xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_reset.c (revision 236d93c4)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008-2018 Intel Corporation
4  */
5 
6 #include <linux/sched/mm.h>
7 #include <linux/stop_machine.h>
8 
9 #include "display/intel_display.h"
10 #include "display/intel_overlay.h"
11 
12 #include "gem/i915_gem_context.h"
13 
14 #include "gt/intel_gt_regs.h"
15 
16 #include "i915_drv.h"
17 #include "i915_file_private.h"
18 #include "i915_gpu_error.h"
19 #include "i915_irq.h"
20 #include "intel_breadcrumbs.h"
21 #include "intel_engine_pm.h"
22 #include "intel_engine_regs.h"
23 #include "intel_gt.h"
24 #include "intel_gt_pm.h"
25 #include "intel_gt_requests.h"
26 #include "intel_mchbar_regs.h"
27 #include "intel_pci_config.h"
28 #include "intel_reset.h"
29 
30 #include "uc/intel_guc.h"
31 
32 #define RESET_MAX_RETRIES 3
33 
34 /* XXX How to handle concurrent GGTT updates using tiling registers? */
35 #define RESET_UNDER_STOP_MACHINE 0
36 
37 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
38 {
39 	intel_uncore_rmw_fw(uncore, reg, 0, set);
40 }
41 
42 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
43 {
44 	intel_uncore_rmw_fw(uncore, reg, clr, 0);
45 }
46 
47 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
48 {
49 	struct drm_i915_file_private *file_priv = ctx->file_priv;
50 	unsigned long prev_hang;
51 	unsigned int score;
52 
53 	if (IS_ERR_OR_NULL(file_priv))
54 		return;
55 
56 	score = 0;
57 	if (banned)
58 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
59 
60 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
61 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
62 		score += I915_CLIENT_SCORE_HANG_FAST;
63 
64 	if (score) {
65 		atomic_add(score, &file_priv->ban_score);
66 
67 		drm_dbg(&ctx->i915->drm,
68 			"client %s: gained %u ban score, now %u\n",
69 			ctx->name, score,
70 			atomic_read(&file_priv->ban_score));
71 	}
72 }
73 
74 static bool mark_guilty(struct i915_request *rq)
75 {
76 	struct i915_gem_context *ctx;
77 	unsigned long prev_hang;
78 	bool banned;
79 	int i;
80 
81 	if (intel_context_is_closed(rq->context))
82 		return true;
83 
84 	rcu_read_lock();
85 	ctx = rcu_dereference(rq->context->gem_context);
86 	if (ctx && !kref_get_unless_zero(&ctx->ref))
87 		ctx = NULL;
88 	rcu_read_unlock();
89 	if (!ctx)
90 		return intel_context_is_banned(rq->context);
91 
92 	atomic_inc(&ctx->guilty_count);
93 
94 	/* Cool contexts are too cool to be banned! (Used for reset testing.) */
95 	if (!i915_gem_context_is_bannable(ctx)) {
96 		banned = false;
97 		goto out;
98 	}
99 
100 	drm_notice(&ctx->i915->drm,
101 		   "%s context reset due to GPU hang\n",
102 		   ctx->name);
103 
104 	/* Record the timestamp for the last N hangs */
105 	prev_hang = ctx->hang_timestamp[0];
106 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
107 		ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
108 	ctx->hang_timestamp[i] = jiffies;
109 
110 	/* If we have hung N+1 times in rapid succession, we ban the context! */
111 	banned = !i915_gem_context_is_recoverable(ctx);
112 	if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
113 		banned = true;
114 	if (banned)
115 		drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
116 			ctx->name, atomic_read(&ctx->guilty_count));
117 
118 	client_mark_guilty(ctx, banned);
119 
120 out:
121 	i915_gem_context_put(ctx);
122 	return banned;
123 }
124 
125 static void mark_innocent(struct i915_request *rq)
126 {
127 	struct i915_gem_context *ctx;
128 
129 	rcu_read_lock();
130 	ctx = rcu_dereference(rq->context->gem_context);
131 	if (ctx)
132 		atomic_inc(&ctx->active_count);
133 	rcu_read_unlock();
134 }
135 
136 void __i915_request_reset(struct i915_request *rq, bool guilty)
137 {
138 	bool banned = false;
139 
140 	RQ_TRACE(rq, "guilty? %s\n", yesno(guilty));
141 	GEM_BUG_ON(__i915_request_is_complete(rq));
142 
143 	rcu_read_lock(); /* protect the GEM context */
144 	if (guilty) {
145 		i915_request_set_error_once(rq, -EIO);
146 		__i915_request_skip(rq);
147 		banned = mark_guilty(rq);
148 	} else {
149 		i915_request_set_error_once(rq, -EAGAIN);
150 		mark_innocent(rq);
151 	}
152 	rcu_read_unlock();
153 
154 	if (banned)
155 		intel_context_ban(rq->context, rq);
156 }
157 
158 static bool i915_in_reset(struct pci_dev *pdev)
159 {
160 	u8 gdrst;
161 
162 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
163 	return gdrst & GRDOM_RESET_STATUS;
164 }
165 
166 static int i915_do_reset(struct intel_gt *gt,
167 			 intel_engine_mask_t engine_mask,
168 			 unsigned int retry)
169 {
170 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
171 	int err;
172 
173 	/* Assert reset for at least 20 usec, and wait for acknowledgement. */
174 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
175 	udelay(50);
176 	err = wait_for_atomic(i915_in_reset(pdev), 50);
177 
178 	/* Clear the reset request. */
179 	pci_write_config_byte(pdev, I915_GDRST, 0);
180 	udelay(50);
181 	if (!err)
182 		err = wait_for_atomic(!i915_in_reset(pdev), 50);
183 
184 	return err;
185 }
186 
187 static bool g4x_reset_complete(struct pci_dev *pdev)
188 {
189 	u8 gdrst;
190 
191 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
192 	return (gdrst & GRDOM_RESET_ENABLE) == 0;
193 }
194 
195 static int g33_do_reset(struct intel_gt *gt,
196 			intel_engine_mask_t engine_mask,
197 			unsigned int retry)
198 {
199 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
200 
201 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
202 	return wait_for_atomic(g4x_reset_complete(pdev), 50);
203 }
204 
205 static int g4x_do_reset(struct intel_gt *gt,
206 			intel_engine_mask_t engine_mask,
207 			unsigned int retry)
208 {
209 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
210 	struct intel_uncore *uncore = gt->uncore;
211 	int ret;
212 
213 	/* WaVcpClkGateDisableForMediaReset:ctg,elk */
214 	rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
215 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
216 
217 	pci_write_config_byte(pdev, I915_GDRST,
218 			      GRDOM_MEDIA | GRDOM_RESET_ENABLE);
219 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
220 	if (ret) {
221 		GT_TRACE(gt, "Wait for media reset failed\n");
222 		goto out;
223 	}
224 
225 	pci_write_config_byte(pdev, I915_GDRST,
226 			      GRDOM_RENDER | GRDOM_RESET_ENABLE);
227 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
228 	if (ret) {
229 		GT_TRACE(gt, "Wait for render reset failed\n");
230 		goto out;
231 	}
232 
233 out:
234 	pci_write_config_byte(pdev, I915_GDRST, 0);
235 
236 	rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE);
237 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
238 
239 	return ret;
240 }
241 
242 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
243 			unsigned int retry)
244 {
245 	struct intel_uncore *uncore = gt->uncore;
246 	int ret;
247 
248 	intel_uncore_write_fw(uncore, ILK_GDSR,
249 			      ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
250 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
251 					   ILK_GRDOM_RESET_ENABLE, 0,
252 					   5000, 0,
253 					   NULL);
254 	if (ret) {
255 		GT_TRACE(gt, "Wait for render reset failed\n");
256 		goto out;
257 	}
258 
259 	intel_uncore_write_fw(uncore, ILK_GDSR,
260 			      ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
261 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
262 					   ILK_GRDOM_RESET_ENABLE, 0,
263 					   5000, 0,
264 					   NULL);
265 	if (ret) {
266 		GT_TRACE(gt, "Wait for media reset failed\n");
267 		goto out;
268 	}
269 
270 out:
271 	intel_uncore_write_fw(uncore, ILK_GDSR, 0);
272 	intel_uncore_posting_read_fw(uncore, ILK_GDSR);
273 	return ret;
274 }
275 
276 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
277 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
278 {
279 	struct intel_uncore *uncore = gt->uncore;
280 	int err;
281 
282 	/*
283 	 * GEN6_GDRST is not in the gt power well, no need to check
284 	 * for fifo space for the write or forcewake the chip for
285 	 * the read
286 	 */
287 	intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
288 
289 	/* Wait for the device to ack the reset requests */
290 	err = __intel_wait_for_register_fw(uncore,
291 					   GEN6_GDRST, hw_domain_mask, 0,
292 					   500, 0,
293 					   NULL);
294 	if (err)
295 		GT_TRACE(gt,
296 			 "Wait for 0x%08x engines reset failed\n",
297 			 hw_domain_mask);
298 
299 	return err;
300 }
301 
302 static int gen6_reset_engines(struct intel_gt *gt,
303 			      intel_engine_mask_t engine_mask,
304 			      unsigned int retry)
305 {
306 	struct intel_engine_cs *engine;
307 	u32 hw_mask;
308 
309 	if (engine_mask == ALL_ENGINES) {
310 		hw_mask = GEN6_GRDOM_FULL;
311 	} else {
312 		intel_engine_mask_t tmp;
313 
314 		hw_mask = 0;
315 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
316 			hw_mask |= engine->reset_domain;
317 		}
318 	}
319 
320 	return gen6_hw_domain_reset(gt, hw_mask);
321 }
322 
323 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine)
324 {
325 	int vecs_id;
326 
327 	GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS);
328 
329 	vecs_id = _VECS((engine->instance) / 2);
330 
331 	return engine->gt->engine[vecs_id];
332 }
333 
334 struct sfc_lock_data {
335 	i915_reg_t lock_reg;
336 	i915_reg_t ack_reg;
337 	i915_reg_t usage_reg;
338 	u32 lock_bit;
339 	u32 ack_bit;
340 	u32 usage_bit;
341 	u32 reset_bit;
342 };
343 
344 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine,
345 				     struct sfc_lock_data *sfc_lock)
346 {
347 	switch (engine->class) {
348 	default:
349 		MISSING_CASE(engine->class);
350 		fallthrough;
351 	case VIDEO_DECODE_CLASS:
352 		sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base);
353 		sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
354 
355 		sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
356 		sfc_lock->ack_bit  = GEN11_VCS_SFC_LOCK_ACK_BIT;
357 
358 		sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
359 		sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT;
360 		sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
361 
362 		break;
363 	case VIDEO_ENHANCEMENT_CLASS:
364 		sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base);
365 		sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
366 
367 		sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base);
368 		sfc_lock->ack_bit  = GEN11_VECS_SFC_LOCK_ACK_BIT;
369 
370 		sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base);
371 		sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT;
372 		sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
373 
374 		break;
375 	}
376 }
377 
378 static int gen11_lock_sfc(struct intel_engine_cs *engine,
379 			  u32 *reset_mask,
380 			  u32 *unlock_mask)
381 {
382 	struct intel_uncore *uncore = engine->uncore;
383 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
384 	struct sfc_lock_data sfc_lock;
385 	bool lock_obtained, lock_to_other = false;
386 	int ret;
387 
388 	switch (engine->class) {
389 	case VIDEO_DECODE_CLASS:
390 		if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
391 			return 0;
392 
393 		fallthrough;
394 	case VIDEO_ENHANCEMENT_CLASS:
395 		get_sfc_forced_lock_data(engine, &sfc_lock);
396 
397 		break;
398 	default:
399 		return 0;
400 	}
401 
402 	if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) {
403 		struct intel_engine_cs *paired_vecs;
404 
405 		if (engine->class != VIDEO_DECODE_CLASS ||
406 		    GRAPHICS_VER(engine->i915) != 12)
407 			return 0;
408 
409 		/*
410 		 * Wa_14010733141
411 		 *
412 		 * If the VCS-MFX isn't using the SFC, we also need to check
413 		 * whether VCS-HCP is using it.  If so, we need to issue a *VE*
414 		 * forced lock on the VE engine that shares the same SFC.
415 		 */
416 		if (!(intel_uncore_read_fw(uncore,
417 					   GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) &
418 		      GEN12_HCP_SFC_USAGE_BIT))
419 			return 0;
420 
421 		paired_vecs = find_sfc_paired_vecs_engine(engine);
422 		get_sfc_forced_lock_data(paired_vecs, &sfc_lock);
423 		lock_to_other = true;
424 		*unlock_mask |= paired_vecs->mask;
425 	} else {
426 		*unlock_mask |= engine->mask;
427 	}
428 
429 	/*
430 	 * If the engine is using an SFC, tell the engine that a software reset
431 	 * is going to happen. The engine will then try to force lock the SFC.
432 	 * If SFC ends up being locked to the engine we want to reset, we have
433 	 * to reset it as well (we will unlock it once the reset sequence is
434 	 * completed).
435 	 */
436 	rmw_set_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit);
437 
438 	ret = __intel_wait_for_register_fw(uncore,
439 					   sfc_lock.ack_reg,
440 					   sfc_lock.ack_bit,
441 					   sfc_lock.ack_bit,
442 					   1000, 0, NULL);
443 
444 	/*
445 	 * Was the SFC released while we were trying to lock it?
446 	 *
447 	 * We should reset both the engine and the SFC if:
448 	 *  - We were locking the SFC to this engine and the lock succeeded
449 	 *       OR
450 	 *  - We were locking the SFC to a different engine (Wa_14010733141)
451 	 *    but the SFC was released before the lock was obtained.
452 	 *
453 	 * Otherwise we need only reset the engine by itself and we can
454 	 * leave the SFC alone.
455 	 */
456 	lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) &
457 			sfc_lock.usage_bit) != 0;
458 	if (lock_obtained == lock_to_other)
459 		return 0;
460 
461 	if (ret) {
462 		ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n");
463 		return ret;
464 	}
465 
466 	*reset_mask |= sfc_lock.reset_bit;
467 	return 0;
468 }
469 
470 static void gen11_unlock_sfc(struct intel_engine_cs *engine)
471 {
472 	struct intel_uncore *uncore = engine->uncore;
473 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
474 	struct sfc_lock_data sfc_lock = {};
475 
476 	if (engine->class != VIDEO_DECODE_CLASS &&
477 	    engine->class != VIDEO_ENHANCEMENT_CLASS)
478 		return;
479 
480 	if (engine->class == VIDEO_DECODE_CLASS &&
481 	    (BIT(engine->instance) & vdbox_sfc_access) == 0)
482 		return;
483 
484 	get_sfc_forced_lock_data(engine, &sfc_lock);
485 
486 	rmw_clear_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit);
487 }
488 
489 static int gen11_reset_engines(struct intel_gt *gt,
490 			       intel_engine_mask_t engine_mask,
491 			       unsigned int retry)
492 {
493 	struct intel_engine_cs *engine;
494 	intel_engine_mask_t tmp;
495 	u32 reset_mask, unlock_mask = 0;
496 	int ret;
497 
498 	if (engine_mask == ALL_ENGINES) {
499 		reset_mask = GEN11_GRDOM_FULL;
500 	} else {
501 		reset_mask = 0;
502 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
503 			reset_mask |= engine->reset_domain;
504 			ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask);
505 			if (ret)
506 				goto sfc_unlock;
507 		}
508 	}
509 
510 	ret = gen6_hw_domain_reset(gt, reset_mask);
511 
512 sfc_unlock:
513 	/*
514 	 * We unlock the SFC based on the lock status and not the result of
515 	 * gen11_lock_sfc to make sure that we clean properly if something
516 	 * wrong happened during the lock (e.g. lock acquired after timeout
517 	 * expiration).
518 	 *
519 	 * Due to Wa_14010733141, we may have locked an SFC to an engine that
520 	 * wasn't being reset.  So instead of calling gen11_unlock_sfc()
521 	 * on engine_mask, we instead call it on the mask of engines that our
522 	 * gen11_lock_sfc() calls told us actually had locks attempted.
523 	 */
524 	for_each_engine_masked(engine, gt, unlock_mask, tmp)
525 		gen11_unlock_sfc(engine);
526 
527 	return ret;
528 }
529 
530 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
531 {
532 	struct intel_uncore *uncore = engine->uncore;
533 	const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
534 	u32 request, mask, ack;
535 	int ret;
536 
537 	if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1)))
538 		return -ETIMEDOUT;
539 
540 	ack = intel_uncore_read_fw(uncore, reg);
541 	if (ack & RESET_CTL_CAT_ERROR) {
542 		/*
543 		 * For catastrophic errors, ready-for-reset sequence
544 		 * needs to be bypassed: HAS#396813
545 		 */
546 		request = RESET_CTL_CAT_ERROR;
547 		mask = RESET_CTL_CAT_ERROR;
548 
549 		/* Catastrophic errors need to be cleared by HW */
550 		ack = 0;
551 	} else if (!(ack & RESET_CTL_READY_TO_RESET)) {
552 		request = RESET_CTL_REQUEST_RESET;
553 		mask = RESET_CTL_READY_TO_RESET;
554 		ack = RESET_CTL_READY_TO_RESET;
555 	} else {
556 		return 0;
557 	}
558 
559 	intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
560 	ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
561 					   700, 0, NULL);
562 	if (ret)
563 		drm_err(&engine->i915->drm,
564 			"%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
565 			engine->name, request,
566 			intel_uncore_read_fw(uncore, reg));
567 
568 	return ret;
569 }
570 
571 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
572 {
573 	intel_uncore_write_fw(engine->uncore,
574 			      RING_RESET_CTL(engine->mmio_base),
575 			      _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
576 }
577 
578 static int gen8_reset_engines(struct intel_gt *gt,
579 			      intel_engine_mask_t engine_mask,
580 			      unsigned int retry)
581 {
582 	struct intel_engine_cs *engine;
583 	const bool reset_non_ready = retry >= 1;
584 	intel_engine_mask_t tmp;
585 	int ret;
586 
587 	for_each_engine_masked(engine, gt, engine_mask, tmp) {
588 		ret = gen8_engine_reset_prepare(engine);
589 		if (ret && !reset_non_ready)
590 			goto skip_reset;
591 
592 		/*
593 		 * If this is not the first failed attempt to prepare,
594 		 * we decide to proceed anyway.
595 		 *
596 		 * By doing so we risk context corruption and with
597 		 * some gens (kbl), possible system hang if reset
598 		 * happens during active bb execution.
599 		 *
600 		 * We rather take context corruption instead of
601 		 * failed reset with a wedged driver/gpu. And
602 		 * active bb execution case should be covered by
603 		 * stop_engines() we have before the reset.
604 		 */
605 	}
606 
607 	/*
608 	 * Wa_22011100796:dg2, whenever Full soft reset is required,
609 	 * reset all individual engines firstly, and then do a full soft reset.
610 	 *
611 	 * This is best effort, so ignore any error from the initial reset.
612 	 */
613 	if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES)
614 		gen11_reset_engines(gt, gt->info.engine_mask, 0);
615 
616 	if (GRAPHICS_VER(gt->i915) >= 11)
617 		ret = gen11_reset_engines(gt, engine_mask, retry);
618 	else
619 		ret = gen6_reset_engines(gt, engine_mask, retry);
620 
621 skip_reset:
622 	for_each_engine_masked(engine, gt, engine_mask, tmp)
623 		gen8_engine_reset_cancel(engine);
624 
625 	return ret;
626 }
627 
628 static int mock_reset(struct intel_gt *gt,
629 		      intel_engine_mask_t mask,
630 		      unsigned int retry)
631 {
632 	return 0;
633 }
634 
635 typedef int (*reset_func)(struct intel_gt *,
636 			  intel_engine_mask_t engine_mask,
637 			  unsigned int retry);
638 
639 static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
640 {
641 	struct drm_i915_private *i915 = gt->i915;
642 
643 	if (is_mock_gt(gt))
644 		return mock_reset;
645 	else if (GRAPHICS_VER(i915) >= 8)
646 		return gen8_reset_engines;
647 	else if (GRAPHICS_VER(i915) >= 6)
648 		return gen6_reset_engines;
649 	else if (GRAPHICS_VER(i915) >= 5)
650 		return ilk_do_reset;
651 	else if (IS_G4X(i915))
652 		return g4x_do_reset;
653 	else if (IS_G33(i915) || IS_PINEVIEW(i915))
654 		return g33_do_reset;
655 	else if (GRAPHICS_VER(i915) >= 3)
656 		return i915_do_reset;
657 	else
658 		return NULL;
659 }
660 
661 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
662 {
663 	const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
664 	reset_func reset;
665 	int ret = -ETIMEDOUT;
666 	int retry;
667 
668 	reset = intel_get_gpu_reset(gt);
669 	if (!reset)
670 		return -ENODEV;
671 
672 	/*
673 	 * If the power well sleeps during the reset, the reset
674 	 * request may be dropped and never completes (causing -EIO).
675 	 */
676 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
677 	for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
678 		GT_TRACE(gt, "engine_mask=%x\n", engine_mask);
679 		preempt_disable();
680 		ret = reset(gt, engine_mask, retry);
681 		preempt_enable();
682 	}
683 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
684 
685 	return ret;
686 }
687 
688 bool intel_has_gpu_reset(const struct intel_gt *gt)
689 {
690 	if (!gt->i915->params.reset)
691 		return NULL;
692 
693 	return intel_get_gpu_reset(gt);
694 }
695 
696 bool intel_has_reset_engine(const struct intel_gt *gt)
697 {
698 	if (gt->i915->params.reset < 2)
699 		return false;
700 
701 	return INTEL_INFO(gt->i915)->has_reset_engine;
702 }
703 
704 int intel_reset_guc(struct intel_gt *gt)
705 {
706 	u32 guc_domain =
707 		GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
708 	int ret;
709 
710 	GEM_BUG_ON(!HAS_GT_UC(gt->i915));
711 
712 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
713 	ret = gen6_hw_domain_reset(gt, guc_domain);
714 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
715 
716 	return ret;
717 }
718 
719 /*
720  * Ensure irq handler finishes, and not run again.
721  * Also return the active request so that we only search for it once.
722  */
723 static void reset_prepare_engine(struct intel_engine_cs *engine)
724 {
725 	/*
726 	 * During the reset sequence, we must prevent the engine from
727 	 * entering RC6. As the context state is undefined until we restart
728 	 * the engine, if it does enter RC6 during the reset, the state
729 	 * written to the powercontext is undefined and so we may lose
730 	 * GPU state upon resume, i.e. fail to restart after a reset.
731 	 */
732 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
733 	if (engine->reset.prepare)
734 		engine->reset.prepare(engine);
735 }
736 
737 static void revoke_mmaps(struct intel_gt *gt)
738 {
739 	int i;
740 
741 	for (i = 0; i < gt->ggtt->num_fences; i++) {
742 		struct drm_vma_offset_node *node;
743 		struct i915_vma *vma;
744 		u64 vma_offset;
745 
746 		vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
747 		if (!vma)
748 			continue;
749 
750 		if (!i915_vma_has_userfault(vma))
751 			continue;
752 
753 		GEM_BUG_ON(vma->fence != &gt->ggtt->fence_regs[i]);
754 
755 		if (!vma->mmo)
756 			continue;
757 
758 		node = &vma->mmo->vma_node;
759 		vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
760 
761 		unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
762 				    drm_vma_node_offset_addr(node) + vma_offset,
763 				    vma->size,
764 				    1);
765 	}
766 }
767 
768 static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
769 {
770 	struct intel_engine_cs *engine;
771 	intel_engine_mask_t awake = 0;
772 	enum intel_engine_id id;
773 
774 	for_each_engine(engine, gt, id) {
775 		if (intel_engine_pm_get_if_awake(engine))
776 			awake |= engine->mask;
777 		reset_prepare_engine(engine);
778 	}
779 
780 	intel_uc_reset_prepare(&gt->uc);
781 
782 	return awake;
783 }
784 
785 static void gt_revoke(struct intel_gt *gt)
786 {
787 	revoke_mmaps(gt);
788 }
789 
790 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
791 {
792 	struct intel_engine_cs *engine;
793 	enum intel_engine_id id;
794 	int err;
795 
796 	/*
797 	 * Everything depends on having the GTT running, so we need to start
798 	 * there.
799 	 */
800 	err = i915_ggtt_enable_hw(gt->i915);
801 	if (err)
802 		return err;
803 
804 	local_bh_disable();
805 	for_each_engine(engine, gt, id)
806 		__intel_engine_reset(engine, stalled_mask & engine->mask);
807 	local_bh_enable();
808 
809 	intel_uc_reset(&gt->uc, true);
810 
811 	intel_ggtt_restore_fences(gt->ggtt);
812 
813 	return err;
814 }
815 
816 static void reset_finish_engine(struct intel_engine_cs *engine)
817 {
818 	if (engine->reset.finish)
819 		engine->reset.finish(engine);
820 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
821 
822 	intel_engine_signal_breadcrumbs(engine);
823 }
824 
825 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
826 {
827 	struct intel_engine_cs *engine;
828 	enum intel_engine_id id;
829 
830 	for_each_engine(engine, gt, id) {
831 		reset_finish_engine(engine);
832 		if (awake & engine->mask)
833 			intel_engine_pm_put(engine);
834 	}
835 
836 	intel_uc_reset_finish(&gt->uc);
837 }
838 
839 static void nop_submit_request(struct i915_request *request)
840 {
841 	RQ_TRACE(request, "-EIO\n");
842 
843 	request = i915_request_mark_eio(request);
844 	if (request) {
845 		i915_request_submit(request);
846 		intel_engine_signal_breadcrumbs(request->engine);
847 
848 		i915_request_put(request);
849 	}
850 }
851 
852 static void __intel_gt_set_wedged(struct intel_gt *gt)
853 {
854 	struct intel_engine_cs *engine;
855 	intel_engine_mask_t awake;
856 	enum intel_engine_id id;
857 
858 	if (test_bit(I915_WEDGED, &gt->reset.flags))
859 		return;
860 
861 	GT_TRACE(gt, "start\n");
862 
863 	/*
864 	 * First, stop submission to hw, but do not yet complete requests by
865 	 * rolling the global seqno forward (since this would complete requests
866 	 * for which we haven't set the fence error to EIO yet).
867 	 */
868 	awake = reset_prepare(gt);
869 
870 	/* Even if the GPU reset fails, it should still stop the engines */
871 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
872 		__intel_gt_reset(gt, ALL_ENGINES);
873 
874 	for_each_engine(engine, gt, id)
875 		engine->submit_request = nop_submit_request;
876 
877 	/*
878 	 * Make sure no request can slip through without getting completed by
879 	 * either this call here to intel_engine_write_global_seqno, or the one
880 	 * in nop_submit_request.
881 	 */
882 	synchronize_rcu_expedited();
883 	set_bit(I915_WEDGED, &gt->reset.flags);
884 
885 	/* Mark all executing requests as skipped */
886 	local_bh_disable();
887 	for_each_engine(engine, gt, id)
888 		if (engine->reset.cancel)
889 			engine->reset.cancel(engine);
890 	intel_uc_cancel_requests(&gt->uc);
891 	local_bh_enable();
892 
893 	reset_finish(gt, awake);
894 
895 	GT_TRACE(gt, "end\n");
896 }
897 
898 void intel_gt_set_wedged(struct intel_gt *gt)
899 {
900 	intel_wakeref_t wakeref;
901 
902 	if (test_bit(I915_WEDGED, &gt->reset.flags))
903 		return;
904 
905 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
906 	mutex_lock(&gt->reset.mutex);
907 
908 	if (GEM_SHOW_DEBUG()) {
909 		struct drm_printer p = drm_debug_printer(__func__);
910 		struct intel_engine_cs *engine;
911 		enum intel_engine_id id;
912 
913 		drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
914 		for_each_engine(engine, gt, id) {
915 			if (intel_engine_is_idle(engine))
916 				continue;
917 
918 			intel_engine_dump(engine, &p, "%s\n", engine->name);
919 		}
920 	}
921 
922 	__intel_gt_set_wedged(gt);
923 
924 	mutex_unlock(&gt->reset.mutex);
925 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
926 }
927 
928 static bool __intel_gt_unset_wedged(struct intel_gt *gt)
929 {
930 	struct intel_gt_timelines *timelines = &gt->timelines;
931 	struct intel_timeline *tl;
932 	bool ok;
933 
934 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
935 		return true;
936 
937 	/* Never fully initialised, recovery impossible */
938 	if (intel_gt_has_unrecoverable_error(gt))
939 		return false;
940 
941 	GT_TRACE(gt, "start\n");
942 
943 	/*
944 	 * Before unwedging, make sure that all pending operations
945 	 * are flushed and errored out - we may have requests waiting upon
946 	 * third party fences. We marked all inflight requests as EIO, and
947 	 * every execbuf since returned EIO, for consistency we want all
948 	 * the currently pending requests to also be marked as EIO, which
949 	 * is done inside our nop_submit_request - and so we must wait.
950 	 *
951 	 * No more can be submitted until we reset the wedged bit.
952 	 */
953 	spin_lock(&timelines->lock);
954 	list_for_each_entry(tl, &timelines->active_list, link) {
955 		struct dma_fence *fence;
956 
957 		fence = i915_active_fence_get(&tl->last_request);
958 		if (!fence)
959 			continue;
960 
961 		spin_unlock(&timelines->lock);
962 
963 		/*
964 		 * All internal dependencies (i915_requests) will have
965 		 * been flushed by the set-wedge, but we may be stuck waiting
966 		 * for external fences. These should all be capped to 10s
967 		 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded
968 		 * in the worst case.
969 		 */
970 		dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
971 		dma_fence_put(fence);
972 
973 		/* Restart iteration after droping lock */
974 		spin_lock(&timelines->lock);
975 		tl = list_entry(&timelines->active_list, typeof(*tl), link);
976 	}
977 	spin_unlock(&timelines->lock);
978 
979 	/* We must reset pending GPU events before restoring our submission */
980 	ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
981 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
982 		ok = __intel_gt_reset(gt, ALL_ENGINES) == 0;
983 	if (!ok) {
984 		/*
985 		 * Warn CI about the unrecoverable wedged condition.
986 		 * Time for a reboot.
987 		 */
988 		add_taint_for_CI(gt->i915, TAINT_WARN);
989 		return false;
990 	}
991 
992 	/*
993 	 * Undo nop_submit_request. We prevent all new i915 requests from
994 	 * being queued (by disallowing execbuf whilst wedged) so having
995 	 * waited for all active requests above, we know the system is idle
996 	 * and do not have to worry about a thread being inside
997 	 * engine->submit_request() as we swap over. So unlike installing
998 	 * the nop_submit_request on reset, we can do this from normal
999 	 * context and do not require stop_machine().
1000 	 */
1001 	intel_engines_reset_default_submission(gt);
1002 
1003 	GT_TRACE(gt, "end\n");
1004 
1005 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
1006 	clear_bit(I915_WEDGED, &gt->reset.flags);
1007 
1008 	return true;
1009 }
1010 
1011 bool intel_gt_unset_wedged(struct intel_gt *gt)
1012 {
1013 	bool result;
1014 
1015 	mutex_lock(&gt->reset.mutex);
1016 	result = __intel_gt_unset_wedged(gt);
1017 	mutex_unlock(&gt->reset.mutex);
1018 
1019 	return result;
1020 }
1021 
1022 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
1023 {
1024 	int err, i;
1025 
1026 	err = __intel_gt_reset(gt, ALL_ENGINES);
1027 	for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
1028 		msleep(10 * (i + 1));
1029 		err = __intel_gt_reset(gt, ALL_ENGINES);
1030 	}
1031 	if (err)
1032 		return err;
1033 
1034 	return gt_reset(gt, stalled_mask);
1035 }
1036 
1037 static int resume(struct intel_gt *gt)
1038 {
1039 	struct intel_engine_cs *engine;
1040 	enum intel_engine_id id;
1041 	int ret;
1042 
1043 	for_each_engine(engine, gt, id) {
1044 		ret = intel_engine_resume(engine);
1045 		if (ret)
1046 			return ret;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 /**
1053  * intel_gt_reset - reset chip after a hang
1054  * @gt: #intel_gt to reset
1055  * @stalled_mask: mask of the stalled engines with the guilty requests
1056  * @reason: user error message for why we are resetting
1057  *
1058  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1059  * on failure.
1060  *
1061  * Procedure is fairly simple:
1062  *   - reset the chip using the reset reg
1063  *   - re-init context state
1064  *   - re-init hardware status page
1065  *   - re-init ring buffer
1066  *   - re-init interrupt state
1067  *   - re-init display
1068  */
1069 void intel_gt_reset(struct intel_gt *gt,
1070 		    intel_engine_mask_t stalled_mask,
1071 		    const char *reason)
1072 {
1073 	intel_engine_mask_t awake;
1074 	int ret;
1075 
1076 	GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
1077 
1078 	might_sleep();
1079 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1080 
1081 	/*
1082 	 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence
1083 	 * critical section like gpu reset.
1084 	 */
1085 	gt_revoke(gt);
1086 
1087 	mutex_lock(&gt->reset.mutex);
1088 
1089 	/* Clear any previous failed attempts at recovery. Time to try again. */
1090 	if (!__intel_gt_unset_wedged(gt))
1091 		goto unlock;
1092 
1093 	if (reason)
1094 		drm_notice(&gt->i915->drm,
1095 			   "Resetting chip for %s\n", reason);
1096 	atomic_inc(&gt->i915->gpu_error.reset_count);
1097 
1098 	awake = reset_prepare(gt);
1099 
1100 	if (!intel_has_gpu_reset(gt)) {
1101 		if (gt->i915->params.reset)
1102 			drm_err(&gt->i915->drm, "GPU reset not supported\n");
1103 		else
1104 			drm_dbg(&gt->i915->drm, "GPU reset disabled\n");
1105 		goto error;
1106 	}
1107 
1108 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1109 		intel_runtime_pm_disable_interrupts(gt->i915);
1110 
1111 	if (do_reset(gt, stalled_mask)) {
1112 		drm_err(&gt->i915->drm, "Failed to reset chip\n");
1113 		goto taint;
1114 	}
1115 
1116 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1117 		intel_runtime_pm_enable_interrupts(gt->i915);
1118 
1119 	intel_overlay_reset(gt->i915);
1120 
1121 	/*
1122 	 * Next we need to restore the context, but we don't use those
1123 	 * yet either...
1124 	 *
1125 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1126 	 * was running at the time of the reset (i.e. we weren't VT
1127 	 * switched away).
1128 	 */
1129 	ret = intel_gt_init_hw(gt);
1130 	if (ret) {
1131 		drm_err(&gt->i915->drm,
1132 			"Failed to initialise HW following reset (%d)\n",
1133 			ret);
1134 		goto taint;
1135 	}
1136 
1137 	ret = resume(gt);
1138 	if (ret)
1139 		goto taint;
1140 
1141 finish:
1142 	reset_finish(gt, awake);
1143 unlock:
1144 	mutex_unlock(&gt->reset.mutex);
1145 	return;
1146 
1147 taint:
1148 	/*
1149 	 * History tells us that if we cannot reset the GPU now, we
1150 	 * never will. This then impacts everything that is run
1151 	 * subsequently. On failing the reset, we mark the driver
1152 	 * as wedged, preventing further execution on the GPU.
1153 	 * We also want to go one step further and add a taint to the
1154 	 * kernel so that any subsequent faults can be traced back to
1155 	 * this failure. This is important for CI, where if the
1156 	 * GPU/driver fails we would like to reboot and restart testing
1157 	 * rather than continue on into oblivion. For everyone else,
1158 	 * the system should still plod along, but they have been warned!
1159 	 */
1160 	add_taint_for_CI(gt->i915, TAINT_WARN);
1161 error:
1162 	__intel_gt_set_wedged(gt);
1163 	goto finish;
1164 }
1165 
1166 static int intel_gt_reset_engine(struct intel_engine_cs *engine)
1167 {
1168 	return __intel_gt_reset(engine->gt, engine->mask);
1169 }
1170 
1171 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg)
1172 {
1173 	struct intel_gt *gt = engine->gt;
1174 	int ret;
1175 
1176 	ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
1177 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags));
1178 
1179 	if (intel_engine_uses_guc(engine))
1180 		return -ENODEV;
1181 
1182 	if (!intel_engine_pm_get_if_awake(engine))
1183 		return 0;
1184 
1185 	reset_prepare_engine(engine);
1186 
1187 	if (msg)
1188 		drm_notice(&engine->i915->drm,
1189 			   "Resetting %s for %s\n", engine->name, msg);
1190 	atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]);
1191 
1192 	ret = intel_gt_reset_engine(engine);
1193 	if (ret) {
1194 		/* If we fail here, we expect to fallback to a global reset */
1195 		ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret);
1196 		goto out;
1197 	}
1198 
1199 	/*
1200 	 * The request that caused the hang is stuck on elsp, we know the
1201 	 * active request and can drop it, adjust head to skip the offending
1202 	 * request to resume executing remaining requests in the queue.
1203 	 */
1204 	__intel_engine_reset(engine, true);
1205 
1206 	/*
1207 	 * The engine and its registers (and workarounds in case of render)
1208 	 * have been reset to their default values. Follow the init_ring
1209 	 * process to program RING_MODE, HWSP and re-enable submission.
1210 	 */
1211 	ret = intel_engine_resume(engine);
1212 
1213 out:
1214 	intel_engine_cancel_stop_cs(engine);
1215 	reset_finish_engine(engine);
1216 	intel_engine_pm_put_async(engine);
1217 	return ret;
1218 }
1219 
1220 /**
1221  * intel_engine_reset - reset GPU engine to recover from a hang
1222  * @engine: engine to reset
1223  * @msg: reason for GPU reset; or NULL for no drm_notice()
1224  *
1225  * Reset a specific GPU engine. Useful if a hang is detected.
1226  * Returns zero on successful reset or otherwise an error code.
1227  *
1228  * Procedure is:
1229  *  - identifies the request that caused the hang and it is dropped
1230  *  - reset engine (which will force the engine to idle)
1231  *  - re-init/configure engine
1232  */
1233 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
1234 {
1235 	int err;
1236 
1237 	local_bh_disable();
1238 	err = __intel_engine_reset_bh(engine, msg);
1239 	local_bh_enable();
1240 
1241 	return err;
1242 }
1243 
1244 static void intel_gt_reset_global(struct intel_gt *gt,
1245 				  u32 engine_mask,
1246 				  const char *reason)
1247 {
1248 	struct kobject *kobj = &gt->i915->drm.primary->kdev->kobj;
1249 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1250 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1251 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1252 	struct intel_wedge_me w;
1253 
1254 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
1255 
1256 	GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask);
1257 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
1258 
1259 	/* Use a watchdog to ensure that our reset completes */
1260 	intel_wedge_on_timeout(&w, gt, 5 * HZ) {
1261 		intel_display_prepare_reset(gt->i915);
1262 
1263 		/* Flush everyone using a resource about to be clobbered */
1264 		synchronize_srcu_expedited(&gt->reset.backoff_srcu);
1265 
1266 		intel_gt_reset(gt, engine_mask, reason);
1267 
1268 		intel_display_finish_reset(gt->i915);
1269 	}
1270 
1271 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
1272 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
1273 }
1274 
1275 /**
1276  * intel_gt_handle_error - handle a gpu error
1277  * @gt: the intel_gt
1278  * @engine_mask: mask representing engines that are hung
1279  * @flags: control flags
1280  * @fmt: Error message format string
1281  *
1282  * Do some basic checking of register state at error time and
1283  * dump it to the syslog.  Also call i915_capture_error_state() to make
1284  * sure we get a record and make it available in debugfs.  Fire a uevent
1285  * so userspace knows something bad happened (should trigger collection
1286  * of a ring dump etc.).
1287  */
1288 void intel_gt_handle_error(struct intel_gt *gt,
1289 			   intel_engine_mask_t engine_mask,
1290 			   unsigned long flags,
1291 			   const char *fmt, ...)
1292 {
1293 	struct intel_engine_cs *engine;
1294 	intel_wakeref_t wakeref;
1295 	intel_engine_mask_t tmp;
1296 	char error_msg[80];
1297 	char *msg = NULL;
1298 
1299 	if (fmt) {
1300 		va_list args;
1301 
1302 		va_start(args, fmt);
1303 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
1304 		va_end(args);
1305 
1306 		msg = error_msg;
1307 	}
1308 
1309 	/*
1310 	 * In most cases it's guaranteed that we get here with an RPM
1311 	 * reference held, for example because there is a pending GPU
1312 	 * request that won't finish until the reset is done. This
1313 	 * isn't the case at least when we get here by doing a
1314 	 * simulated reset via debugfs, so get an RPM reference.
1315 	 */
1316 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1317 
1318 	engine_mask &= gt->info.engine_mask;
1319 
1320 	if (flags & I915_ERROR_CAPTURE) {
1321 		i915_capture_error_state(gt, engine_mask);
1322 		intel_gt_clear_error_registers(gt, engine_mask);
1323 	}
1324 
1325 	/*
1326 	 * Try engine reset when available. We fall back to full reset if
1327 	 * single reset fails.
1328 	 */
1329 	if (!intel_uc_uses_guc_submission(&gt->uc) &&
1330 	    intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
1331 		local_bh_disable();
1332 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
1333 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
1334 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1335 					     &gt->reset.flags))
1336 				continue;
1337 
1338 			if (__intel_engine_reset_bh(engine, msg) == 0)
1339 				engine_mask &= ~engine->mask;
1340 
1341 			clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
1342 					      &gt->reset.flags);
1343 		}
1344 		local_bh_enable();
1345 	}
1346 
1347 	if (!engine_mask)
1348 		goto out;
1349 
1350 	/* Full reset needs the mutex, stop any other user trying to do so. */
1351 	if (test_and_set_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1352 		wait_event(gt->reset.queue,
1353 			   !test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1354 		goto out; /* piggy-back on the other reset */
1355 	}
1356 
1357 	/* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
1358 	synchronize_rcu_expedited();
1359 
1360 	/*
1361 	 * Prevent any other reset-engine attempt. We don't do this for GuC
1362 	 * submission the GuC owns the per-engine reset, not the i915.
1363 	 */
1364 	if (!intel_uc_uses_guc_submission(&gt->uc)) {
1365 		for_each_engine(engine, gt, tmp) {
1366 			while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1367 						&gt->reset.flags))
1368 				wait_on_bit(&gt->reset.flags,
1369 					    I915_RESET_ENGINE + engine->id,
1370 					    TASK_UNINTERRUPTIBLE);
1371 		}
1372 	}
1373 
1374 	intel_gt_reset_global(gt, engine_mask, msg);
1375 
1376 	if (!intel_uc_uses_guc_submission(&gt->uc)) {
1377 		for_each_engine(engine, gt, tmp)
1378 			clear_bit_unlock(I915_RESET_ENGINE + engine->id,
1379 					 &gt->reset.flags);
1380 	}
1381 	clear_bit_unlock(I915_RESET_BACKOFF, &gt->reset.flags);
1382 	smp_mb__after_atomic();
1383 	wake_up_all(&gt->reset.queue);
1384 
1385 out:
1386 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1387 }
1388 
1389 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
1390 {
1391 	might_lock(&gt->reset.backoff_srcu);
1392 	might_sleep();
1393 
1394 	rcu_read_lock();
1395 	while (test_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1396 		rcu_read_unlock();
1397 
1398 		if (wait_event_interruptible(gt->reset.queue,
1399 					     !test_bit(I915_RESET_BACKOFF,
1400 						       &gt->reset.flags)))
1401 			return -EINTR;
1402 
1403 		rcu_read_lock();
1404 	}
1405 	*srcu = srcu_read_lock(&gt->reset.backoff_srcu);
1406 	rcu_read_unlock();
1407 
1408 	return 0;
1409 }
1410 
1411 void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
1412 __releases(&gt->reset.backoff_srcu)
1413 {
1414 	srcu_read_unlock(&gt->reset.backoff_srcu, tag);
1415 }
1416 
1417 int intel_gt_terminally_wedged(struct intel_gt *gt)
1418 {
1419 	might_sleep();
1420 
1421 	if (!intel_gt_is_wedged(gt))
1422 		return 0;
1423 
1424 	if (intel_gt_has_unrecoverable_error(gt))
1425 		return -EIO;
1426 
1427 	/* Reset still in progress? Maybe we will recover? */
1428 	if (wait_event_interruptible(gt->reset.queue,
1429 				     !test_bit(I915_RESET_BACKOFF,
1430 					       &gt->reset.flags)))
1431 		return -EINTR;
1432 
1433 	return intel_gt_is_wedged(gt) ? -EIO : 0;
1434 }
1435 
1436 void intel_gt_set_wedged_on_init(struct intel_gt *gt)
1437 {
1438 	BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
1439 		     I915_WEDGED_ON_INIT);
1440 	intel_gt_set_wedged(gt);
1441 	i915_disable_error_state(gt->i915, -ENODEV);
1442 	set_bit(I915_WEDGED_ON_INIT, &gt->reset.flags);
1443 
1444 	/* Wedged on init is non-recoverable */
1445 	add_taint_for_CI(gt->i915, TAINT_WARN);
1446 }
1447 
1448 void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
1449 {
1450 	intel_gt_set_wedged(gt);
1451 	i915_disable_error_state(gt->i915, -ENODEV);
1452 	set_bit(I915_WEDGED_ON_FINI, &gt->reset.flags);
1453 	intel_gt_retire_requests(gt); /* cleanup any wedged requests */
1454 }
1455 
1456 void intel_gt_init_reset(struct intel_gt *gt)
1457 {
1458 	init_waitqueue_head(&gt->reset.queue);
1459 	mutex_init(&gt->reset.mutex);
1460 	init_srcu_struct(&gt->reset.backoff_srcu);
1461 
1462 	/*
1463 	 * While undesirable to wait inside the shrinker, complain anyway.
1464 	 *
1465 	 * If we have to wait during shrinking, we guarantee forward progress
1466 	 * by forcing the reset. Therefore during the reset we must not
1467 	 * re-enter the shrinker. By declaring that we take the reset mutex
1468 	 * within the shrinker, we forbid ourselves from performing any
1469 	 * fs-reclaim or taking related locks during reset.
1470 	 */
1471 	i915_gem_shrinker_taints_mutex(gt->i915, &gt->reset.mutex);
1472 
1473 	/* no GPU until we are ready! */
1474 	__set_bit(I915_WEDGED, &gt->reset.flags);
1475 }
1476 
1477 void intel_gt_fini_reset(struct intel_gt *gt)
1478 {
1479 	cleanup_srcu_struct(&gt->reset.backoff_srcu);
1480 }
1481 
1482 static void intel_wedge_me(struct work_struct *work)
1483 {
1484 	struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
1485 
1486 	drm_err(&w->gt->i915->drm,
1487 		"%s timed out, cancelling all in-flight rendering.\n",
1488 		w->name);
1489 	intel_gt_set_wedged(w->gt);
1490 }
1491 
1492 void __intel_init_wedge(struct intel_wedge_me *w,
1493 			struct intel_gt *gt,
1494 			long timeout,
1495 			const char *name)
1496 {
1497 	w->gt = gt;
1498 	w->name = name;
1499 
1500 	INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
1501 	schedule_delayed_work(&w->work, timeout);
1502 }
1503 
1504 void __intel_fini_wedge(struct intel_wedge_me *w)
1505 {
1506 	cancel_delayed_work_sync(&w->work);
1507 	destroy_delayed_work_on_stack(&w->work);
1508 	w->gt = NULL;
1509 }
1510 
1511 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1512 #include "selftest_reset.c"
1513 #include "selftest_hangcheck.c"
1514 #endif
1515