1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 #include <linux/string_helpers.h> 9 10 #include "display/intel_display.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "gt/intel_gt_regs.h" 16 17 #include "i915_drv.h" 18 #include "i915_file_private.h" 19 #include "i915_gpu_error.h" 20 #include "i915_irq.h" 21 #include "intel_breadcrumbs.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_gt.h" 25 #include "intel_gt_pm.h" 26 #include "intel_gt_requests.h" 27 #include "intel_mchbar_regs.h" 28 #include "intel_pci_config.h" 29 #include "intel_reset.h" 30 31 #include "uc/intel_guc.h" 32 33 #define RESET_MAX_RETRIES 3 34 35 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 36 #define RESET_UNDER_STOP_MACHINE 0 37 38 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 39 { 40 struct drm_i915_file_private *file_priv = ctx->file_priv; 41 unsigned long prev_hang; 42 unsigned int score; 43 44 if (IS_ERR_OR_NULL(file_priv)) 45 return; 46 47 score = 0; 48 if (banned) 49 score = I915_CLIENT_SCORE_CONTEXT_BAN; 50 51 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 52 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 53 score += I915_CLIENT_SCORE_HANG_FAST; 54 55 if (score) { 56 atomic_add(score, &file_priv->ban_score); 57 58 drm_dbg(&ctx->i915->drm, 59 "client %s: gained %u ban score, now %u\n", 60 ctx->name, score, 61 atomic_read(&file_priv->ban_score)); 62 } 63 } 64 65 static bool mark_guilty(struct i915_request *rq) 66 { 67 struct i915_gem_context *ctx; 68 unsigned long prev_hang; 69 bool banned; 70 int i; 71 72 if (intel_context_is_closed(rq->context)) 73 return true; 74 75 rcu_read_lock(); 76 ctx = rcu_dereference(rq->context->gem_context); 77 if (ctx && !kref_get_unless_zero(&ctx->ref)) 78 ctx = NULL; 79 rcu_read_unlock(); 80 if (!ctx) 81 return intel_context_is_banned(rq->context); 82 83 atomic_inc(&ctx->guilty_count); 84 85 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 86 if (!i915_gem_context_is_bannable(ctx)) { 87 banned = false; 88 goto out; 89 } 90 91 drm_notice(&ctx->i915->drm, 92 "%s context reset due to GPU hang\n", 93 ctx->name); 94 95 /* Record the timestamp for the last N hangs */ 96 prev_hang = ctx->hang_timestamp[0]; 97 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 98 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 99 ctx->hang_timestamp[i] = jiffies; 100 101 /* If we have hung N+1 times in rapid succession, we ban the context! */ 102 banned = !i915_gem_context_is_recoverable(ctx); 103 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 104 banned = true; 105 if (banned) 106 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 107 ctx->name, atomic_read(&ctx->guilty_count)); 108 109 client_mark_guilty(ctx, banned); 110 111 out: 112 i915_gem_context_put(ctx); 113 return banned; 114 } 115 116 static void mark_innocent(struct i915_request *rq) 117 { 118 struct i915_gem_context *ctx; 119 120 rcu_read_lock(); 121 ctx = rcu_dereference(rq->context->gem_context); 122 if (ctx) 123 atomic_inc(&ctx->active_count); 124 rcu_read_unlock(); 125 } 126 127 void __i915_request_reset(struct i915_request *rq, bool guilty) 128 { 129 bool banned = false; 130 131 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); 132 GEM_BUG_ON(__i915_request_is_complete(rq)); 133 134 rcu_read_lock(); /* protect the GEM context */ 135 if (guilty) { 136 i915_request_set_error_once(rq, -EIO); 137 __i915_request_skip(rq); 138 banned = mark_guilty(rq); 139 } else { 140 i915_request_set_error_once(rq, -EAGAIN); 141 mark_innocent(rq); 142 } 143 rcu_read_unlock(); 144 145 if (banned) 146 intel_context_ban(rq->context, rq); 147 } 148 149 static bool i915_in_reset(struct pci_dev *pdev) 150 { 151 u8 gdrst; 152 153 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 154 return gdrst & GRDOM_RESET_STATUS; 155 } 156 157 static int i915_do_reset(struct intel_gt *gt, 158 intel_engine_mask_t engine_mask, 159 unsigned int retry) 160 { 161 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 162 int err; 163 164 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 165 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 166 udelay(50); 167 err = wait_for_atomic(i915_in_reset(pdev), 50); 168 169 /* Clear the reset request. */ 170 pci_write_config_byte(pdev, I915_GDRST, 0); 171 udelay(50); 172 if (!err) 173 err = wait_for_atomic(!i915_in_reset(pdev), 50); 174 175 return err; 176 } 177 178 static bool g4x_reset_complete(struct pci_dev *pdev) 179 { 180 u8 gdrst; 181 182 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 183 return (gdrst & GRDOM_RESET_ENABLE) == 0; 184 } 185 186 static int g33_do_reset(struct intel_gt *gt, 187 intel_engine_mask_t engine_mask, 188 unsigned int retry) 189 { 190 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 191 192 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 193 return wait_for_atomic(g4x_reset_complete(pdev), 50); 194 } 195 196 static int g4x_do_reset(struct intel_gt *gt, 197 intel_engine_mask_t engine_mask, 198 unsigned int retry) 199 { 200 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 201 struct intel_uncore *uncore = gt->uncore; 202 int ret; 203 204 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 205 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE); 206 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 207 208 pci_write_config_byte(pdev, I915_GDRST, 209 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 210 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 211 if (ret) { 212 GT_TRACE(gt, "Wait for media reset failed\n"); 213 goto out; 214 } 215 216 pci_write_config_byte(pdev, I915_GDRST, 217 GRDOM_RENDER | GRDOM_RESET_ENABLE); 218 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 219 if (ret) { 220 GT_TRACE(gt, "Wait for render reset failed\n"); 221 goto out; 222 } 223 224 out: 225 pci_write_config_byte(pdev, I915_GDRST, 0); 226 227 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0); 228 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 229 230 return ret; 231 } 232 233 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 234 unsigned int retry) 235 { 236 struct intel_uncore *uncore = gt->uncore; 237 int ret; 238 239 intel_uncore_write_fw(uncore, ILK_GDSR, 240 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 241 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 242 ILK_GRDOM_RESET_ENABLE, 0, 243 5000, 0, 244 NULL); 245 if (ret) { 246 GT_TRACE(gt, "Wait for render reset failed\n"); 247 goto out; 248 } 249 250 intel_uncore_write_fw(uncore, ILK_GDSR, 251 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 252 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 253 ILK_GRDOM_RESET_ENABLE, 0, 254 5000, 0, 255 NULL); 256 if (ret) { 257 GT_TRACE(gt, "Wait for media reset failed\n"); 258 goto out; 259 } 260 261 out: 262 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 263 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 264 return ret; 265 } 266 267 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 268 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 269 { 270 struct intel_uncore *uncore = gt->uncore; 271 int loops = 2; 272 int err; 273 274 /* 275 * GEN6_GDRST is not in the gt power well, no need to check 276 * for fifo space for the write or forcewake the chip for 277 * the read 278 */ 279 do { 280 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 281 282 /* 283 * Wait for the device to ack the reset requests. 284 * 285 * On some platforms, e.g. Jasperlake, we see that the 286 * engine register state is not cleared until shortly after 287 * GDRST reports completion, causing a failure as we try 288 * to immediately resume while the internal state is still 289 * in flux. If we immediately repeat the reset, the second 290 * reset appears to serialise with the first, and since 291 * it is a no-op, the registers should retain their reset 292 * value. However, there is still a concern that upon 293 * leaving the second reset, the internal engine state 294 * is still in flux and not ready for resuming. 295 */ 296 err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, 297 hw_domain_mask, 0, 298 2000, 0, 299 NULL); 300 } while (err == 0 && --loops); 301 if (err) 302 GT_TRACE(gt, 303 "Wait for 0x%08x engines reset failed\n", 304 hw_domain_mask); 305 306 /* 307 * As we have observed that the engine state is still volatile 308 * after GDRST is acked, impose a small delay to let everything settle. 309 */ 310 udelay(50); 311 312 return err; 313 } 314 315 static int __gen6_reset_engines(struct intel_gt *gt, 316 intel_engine_mask_t engine_mask, 317 unsigned int retry) 318 { 319 struct intel_engine_cs *engine; 320 u32 hw_mask; 321 322 if (engine_mask == ALL_ENGINES) { 323 hw_mask = GEN6_GRDOM_FULL; 324 } else { 325 intel_engine_mask_t tmp; 326 327 hw_mask = 0; 328 for_each_engine_masked(engine, gt, engine_mask, tmp) { 329 hw_mask |= engine->reset_domain; 330 } 331 } 332 333 return gen6_hw_domain_reset(gt, hw_mask); 334 } 335 336 static int gen6_reset_engines(struct intel_gt *gt, 337 intel_engine_mask_t engine_mask, 338 unsigned int retry) 339 { 340 unsigned long flags; 341 int ret; 342 343 spin_lock_irqsave(>->uncore->lock, flags); 344 ret = __gen6_reset_engines(gt, engine_mask, retry); 345 spin_unlock_irqrestore(>->uncore->lock, flags); 346 347 return ret; 348 } 349 350 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 351 { 352 int vecs_id; 353 354 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 355 356 vecs_id = _VECS((engine->instance) / 2); 357 358 return engine->gt->engine[vecs_id]; 359 } 360 361 struct sfc_lock_data { 362 i915_reg_t lock_reg; 363 i915_reg_t ack_reg; 364 i915_reg_t usage_reg; 365 u32 lock_bit; 366 u32 ack_bit; 367 u32 usage_bit; 368 u32 reset_bit; 369 }; 370 371 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 372 struct sfc_lock_data *sfc_lock) 373 { 374 switch (engine->class) { 375 default: 376 MISSING_CASE(engine->class); 377 fallthrough; 378 case VIDEO_DECODE_CLASS: 379 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); 380 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 381 382 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 383 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 384 385 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 386 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 387 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 388 389 break; 390 case VIDEO_ENHANCEMENT_CLASS: 391 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); 392 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 393 394 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); 395 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 396 397 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); 398 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 399 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 400 401 break; 402 } 403 } 404 405 static int gen11_lock_sfc(struct intel_engine_cs *engine, 406 u32 *reset_mask, 407 u32 *unlock_mask) 408 { 409 struct intel_uncore *uncore = engine->uncore; 410 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 411 struct sfc_lock_data sfc_lock; 412 bool lock_obtained, lock_to_other = false; 413 int ret; 414 415 switch (engine->class) { 416 case VIDEO_DECODE_CLASS: 417 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 418 return 0; 419 420 fallthrough; 421 case VIDEO_ENHANCEMENT_CLASS: 422 get_sfc_forced_lock_data(engine, &sfc_lock); 423 424 break; 425 default: 426 return 0; 427 } 428 429 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 430 struct intel_engine_cs *paired_vecs; 431 432 if (engine->class != VIDEO_DECODE_CLASS || 433 GRAPHICS_VER(engine->i915) != 12) 434 return 0; 435 436 /* 437 * Wa_14010733141 438 * 439 * If the VCS-MFX isn't using the SFC, we also need to check 440 * whether VCS-HCP is using it. If so, we need to issue a *VE* 441 * forced lock on the VE engine that shares the same SFC. 442 */ 443 if (!(intel_uncore_read_fw(uncore, 444 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & 445 GEN12_HCP_SFC_USAGE_BIT)) 446 return 0; 447 448 paired_vecs = find_sfc_paired_vecs_engine(engine); 449 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 450 lock_to_other = true; 451 *unlock_mask |= paired_vecs->mask; 452 } else { 453 *unlock_mask |= engine->mask; 454 } 455 456 /* 457 * If the engine is using an SFC, tell the engine that a software reset 458 * is going to happen. The engine will then try to force lock the SFC. 459 * If SFC ends up being locked to the engine we want to reset, we have 460 * to reset it as well (we will unlock it once the reset sequence is 461 * completed). 462 */ 463 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit); 464 465 ret = __intel_wait_for_register_fw(uncore, 466 sfc_lock.ack_reg, 467 sfc_lock.ack_bit, 468 sfc_lock.ack_bit, 469 1000, 0, NULL); 470 471 /* 472 * Was the SFC released while we were trying to lock it? 473 * 474 * We should reset both the engine and the SFC if: 475 * - We were locking the SFC to this engine and the lock succeeded 476 * OR 477 * - We were locking the SFC to a different engine (Wa_14010733141) 478 * but the SFC was released before the lock was obtained. 479 * 480 * Otherwise we need only reset the engine by itself and we can 481 * leave the SFC alone. 482 */ 483 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 484 sfc_lock.usage_bit) != 0; 485 if (lock_obtained == lock_to_other) 486 return 0; 487 488 if (ret) { 489 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 490 return ret; 491 } 492 493 *reset_mask |= sfc_lock.reset_bit; 494 return 0; 495 } 496 497 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 498 { 499 struct intel_uncore *uncore = engine->uncore; 500 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 501 struct sfc_lock_data sfc_lock = {}; 502 503 if (engine->class != VIDEO_DECODE_CLASS && 504 engine->class != VIDEO_ENHANCEMENT_CLASS) 505 return; 506 507 if (engine->class == VIDEO_DECODE_CLASS && 508 (BIT(engine->instance) & vdbox_sfc_access) == 0) 509 return; 510 511 get_sfc_forced_lock_data(engine, &sfc_lock); 512 513 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0); 514 } 515 516 static int __gen11_reset_engines(struct intel_gt *gt, 517 intel_engine_mask_t engine_mask, 518 unsigned int retry) 519 { 520 struct intel_engine_cs *engine; 521 intel_engine_mask_t tmp; 522 u32 reset_mask, unlock_mask = 0; 523 int ret; 524 525 if (engine_mask == ALL_ENGINES) { 526 reset_mask = GEN11_GRDOM_FULL; 527 } else { 528 reset_mask = 0; 529 for_each_engine_masked(engine, gt, engine_mask, tmp) { 530 reset_mask |= engine->reset_domain; 531 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 532 if (ret) 533 goto sfc_unlock; 534 } 535 } 536 537 ret = gen6_hw_domain_reset(gt, reset_mask); 538 539 sfc_unlock: 540 /* 541 * We unlock the SFC based on the lock status and not the result of 542 * gen11_lock_sfc to make sure that we clean properly if something 543 * wrong happened during the lock (e.g. lock acquired after timeout 544 * expiration). 545 * 546 * Due to Wa_14010733141, we may have locked an SFC to an engine that 547 * wasn't being reset. So instead of calling gen11_unlock_sfc() 548 * on engine_mask, we instead call it on the mask of engines that our 549 * gen11_lock_sfc() calls told us actually had locks attempted. 550 */ 551 for_each_engine_masked(engine, gt, unlock_mask, tmp) 552 gen11_unlock_sfc(engine); 553 554 return ret; 555 } 556 557 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 558 { 559 struct intel_uncore *uncore = engine->uncore; 560 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 561 u32 request, mask, ack; 562 int ret; 563 564 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 565 return -ETIMEDOUT; 566 567 ack = intel_uncore_read_fw(uncore, reg); 568 if (ack & RESET_CTL_CAT_ERROR) { 569 /* 570 * For catastrophic errors, ready-for-reset sequence 571 * needs to be bypassed: HAS#396813 572 */ 573 request = RESET_CTL_CAT_ERROR; 574 mask = RESET_CTL_CAT_ERROR; 575 576 /* Catastrophic errors need to be cleared by HW */ 577 ack = 0; 578 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 579 request = RESET_CTL_REQUEST_RESET; 580 mask = RESET_CTL_READY_TO_RESET; 581 ack = RESET_CTL_READY_TO_RESET; 582 } else { 583 return 0; 584 } 585 586 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 587 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 588 700, 0, NULL); 589 if (ret) 590 drm_err(&engine->i915->drm, 591 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 592 engine->name, request, 593 intel_uncore_read_fw(uncore, reg)); 594 595 return ret; 596 } 597 598 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 599 { 600 intel_uncore_write_fw(engine->uncore, 601 RING_RESET_CTL(engine->mmio_base), 602 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 603 } 604 605 static int gen8_reset_engines(struct intel_gt *gt, 606 intel_engine_mask_t engine_mask, 607 unsigned int retry) 608 { 609 struct intel_engine_cs *engine; 610 const bool reset_non_ready = retry >= 1; 611 intel_engine_mask_t tmp; 612 unsigned long flags; 613 int ret; 614 615 spin_lock_irqsave(>->uncore->lock, flags); 616 617 for_each_engine_masked(engine, gt, engine_mask, tmp) { 618 ret = gen8_engine_reset_prepare(engine); 619 if (ret && !reset_non_ready) 620 goto skip_reset; 621 622 /* 623 * If this is not the first failed attempt to prepare, 624 * we decide to proceed anyway. 625 * 626 * By doing so we risk context corruption and with 627 * some gens (kbl), possible system hang if reset 628 * happens during active bb execution. 629 * 630 * We rather take context corruption instead of 631 * failed reset with a wedged driver/gpu. And 632 * active bb execution case should be covered by 633 * stop_engines() we have before the reset. 634 */ 635 } 636 637 /* 638 * Wa_22011100796:dg2, whenever Full soft reset is required, 639 * reset all individual engines firstly, and then do a full soft reset. 640 * 641 * This is best effort, so ignore any error from the initial reset. 642 */ 643 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) 644 __gen11_reset_engines(gt, gt->info.engine_mask, 0); 645 646 if (GRAPHICS_VER(gt->i915) >= 11) 647 ret = __gen11_reset_engines(gt, engine_mask, retry); 648 else 649 ret = __gen6_reset_engines(gt, engine_mask, retry); 650 651 skip_reset: 652 for_each_engine_masked(engine, gt, engine_mask, tmp) 653 gen8_engine_reset_cancel(engine); 654 655 spin_unlock_irqrestore(>->uncore->lock, flags); 656 657 return ret; 658 } 659 660 static int mock_reset(struct intel_gt *gt, 661 intel_engine_mask_t mask, 662 unsigned int retry) 663 { 664 return 0; 665 } 666 667 typedef int (*reset_func)(struct intel_gt *, 668 intel_engine_mask_t engine_mask, 669 unsigned int retry); 670 671 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 672 { 673 struct drm_i915_private *i915 = gt->i915; 674 675 if (is_mock_gt(gt)) 676 return mock_reset; 677 else if (GRAPHICS_VER(i915) >= 8) 678 return gen8_reset_engines; 679 else if (GRAPHICS_VER(i915) >= 6) 680 return gen6_reset_engines; 681 else if (GRAPHICS_VER(i915) >= 5) 682 return ilk_do_reset; 683 else if (IS_G4X(i915)) 684 return g4x_do_reset; 685 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 686 return g33_do_reset; 687 else if (GRAPHICS_VER(i915) >= 3) 688 return i915_do_reset; 689 else 690 return NULL; 691 } 692 693 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 694 { 695 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 696 reset_func reset; 697 int ret = -ETIMEDOUT; 698 int retry; 699 700 reset = intel_get_gpu_reset(gt); 701 if (!reset) 702 return -ENODEV; 703 704 /* 705 * If the power well sleeps during the reset, the reset 706 * request may be dropped and never completes (causing -EIO). 707 */ 708 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 709 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 710 GT_TRACE(gt, "engine_mask=%x\n", engine_mask); 711 preempt_disable(); 712 ret = reset(gt, engine_mask, retry); 713 preempt_enable(); 714 } 715 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 716 717 return ret; 718 } 719 720 bool intel_has_gpu_reset(const struct intel_gt *gt) 721 { 722 if (!gt->i915->params.reset) 723 return NULL; 724 725 return intel_get_gpu_reset(gt); 726 } 727 728 bool intel_has_reset_engine(const struct intel_gt *gt) 729 { 730 if (gt->i915->params.reset < 2) 731 return false; 732 733 return INTEL_INFO(gt->i915)->has_reset_engine; 734 } 735 736 int intel_reset_guc(struct intel_gt *gt) 737 { 738 u32 guc_domain = 739 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 740 int ret; 741 742 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 743 744 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 745 ret = gen6_hw_domain_reset(gt, guc_domain); 746 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 747 748 return ret; 749 } 750 751 /* 752 * Ensure irq handler finishes, and not run again. 753 * Also return the active request so that we only search for it once. 754 */ 755 static void reset_prepare_engine(struct intel_engine_cs *engine) 756 { 757 /* 758 * During the reset sequence, we must prevent the engine from 759 * entering RC6. As the context state is undefined until we restart 760 * the engine, if it does enter RC6 during the reset, the state 761 * written to the powercontext is undefined and so we may lose 762 * GPU state upon resume, i.e. fail to restart after a reset. 763 */ 764 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 765 if (engine->reset.prepare) 766 engine->reset.prepare(engine); 767 } 768 769 static void revoke_mmaps(struct intel_gt *gt) 770 { 771 int i; 772 773 for (i = 0; i < gt->ggtt->num_fences; i++) { 774 struct drm_vma_offset_node *node; 775 struct i915_vma *vma; 776 u64 vma_offset; 777 778 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 779 if (!vma) 780 continue; 781 782 if (!i915_vma_has_userfault(vma)) 783 continue; 784 785 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 786 787 if (!vma->mmo) 788 continue; 789 790 node = &vma->mmo->vma_node; 791 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 792 793 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 794 drm_vma_node_offset_addr(node) + vma_offset, 795 vma->size, 796 1); 797 } 798 } 799 800 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 801 { 802 struct intel_engine_cs *engine; 803 intel_engine_mask_t awake = 0; 804 enum intel_engine_id id; 805 806 /* For GuC mode, ensure submission is disabled before stopping ring */ 807 intel_uc_reset_prepare(>->uc); 808 809 for_each_engine(engine, gt, id) { 810 if (intel_engine_pm_get_if_awake(engine)) 811 awake |= engine->mask; 812 reset_prepare_engine(engine); 813 } 814 815 return awake; 816 } 817 818 static void gt_revoke(struct intel_gt *gt) 819 { 820 revoke_mmaps(gt); 821 } 822 823 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 824 { 825 struct intel_engine_cs *engine; 826 enum intel_engine_id id; 827 int err; 828 829 /* 830 * Everything depends on having the GTT running, so we need to start 831 * there. 832 */ 833 err = i915_ggtt_enable_hw(gt->i915); 834 if (err) 835 return err; 836 837 local_bh_disable(); 838 for_each_engine(engine, gt, id) 839 __intel_engine_reset(engine, stalled_mask & engine->mask); 840 local_bh_enable(); 841 842 intel_uc_reset(>->uc, ALL_ENGINES); 843 844 intel_ggtt_restore_fences(gt->ggtt); 845 846 return err; 847 } 848 849 static void reset_finish_engine(struct intel_engine_cs *engine) 850 { 851 if (engine->reset.finish) 852 engine->reset.finish(engine); 853 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 854 855 intel_engine_signal_breadcrumbs(engine); 856 } 857 858 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 859 { 860 struct intel_engine_cs *engine; 861 enum intel_engine_id id; 862 863 for_each_engine(engine, gt, id) { 864 reset_finish_engine(engine); 865 if (awake & engine->mask) 866 intel_engine_pm_put(engine); 867 } 868 869 intel_uc_reset_finish(>->uc); 870 } 871 872 static void nop_submit_request(struct i915_request *request) 873 { 874 RQ_TRACE(request, "-EIO\n"); 875 876 request = i915_request_mark_eio(request); 877 if (request) { 878 i915_request_submit(request); 879 intel_engine_signal_breadcrumbs(request->engine); 880 881 i915_request_put(request); 882 } 883 } 884 885 static void __intel_gt_set_wedged(struct intel_gt *gt) 886 { 887 struct intel_engine_cs *engine; 888 intel_engine_mask_t awake; 889 enum intel_engine_id id; 890 891 if (test_bit(I915_WEDGED, >->reset.flags)) 892 return; 893 894 GT_TRACE(gt, "start\n"); 895 896 /* 897 * First, stop submission to hw, but do not yet complete requests by 898 * rolling the global seqno forward (since this would complete requests 899 * for which we haven't set the fence error to EIO yet). 900 */ 901 awake = reset_prepare(gt); 902 903 /* Even if the GPU reset fails, it should still stop the engines */ 904 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 905 __intel_gt_reset(gt, ALL_ENGINES); 906 907 for_each_engine(engine, gt, id) 908 engine->submit_request = nop_submit_request; 909 910 /* 911 * Make sure no request can slip through without getting completed by 912 * either this call here to intel_engine_write_global_seqno, or the one 913 * in nop_submit_request. 914 */ 915 synchronize_rcu_expedited(); 916 set_bit(I915_WEDGED, >->reset.flags); 917 918 /* Mark all executing requests as skipped */ 919 local_bh_disable(); 920 for_each_engine(engine, gt, id) 921 if (engine->reset.cancel) 922 engine->reset.cancel(engine); 923 intel_uc_cancel_requests(>->uc); 924 local_bh_enable(); 925 926 reset_finish(gt, awake); 927 928 GT_TRACE(gt, "end\n"); 929 } 930 931 void intel_gt_set_wedged(struct intel_gt *gt) 932 { 933 intel_wakeref_t wakeref; 934 935 if (test_bit(I915_WEDGED, >->reset.flags)) 936 return; 937 938 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 939 mutex_lock(>->reset.mutex); 940 941 if (GEM_SHOW_DEBUG()) { 942 struct drm_printer p = drm_debug_printer(__func__); 943 struct intel_engine_cs *engine; 944 enum intel_engine_id id; 945 946 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 947 for_each_engine(engine, gt, id) { 948 if (intel_engine_is_idle(engine)) 949 continue; 950 951 intel_engine_dump(engine, &p, "%s\n", engine->name); 952 } 953 } 954 955 __intel_gt_set_wedged(gt); 956 957 mutex_unlock(>->reset.mutex); 958 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 959 } 960 961 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 962 { 963 struct intel_gt_timelines *timelines = >->timelines; 964 struct intel_timeline *tl; 965 bool ok; 966 967 if (!test_bit(I915_WEDGED, >->reset.flags)) 968 return true; 969 970 /* Never fully initialised, recovery impossible */ 971 if (intel_gt_has_unrecoverable_error(gt)) 972 return false; 973 974 GT_TRACE(gt, "start\n"); 975 976 /* 977 * Before unwedging, make sure that all pending operations 978 * are flushed and errored out - we may have requests waiting upon 979 * third party fences. We marked all inflight requests as EIO, and 980 * every execbuf since returned EIO, for consistency we want all 981 * the currently pending requests to also be marked as EIO, which 982 * is done inside our nop_submit_request - and so we must wait. 983 * 984 * No more can be submitted until we reset the wedged bit. 985 */ 986 spin_lock(&timelines->lock); 987 list_for_each_entry(tl, &timelines->active_list, link) { 988 struct dma_fence *fence; 989 990 fence = i915_active_fence_get(&tl->last_request); 991 if (!fence) 992 continue; 993 994 spin_unlock(&timelines->lock); 995 996 /* 997 * All internal dependencies (i915_requests) will have 998 * been flushed by the set-wedge, but we may be stuck waiting 999 * for external fences. These should all be capped to 10s 1000 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 1001 * in the worst case. 1002 */ 1003 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 1004 dma_fence_put(fence); 1005 1006 /* Restart iteration after droping lock */ 1007 spin_lock(&timelines->lock); 1008 tl = list_entry(&timelines->active_list, typeof(*tl), link); 1009 } 1010 spin_unlock(&timelines->lock); 1011 1012 /* We must reset pending GPU events before restoring our submission */ 1013 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 1014 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1015 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 1016 if (!ok) { 1017 /* 1018 * Warn CI about the unrecoverable wedged condition. 1019 * Time for a reboot. 1020 */ 1021 add_taint_for_CI(gt->i915, TAINT_WARN); 1022 return false; 1023 } 1024 1025 /* 1026 * Undo nop_submit_request. We prevent all new i915 requests from 1027 * being queued (by disallowing execbuf whilst wedged) so having 1028 * waited for all active requests above, we know the system is idle 1029 * and do not have to worry about a thread being inside 1030 * engine->submit_request() as we swap over. So unlike installing 1031 * the nop_submit_request on reset, we can do this from normal 1032 * context and do not require stop_machine(). 1033 */ 1034 intel_engines_reset_default_submission(gt); 1035 1036 GT_TRACE(gt, "end\n"); 1037 1038 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 1039 clear_bit(I915_WEDGED, >->reset.flags); 1040 1041 return true; 1042 } 1043 1044 bool intel_gt_unset_wedged(struct intel_gt *gt) 1045 { 1046 bool result; 1047 1048 mutex_lock(>->reset.mutex); 1049 result = __intel_gt_unset_wedged(gt); 1050 mutex_unlock(>->reset.mutex); 1051 1052 return result; 1053 } 1054 1055 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1056 { 1057 int err, i; 1058 1059 err = __intel_gt_reset(gt, ALL_ENGINES); 1060 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1061 msleep(10 * (i + 1)); 1062 err = __intel_gt_reset(gt, ALL_ENGINES); 1063 } 1064 if (err) 1065 return err; 1066 1067 return gt_reset(gt, stalled_mask); 1068 } 1069 1070 static int resume(struct intel_gt *gt) 1071 { 1072 struct intel_engine_cs *engine; 1073 enum intel_engine_id id; 1074 int ret; 1075 1076 for_each_engine(engine, gt, id) { 1077 ret = intel_engine_resume(engine); 1078 if (ret) 1079 return ret; 1080 } 1081 1082 return 0; 1083 } 1084 1085 /** 1086 * intel_gt_reset - reset chip after a hang 1087 * @gt: #intel_gt to reset 1088 * @stalled_mask: mask of the stalled engines with the guilty requests 1089 * @reason: user error message for why we are resetting 1090 * 1091 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1092 * on failure. 1093 * 1094 * Procedure is fairly simple: 1095 * - reset the chip using the reset reg 1096 * - re-init context state 1097 * - re-init hardware status page 1098 * - re-init ring buffer 1099 * - re-init interrupt state 1100 * - re-init display 1101 */ 1102 void intel_gt_reset(struct intel_gt *gt, 1103 intel_engine_mask_t stalled_mask, 1104 const char *reason) 1105 { 1106 intel_engine_mask_t awake; 1107 int ret; 1108 1109 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1110 1111 might_sleep(); 1112 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1113 1114 /* 1115 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1116 * critical section like gpu reset. 1117 */ 1118 gt_revoke(gt); 1119 1120 mutex_lock(>->reset.mutex); 1121 1122 /* Clear any previous failed attempts at recovery. Time to try again. */ 1123 if (!__intel_gt_unset_wedged(gt)) 1124 goto unlock; 1125 1126 if (reason) 1127 drm_notice(>->i915->drm, 1128 "Resetting chip for %s\n", reason); 1129 atomic_inc(>->i915->gpu_error.reset_count); 1130 1131 awake = reset_prepare(gt); 1132 1133 if (!intel_has_gpu_reset(gt)) { 1134 if (gt->i915->params.reset) 1135 drm_err(>->i915->drm, "GPU reset not supported\n"); 1136 else 1137 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1138 goto error; 1139 } 1140 1141 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1142 intel_runtime_pm_disable_interrupts(gt->i915); 1143 1144 if (do_reset(gt, stalled_mask)) { 1145 drm_err(>->i915->drm, "Failed to reset chip\n"); 1146 goto taint; 1147 } 1148 1149 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1150 intel_runtime_pm_enable_interrupts(gt->i915); 1151 1152 intel_overlay_reset(gt->i915); 1153 1154 /* 1155 * Next we need to restore the context, but we don't use those 1156 * yet either... 1157 * 1158 * Ring buffer needs to be re-initialized in the KMS case, or if X 1159 * was running at the time of the reset (i.e. we weren't VT 1160 * switched away). 1161 */ 1162 ret = intel_gt_init_hw(gt); 1163 if (ret) { 1164 drm_err(>->i915->drm, 1165 "Failed to initialise HW following reset (%d)\n", 1166 ret); 1167 goto taint; 1168 } 1169 1170 ret = resume(gt); 1171 if (ret) 1172 goto taint; 1173 1174 finish: 1175 reset_finish(gt, awake); 1176 unlock: 1177 mutex_unlock(>->reset.mutex); 1178 return; 1179 1180 taint: 1181 /* 1182 * History tells us that if we cannot reset the GPU now, we 1183 * never will. This then impacts everything that is run 1184 * subsequently. On failing the reset, we mark the driver 1185 * as wedged, preventing further execution on the GPU. 1186 * We also want to go one step further and add a taint to the 1187 * kernel so that any subsequent faults can be traced back to 1188 * this failure. This is important for CI, where if the 1189 * GPU/driver fails we would like to reboot and restart testing 1190 * rather than continue on into oblivion. For everyone else, 1191 * the system should still plod along, but they have been warned! 1192 */ 1193 add_taint_for_CI(gt->i915, TAINT_WARN); 1194 error: 1195 __intel_gt_set_wedged(gt); 1196 goto finish; 1197 } 1198 1199 static int intel_gt_reset_engine(struct intel_engine_cs *engine) 1200 { 1201 return __intel_gt_reset(engine->gt, engine->mask); 1202 } 1203 1204 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1205 { 1206 struct intel_gt *gt = engine->gt; 1207 int ret; 1208 1209 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1210 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1211 1212 if (intel_engine_uses_guc(engine)) 1213 return -ENODEV; 1214 1215 if (!intel_engine_pm_get_if_awake(engine)) 1216 return 0; 1217 1218 reset_prepare_engine(engine); 1219 1220 if (msg) 1221 drm_notice(&engine->i915->drm, 1222 "Resetting %s for %s\n", engine->name, msg); 1223 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1224 1225 ret = intel_gt_reset_engine(engine); 1226 if (ret) { 1227 /* If we fail here, we expect to fallback to a global reset */ 1228 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1229 goto out; 1230 } 1231 1232 /* 1233 * The request that caused the hang is stuck on elsp, we know the 1234 * active request and can drop it, adjust head to skip the offending 1235 * request to resume executing remaining requests in the queue. 1236 */ 1237 __intel_engine_reset(engine, true); 1238 1239 /* 1240 * The engine and its registers (and workarounds in case of render) 1241 * have been reset to their default values. Follow the init_ring 1242 * process to program RING_MODE, HWSP and re-enable submission. 1243 */ 1244 ret = intel_engine_resume(engine); 1245 1246 out: 1247 intel_engine_cancel_stop_cs(engine); 1248 reset_finish_engine(engine); 1249 intel_engine_pm_put_async(engine); 1250 return ret; 1251 } 1252 1253 /** 1254 * intel_engine_reset - reset GPU engine to recover from a hang 1255 * @engine: engine to reset 1256 * @msg: reason for GPU reset; or NULL for no drm_notice() 1257 * 1258 * Reset a specific GPU engine. Useful if a hang is detected. 1259 * Returns zero on successful reset or otherwise an error code. 1260 * 1261 * Procedure is: 1262 * - identifies the request that caused the hang and it is dropped 1263 * - reset engine (which will force the engine to idle) 1264 * - re-init/configure engine 1265 */ 1266 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1267 { 1268 int err; 1269 1270 local_bh_disable(); 1271 err = __intel_engine_reset_bh(engine, msg); 1272 local_bh_enable(); 1273 1274 return err; 1275 } 1276 1277 static void intel_gt_reset_global(struct intel_gt *gt, 1278 u32 engine_mask, 1279 const char *reason) 1280 { 1281 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1282 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1283 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1284 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1285 struct intel_wedge_me w; 1286 1287 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1288 1289 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1290 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1291 1292 /* Use a watchdog to ensure that our reset completes */ 1293 intel_wedge_on_timeout(&w, gt, 60 * HZ) { 1294 intel_display_prepare_reset(gt->i915); 1295 1296 intel_gt_reset(gt, engine_mask, reason); 1297 1298 intel_display_finish_reset(gt->i915); 1299 } 1300 1301 if (!test_bit(I915_WEDGED, >->reset.flags)) 1302 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1303 } 1304 1305 /** 1306 * intel_gt_handle_error - handle a gpu error 1307 * @gt: the intel_gt 1308 * @engine_mask: mask representing engines that are hung 1309 * @flags: control flags 1310 * @fmt: Error message format string 1311 * 1312 * Do some basic checking of register state at error time and 1313 * dump it to the syslog. Also call i915_capture_error_state() to make 1314 * sure we get a record and make it available in debugfs. Fire a uevent 1315 * so userspace knows something bad happened (should trigger collection 1316 * of a ring dump etc.). 1317 */ 1318 void intel_gt_handle_error(struct intel_gt *gt, 1319 intel_engine_mask_t engine_mask, 1320 unsigned long flags, 1321 const char *fmt, ...) 1322 { 1323 struct intel_engine_cs *engine; 1324 intel_wakeref_t wakeref; 1325 intel_engine_mask_t tmp; 1326 char error_msg[80]; 1327 char *msg = NULL; 1328 1329 if (fmt) { 1330 va_list args; 1331 1332 va_start(args, fmt); 1333 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1334 va_end(args); 1335 1336 msg = error_msg; 1337 } 1338 1339 /* 1340 * In most cases it's guaranteed that we get here with an RPM 1341 * reference held, for example because there is a pending GPU 1342 * request that won't finish until the reset is done. This 1343 * isn't the case at least when we get here by doing a 1344 * simulated reset via debugfs, so get an RPM reference. 1345 */ 1346 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1347 1348 engine_mask &= gt->info.engine_mask; 1349 1350 if (flags & I915_ERROR_CAPTURE) { 1351 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); 1352 intel_gt_clear_error_registers(gt, engine_mask); 1353 } 1354 1355 /* 1356 * Try engine reset when available. We fall back to full reset if 1357 * single reset fails. 1358 */ 1359 if (!intel_uc_uses_guc_submission(>->uc) && 1360 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1361 local_bh_disable(); 1362 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1363 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1364 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1365 >->reset.flags)) 1366 continue; 1367 1368 if (__intel_engine_reset_bh(engine, msg) == 0) 1369 engine_mask &= ~engine->mask; 1370 1371 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1372 >->reset.flags); 1373 } 1374 local_bh_enable(); 1375 } 1376 1377 if (!engine_mask) 1378 goto out; 1379 1380 /* Full reset needs the mutex, stop any other user trying to do so. */ 1381 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1382 wait_event(gt->reset.queue, 1383 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1384 goto out; /* piggy-back on the other reset */ 1385 } 1386 1387 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1388 synchronize_rcu_expedited(); 1389 1390 /* 1391 * Prevent any other reset-engine attempt. We don't do this for GuC 1392 * submission the GuC owns the per-engine reset, not the i915. 1393 */ 1394 if (!intel_uc_uses_guc_submission(>->uc)) { 1395 for_each_engine(engine, gt, tmp) { 1396 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1397 >->reset.flags)) 1398 wait_on_bit(>->reset.flags, 1399 I915_RESET_ENGINE + engine->id, 1400 TASK_UNINTERRUPTIBLE); 1401 } 1402 } 1403 1404 /* Flush everyone using a resource about to be clobbered */ 1405 synchronize_srcu_expedited(>->reset.backoff_srcu); 1406 1407 intel_gt_reset_global(gt, engine_mask, msg); 1408 1409 if (!intel_uc_uses_guc_submission(>->uc)) { 1410 for_each_engine(engine, gt, tmp) 1411 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1412 >->reset.flags); 1413 } 1414 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1415 smp_mb__after_atomic(); 1416 wake_up_all(>->reset.queue); 1417 1418 out: 1419 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1420 } 1421 1422 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) 1423 { 1424 might_lock(>->reset.backoff_srcu); 1425 if (retry) 1426 might_sleep(); 1427 1428 rcu_read_lock(); 1429 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1430 rcu_read_unlock(); 1431 1432 if (!retry) 1433 return -EBUSY; 1434 1435 if (wait_event_interruptible(gt->reset.queue, 1436 !test_bit(I915_RESET_BACKOFF, 1437 >->reset.flags))) 1438 return -EINTR; 1439 1440 rcu_read_lock(); 1441 } 1442 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1443 rcu_read_unlock(); 1444 1445 return 0; 1446 } 1447 1448 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1449 { 1450 return _intel_gt_reset_lock(gt, srcu, false); 1451 } 1452 1453 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) 1454 { 1455 return _intel_gt_reset_lock(gt, srcu, true); 1456 } 1457 1458 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1459 __releases(>->reset.backoff_srcu) 1460 { 1461 srcu_read_unlock(>->reset.backoff_srcu, tag); 1462 } 1463 1464 int intel_gt_terminally_wedged(struct intel_gt *gt) 1465 { 1466 might_sleep(); 1467 1468 if (!intel_gt_is_wedged(gt)) 1469 return 0; 1470 1471 if (intel_gt_has_unrecoverable_error(gt)) 1472 return -EIO; 1473 1474 /* Reset still in progress? Maybe we will recover? */ 1475 if (wait_event_interruptible(gt->reset.queue, 1476 !test_bit(I915_RESET_BACKOFF, 1477 >->reset.flags))) 1478 return -EINTR; 1479 1480 return intel_gt_is_wedged(gt) ? -EIO : 0; 1481 } 1482 1483 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1484 { 1485 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1486 I915_WEDGED_ON_INIT); 1487 intel_gt_set_wedged(gt); 1488 i915_disable_error_state(gt->i915, -ENODEV); 1489 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1490 1491 /* Wedged on init is non-recoverable */ 1492 add_taint_for_CI(gt->i915, TAINT_WARN); 1493 } 1494 1495 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1496 { 1497 intel_gt_set_wedged(gt); 1498 i915_disable_error_state(gt->i915, -ENODEV); 1499 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1500 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1501 } 1502 1503 void intel_gt_init_reset(struct intel_gt *gt) 1504 { 1505 init_waitqueue_head(>->reset.queue); 1506 mutex_init(>->reset.mutex); 1507 init_srcu_struct(>->reset.backoff_srcu); 1508 1509 /* 1510 * While undesirable to wait inside the shrinker, complain anyway. 1511 * 1512 * If we have to wait during shrinking, we guarantee forward progress 1513 * by forcing the reset. Therefore during the reset we must not 1514 * re-enter the shrinker. By declaring that we take the reset mutex 1515 * within the shrinker, we forbid ourselves from performing any 1516 * fs-reclaim or taking related locks during reset. 1517 */ 1518 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1519 1520 /* no GPU until we are ready! */ 1521 __set_bit(I915_WEDGED, >->reset.flags); 1522 } 1523 1524 void intel_gt_fini_reset(struct intel_gt *gt) 1525 { 1526 cleanup_srcu_struct(>->reset.backoff_srcu); 1527 } 1528 1529 static void intel_wedge_me(struct work_struct *work) 1530 { 1531 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1532 1533 drm_err(&w->gt->i915->drm, 1534 "%s timed out, cancelling all in-flight rendering.\n", 1535 w->name); 1536 intel_gt_set_wedged(w->gt); 1537 } 1538 1539 void __intel_init_wedge(struct intel_wedge_me *w, 1540 struct intel_gt *gt, 1541 long timeout, 1542 const char *name) 1543 { 1544 w->gt = gt; 1545 w->name = name; 1546 1547 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1548 schedule_delayed_work(&w->work, timeout); 1549 } 1550 1551 void __intel_fini_wedge(struct intel_wedge_me *w) 1552 { 1553 cancel_delayed_work_sync(&w->work); 1554 destroy_delayed_work_on_stack(&w->work); 1555 w->gt = NULL; 1556 } 1557 1558 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1559 #include "selftest_reset.c" 1560 #include "selftest_hangcheck.c" 1561 #endif 1562