11_lock_sfc() calls told us actually had locks attempted. 558 */ 559 for_each_engine_masked(engine, gt, unlock_mask, tmp) 560 gen11_unlock_sfc(engine); 561 562 return ret; 563 } 564 565 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 566 { 567 struct intel_uncore *uncore = engine->uncore; 568 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 569 u32 request, mask, ack; 570 int ret; 571 572 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 573 return -ETIMEDOUT; 574 575 ack = intel_uncore_read_fw(uncore, reg); 576 if (ack & RESET_CTL_CAT_ERROR) { 577 /* 578 * For catastrophic errors, ready-for-reset sequence 579 * needs to be bypassed: HAS#396813 580 */ 581 request = RESET_CTL_CAT_ERROR; 582 mask = RESET_CTL_CAT_ERROR; 583 584 /* Catastrophic errors need to be cleared by HW */ 585 ack = 0; 586 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 587 request = RESET_CTL_REQUEST_RESET; 588 mask = RESET_CTL_READY_TO_RESET; 589 ack = RESET_CTL_READY_TO_RESET; 590 } else { 591 return 0; 592 } 593 594 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 595 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 596 700, 0, NULL); 597 if (ret) 598 drm_err(&engine->i915->drm, 599 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 600 engine->name, request, 601 intel_uncore_read_fw(uncore, reg)); 602 603 return ret; 604 } 605 606 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 607 { 608 intel_uncore_write_fw(engine->uncore, 609 RING_RESET_CTL(engine->mmio_base), 610 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 611 } 612 613 static int gen8_reset_engines(struct intel_gt *gt, 614 intel_engine_mask_t engine_mask, 615 unsigned int retry) 616 { 617 struct intel_engine_cs *engine; 618 const bool reset_non_ready = retry >= 1; 619 intel_engine_mask_t tmp; 620 unsigned long flags; 621 int ret; 622 623 spin_lock_irqsave(>->uncore->lock, flags); 624 625 for_each_engine_masked(engine, gt, engine_mask, tmp) { 626 ret = gen8_engine_reset_prepare(engine); 627 if (ret && !reset_non_ready) 628 goto skip_reset; 629 630 /* 631 * If this is not the first failed attempt to prepare, 632 * we decide to proceed anyway. 633 * 634 * By doing so we risk context corruption and with 635 * some gens (kbl), possible system hang if reset 636 * happens during active bb execution. 637 * 638 * We rather take context corruption instead of 639 * failed reset with a wedged driver/gpu. And 640 * active bb execution case should be covered by 641 * stop_engines() we have before the reset. 642 */ 643 } 644 645 /* 646 * Wa_22011100796:dg2, whenever Full soft reset is required, 647 * reset all individual engines firstly, and then do a full soft reset. 648 * 649 * This is best effort, so ignore any error from the initial reset. 650 */ 651 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) 652 __gen11_reset_engines(gt, gt->info.engine_mask, 0); 653 654 if (GRAPHICS_VER(gt->i915) >= 11) 655 ret = __gen11_reset_engines(gt, engine_mask, retry); 656 else 657 ret = __gen6_reset_engines(gt, engine_mask, retry); 658 659 skip_reset: 660 for_each_engine_masked(engine, gt, engine_mask, tmp) 661 gen8_engine_reset_cancel(engine); 662 663 spin_unlock_irqrestore(>->uncore->lock, flags); 664 665 return ret; 666 } 667 668 static int mock_reset(struct intel_gt *gt, 669 intel_engine_mask_t mask, 670 unsigned int retry) 671 { 672 return 0; 673 } 674 675 typedef int (*reset_func)(struct intel_gt *, 676 intel_engine_mask_t engine_mask, 677 unsigned int retry); 678 679 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 680 { 681 struct drm_i915_private *i915 = gt->i915; 682 683 if (is_mock_gt(gt)) 684 return mock_reset; 685 else if (GRAPHICS_VER(i915) >= 8) 686 return gen8_reset_engines; 687 else if (GRAPHICS_VER(i915) >= 6) 688 return gen6_reset_engines; 689 else if (GRAPHICS_VER(i915) >= 5) 690 return ilk_do_reset; 691 else if (IS_G4X(i915)) 692 return g4x_do_reset; 693 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 694 return g33_do_reset; 695 else if (GRAPHICS_VER(i915) >= 3) 696 return i915_do_reset; 697 else 698 return NULL; 699 } 700 701 static int __reset_guc(struct intel_gt *gt) 702 { 703 u32 guc_domain = 704 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 705 706 return gen6_hw_domain_reset(gt, guc_domain); 707 } 708 709 static bool needs_wa_14015076503(struct intel_gt *gt, intel_engine_mask_t engine_mask) 710 { 711 if (!IS_METEORLAKE(gt->i915) || !HAS_ENGINE(gt, GSC0)) 712 return false; 713 714 if (!__HAS_ENGINE(engine_mask, GSC0)) 715 return false; 716 717 return intel_gsc_uc_fw_init_done(>->uc.gsc); 718 } 719 720 static intel_engine_mask_t 721 wa_14015076503_start(struct intel_gt *gt, intel_engine_mask_t engine_mask, bool first) 722 { 723 if (!needs_wa_14015076503(gt, engine_mask)) 724 return engine_mask; 725 726 /* 727 * wa_14015076503: if the GSC FW is loaded, we need to alert it that 728 * we're going to do a GSC engine reset and then wait for 200ms for the 729 * FW to get ready for it. However, if this is the first ALL_ENGINES 730 * reset attempt and the GSC is not busy, we can try to instead reset 731 * the GuC and all the other engines individually to avoid the 200ms 732 * wait. 733 * Skipping the GSC engine is safe because, differently from other 734 * engines, the GSCCS only role is to forward the commands to the GSC 735 * FW, so it doesn't have any HW outside of the CS itself and therefore 736 * it has no state that we don't explicitly re-init on resume or on 737 * context switch LRC or power context). The HW for the GSC uC is 738 * managed by the GSC FW so we don't need to care about that. 739 */ 740 if (engine_mask == ALL_ENGINES && first && intel_engine_is_idle(gt->engine[GSC0])) { 741 __reset_guc(gt); 742 engine_mask = gt->info.engine_mask & ~BIT(GSC0); 743 } else { 744 intel_uncore_rmw(gt->uncore, 745 HECI_H_GS1(MTL_GSC_HECI2_BASE), 746 0, HECI_H_GS1_ER_PREP); 747 748 /* make sure the reset bit is clear when writing the CSR reg */ 749 intel_uncore_rmw(gt->uncore, 750 HECI_H_CSR(MTL_GSC_HECI2_BASE), 751 HECI_H_CSR_RST, HECI_H_CSR_IG); 752 msleep(200); 753 } 754 755 return engine_mask; 756 } 757 758 static void 759 wa_14015076503_end(struct intel_gt *gt, intel_engine_mask_t engine_mask) 760 { 761 if (!needs_wa_14015076503(gt, engine_mask)) 762 return; 763 764 intel_uncore_rmw(gt->uncore, 765 HECI_H_GS1(MTL_GSC_HECI2_BASE), 766 HECI_H_GS1_ER_PREP, 0); 767 } 768 769 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 770 { 771 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 772 reset_func reset; 773 int ret = -ETIMEDOUT; 774 int retry; 775 776 reset = intel_get_gpu_reset(gt); 777 if (!reset) 778 return -ENODEV; 779 780 /* 781 * If the power well sleeps during the reset, the reset 782 * request may be dropped and never completes (causing -EIO). 783 */ 784 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 785 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 786 intel_engine_mask_t reset_mask; 787 788 reset_mask = wa_14015076503_start(gt, engine_mask, !retry); 789 790 GT_TRACE(gt, "engine_mask=%x\n", reset_mask); 791 preempt_disable(); 792 ret = reset(gt, reset_mask, retry); 793 preempt_enable(); 794 795 wa_14015076503_end(gt, reset_mask); 796 } 797 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 798 799 return ret; 800 } 801 802 bool intel_has_gpu_reset(const struct intel_gt *gt) 803 { 804 if (!gt->i915->params.reset) 805 return NULL; 806 807 return intel_get_gpu_reset(gt); 808 } 809 810 bool intel_has_reset_engine(const struct intel_gt *gt) 811 { 812 if (gt->i915->params.reset < 2) 813 return false; 814 815 return INTEL_INFO(gt->i915)->has_reset_engine; 816 } 817 818 int intel_reset_guc(struct intel_gt *gt) 819 { 820 int ret; 821 822 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 823 824 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 825 ret = __reset_guc(gt); 826 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 827 828 return ret; 829 } 830 831 /* 832 * Ensure irq handler finishes, and not run again. 833 * Also return the active request so that we only search for it once. 834 */ 835 static void reset_prepare_engine(struct intel_engine_cs *engine) 836 { 837 /* 838 * During the reset sequence, we must prevent the engine from 839 * entering RC6. As the context state is undefined until we restart 840 * the engine, if it does enter RC6 during the reset, the state 841 * written to the powercontext is undefined and so we may lose 842 * GPU state upon resume, i.e. fail to restart after a reset. 843 */ 844 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 845 if (engine->reset.prepare) 846 engine->reset.prepare(engine); 847 } 848 849 static void revoke_mmaps(struct intel_gt *gt) 850 { 851 int i; 852 853 for (i = 0; i < gt->ggtt->num_fences; i++) { 854 struct drm_vma_offset_node *node; 855 struct i915_vma *vma; 856 u64 vma_offset; 857 858 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 859 if (!vma) 860 continue; 861 862 if (!i915_vma_has_userfault(vma)) 863 continue; 864 865 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 866 867 if (!vma->mmo) 868 continue; 869 870 node = &vma->mmo->vma_node; 871 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 872 873 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 874 drm_vma_node_offset_addr(node) + vma_offset, 875 vma->size, 876 1); 877 } 878 } 879 880 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 881 { 882 struct intel_engine_cs *engine; 883 intel_engine_mask_t awake = 0; 884 enum intel_engine_id id; 885 886 /* For GuC mode, ensure submission is disabled before stopping ring */ 887 intel_uc_reset_prepare(>->uc); 888 889 for_each_engine(engine, gt, id) { 890 if (intel_engine_pm_get_if_awake(engine)) 891 awake |= engine->mask; 892 reset_prepare_engine(engine); 893 } 894 895 return awake; 896 } 897 898 static void gt_revoke(struct intel_gt *gt) 899 { 900 revoke_mmaps(gt); 901 } 902 903 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 904 { 905 struct intel_engine_cs *engine; 906 enum intel_engine_id id; 907 int err; 908 909 /* 910 * Everything depends on having the GTT running, so we need to start 911 * there. 912 */ 913 err = i915_ggtt_enable_hw(gt->i915); 914 if (err) 915 return err; 916 917 local_bh_disable(); 918 for_each_engine(engine, gt, id) 919 __intel_engine_reset(engine, stalled_mask & engine->mask); 920 local_bh_enable(); 921 922 intel_uc_reset(>->uc, ALL_ENGINES); 923 924 intel_ggtt_restore_fences(gt->ggtt); 925 926 return err; 927 } 928 929 static void reset_finish_engine(struct intel_engine_cs *engine) 930 { 931 if (engine->reset.finish) 932 engine->reset.finish(engine); 933 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 934 935 intel_engine_signal_breadcrumbs(engine); 936 } 937 938 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 939 { 940 struct intel_engine_cs *engine; 941 enum intel_engine_id id; 942 943 for_each_engine(engine, gt, id) { 944 reset_finish_engine(engine); 945 if (awake & engine->mask) 946 intel_engine_pm_put(engine); 947 } 948 949 intel_uc_reset_finish(>->uc); 950 } 951 952 static void nop_submit_request(struct i915_request *request) 953 { 954 RQ_TRACE(request, "-EIO\n"); 955 956 request = i915_request_mark_eio(request); 957 if (request) { 958 i915_request_submit(request); 959 intel_engine_signal_breadcrumbs(request->engine); 960 961 i915_request_put(request); 962 } 963 } 964 965 static void __intel_gt_set_wedged(struct intel_gt *gt) 966 { 967 struct intel_engine_cs *engine; 968 intel_engine_mask_t awake; 969 enum intel_engine_id id; 970 971 if (test_bit(I915_WEDGED, >->reset.flags)) 972 return; 973 974 GT_TRACE(gt, "start\n"); 975 976 /* 977 * First, stop submission to hw, but do not yet complete requests by 978 * rolling the global seqno forward (since this would complete requests 979 * for which we haven't set the fence error to EIO yet). 980 */ 981 awake = reset_prepare(gt); 982 983 /* Even if the GPU reset fails, it should still stop the engines */ 984 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 985 __intel_gt_reset(gt, ALL_ENGINES); 986 987 for_each_engine(engine, gt, id) 988 engine->submit_request = nop_submit_request; 989 990 /* 991 * Make sure no request can slip through without getting completed by 992 * either this call here to intel_engine_write_global_seqno, or the one 993 * in nop_submit_request. 994 */ 995 synchronize_rcu_expedited(); 996 set_bit(I915_WEDGED, >->reset.flags); 997 998 /* Mark all executing requests as skipped */ 999 local_bh_disable(); 1000 for_each_engine(engine, gt, id) 1001 if (engine->reset.cancel) 1002 engine->reset.cancel(engine); 1003 intel_uc_cancel_requests(>->uc); 1004 local_bh_enable(); 1005 1006 reset_finish(gt, awake); 1007 1008 GT_TRACE(gt, "end\n"); 1009 } 1010 1011 void intel_gt_set_wedged(struct intel_gt *gt) 1012 { 1013 intel_wakeref_t wakeref; 1014 1015 if (test_bit(I915_WEDGED, >->reset.flags)) 1016 return; 1017 1018 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1019 mutex_lock(>->reset.mutex); 1020 1021 if (GEM_SHOW_DEBUG()) { 1022 struct drm_printer p = drm_debug_printer(__func__); 1023 struct intel_engine_cs *engine; 1024 enum intel_engine_id id; 1025 1026 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 1027 for_each_engine(engine, gt, id) { 1028 if (intel_engine_is_idle(engine)) 1029 continue; 1030 1031 intel_engine_dump(engine, &p, "%s\n", engine->name); 1032 } 1033 } 1034 1035 __intel_gt_set_wedged(gt); 1036 1037 mutex_unlock(>->reset.mutex); 1038 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1039 } 1040 1041 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 1042 { 1043 struct intel_gt_timelines *timelines = >->timelines; 1044 struct intel_timeline *tl; 1045 bool ok; 1046 1047 if (!test_bit(I915_WEDGED, >->reset.flags)) 1048 return true; 1049 1050 /* Never fully initialised, recovery impossible */ 1051 if (intel_gt_has_unrecoverable_error(gt)) 1052 return false; 1053 1054 GT_TRACE(gt, "start\n"); 1055 1056 /* 1057 * Before unwedging, make sure that all pending operations 1058 * are flushed and errored out - we may have requests waiting upon 1059 * third party fences. We marked all inflight requests as EIO, and 1060 * every execbuf since returned EIO, for consistency we want all 1061 * the currently pending requests to also be marked as EIO, which 1062 * is done inside our nop_submit_request - and so we must wait. 1063 * 1064 * No more can be submitted until we reset the wedged bit. 1065 */ 1066 spin_lock(&timelines->lock); 1067 list_for_each_entry(tl, &timelines->active_list, link) { 1068 struct dma_fence *fence; 1069 1070 fence = i915_active_fence_get(&tl->last_request); 1071 if (!fence) 1072 continue; 1073 1074 spin_unlock(&timelines->lock); 1075 1076 /* 1077 * All internal dependencies (i915_requests) will have 1078 * been flushed by the set-wedge, but we may be stuck waiting 1079 * for external fences. These should all be capped to 10s 1080 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 1081 * in the worst case. 1082 */ 1083 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 1084 dma_fence_put(fence); 1085 1086 /* Restart iteration after droping lock */ 1087 spin_lock(&timelines->lock); 1088 tl = list_entry(&timelines->active_list, typeof(*tl), link); 1089 } 1090 spin_unlock(&timelines->lock); 1091 1092 /* We must reset pending GPU events before restoring our submission */ 1093 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 1094 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1095 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 1096 if (!ok) { 1097 /* 1098 * Warn CI about the unrecoverable wedged condition. 1099 * Time for a reboot. 1100 */ 1101 add_taint_for_CI(gt->i915, TAINT_WARN); 1102 return false; 1103 } 1104 1105 /* 1106 * Undo nop_submit_request. We prevent all new i915 requests from 1107 * being queued (by disallowing execbuf whilst wedged) so having 1108 * waited for all active requests above, we know the system is idle 1109 * and do not have to worry about a thread being inside 1110 * engine->submit_request() as we swap over. So unlike installing 1111 * the nop_submit_request on reset, we can do this from normal 1112 * context and do not require stop_machine(). 1113 */ 1114 intel_engines_reset_default_submission(gt); 1115 1116 GT_TRACE(gt, "end\n"); 1117 1118 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 1119 clear_bit(I915_WEDGED, >->reset.flags); 1120 1121 return true; 1122 } 1123 1124 bool intel_gt_unset_wedged(struct intel_gt *gt) 1125 { 1126 bool result; 1127 1128 mutex_lock(>->reset.mutex); 1129 result = __intel_gt_unset_wedged(gt); 1130 mutex_unlock(>->reset.mutex); 1131 1132 return result; 1133 } 1134 1135 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1136 { 1137 int err, i; 1138 1139 err = __intel_gt_reset(gt, ALL_ENGINES); 1140 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1141 msleep(10 * (i + 1)); 1142 err = __intel_gt_reset(gt, ALL_ENGINES); 1143 } 1144 if (err) 1145 return err; 1146 1147 return gt_reset(gt, stalled_mask); 1148 } 1149 1150 static int resume(struct intel_gt *gt) 1151 { 1152 struct intel_engine_cs *engine; 1153 enum intel_engine_id id; 1154 int ret; 1155 1156 for_each_engine(engine, gt, id) { 1157 ret = intel_engine_resume(engine); 1158 if (ret) 1159 return ret; 1160 } 1161 1162 return 0; 1163 } 1164 1165 /** 1166 * intel_gt_reset - reset chip after a hang 1167 * @gt: #intel_gt to reset 1168 * @stalled_mask: mask of the stalled engines with the guilty requests 1169 * @reason: user error message for why we are resetting 1170 * 1171 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1172 * on failure. 1173 * 1174 * Procedure is fairly simple: 1175 * - reset the chip using the reset reg 1176 * - re-init context state 1177 * - re-init hardware status page 1178 * - re-init ring buffer 1179 * - re-init interrupt state 1180 * - re-init display 1181 */ 1182 void intel_gt_reset(struct intel_gt *gt, 1183 intel_engine_mask_t stalled_mask, 1184 const char *reason) 1185 { 1186 intel_engine_mask_t awake; 1187 int ret; 1188 1189 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1190 1191 might_sleep(); 1192 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1193 1194 /* 1195 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1196 * critical section like gpu reset. 1197 */ 1198 gt_revoke(gt); 1199 1200 mutex_lock(>->reset.mutex); 1201 1202 /* Clear any previous failed attempts at recovery. Time to try again. */ 1203 if (!__intel_gt_unset_wedged(gt)) 1204 goto unlock; 1205 1206 if (reason) 1207 drm_notice(>->i915->drm, 1208 "Resetting chip for %s\n", reason); 1209 atomic_inc(>->i915->gpu_error.reset_count); 1210 1211 awake = reset_prepare(gt); 1212 1213 if (!intel_has_gpu_reset(gt)) { 1214 if (gt->i915->params.reset) 1215 drm_err(>->i915->drm, "GPU reset not supported\n"); 1216 else 1217 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1218 goto error; 1219 } 1220 1221 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1222 intel_runtime_pm_disable_interrupts(gt->i915); 1223 1224 if (do_reset(gt, stalled_mask)) { 1225 drm_err(>->i915->drm, "Failed to reset chip\n"); 1226 goto taint; 1227 } 1228 1229 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1230 intel_runtime_pm_enable_interrupts(gt->i915); 1231 1232 intel_overlay_reset(gt->i915); 1233 1234 /* 1235 * Next we need to restore the context, but we don't use those 1236 * yet either... 1237 * 1238 * Ring buffer needs to be re-initialized in the KMS case, or if X 1239 * was running at the time of the reset (i.e. we weren't VT 1240 * switched away). 1241 */ 1242 ret = intel_gt_init_hw(gt); 1243 if (ret) { 1244 drm_err(>->i915->drm, 1245 "Failed to initialise HW following reset (%d)\n", 1246 ret); 1247 goto taint; 1248 } 1249 1250 ret = resume(gt); 1251 if (ret) 1252 goto taint; 1253 1254 finish: 1255 reset_finish(gt, awake); 1256 unlock: 1257 mutex_unlock(>->reset.mutex); 1258 return; 1259 1260 taint: 1261 /* 1262 * History tells us that if we cannot reset the GPU now, we 1263 * never will. This then impacts everything that is run 1264 * subsequently. On failing the reset, we mark the driver 1265 * as wedged, preventing further execution on the GPU. 1266 * We also want to go one step further and add a taint to the 1267 * kernel so that any subsequent faults can be traced back to 1268 * this failure. This is important for CI, where if the 1269 * GPU/driver fails we would like to reboot and restart testing 1270 * rather than continue on into oblivion. For everyone else, 1271 * the system should still plod along, but they have been warned! 1272 */ 1273 add_taint_for_CI(gt->i915, TAINT_WARN); 1274 error: 1275 __intel_gt_set_wedged(gt); 1276 goto finish; 1277 } 1278 1279 static int intel_gt_reset_engine(struct intel_engine_cs *engine) 1280 { 1281 return __intel_gt_reset(engine->gt, engine->mask); 1282 } 1283 1284 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1285 { 1286 struct intel_gt *gt = engine->gt; 1287 int ret; 1288 1289 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1290 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1291 1292 if (intel_engine_uses_guc(engine)) 1293 return -ENODEV; 1294 1295 if (!intel_engine_pm_get_if_awake(engine)) 1296 return 0; 1297 1298 reset_prepare_engine(engine); 1299 1300 if (msg) 1301 drm_notice(&engine->i915->drm, 1302 "Resetting %s for %s\n", engine->name, msg); 1303 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1304 1305 ret = intel_gt_reset_engine(engine); 1306 if (ret) { 1307 /* If we fail here, we expect to fallback to a global reset */ 1308 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1309 goto out; 1310 } 1311 1312 /* 1313 * The request that caused the hang is stuck on elsp, we know the 1314 * active request and can drop it, adjust head to skip the offending 1315 * request to resume executing remaining requests in the queue. 1316 */ 1317 __intel_engine_reset(engine, true); 1318 1319 /* 1320 * The engine and its registers (and workarounds in case of render) 1321 * have been reset to their default values. Follow the init_ring 1322 * process to program RING_MODE, HWSP and re-enable submission. 1323 */ 1324 ret = intel_engine_resume(engine); 1325 1326 out: 1327 intel_engine_cancel_stop_cs(engine); 1328 reset_finish_engine(engine); 1329 intel_engine_pm_put_async(engine); 1330 return ret; 1331 } 1332 1333 /** 1334 * intel_engine_reset - reset GPU engine to recover from a hang 1335 * @engine: engine to reset 1336 * @msg: reason for GPU reset; or NULL for no drm_notice() 1337 * 1338 * Reset a specific GPU engine. Useful if a hang is detected. 1339 * Returns zero on successful reset or otherwise an error code. 1340 * 1341 * Procedure is: 1342 * - identifies the request that caused the hang and it is dropped 1343 * - reset engine (which will force the engine to idle) 1344 * - re-init/configure engine 1345 */ 1346 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1347 { 1348 int err; 1349 1350 local_bh_disable(); 1351 err = __intel_engine_reset_bh(engine, msg); 1352 local_bh_enable(); 1353 1354 return err; 1355 } 1356 1357 static void intel_gt_reset_global(struct intel_gt *gt, 1358 u32 engine_mask, 1359 const char *reason) 1360 { 1361 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1362 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1363 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1364 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1365 struct intel_wedge_me w; 1366 1367 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1368 1369 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1370 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1371 1372 /* Use a watchdog to ensure that our reset completes */ 1373 intel_wedge_on_timeout(&w, gt, 60 * HZ) { 1374 intel_display_reset_prepare(gt->i915); 1375 1376 intel_gt_reset(gt, engine_mask, reason); 1377 1378 intel_display_reset_finish(gt->i915); 1379 } 1380 1381 if (!test_bit(I915_WEDGED, >->reset.flags)) 1382 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1383 } 1384 1385 /** 1386 * intel_gt_handle_error - handle a gpu error 1387 * @gt: the intel_gt 1388 * @engine_mask: mask representing engines that are hung 1389 * @flags: control flags 1390 * @fmt: Error message format string 1391 * 1392 * Do some basic checking of register state at error time and 1393 * dump it to the syslog. Also call i915_capture_error_state() to make 1394 * sure we get a record and make it available in debugfs. Fire a uevent 1395 * so userspace knows something bad happened (should trigger collection 1396 * of a ring dump etc.). 1397 */ 1398 void intel_gt_handle_error(struct intel_gt *gt, 1399 intel_engine_mask_t engine_mask, 1400 unsigned long flags, 1401 const char *fmt, ...) 1402 { 1403 struct intel_engine_cs *engine; 1404 intel_wakeref_t wakeref; 1405 intel_engine_mask_t tmp; 1406 char error_msg[80]; 1407 char *msg = NULL; 1408 1409 if (fmt) { 1410 va_list args; 1411 1412 va_start(args, fmt); 1413 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1414 va_end(args); 1415 1416 msg = error_msg; 1417 } 1418 1419 /* 1420 * In most cases it's guaranteed that we get here with an RPM 1421 * reference held, for example because there is a pending GPU 1422 * request that won't finish until the reset is done. This 1423 * isn't the case at least when we get here by doing a 1424 * simulated reset via debugfs, so get an RPM reference. 1425 */ 1426 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1427 1428 engine_mask &= gt->info.engine_mask; 1429 1430 if (flags & I915_ERROR_CAPTURE) { 1431 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); 1432 intel_gt_clear_error_registers(gt, engine_mask); 1433 } 1434 1435 /* 1436 * Try engine reset when available. We fall back to full reset if 1437 * single reset fails. 1438 */ 1439 if (!intel_uc_uses_guc_submission(>->uc) && 1440 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1441 local_bh_disable(); 1442 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1443 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1444 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1445 >->reset.flags)) 1446 continue; 1447 1448 if (__intel_engine_reset_bh(engine, msg) == 0) 1449 engine_mask &= ~engine->mask; 1450 1451 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1452 >->reset.flags); 1453 } 1454 local_bh_enable(); 1455 } 1456 1457 if (!engine_mask) 1458 goto out; 1459 1460 /* Full reset needs the mutex, stop any other user trying to do so. */ 1461 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1462 wait_event(gt->reset.queue, 1463 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1464 goto out; /* piggy-back on the other reset */ 1465 } 1466 1467 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1468 synchronize_rcu_expedited(); 1469 1470 /* 1471 * Prevent any other reset-engine attempt. We don't do this for GuC 1472 * submission the GuC owns the per-engine reset, not the i915. 1473 */ 1474 if (!intel_uc_uses_guc_submission(>->uc)) { 1475 for_each_engine(engine, gt, tmp) { 1476 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1477 >->reset.flags)) 1478 wait_on_bit(>->reset.flags, 1479 I915_RESET_ENGINE + engine->id, 1480 TASK_UNINTERRUPTIBLE); 1481 } 1482 } 1483 1484 /* Flush everyone using a resource about to be clobbered */ 1485 synchronize_srcu_expedited(>->reset.backoff_srcu); 1486 1487 intel_gt_reset_global(gt, engine_mask, msg); 1488 1489 if (!intel_uc_uses_guc_submission(>->uc)) { 1490 for_each_engine(engine, gt, tmp) 1491 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1492 >->reset.flags); 1493 } 1494 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1495 smp_mb__after_atomic(); 1496 wake_up_all(>->reset.queue); 1497 1498 out: 1499 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1500 } 1501 1502 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) 1503 { 1504 might_lock(>->reset.backoff_srcu); 1505 if (retry) 1506 might_sleep(); 1507 1508 rcu_read_lock(); 1509 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1510 rcu_read_unlock(); 1511 1512 if (!retry) 1513 return -EBUSY; 1514 1515 if (wait_event_interruptible(gt->reset.queue, 1516 !test_bit(I915_RESET_BACKOFF, 1517 >->reset.flags))) 1518 return -EINTR; 1519 1520 rcu_read_lock(); 1521 } 1522 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1523 rcu_read_unlock(); 1524 1525 return 0; 1526 } 1527 1528 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1529 { 1530 return _intel_gt_reset_lock(gt, srcu, false); 1531 } 1532 1533 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) 1534 { 1535 return _intel_gt_reset_lock(gt, srcu, true); 1536 } 1537 1538 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1539 __releases(>->reset.backoff_srcu) 1540 { 1541 srcu_read_unlock(>->reset.backoff_srcu, tag); 1542 } 1543 1544 int intel_gt_terminally_wedged(struct intel_gt *gt) 1545 { 1546 might_sleep(); 1547 1548 if (!intel_gt_is_wedged(gt)) 1549 return 0; 1550 1551 if (intel_gt_has_unrecoverable_error(gt)) 1552 return -EIO; 1553 1554 /* Reset still in progress? Maybe we will recover? */ 1555 if (wait_event_interruptible(gt->reset.queue, 1556 !test_bit(I915_RESET_BACKOFF, 1557 >->reset.flags))) 1558 return -EINTR; 1559 1560 return intel_gt_is_wedged(gt) ? -EIO : 0; 1561 } 1562 1563 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1564 { 1565 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1566 I915_WEDGED_ON_INIT); 1567 intel_gt_set_wedged(gt); 1568 i915_disable_error_state(gt->i915, -ENODEV); 1569 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1570 1571 /* Wedged on init is non-recoverable */ 1572 add_taint_for_CI(gt->i915, TAINT_WARN); 1573 } 1574 1575 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1576 { 1577 intel_gt_set_wedged(gt); 1578 i915_disable_error_state(gt->i915, -ENODEV); 1579 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1580 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1581 } 1582 1583 void intel_gt_init_reset(struct intel_gt *gt) 1584 { 1585 init_waitqueue_head(>->reset.queue); 1586 mutex_init(>->reset.mutex); 1587 init_srcu_struct(>->reset.backoff_srcu); 1588 1589 /* 1590 * While undesirable to wait inside the shrinker, complain anyway. 1591 * 1592 * If we have to wait during shrinking, we guarantee forward progress 1593 * by forcing the reset. Therefore during the reset we must not 1594 * re-enter the shrinker. By declaring that we take the reset mutex 1595 * within the shrinker, we forbid ourselves from performing any 1596 * fs-reclaim or taking related locks during reset. 1597 */ 1598 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1599 1600 /* no GPU until we are ready! */ 1601 __set_bit(I915_WEDGED, >->reset.flags); 1602 } 1603 1604 void intel_gt_fini_reset(struct intel_gt *gt) 1605 { 1606 cleanup_srcu_struct(>->reset.backoff_srcu); 1607 } 1608 1609 static void intel_wedge_me(struct work_struct *work) 1610 { 1611 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1612 1613 drm_err(&w->gt->i915->drm, 1614 "%s timed out, cancelling all in-flight rendering.\n", 1615 w->name); 1616 intel_gt_set_wedged(w->gt); 1617 } 1618 1619 void __intel_init_wedge(struct intel_wedge_me *w, 1620 struct intel_gt *gt, 1621 long timeout, 1622 const char *name) 1623 { 1624 w->gt = gt; 1625 w->name = name; 1626 1627 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1628 queue_delayed_work(gt->i915->unordered_wq, &w->work, timeout); 1629 } 1630 1631 void __intel_fini_wedge(struct intel_wedge_me *w) 1632 { 1633 cancel_delayed_work_sync(&w->work); 1634 destroy_delayed_work_on_stack(&w->work); 1635 w->gt = NULL; 1636 } 1637 1638 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1639 #include "selftest_reset.c" 1640 #include "selftest_hangcheck.c" 1641 #endif 1642