1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 #include <linux/string_helpers.h> 9 10 #include "display/intel_display.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "gt/intel_gt_regs.h" 16 17 #include "i915_drv.h" 18 #include "i915_file_private.h" 19 #include "i915_gpu_error.h" 20 #include "i915_irq.h" 21 #include "intel_breadcrumbs.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_gt.h" 25 #include "intel_gt_pm.h" 26 #include "intel_gt_requests.h" 27 #include "intel_mchbar_regs.h" 28 #include "intel_pci_config.h" 29 #include "intel_reset.h" 30 31 #include "uc/intel_guc.h" 32 33 #define RESET_MAX_RETRIES 3 34 35 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 36 #define RESET_UNDER_STOP_MACHINE 0 37 38 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 39 { 40 intel_uncore_rmw_fw(uncore, reg, 0, set); 41 } 42 43 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 44 { 45 intel_uncore_rmw_fw(uncore, reg, clr, 0); 46 } 47 48 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 49 { 50 struct drm_i915_file_private *file_priv = ctx->file_priv; 51 unsigned long prev_hang; 52 unsigned int score; 53 54 if (IS_ERR_OR_NULL(file_priv)) 55 return; 56 57 score = 0; 58 if (banned) 59 score = I915_CLIENT_SCORE_CONTEXT_BAN; 60 61 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 62 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 63 score += I915_CLIENT_SCORE_HANG_FAST; 64 65 if (score) { 66 atomic_add(score, &file_priv->ban_score); 67 68 drm_dbg(&ctx->i915->drm, 69 "client %s: gained %u ban score, now %u\n", 70 ctx->name, score, 71 atomic_read(&file_priv->ban_score)); 72 } 73 } 74 75 static bool mark_guilty(struct i915_request *rq) 76 { 77 struct i915_gem_context *ctx; 78 unsigned long prev_hang; 79 bool banned; 80 int i; 81 82 if (intel_context_is_closed(rq->context)) 83 return true; 84 85 rcu_read_lock(); 86 ctx = rcu_dereference(rq->context->gem_context); 87 if (ctx && !kref_get_unless_zero(&ctx->ref)) 88 ctx = NULL; 89 rcu_read_unlock(); 90 if (!ctx) 91 return intel_context_is_banned(rq->context); 92 93 atomic_inc(&ctx->guilty_count); 94 95 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 96 if (!i915_gem_context_is_bannable(ctx)) { 97 banned = false; 98 goto out; 99 } 100 101 drm_notice(&ctx->i915->drm, 102 "%s context reset due to GPU hang\n", 103 ctx->name); 104 105 /* Record the timestamp for the last N hangs */ 106 prev_hang = ctx->hang_timestamp[0]; 107 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 108 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 109 ctx->hang_timestamp[i] = jiffies; 110 111 /* If we have hung N+1 times in rapid succession, we ban the context! */ 112 banned = !i915_gem_context_is_recoverable(ctx); 113 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 114 banned = true; 115 if (banned) 116 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 117 ctx->name, atomic_read(&ctx->guilty_count)); 118 119 client_mark_guilty(ctx, banned); 120 121 out: 122 i915_gem_context_put(ctx); 123 return banned; 124 } 125 126 static void mark_innocent(struct i915_request *rq) 127 { 128 struct i915_gem_context *ctx; 129 130 rcu_read_lock(); 131 ctx = rcu_dereference(rq->context->gem_context); 132 if (ctx) 133 atomic_inc(&ctx->active_count); 134 rcu_read_unlock(); 135 } 136 137 void __i915_request_reset(struct i915_request *rq, bool guilty) 138 { 139 bool banned = false; 140 141 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); 142 GEM_BUG_ON(__i915_request_is_complete(rq)); 143 144 rcu_read_lock(); /* protect the GEM context */ 145 if (guilty) { 146 i915_request_set_error_once(rq, -EIO); 147 __i915_request_skip(rq); 148 banned = mark_guilty(rq); 149 } else { 150 i915_request_set_error_once(rq, -EAGAIN); 151 mark_innocent(rq); 152 } 153 rcu_read_unlock(); 154 155 if (banned) 156 intel_context_ban(rq->context, rq); 157 } 158 159 static bool i915_in_reset(struct pci_dev *pdev) 160 { 161 u8 gdrst; 162 163 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 164 return gdrst & GRDOM_RESET_STATUS; 165 } 166 167 static int i915_do_reset(struct intel_gt *gt, 168 intel_engine_mask_t engine_mask, 169 unsigned int retry) 170 { 171 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 172 int err; 173 174 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 175 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 176 udelay(50); 177 err = wait_for_atomic(i915_in_reset(pdev), 50); 178 179 /* Clear the reset request. */ 180 pci_write_config_byte(pdev, I915_GDRST, 0); 181 udelay(50); 182 if (!err) 183 err = wait_for_atomic(!i915_in_reset(pdev), 50); 184 185 return err; 186 } 187 188 static bool g4x_reset_complete(struct pci_dev *pdev) 189 { 190 u8 gdrst; 191 192 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 193 return (gdrst & GRDOM_RESET_ENABLE) == 0; 194 } 195 196 static int g33_do_reset(struct intel_gt *gt, 197 intel_engine_mask_t engine_mask, 198 unsigned int retry) 199 { 200 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 201 202 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 203 return wait_for_atomic(g4x_reset_complete(pdev), 50); 204 } 205 206 static int g4x_do_reset(struct intel_gt *gt, 207 intel_engine_mask_t engine_mask, 208 unsigned int retry) 209 { 210 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 211 struct intel_uncore *uncore = gt->uncore; 212 int ret; 213 214 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 215 rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 216 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 217 218 pci_write_config_byte(pdev, I915_GDRST, 219 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 220 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 221 if (ret) { 222 GT_TRACE(gt, "Wait for media reset failed\n"); 223 goto out; 224 } 225 226 pci_write_config_byte(pdev, I915_GDRST, 227 GRDOM_RENDER | GRDOM_RESET_ENABLE); 228 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 229 if (ret) { 230 GT_TRACE(gt, "Wait for render reset failed\n"); 231 goto out; 232 } 233 234 out: 235 pci_write_config_byte(pdev, I915_GDRST, 0); 236 237 rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 238 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 239 240 return ret; 241 } 242 243 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 244 unsigned int retry) 245 { 246 struct intel_uncore *uncore = gt->uncore; 247 int ret; 248 249 intel_uncore_write_fw(uncore, ILK_GDSR, 250 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 251 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 252 ILK_GRDOM_RESET_ENABLE, 0, 253 5000, 0, 254 NULL); 255 if (ret) { 256 GT_TRACE(gt, "Wait for render reset failed\n"); 257 goto out; 258 } 259 260 intel_uncore_write_fw(uncore, ILK_GDSR, 261 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 262 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 263 ILK_GRDOM_RESET_ENABLE, 0, 264 5000, 0, 265 NULL); 266 if (ret) { 267 GT_TRACE(gt, "Wait for media reset failed\n"); 268 goto out; 269 } 270 271 out: 272 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 273 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 274 return ret; 275 } 276 277 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 278 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 279 { 280 struct intel_uncore *uncore = gt->uncore; 281 int loops = 2; 282 int err; 283 284 /* 285 * GEN6_GDRST is not in the gt power well, no need to check 286 * for fifo space for the write or forcewake the chip for 287 * the read 288 */ 289 do { 290 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 291 292 /* 293 * Wait for the device to ack the reset requests. 294 * 295 * On some platforms, e.g. Jasperlake, we see that the 296 * engine register state is not cleared until shortly after 297 * GDRST reports completion, causing a failure as we try 298 * to immediately resume while the internal state is still 299 * in flux. If we immediately repeat the reset, the second 300 * reset appears to serialise with the first, and since 301 * it is a no-op, the registers should retain their reset 302 * value. However, there is still a concern that upon 303 * leaving the second reset, the internal engine state 304 * is still in flux and not ready for resuming. 305 */ 306 err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, 307 hw_domain_mask, 0, 308 2000, 0, 309 NULL); 310 } while (err == 0 && --loops); 311 if (err) 312 GT_TRACE(gt, 313 "Wait for 0x%08x engines reset failed\n", 314 hw_domain_mask); 315 316 /* 317 * As we have observed that the engine state is still volatile 318 * after GDRST is acked, impose a small delay to let everything settle. 319 */ 320 udelay(50); 321 322 return err; 323 } 324 325 static int __gen6_reset_engines(struct intel_gt *gt, 326 intel_engine_mask_t engine_mask, 327 unsigned int retry) 328 { 329 struct intel_engine_cs *engine; 330 u32 hw_mask; 331 332 if (engine_mask == ALL_ENGINES) { 333 hw_mask = GEN6_GRDOM_FULL; 334 } else { 335 intel_engine_mask_t tmp; 336 337 hw_mask = 0; 338 for_each_engine_masked(engine, gt, engine_mask, tmp) { 339 hw_mask |= engine->reset_domain; 340 } 341 } 342 343 return gen6_hw_domain_reset(gt, hw_mask); 344 } 345 346 static int gen6_reset_engines(struct intel_gt *gt, 347 intel_engine_mask_t engine_mask, 348 unsigned int retry) 349 { 350 unsigned long flags; 351 int ret; 352 353 spin_lock_irqsave(>->uncore->lock, flags); 354 ret = __gen6_reset_engines(gt, engine_mask, retry); 355 spin_unlock_irqrestore(>->uncore->lock, flags); 356 357 return ret; 358 } 359 360 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 361 { 362 int vecs_id; 363 364 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 365 366 vecs_id = _VECS((engine->instance) / 2); 367 368 return engine->gt->engine[vecs_id]; 369 } 370 371 struct sfc_lock_data { 372 i915_reg_t lock_reg; 373 i915_reg_t ack_reg; 374 i915_reg_t usage_reg; 375 u32 lock_bit; 376 u32 ack_bit; 377 u32 usage_bit; 378 u32 reset_bit; 379 }; 380 381 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 382 struct sfc_lock_data *sfc_lock) 383 { 384 switch (engine->class) { 385 default: 386 MISSING_CASE(engine->class); 387 fallthrough; 388 case VIDEO_DECODE_CLASS: 389 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); 390 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 391 392 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 393 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 394 395 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 396 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 397 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 398 399 break; 400 case VIDEO_ENHANCEMENT_CLASS: 401 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); 402 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 403 404 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); 405 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 406 407 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); 408 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 409 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 410 411 break; 412 } 413 } 414 415 static int gen11_lock_sfc(struct intel_engine_cs *engine, 416 u32 *reset_mask, 417 u32 *unlock_mask) 418 { 419 struct intel_uncore *uncore = engine->uncore; 420 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 421 struct sfc_lock_data sfc_lock; 422 bool lock_obtained, lock_to_other = false; 423 int ret; 424 425 switch (engine->class) { 426 case VIDEO_DECODE_CLASS: 427 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 428 return 0; 429 430 fallthrough; 431 case VIDEO_ENHANCEMENT_CLASS: 432 get_sfc_forced_lock_data(engine, &sfc_lock); 433 434 break; 435 default: 436 return 0; 437 } 438 439 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 440 struct intel_engine_cs *paired_vecs; 441 442 if (engine->class != VIDEO_DECODE_CLASS || 443 GRAPHICS_VER(engine->i915) != 12) 444 return 0; 445 446 /* 447 * Wa_14010733141 448 * 449 * If the VCS-MFX isn't using the SFC, we also need to check 450 * whether VCS-HCP is using it. If so, we need to issue a *VE* 451 * forced lock on the VE engine that shares the same SFC. 452 */ 453 if (!(intel_uncore_read_fw(uncore, 454 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & 455 GEN12_HCP_SFC_USAGE_BIT)) 456 return 0; 457 458 paired_vecs = find_sfc_paired_vecs_engine(engine); 459 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 460 lock_to_other = true; 461 *unlock_mask |= paired_vecs->mask; 462 } else { 463 *unlock_mask |= engine->mask; 464 } 465 466 /* 467 * If the engine is using an SFC, tell the engine that a software reset 468 * is going to happen. The engine will then try to force lock the SFC. 469 * If SFC ends up being locked to the engine we want to reset, we have 470 * to reset it as well (we will unlock it once the reset sequence is 471 * completed). 472 */ 473 rmw_set_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit); 474 475 ret = __intel_wait_for_register_fw(uncore, 476 sfc_lock.ack_reg, 477 sfc_lock.ack_bit, 478 sfc_lock.ack_bit, 479 1000, 0, NULL); 480 481 /* 482 * Was the SFC released while we were trying to lock it? 483 * 484 * We should reset both the engine and the SFC if: 485 * - We were locking the SFC to this engine and the lock succeeded 486 * OR 487 * - We were locking the SFC to a different engine (Wa_14010733141) 488 * but the SFC was released before the lock was obtained. 489 * 490 * Otherwise we need only reset the engine by itself and we can 491 * leave the SFC alone. 492 */ 493 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 494 sfc_lock.usage_bit) != 0; 495 if (lock_obtained == lock_to_other) 496 return 0; 497 498 if (ret) { 499 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 500 return ret; 501 } 502 503 *reset_mask |= sfc_lock.reset_bit; 504 return 0; 505 } 506 507 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 508 { 509 struct intel_uncore *uncore = engine->uncore; 510 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 511 struct sfc_lock_data sfc_lock = {}; 512 513 if (engine->class != VIDEO_DECODE_CLASS && 514 engine->class != VIDEO_ENHANCEMENT_CLASS) 515 return; 516 517 if (engine->class == VIDEO_DECODE_CLASS && 518 (BIT(engine->instance) & vdbox_sfc_access) == 0) 519 return; 520 521 get_sfc_forced_lock_data(engine, &sfc_lock); 522 523 rmw_clear_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit); 524 } 525 526 static int __gen11_reset_engines(struct intel_gt *gt, 527 intel_engine_mask_t engine_mask, 528 unsigned int retry) 529 { 530 struct intel_engine_cs *engine; 531 intel_engine_mask_t tmp; 532 u32 reset_mask, unlock_mask = 0; 533 int ret; 534 535 if (engine_mask == ALL_ENGINES) { 536 reset_mask = GEN11_GRDOM_FULL; 537 } else { 538 reset_mask = 0; 539 for_each_engine_masked(engine, gt, engine_mask, tmp) { 540 reset_mask |= engine->reset_domain; 541 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 542 if (ret) 543 goto sfc_unlock; 544 } 545 } 546 547 ret = gen6_hw_domain_reset(gt, reset_mask); 548 549 sfc_unlock: 550 /* 551 * We unlock the SFC based on the lock status and not the result of 552 * gen11_lock_sfc to make sure that we clean properly if something 553 * wrong happened during the lock (e.g. lock acquired after timeout 554 * expiration). 555 * 556 * Due to Wa_14010733141, we may have locked an SFC to an engine that 557 * wasn't being reset. So instead of calling gen11_unlock_sfc() 558 * on engine_mask, we instead call it on the mask of engines that our 559 * gen11_lock_sfc() calls told us actually had locks attempted. 560 */ 561 for_each_engine_masked(engine, gt, unlock_mask, tmp) 562 gen11_unlock_sfc(engine); 563 564 return ret; 565 } 566 567 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 568 { 569 struct intel_uncore *uncore = engine->uncore; 570 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 571 u32 request, mask, ack; 572 int ret; 573 574 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 575 return -ETIMEDOUT; 576 577 ack = intel_uncore_read_fw(uncore, reg); 578 if (ack & RESET_CTL_CAT_ERROR) { 579 /* 580 * For catastrophic errors, ready-for-reset sequence 581 * needs to be bypassed: HAS#396813 582 */ 583 request = RESET_CTL_CAT_ERROR; 584 mask = RESET_CTL_CAT_ERROR; 585 586 /* Catastrophic errors need to be cleared by HW */ 587 ack = 0; 588 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 589 request = RESET_CTL_REQUEST_RESET; 590 mask = RESET_CTL_READY_TO_RESET; 591 ack = RESET_CTL_READY_TO_RESET; 592 } else { 593 return 0; 594 } 595 596 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 597 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 598 700, 0, NULL); 599 if (ret) 600 drm_err(&engine->i915->drm, 601 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 602 engine->name, request, 603 intel_uncore_read_fw(uncore, reg)); 604 605 return ret; 606 } 607 608 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 609 { 610 intel_uncore_write_fw(engine->uncore, 611 RING_RESET_CTL(engine->mmio_base), 612 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 613 } 614 615 static int gen8_reset_engines(struct intel_gt *gt, 616 intel_engine_mask_t engine_mask, 617 unsigned int retry) 618 { 619 struct intel_engine_cs *engine; 620 const bool reset_non_ready = retry >= 1; 621 intel_engine_mask_t tmp; 622 unsigned long flags; 623 int ret; 624 625 spin_lock_irqsave(>->uncore->lock, flags); 626 627 for_each_engine_masked(engine, gt, engine_mask, tmp) { 628 ret = gen8_engine_reset_prepare(engine); 629 if (ret && !reset_non_ready) 630 goto skip_reset; 631 632 /* 633 * If this is not the first failed attempt to prepare, 634 * we decide to proceed anyway. 635 * 636 * By doing so we risk context corruption and with 637 * some gens (kbl), possible system hang if reset 638 * happens during active bb execution. 639 * 640 * We rather take context corruption instead of 641 * failed reset with a wedged driver/gpu. And 642 * active bb execution case should be covered by 643 * stop_engines() we have before the reset. 644 */ 645 } 646 647 /* 648 * Wa_22011100796:dg2, whenever Full soft reset is required, 649 * reset all individual engines firstly, and then do a full soft reset. 650 * 651 * This is best effort, so ignore any error from the initial reset. 652 */ 653 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) 654 __gen11_reset_engines(gt, gt->info.engine_mask, 0); 655 656 if (GRAPHICS_VER(gt->i915) >= 11) 657 ret = __gen11_reset_engines(gt, engine_mask, retry); 658 else 659 ret = __gen6_reset_engines(gt, engine_mask, retry); 660 661 skip_reset: 662 for_each_engine_masked(engine, gt, engine_mask, tmp) 663 gen8_engine_reset_cancel(engine); 664 665 spin_unlock_irqrestore(>->uncore->lock, flags); 666 667 return ret; 668 } 669 670 static int mock_reset(struct intel_gt *gt, 671 intel_engine_mask_t mask, 672 unsigned int retry) 673 { 674 return 0; 675 } 676 677 typedef int (*reset_func)(struct intel_gt *, 678 intel_engine_mask_t engine_mask, 679 unsigned int retry); 680 681 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 682 { 683 struct drm_i915_private *i915 = gt->i915; 684 685 if (is_mock_gt(gt)) 686 return mock_reset; 687 else if (GRAPHICS_VER(i915) >= 8) 688 return gen8_reset_engines; 689 else if (GRAPHICS_VER(i915) >= 6) 690 return gen6_reset_engines; 691 else if (GRAPHICS_VER(i915) >= 5) 692 return ilk_do_reset; 693 else if (IS_G4X(i915)) 694 return g4x_do_reset; 695 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 696 return g33_do_reset; 697 else if (GRAPHICS_VER(i915) >= 3) 698 return i915_do_reset; 699 else 700 return NULL; 701 } 702 703 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 704 { 705 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 706 reset_func reset; 707 int ret = -ETIMEDOUT; 708 int retry; 709 710 reset = intel_get_gpu_reset(gt); 711 if (!reset) 712 return -ENODEV; 713 714 /* 715 * If the power well sleeps during the reset, the reset 716 * request may be dropped and never completes (causing -EIO). 717 */ 718 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 719 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 720 GT_TRACE(gt, "engine_mask=%x\n", engine_mask); 721 preempt_disable(); 722 ret = reset(gt, engine_mask, retry); 723 preempt_enable(); 724 } 725 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 726 727 return ret; 728 } 729 730 bool intel_has_gpu_reset(const struct intel_gt *gt) 731 { 732 if (!gt->i915->params.reset) 733 return NULL; 734 735 return intel_get_gpu_reset(gt); 736 } 737 738 bool intel_has_reset_engine(const struct intel_gt *gt) 739 { 740 if (gt->i915->params.reset < 2) 741 return false; 742 743 return INTEL_INFO(gt->i915)->has_reset_engine; 744 } 745 746 int intel_reset_guc(struct intel_gt *gt) 747 { 748 u32 guc_domain = 749 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 750 int ret; 751 752 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 753 754 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 755 ret = gen6_hw_domain_reset(gt, guc_domain); 756 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 757 758 return ret; 759 } 760 761 /* 762 * Ensure irq handler finishes, and not run again. 763 * Also return the active request so that we only search for it once. 764 */ 765 static void reset_prepare_engine(struct intel_engine_cs *engine) 766 { 767 /* 768 * During the reset sequence, we must prevent the engine from 769 * entering RC6. As the context state is undefined until we restart 770 * the engine, if it does enter RC6 during the reset, the state 771 * written to the powercontext is undefined and so we may lose 772 * GPU state upon resume, i.e. fail to restart after a reset. 773 */ 774 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 775 if (engine->reset.prepare) 776 engine->reset.prepare(engine); 777 } 778 779 static void revoke_mmaps(struct intel_gt *gt) 780 { 781 int i; 782 783 for (i = 0; i < gt->ggtt->num_fences; i++) { 784 struct drm_vma_offset_node *node; 785 struct i915_vma *vma; 786 u64 vma_offset; 787 788 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 789 if (!vma) 790 continue; 791 792 if (!i915_vma_has_userfault(vma)) 793 continue; 794 795 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 796 797 if (!vma->mmo) 798 continue; 799 800 node = &vma->mmo->vma_node; 801 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 802 803 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 804 drm_vma_node_offset_addr(node) + vma_offset, 805 vma->size, 806 1); 807 } 808 } 809 810 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 811 { 812 struct intel_engine_cs *engine; 813 intel_engine_mask_t awake = 0; 814 enum intel_engine_id id; 815 816 /* For GuC mode, ensure submission is disabled before stopping ring */ 817 intel_uc_reset_prepare(>->uc); 818 819 for_each_engine(engine, gt, id) { 820 if (intel_engine_pm_get_if_awake(engine)) 821 awake |= engine->mask; 822 reset_prepare_engine(engine); 823 } 824 825 return awake; 826 } 827 828 static void gt_revoke(struct intel_gt *gt) 829 { 830 revoke_mmaps(gt); 831 } 832 833 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 834 { 835 struct intel_engine_cs *engine; 836 enum intel_engine_id id; 837 int err; 838 839 /* 840 * Everything depends on having the GTT running, so we need to start 841 * there. 842 */ 843 err = i915_ggtt_enable_hw(gt->i915); 844 if (err) 845 return err; 846 847 local_bh_disable(); 848 for_each_engine(engine, gt, id) 849 __intel_engine_reset(engine, stalled_mask & engine->mask); 850 local_bh_enable(); 851 852 intel_uc_reset(>->uc, ALL_ENGINES); 853 854 intel_ggtt_restore_fences(gt->ggtt); 855 856 return err; 857 } 858 859 static void reset_finish_engine(struct intel_engine_cs *engine) 860 { 861 if (engine->reset.finish) 862 engine->reset.finish(engine); 863 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 864 865 intel_engine_signal_breadcrumbs(engine); 866 } 867 868 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 869 { 870 struct intel_engine_cs *engine; 871 enum intel_engine_id id; 872 873 for_each_engine(engine, gt, id) { 874 reset_finish_engine(engine); 875 if (awake & engine->mask) 876 intel_engine_pm_put(engine); 877 } 878 879 intel_uc_reset_finish(>->uc); 880 } 881 882 static void nop_submit_request(struct i915_request *request) 883 { 884 RQ_TRACE(request, "-EIO\n"); 885 886 request = i915_request_mark_eio(request); 887 if (request) { 888 i915_request_submit(request); 889 intel_engine_signal_breadcrumbs(request->engine); 890 891 i915_request_put(request); 892 } 893 } 894 895 static void __intel_gt_set_wedged(struct intel_gt *gt) 896 { 897 struct intel_engine_cs *engine; 898 intel_engine_mask_t awake; 899 enum intel_engine_id id; 900 901 if (test_bit(I915_WEDGED, >->reset.flags)) 902 return; 903 904 GT_TRACE(gt, "start\n"); 905 906 /* 907 * First, stop submission to hw, but do not yet complete requests by 908 * rolling the global seqno forward (since this would complete requests 909 * for which we haven't set the fence error to EIO yet). 910 */ 911 awake = reset_prepare(gt); 912 913 /* Even if the GPU reset fails, it should still stop the engines */ 914 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 915 __intel_gt_reset(gt, ALL_ENGINES); 916 917 for_each_engine(engine, gt, id) 918 engine->submit_request = nop_submit_request; 919 920 /* 921 * Make sure no request can slip through without getting completed by 922 * either this call here to intel_engine_write_global_seqno, or the one 923 * in nop_submit_request. 924 */ 925 synchronize_rcu_expedited(); 926 set_bit(I915_WEDGED, >->reset.flags); 927 928 /* Mark all executing requests as skipped */ 929 local_bh_disable(); 930 for_each_engine(engine, gt, id) 931 if (engine->reset.cancel) 932 engine->reset.cancel(engine); 933 intel_uc_cancel_requests(>->uc); 934 local_bh_enable(); 935 936 reset_finish(gt, awake); 937 938 GT_TRACE(gt, "end\n"); 939 } 940 941 void intel_gt_set_wedged(struct intel_gt *gt) 942 { 943 intel_wakeref_t wakeref; 944 945 if (test_bit(I915_WEDGED, >->reset.flags)) 946 return; 947 948 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 949 mutex_lock(>->reset.mutex); 950 951 if (GEM_SHOW_DEBUG()) { 952 struct drm_printer p = drm_debug_printer(__func__); 953 struct intel_engine_cs *engine; 954 enum intel_engine_id id; 955 956 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 957 for_each_engine(engine, gt, id) { 958 if (intel_engine_is_idle(engine)) 959 continue; 960 961 intel_engine_dump(engine, &p, "%s\n", engine->name); 962 } 963 } 964 965 __intel_gt_set_wedged(gt); 966 967 mutex_unlock(>->reset.mutex); 968 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 969 } 970 971 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 972 { 973 struct intel_gt_timelines *timelines = >->timelines; 974 struct intel_timeline *tl; 975 bool ok; 976 977 if (!test_bit(I915_WEDGED, >->reset.flags)) 978 return true; 979 980 /* Never fully initialised, recovery impossible */ 981 if (intel_gt_has_unrecoverable_error(gt)) 982 return false; 983 984 GT_TRACE(gt, "start\n"); 985 986 /* 987 * Before unwedging, make sure that all pending operations 988 * are flushed and errored out - we may have requests waiting upon 989 * third party fences. We marked all inflight requests as EIO, and 990 * every execbuf since returned EIO, for consistency we want all 991 * the currently pending requests to also be marked as EIO, which 992 * is done inside our nop_submit_request - and so we must wait. 993 * 994 * No more can be submitted until we reset the wedged bit. 995 */ 996 spin_lock(&timelines->lock); 997 list_for_each_entry(tl, &timelines->active_list, link) { 998 struct dma_fence *fence; 999 1000 fence = i915_active_fence_get(&tl->last_request); 1001 if (!fence) 1002 continue; 1003 1004 spin_unlock(&timelines->lock); 1005 1006 /* 1007 * All internal dependencies (i915_requests) will have 1008 * been flushed by the set-wedge, but we may be stuck waiting 1009 * for external fences. These should all be capped to 10s 1010 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 1011 * in the worst case. 1012 */ 1013 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 1014 dma_fence_put(fence); 1015 1016 /* Restart iteration after droping lock */ 1017 spin_lock(&timelines->lock); 1018 tl = list_entry(&timelines->active_list, typeof(*tl), link); 1019 } 1020 spin_unlock(&timelines->lock); 1021 1022 /* We must reset pending GPU events before restoring our submission */ 1023 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 1024 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1025 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 1026 if (!ok) { 1027 /* 1028 * Warn CI about the unrecoverable wedged condition. 1029 * Time for a reboot. 1030 */ 1031 add_taint_for_CI(gt->i915, TAINT_WARN); 1032 return false; 1033 } 1034 1035 /* 1036 * Undo nop_submit_request. We prevent all new i915 requests from 1037 * being queued (by disallowing execbuf whilst wedged) so having 1038 * waited for all active requests above, we know the system is idle 1039 * and do not have to worry about a thread being inside 1040 * engine->submit_request() as we swap over. So unlike installing 1041 * the nop_submit_request on reset, we can do this from normal 1042 * context and do not require stop_machine(). 1043 */ 1044 intel_engines_reset_default_submission(gt); 1045 1046 GT_TRACE(gt, "end\n"); 1047 1048 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 1049 clear_bit(I915_WEDGED, >->reset.flags); 1050 1051 return true; 1052 } 1053 1054 bool intel_gt_unset_wedged(struct intel_gt *gt) 1055 { 1056 bool result; 1057 1058 mutex_lock(>->reset.mutex); 1059 result = __intel_gt_unset_wedged(gt); 1060 mutex_unlock(>->reset.mutex); 1061 1062 return result; 1063 } 1064 1065 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1066 { 1067 int err, i; 1068 1069 err = __intel_gt_reset(gt, ALL_ENGINES); 1070 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1071 msleep(10 * (i + 1)); 1072 err = __intel_gt_reset(gt, ALL_ENGINES); 1073 } 1074 if (err) 1075 return err; 1076 1077 return gt_reset(gt, stalled_mask); 1078 } 1079 1080 static int resume(struct intel_gt *gt) 1081 { 1082 struct intel_engine_cs *engine; 1083 enum intel_engine_id id; 1084 int ret; 1085 1086 for_each_engine(engine, gt, id) { 1087 ret = intel_engine_resume(engine); 1088 if (ret) 1089 return ret; 1090 } 1091 1092 return 0; 1093 } 1094 1095 /** 1096 * intel_gt_reset - reset chip after a hang 1097 * @gt: #intel_gt to reset 1098 * @stalled_mask: mask of the stalled engines with the guilty requests 1099 * @reason: user error message for why we are resetting 1100 * 1101 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1102 * on failure. 1103 * 1104 * Procedure is fairly simple: 1105 * - reset the chip using the reset reg 1106 * - re-init context state 1107 * - re-init hardware status page 1108 * - re-init ring buffer 1109 * - re-init interrupt state 1110 * - re-init display 1111 */ 1112 void intel_gt_reset(struct intel_gt *gt, 1113 intel_engine_mask_t stalled_mask, 1114 const char *reason) 1115 { 1116 intel_engine_mask_t awake; 1117 int ret; 1118 1119 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1120 1121 might_sleep(); 1122 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1123 1124 /* 1125 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1126 * critical section like gpu reset. 1127 */ 1128 gt_revoke(gt); 1129 1130 mutex_lock(>->reset.mutex); 1131 1132 /* Clear any previous failed attempts at recovery. Time to try again. */ 1133 if (!__intel_gt_unset_wedged(gt)) 1134 goto unlock; 1135 1136 if (reason) 1137 drm_notice(>->i915->drm, 1138 "Resetting chip for %s\n", reason); 1139 atomic_inc(>->i915->gpu_error.reset_count); 1140 1141 awake = reset_prepare(gt); 1142 1143 if (!intel_has_gpu_reset(gt)) { 1144 if (gt->i915->params.reset) 1145 drm_err(>->i915->drm, "GPU reset not supported\n"); 1146 else 1147 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1148 goto error; 1149 } 1150 1151 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1152 intel_runtime_pm_disable_interrupts(gt->i915); 1153 1154 if (do_reset(gt, stalled_mask)) { 1155 drm_err(>->i915->drm, "Failed to reset chip\n"); 1156 goto taint; 1157 } 1158 1159 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1160 intel_runtime_pm_enable_interrupts(gt->i915); 1161 1162 intel_overlay_reset(gt->i915); 1163 1164 /* 1165 * Next we need to restore the context, but we don't use those 1166 * yet either... 1167 * 1168 * Ring buffer needs to be re-initialized in the KMS case, or if X 1169 * was running at the time of the reset (i.e. we weren't VT 1170 * switched away). 1171 */ 1172 ret = intel_gt_init_hw(gt); 1173 if (ret) { 1174 drm_err(>->i915->drm, 1175 "Failed to initialise HW following reset (%d)\n", 1176 ret); 1177 goto taint; 1178 } 1179 1180 ret = resume(gt); 1181 if (ret) 1182 goto taint; 1183 1184 finish: 1185 reset_finish(gt, awake); 1186 unlock: 1187 mutex_unlock(>->reset.mutex); 1188 return; 1189 1190 taint: 1191 /* 1192 * History tells us that if we cannot reset the GPU now, we 1193 * never will. This then impacts everything that is run 1194 * subsequently. On failing the reset, we mark the driver 1195 * as wedged, preventing further execution on the GPU. 1196 * We also want to go one step further and add a taint to the 1197 * kernel so that any subsequent faults can be traced back to 1198 * this failure. This is important for CI, where if the 1199 * GPU/driver fails we would like to reboot and restart testing 1200 * rather than continue on into oblivion. For everyone else, 1201 * the system should still plod along, but they have been warned! 1202 */ 1203 add_taint_for_CI(gt->i915, TAINT_WARN); 1204 error: 1205 __intel_gt_set_wedged(gt); 1206 goto finish; 1207 } 1208 1209 static int intel_gt_reset_engine(struct intel_engine_cs *engine) 1210 { 1211 return __intel_gt_reset(engine->gt, engine->mask); 1212 } 1213 1214 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1215 { 1216 struct intel_gt *gt = engine->gt; 1217 int ret; 1218 1219 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1220 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1221 1222 if (intel_engine_uses_guc(engine)) 1223 return -ENODEV; 1224 1225 if (!intel_engine_pm_get_if_awake(engine)) 1226 return 0; 1227 1228 reset_prepare_engine(engine); 1229 1230 if (msg) 1231 drm_notice(&engine->i915->drm, 1232 "Resetting %s for %s\n", engine->name, msg); 1233 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1234 1235 ret = intel_gt_reset_engine(engine); 1236 if (ret) { 1237 /* If we fail here, we expect to fallback to a global reset */ 1238 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1239 goto out; 1240 } 1241 1242 /* 1243 * The request that caused the hang is stuck on elsp, we know the 1244 * active request and can drop it, adjust head to skip the offending 1245 * request to resume executing remaining requests in the queue. 1246 */ 1247 __intel_engine_reset(engine, true); 1248 1249 /* 1250 * The engine and its registers (and workarounds in case of render) 1251 * have been reset to their default values. Follow the init_ring 1252 * process to program RING_MODE, HWSP and re-enable submission. 1253 */ 1254 ret = intel_engine_resume(engine); 1255 1256 out: 1257 intel_engine_cancel_stop_cs(engine); 1258 reset_finish_engine(engine); 1259 intel_engine_pm_put_async(engine); 1260 return ret; 1261 } 1262 1263 /** 1264 * intel_engine_reset - reset GPU engine to recover from a hang 1265 * @engine: engine to reset 1266 * @msg: reason for GPU reset; or NULL for no drm_notice() 1267 * 1268 * Reset a specific GPU engine. Useful if a hang is detected. 1269 * Returns zero on successful reset or otherwise an error code. 1270 * 1271 * Procedure is: 1272 * - identifies the request that caused the hang and it is dropped 1273 * - reset engine (which will force the engine to idle) 1274 * - re-init/configure engine 1275 */ 1276 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1277 { 1278 int err; 1279 1280 local_bh_disable(); 1281 err = __intel_engine_reset_bh(engine, msg); 1282 local_bh_enable(); 1283 1284 return err; 1285 } 1286 1287 static void intel_gt_reset_global(struct intel_gt *gt, 1288 u32 engine_mask, 1289 const char *reason) 1290 { 1291 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1292 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1293 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1294 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1295 struct intel_wedge_me w; 1296 1297 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1298 1299 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1300 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1301 1302 /* Use a watchdog to ensure that our reset completes */ 1303 intel_wedge_on_timeout(&w, gt, 60 * HZ) { 1304 intel_display_prepare_reset(gt->i915); 1305 1306 intel_gt_reset(gt, engine_mask, reason); 1307 1308 intel_display_finish_reset(gt->i915); 1309 } 1310 1311 if (!test_bit(I915_WEDGED, >->reset.flags)) 1312 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1313 } 1314 1315 /** 1316 * intel_gt_handle_error - handle a gpu error 1317 * @gt: the intel_gt 1318 * @engine_mask: mask representing engines that are hung 1319 * @flags: control flags 1320 * @fmt: Error message format string 1321 * 1322 * Do some basic checking of register state at error time and 1323 * dump it to the syslog. Also call i915_capture_error_state() to make 1324 * sure we get a record and make it available in debugfs. Fire a uevent 1325 * so userspace knows something bad happened (should trigger collection 1326 * of a ring dump etc.). 1327 */ 1328 void intel_gt_handle_error(struct intel_gt *gt, 1329 intel_engine_mask_t engine_mask, 1330 unsigned long flags, 1331 const char *fmt, ...) 1332 { 1333 struct intel_engine_cs *engine; 1334 intel_wakeref_t wakeref; 1335 intel_engine_mask_t tmp; 1336 char error_msg[80]; 1337 char *msg = NULL; 1338 1339 if (fmt) { 1340 va_list args; 1341 1342 va_start(args, fmt); 1343 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1344 va_end(args); 1345 1346 msg = error_msg; 1347 } 1348 1349 /* 1350 * In most cases it's guaranteed that we get here with an RPM 1351 * reference held, for example because there is a pending GPU 1352 * request that won't finish until the reset is done. This 1353 * isn't the case at least when we get here by doing a 1354 * simulated reset via debugfs, so get an RPM reference. 1355 */ 1356 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1357 1358 engine_mask &= gt->info.engine_mask; 1359 1360 if (flags & I915_ERROR_CAPTURE) { 1361 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); 1362 intel_gt_clear_error_registers(gt, engine_mask); 1363 } 1364 1365 /* 1366 * Try engine reset when available. We fall back to full reset if 1367 * single reset fails. 1368 */ 1369 if (!intel_uc_uses_guc_submission(>->uc) && 1370 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1371 local_bh_disable(); 1372 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1373 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1374 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1375 >->reset.flags)) 1376 continue; 1377 1378 if (__intel_engine_reset_bh(engine, msg) == 0) 1379 engine_mask &= ~engine->mask; 1380 1381 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1382 >->reset.flags); 1383 } 1384 local_bh_enable(); 1385 } 1386 1387 if (!engine_mask) 1388 goto out; 1389 1390 /* Full reset needs the mutex, stop any other user trying to do so. */ 1391 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1392 wait_event(gt->reset.queue, 1393 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1394 goto out; /* piggy-back on the other reset */ 1395 } 1396 1397 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1398 synchronize_rcu_expedited(); 1399 1400 /* 1401 * Prevent any other reset-engine attempt. We don't do this for GuC 1402 * submission the GuC owns the per-engine reset, not the i915. 1403 */ 1404 if (!intel_uc_uses_guc_submission(>->uc)) { 1405 for_each_engine(engine, gt, tmp) { 1406 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1407 >->reset.flags)) 1408 wait_on_bit(>->reset.flags, 1409 I915_RESET_ENGINE + engine->id, 1410 TASK_UNINTERRUPTIBLE); 1411 } 1412 } 1413 1414 /* Flush everyone using a resource about to be clobbered */ 1415 synchronize_srcu_expedited(>->reset.backoff_srcu); 1416 1417 intel_gt_reset_global(gt, engine_mask, msg); 1418 1419 if (!intel_uc_uses_guc_submission(>->uc)) { 1420 for_each_engine(engine, gt, tmp) 1421 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1422 >->reset.flags); 1423 } 1424 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1425 smp_mb__after_atomic(); 1426 wake_up_all(>->reset.queue); 1427 1428 out: 1429 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1430 } 1431 1432 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) 1433 { 1434 might_lock(>->reset.backoff_srcu); 1435 if (retry) 1436 might_sleep(); 1437 1438 rcu_read_lock(); 1439 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1440 rcu_read_unlock(); 1441 1442 if (!retry) 1443 return -EBUSY; 1444 1445 if (wait_event_interruptible(gt->reset.queue, 1446 !test_bit(I915_RESET_BACKOFF, 1447 >->reset.flags))) 1448 return -EINTR; 1449 1450 rcu_read_lock(); 1451 } 1452 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1453 rcu_read_unlock(); 1454 1455 return 0; 1456 } 1457 1458 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1459 { 1460 return _intel_gt_reset_lock(gt, srcu, false); 1461 } 1462 1463 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) 1464 { 1465 return _intel_gt_reset_lock(gt, srcu, true); 1466 } 1467 1468 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1469 __releases(>->reset.backoff_srcu) 1470 { 1471 srcu_read_unlock(>->reset.backoff_srcu, tag); 1472 } 1473 1474 int intel_gt_terminally_wedged(struct intel_gt *gt) 1475 { 1476 might_sleep(); 1477 1478 if (!intel_gt_is_wedged(gt)) 1479 return 0; 1480 1481 if (intel_gt_has_unrecoverable_error(gt)) 1482 return -EIO; 1483 1484 /* Reset still in progress? Maybe we will recover? */ 1485 if (wait_event_interruptible(gt->reset.queue, 1486 !test_bit(I915_RESET_BACKOFF, 1487 >->reset.flags))) 1488 return -EINTR; 1489 1490 return intel_gt_is_wedged(gt) ? -EIO : 0; 1491 } 1492 1493 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1494 { 1495 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1496 I915_WEDGED_ON_INIT); 1497 intel_gt_set_wedged(gt); 1498 i915_disable_error_state(gt->i915, -ENODEV); 1499 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1500 1501 /* Wedged on init is non-recoverable */ 1502 add_taint_for_CI(gt->i915, TAINT_WARN); 1503 } 1504 1505 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1506 { 1507 intel_gt_set_wedged(gt); 1508 i915_disable_error_state(gt->i915, -ENODEV); 1509 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1510 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1511 } 1512 1513 void intel_gt_init_reset(struct intel_gt *gt) 1514 { 1515 init_waitqueue_head(>->reset.queue); 1516 mutex_init(>->reset.mutex); 1517 init_srcu_struct(>->reset.backoff_srcu); 1518 1519 /* 1520 * While undesirable to wait inside the shrinker, complain anyway. 1521 * 1522 * If we have to wait during shrinking, we guarantee forward progress 1523 * by forcing the reset. Therefore during the reset we must not 1524 * re-enter the shrinker. By declaring that we take the reset mutex 1525 * within the shrinker, we forbid ourselves from performing any 1526 * fs-reclaim or taking related locks during reset. 1527 */ 1528 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1529 1530 /* no GPU until we are ready! */ 1531 __set_bit(I915_WEDGED, >->reset.flags); 1532 } 1533 1534 void intel_gt_fini_reset(struct intel_gt *gt) 1535 { 1536 cleanup_srcu_struct(>->reset.backoff_srcu); 1537 } 1538 1539 static void intel_wedge_me(struct work_struct *work) 1540 { 1541 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1542 1543 drm_err(&w->gt->i915->drm, 1544 "%s timed out, cancelling all in-flight rendering.\n", 1545 w->name); 1546 intel_gt_set_wedged(w->gt); 1547 } 1548 1549 void __intel_init_wedge(struct intel_wedge_me *w, 1550 struct intel_gt *gt, 1551 long timeout, 1552 const char *name) 1553 { 1554 w->gt = gt; 1555 w->name = name; 1556 1557 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1558 schedule_delayed_work(&w->work, timeout); 1559 } 1560 1561 void __intel_fini_wedge(struct intel_wedge_me *w) 1562 { 1563 cancel_delayed_work_sync(&w->work); 1564 destroy_delayed_work_on_stack(&w->work); 1565 w->gt = NULL; 1566 } 1567 1568 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1569 #include "selftest_reset.c" 1570 #include "selftest_hangcheck.c" 1571 #endif 1572