xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_reset.c (revision 12a6e62bfdcad8be49644b6dcf70c15e0e6bab6b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008-2018 Intel Corporation
4  */
5 
6 #include <linux/sched/mm.h>
7 #include <linux/stop_machine.h>
8 #include <linux/string_helpers.h>
9 
10 #include "display/intel_display_reset.h"
11 #include "display/intel_overlay.h"
12 
13 #include "gem/i915_gem_context.h"
14 
15 #include "gt/intel_gt_regs.h"
16 
17 #include "gt/uc/intel_gsc_fw.h"
18 
19 #include "i915_drv.h"
20 #include "i915_file_private.h"
21 #include "i915_gpu_error.h"
22 #include "i915_irq.h"
23 #include "i915_reg.h"
24 #include "intel_breadcrumbs.h"
25 #include "intel_engine_pm.h"
26 #include "intel_engine_regs.h"
27 #include "intel_gt.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_mchbar_regs.h"
31 #include "intel_pci_config.h"
32 #include "intel_reset.h"
33 
34 #include "uc/intel_guc.h"
35 
36 #define RESET_MAX_RETRIES 3
37 
38 /* XXX How to handle concurrent GGTT updates using tiling registers? */
39 #define RESET_UNDER_STOP_MACHINE 0
40 
41 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
42 {
43 	struct drm_i915_file_private *file_priv = ctx->file_priv;
44 	unsigned long prev_hang;
45 	unsigned int score;
46 
47 	if (IS_ERR_OR_NULL(file_priv))
48 		return;
49 
50 	score = 0;
51 	if (banned)
52 		score = I915_CLIENT_SCORE_CONTEXT_BAN;
53 
54 	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
55 	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
56 		score += I915_CLIENT_SCORE_HANG_FAST;
57 
58 	if (score) {
59 		atomic_add(score, &file_priv->ban_score);
60 
61 		drm_dbg(&ctx->i915->drm,
62 			"client %s: gained %u ban score, now %u\n",
63 			ctx->name, score,
64 			atomic_read(&file_priv->ban_score));
65 	}
66 }
67 
68 static bool mark_guilty(struct i915_request *rq)
69 {
70 	struct i915_gem_context *ctx;
71 	unsigned long prev_hang;
72 	bool banned;
73 	int i;
74 
75 	if (intel_context_is_closed(rq->context))
76 		return true;
77 
78 	rcu_read_lock();
79 	ctx = rcu_dereference(rq->context->gem_context);
80 	if (ctx && !kref_get_unless_zero(&ctx->ref))
81 		ctx = NULL;
82 	rcu_read_unlock();
83 	if (!ctx)
84 		return intel_context_is_banned(rq->context);
85 
86 	atomic_inc(&ctx->guilty_count);
87 
88 	/* Cool contexts are too cool to be banned! (Used for reset testing.) */
89 	if (!i915_gem_context_is_bannable(ctx)) {
90 		banned = false;
91 		goto out;
92 	}
93 
94 	drm_notice(&ctx->i915->drm,
95 		   "%s context reset due to GPU hang\n",
96 		   ctx->name);
97 
98 	/* Record the timestamp for the last N hangs */
99 	prev_hang = ctx->hang_timestamp[0];
100 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
101 		ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
102 	ctx->hang_timestamp[i] = jiffies;
103 
104 	/* If we have hung N+1 times in rapid succession, we ban the context! */
105 	banned = !i915_gem_context_is_recoverable(ctx);
106 	if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
107 		banned = true;
108 	if (banned)
109 		drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
110 			ctx->name, atomic_read(&ctx->guilty_count));
111 
112 	client_mark_guilty(ctx, banned);
113 
114 out:
115 	i915_gem_context_put(ctx);
116 	return banned;
117 }
118 
119 static void mark_innocent(struct i915_request *rq)
120 {
121 	struct i915_gem_context *ctx;
122 
123 	rcu_read_lock();
124 	ctx = rcu_dereference(rq->context->gem_context);
125 	if (ctx)
126 		atomic_inc(&ctx->active_count);
127 	rcu_read_unlock();
128 }
129 
130 void __i915_request_reset(struct i915_request *rq, bool guilty)
131 {
132 	bool banned = false;
133 
134 	RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty));
135 	GEM_BUG_ON(__i915_request_is_complete(rq));
136 
137 	rcu_read_lock(); /* protect the GEM context */
138 	if (guilty) {
139 		i915_request_set_error_once(rq, -EIO);
140 		__i915_request_skip(rq);
141 		banned = mark_guilty(rq);
142 	} else {
143 		i915_request_set_error_once(rq, -EAGAIN);
144 		mark_innocent(rq);
145 	}
146 	rcu_read_unlock();
147 
148 	if (banned)
149 		intel_context_ban(rq->context, rq);
150 }
151 
152 static bool i915_in_reset(struct pci_dev *pdev)
153 {
154 	u8 gdrst;
155 
156 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
157 	return gdrst & GRDOM_RESET_STATUS;
158 }
159 
160 static int i915_do_reset(struct intel_gt *gt,
161 			 intel_engine_mask_t engine_mask,
162 			 unsigned int retry)
163 {
164 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
165 	int err;
166 
167 	/* Assert reset for at least 20 usec, and wait for acknowledgement. */
168 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
169 	udelay(50);
170 	err = wait_for_atomic(i915_in_reset(pdev), 50);
171 
172 	/* Clear the reset request. */
173 	pci_write_config_byte(pdev, I915_GDRST, 0);
174 	udelay(50);
175 	if (!err)
176 		err = wait_for_atomic(!i915_in_reset(pdev), 50);
177 
178 	return err;
179 }
180 
181 static bool g4x_reset_complete(struct pci_dev *pdev)
182 {
183 	u8 gdrst;
184 
185 	pci_read_config_byte(pdev, I915_GDRST, &gdrst);
186 	return (gdrst & GRDOM_RESET_ENABLE) == 0;
187 }
188 
189 static int g33_do_reset(struct intel_gt *gt,
190 			intel_engine_mask_t engine_mask,
191 			unsigned int retry)
192 {
193 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
194 
195 	pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
196 	return wait_for_atomic(g4x_reset_complete(pdev), 50);
197 }
198 
199 static int g4x_do_reset(struct intel_gt *gt,
200 			intel_engine_mask_t engine_mask,
201 			unsigned int retry)
202 {
203 	struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
204 	struct intel_uncore *uncore = gt->uncore;
205 	int ret;
206 
207 	/* WaVcpClkGateDisableForMediaReset:ctg,elk */
208 	intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE);
209 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
210 
211 	pci_write_config_byte(pdev, I915_GDRST,
212 			      GRDOM_MEDIA | GRDOM_RESET_ENABLE);
213 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
214 	if (ret) {
215 		GT_TRACE(gt, "Wait for media reset failed\n");
216 		goto out;
217 	}
218 
219 	pci_write_config_byte(pdev, I915_GDRST,
220 			      GRDOM_RENDER | GRDOM_RESET_ENABLE);
221 	ret =  wait_for_atomic(g4x_reset_complete(pdev), 50);
222 	if (ret) {
223 		GT_TRACE(gt, "Wait for render reset failed\n");
224 		goto out;
225 	}
226 
227 out:
228 	pci_write_config_byte(pdev, I915_GDRST, 0);
229 
230 	intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0);
231 	intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
232 
233 	return ret;
234 }
235 
236 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
237 			unsigned int retry)
238 {
239 	struct intel_uncore *uncore = gt->uncore;
240 	int ret;
241 
242 	intel_uncore_write_fw(uncore, ILK_GDSR,
243 			      ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
244 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
245 					   ILK_GRDOM_RESET_ENABLE, 0,
246 					   5000, 0,
247 					   NULL);
248 	if (ret) {
249 		GT_TRACE(gt, "Wait for render reset failed\n");
250 		goto out;
251 	}
252 
253 	intel_uncore_write_fw(uncore, ILK_GDSR,
254 			      ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
255 	ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
256 					   ILK_GRDOM_RESET_ENABLE, 0,
257 					   5000, 0,
258 					   NULL);
259 	if (ret) {
260 		GT_TRACE(gt, "Wait for media reset failed\n");
261 		goto out;
262 	}
263 
264 out:
265 	intel_uncore_write_fw(uncore, ILK_GDSR, 0);
266 	intel_uncore_posting_read_fw(uncore, ILK_GDSR);
267 	return ret;
268 }
269 
270 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
271 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
272 {
273 	struct intel_uncore *uncore = gt->uncore;
274 	int loops;
275 	int err;
276 
277 	/*
278 	 * On some platforms, e.g. Jasperlake, we see that the engine register
279 	 * state is not cleared until shortly after GDRST reports completion,
280 	 * causing a failure as we try to immediately resume while the internal
281 	 * state is still in flux. If we immediately repeat the reset, the
282 	 * second reset appears to serialise with the first, and since it is a
283 	 * no-op, the registers should retain their reset value. However, there
284 	 * is still a concern that upon leaving the second reset, the internal
285 	 * engine state is still in flux and not ready for resuming.
286 	 *
287 	 * Starting on MTL, there are some prep steps that we need to do when
288 	 * resetting some engines that need to be applied every time we write to
289 	 * GEN6_GDRST. As those are time consuming (tens of ms), we don't want
290 	 * to perform that twice, so, since the Jasperlake issue hasn't been
291 	 * observed on MTL, we avoid repeating the reset on newer platforms.
292 	 */
293 	loops = GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70) ? 2 : 1;
294 
295 	/*
296 	 * GEN6_GDRST is not in the gt power well, no need to check
297 	 * for fifo space for the write or forcewake the chip for
298 	 * the read
299 	 */
300 	do {
301 		intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
302 
303 		/* Wait for the device to ack the reset requests. */
304 		err = __intel_wait_for_register_fw(uncore, GEN6_GDRST,
305 						   hw_domain_mask, 0,
306 						   2000, 0,
307 						   NULL);
308 	} while (err == 0 && --loops);
309 	if (err)
310 		GT_TRACE(gt,
311 			 "Wait for 0x%08x engines reset failed\n",
312 			 hw_domain_mask);
313 
314 	/*
315 	 * As we have observed that the engine state is still volatile
316 	 * after GDRST is acked, impose a small delay to let everything settle.
317 	 */
318 	udelay(50);
319 
320 	return err;
321 }
322 
323 static int __gen6_reset_engines(struct intel_gt *gt,
324 				intel_engine_mask_t engine_mask,
325 				unsigned int retry)
326 {
327 	struct intel_engine_cs *engine;
328 	u32 hw_mask;
329 
330 	if (engine_mask == ALL_ENGINES) {
331 		hw_mask = GEN6_GRDOM_FULL;
332 	} else {
333 		intel_engine_mask_t tmp;
334 
335 		hw_mask = 0;
336 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
337 			hw_mask |= engine->reset_domain;
338 		}
339 	}
340 
341 	return gen6_hw_domain_reset(gt, hw_mask);
342 }
343 
344 static int gen6_reset_engines(struct intel_gt *gt,
345 			      intel_engine_mask_t engine_mask,
346 			      unsigned int retry)
347 {
348 	unsigned long flags;
349 	int ret;
350 
351 	spin_lock_irqsave(&gt->uncore->lock, flags);
352 	ret = __gen6_reset_engines(gt, engine_mask, retry);
353 	spin_unlock_irqrestore(&gt->uncore->lock, flags);
354 
355 	return ret;
356 }
357 
358 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine)
359 {
360 	int vecs_id;
361 
362 	GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS);
363 
364 	vecs_id = _VECS((engine->instance) / 2);
365 
366 	return engine->gt->engine[vecs_id];
367 }
368 
369 struct sfc_lock_data {
370 	i915_reg_t lock_reg;
371 	i915_reg_t ack_reg;
372 	i915_reg_t usage_reg;
373 	u32 lock_bit;
374 	u32 ack_bit;
375 	u32 usage_bit;
376 	u32 reset_bit;
377 };
378 
379 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine,
380 				     struct sfc_lock_data *sfc_lock)
381 {
382 	switch (engine->class) {
383 	default:
384 		MISSING_CASE(engine->class);
385 		fallthrough;
386 	case VIDEO_DECODE_CLASS:
387 		sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base);
388 		sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
389 
390 		sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
391 		sfc_lock->ack_bit  = GEN11_VCS_SFC_LOCK_ACK_BIT;
392 
393 		sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
394 		sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT;
395 		sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
396 
397 		break;
398 	case VIDEO_ENHANCEMENT_CLASS:
399 		sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base);
400 		sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
401 
402 		sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base);
403 		sfc_lock->ack_bit  = GEN11_VECS_SFC_LOCK_ACK_BIT;
404 
405 		sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base);
406 		sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT;
407 		sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
408 
409 		break;
410 	}
411 }
412 
413 static int gen11_lock_sfc(struct intel_engine_cs *engine,
414 			  u32 *reset_mask,
415 			  u32 *unlock_mask)
416 {
417 	struct intel_uncore *uncore = engine->uncore;
418 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
419 	struct sfc_lock_data sfc_lock;
420 	bool lock_obtained, lock_to_other = false;
421 	int ret;
422 
423 	switch (engine->class) {
424 	case VIDEO_DECODE_CLASS:
425 		if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
426 			return 0;
427 
428 		fallthrough;
429 	case VIDEO_ENHANCEMENT_CLASS:
430 		get_sfc_forced_lock_data(engine, &sfc_lock);
431 
432 		break;
433 	default:
434 		return 0;
435 	}
436 
437 	if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) {
438 		struct intel_engine_cs *paired_vecs;
439 
440 		if (engine->class != VIDEO_DECODE_CLASS ||
441 		    GRAPHICS_VER(engine->i915) != 12)
442 			return 0;
443 
444 		/*
445 		 * Wa_14010733141
446 		 *
447 		 * If the VCS-MFX isn't using the SFC, we also need to check
448 		 * whether VCS-HCP is using it.  If so, we need to issue a *VE*
449 		 * forced lock on the VE engine that shares the same SFC.
450 		 */
451 		if (!(intel_uncore_read_fw(uncore,
452 					   GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) &
453 		      GEN12_HCP_SFC_USAGE_BIT))
454 			return 0;
455 
456 		paired_vecs = find_sfc_paired_vecs_engine(engine);
457 		get_sfc_forced_lock_data(paired_vecs, &sfc_lock);
458 		lock_to_other = true;
459 		*unlock_mask |= paired_vecs->mask;
460 	} else {
461 		*unlock_mask |= engine->mask;
462 	}
463 
464 	/*
465 	 * If the engine is using an SFC, tell the engine that a software reset
466 	 * is going to happen. The engine will then try to force lock the SFC.
467 	 * If SFC ends up being locked to the engine we want to reset, we have
468 	 * to reset it as well (we will unlock it once the reset sequence is
469 	 * completed).
470 	 */
471 	intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit);
472 
473 	ret = __intel_wait_for_register_fw(uncore,
474 					   sfc_lock.ack_reg,
475 					   sfc_lock.ack_bit,
476 					   sfc_lock.ack_bit,
477 					   1000, 0, NULL);
478 
479 	/*
480 	 * Was the SFC released while we were trying to lock it?
481 	 *
482 	 * We should reset both the engine and the SFC if:
483 	 *  - We were locking the SFC to this engine and the lock succeeded
484 	 *       OR
485 	 *  - We were locking the SFC to a different engine (Wa_14010733141)
486 	 *    but the SFC was released before the lock was obtained.
487 	 *
488 	 * Otherwise we need only reset the engine by itself and we can
489 	 * leave the SFC alone.
490 	 */
491 	lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) &
492 			sfc_lock.usage_bit) != 0;
493 	if (lock_obtained == lock_to_other)
494 		return 0;
495 
496 	if (ret) {
497 		ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n");
498 		return ret;
499 	}
500 
501 	*reset_mask |= sfc_lock.reset_bit;
502 	return 0;
503 }
504 
505 static void gen11_unlock_sfc(struct intel_engine_cs *engine)
506 {
507 	struct intel_uncore *uncore = engine->uncore;
508 	u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
509 	struct sfc_lock_data sfc_lock = {};
510 
511 	if (engine->class != VIDEO_DECODE_CLASS &&
512 	    engine->class != VIDEO_ENHANCEMENT_CLASS)
513 		return;
514 
515 	if (engine->class == VIDEO_DECODE_CLASS &&
516 	    (BIT(engine->instance) & vdbox_sfc_access) == 0)
517 		return;
518 
519 	get_sfc_forced_lock_data(engine, &sfc_lock);
520 
521 	intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0);
522 }
523 
524 static int __gen11_reset_engines(struct intel_gt *gt,
525 				 intel_engine_mask_t engine_mask,
526 				 unsigned int retry)
527 {
528 	struct intel_engine_cs *engine;
529 	intel_engine_mask_t tmp;
530 	u32 reset_mask, unlock_mask = 0;
531 	int ret;
532 
533 	if (engine_mask == ALL_ENGINES) {
534 		reset_mask = GEN11_GRDOM_FULL;
535 	} else {
536 		reset_mask = 0;
537 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
538 			reset_mask |= engine->reset_domain;
539 			ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask);
540 			if (ret)
541 				goto sfc_unlock;
542 		}
543 	}
544 
545 	ret = gen6_hw_domain_reset(gt, reset_mask);
546 
547 sfc_unlock:
548 	/*
549 	 * We unlock the SFC based on the lock status and not the result of
550 	 * gen11_lock_sfc to make sure that we clean properly if something
551 	 * wrong happened during the lock (e.g. lock acquired after timeout
552 	 * expiration).
553 	 *
554 	 * Due to Wa_14010733141, we may have locked an SFC to an engine that
555 	 * wasn't being reset.  So instead of calling gen11_unlock_sfc()
556 	 * on engine_mask, we instead call it on the mask of engines that our
557 	 * gen11_lock_sfc() calls told us actually had locks attempted.
558 	 */
559 	for_each_engine_masked(engine, gt, unlock_mask, tmp)
560 		gen11_unlock_sfc(engine);
561 
562 	return ret;
563 }
564 
565 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
566 {
567 	struct intel_uncore *uncore = engine->uncore;
568 	const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
569 	u32 request, mask, ack;
570 	int ret;
571 
572 	if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1)))
573 		return -ETIMEDOUT;
574 
575 	ack = intel_uncore_read_fw(uncore, reg);
576 	if (ack & RESET_CTL_CAT_ERROR) {
577 		/*
578 		 * For catastrophic errors, ready-for-reset sequence
579 		 * needs to be bypassed: HAS#396813
580 		 */
581 		request = RESET_CTL_CAT_ERROR;
582 		mask = RESET_CTL_CAT_ERROR;
583 
584 		/* Catastrophic errors need to be cleared by HW */
585 		ack = 0;
586 	} else if (!(ack & RESET_CTL_READY_TO_RESET)) {
587 		request = RESET_CTL_REQUEST_RESET;
588 		mask = RESET_CTL_READY_TO_RESET;
589 		ack = RESET_CTL_READY_TO_RESET;
590 	} else {
591 		return 0;
592 	}
593 
594 	intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
595 	ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
596 					   700, 0, NULL);
597 	if (ret)
598 		drm_err(&engine->i915->drm,
599 			"%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
600 			engine->name, request,
601 			intel_uncore_read_fw(uncore, reg));
602 
603 	return ret;
604 }
605 
606 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
607 {
608 	intel_uncore_write_fw(engine->uncore,
609 			      RING_RESET_CTL(engine->mmio_base),
610 			      _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
611 }
612 
613 static int gen8_reset_engines(struct intel_gt *gt,
614 			      intel_engine_mask_t engine_mask,
615 			      unsigned int retry)
616 {
617 	struct intel_engine_cs *engine;
618 	const bool reset_non_ready = retry >= 1;
619 	intel_engine_mask_t tmp;
620 	unsigned long flags;
621 	int ret;
622 
623 	spin_lock_irqsave(&gt->uncore->lock, flags);
624 
625 	for_each_engine_masked(engine, gt, engine_mask, tmp) {
626 		ret = gen8_engine_reset_prepare(engine);
627 		if (ret && !reset_non_ready)
628 			goto skip_reset;
629 
630 		/*
631 		 * If this is not the first failed attempt to prepare,
632 		 * we decide to proceed anyway.
633 		 *
634 		 * By doing so we risk context corruption and with
635 		 * some gens (kbl), possible system hang if reset
636 		 * happens during active bb execution.
637 		 *
638 		 * We rather take context corruption instead of
639 		 * failed reset with a wedged driver/gpu. And
640 		 * active bb execution case should be covered by
641 		 * stop_engines() we have before the reset.
642 		 */
643 	}
644 
645 	/*
646 	 * Wa_22011100796:dg2, whenever Full soft reset is required,
647 	 * reset all individual engines firstly, and then do a full soft reset.
648 	 *
649 	 * This is best effort, so ignore any error from the initial reset.
650 	 */
651 	if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES)
652 		__gen11_reset_engines(gt, gt->info.engine_mask, 0);
653 
654 	if (GRAPHICS_VER(gt->i915) >= 11)
655 		ret = __gen11_reset_engines(gt, engine_mask, retry);
656 	else
657 		ret = __gen6_reset_engines(gt, engine_mask, retry);
658 
659 skip_reset:
660 	for_each_engine_masked(engine, gt, engine_mask, tmp)
661 		gen8_engine_reset_cancel(engine);
662 
663 	spin_unlock_irqrestore(&gt->uncore->lock, flags);
664 
665 	return ret;
666 }
667 
668 static int mock_reset(struct intel_gt *gt,
669 		      intel_engine_mask_t mask,
670 		      unsigned int retry)
671 {
672 	return 0;
673 }
674 
675 typedef int (*reset_func)(struct intel_gt *,
676 			  intel_engine_mask_t engine_mask,
677 			  unsigned int retry);
678 
679 static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
680 {
681 	struct drm_i915_private *i915 = gt->i915;
682 
683 	if (is_mock_gt(gt))
684 		return mock_reset;
685 	else if (GRAPHICS_VER(i915) >= 8)
686 		return gen8_reset_engines;
687 	else if (GRAPHICS_VER(i915) >= 6)
688 		return gen6_reset_engines;
689 	else if (GRAPHICS_VER(i915) >= 5)
690 		return ilk_do_reset;
691 	else if (IS_G4X(i915))
692 		return g4x_do_reset;
693 	else if (IS_G33(i915) || IS_PINEVIEW(i915))
694 		return g33_do_reset;
695 	else if (GRAPHICS_VER(i915) >= 3)
696 		return i915_do_reset;
697 	else
698 		return NULL;
699 }
700 
701 static int __reset_guc(struct intel_gt *gt)
702 {
703 	u32 guc_domain =
704 		GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
705 
706 	return gen6_hw_domain_reset(gt, guc_domain);
707 }
708 
709 static bool needs_wa_14015076503(struct intel_gt *gt, intel_engine_mask_t engine_mask)
710 {
711 	if (!IS_METEORLAKE(gt->i915) || !HAS_ENGINE(gt, GSC0))
712 		return false;
713 
714 	if (!__HAS_ENGINE(engine_mask, GSC0))
715 		return false;
716 
717 	return intel_gsc_uc_fw_init_done(&gt->uc.gsc);
718 }
719 
720 static intel_engine_mask_t
721 wa_14015076503_start(struct intel_gt *gt, intel_engine_mask_t engine_mask, bool first)
722 {
723 	if (!needs_wa_14015076503(gt, engine_mask))
724 		return engine_mask;
725 
726 	/*
727 	 * wa_14015076503: if the GSC FW is loaded, we need to alert it that
728 	 * we're going to do a GSC engine reset and then wait for 200ms for the
729 	 * FW to get ready for it. However, if this is the first ALL_ENGINES
730 	 * reset attempt and the GSC is not busy, we can try to instead reset
731 	 * the GuC and all the other engines individually to avoid the 200ms
732 	 * wait.
733 	 * Skipping the GSC engine is safe because, differently from other
734 	 * engines, the GSCCS only role is to forward the commands to the GSC
735 	 * FW, so it doesn't have any HW outside of the CS itself and therefore
736 	 * it has no state that we don't explicitly re-init on resume or on
737 	 * context switch LRC or power context). The HW for the GSC uC is
738 	 * managed by the GSC FW so we don't need to care about that.
739 	 */
740 	if (engine_mask == ALL_ENGINES && first && intel_engine_is_idle(gt->engine[GSC0])) {
741 		__reset_guc(gt);
742 		engine_mask = gt->info.engine_mask & ~BIT(GSC0);
743 	} else {
744 		intel_uncore_rmw(gt->uncore,
745 				 HECI_H_GS1(MTL_GSC_HECI2_BASE),
746 				 0, HECI_H_GS1_ER_PREP);
747 
748 		/* make sure the reset bit is clear when writing the CSR reg */
749 		intel_uncore_rmw(gt->uncore,
750 				 HECI_H_CSR(MTL_GSC_HECI2_BASE),
751 				 HECI_H_CSR_RST, HECI_H_CSR_IG);
752 		msleep(200);
753 	}
754 
755 	return engine_mask;
756 }
757 
758 static void
759 wa_14015076503_end(struct intel_gt *gt, intel_engine_mask_t engine_mask)
760 {
761 	if (!needs_wa_14015076503(gt, engine_mask))
762 		return;
763 
764 	intel_uncore_rmw(gt->uncore,
765 			 HECI_H_GS1(MTL_GSC_HECI2_BASE),
766 			 HECI_H_GS1_ER_PREP, 0);
767 }
768 
769 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
770 {
771 	const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
772 	reset_func reset;
773 	int ret = -ETIMEDOUT;
774 	int retry;
775 
776 	reset = intel_get_gpu_reset(gt);
777 	if (!reset)
778 		return -ENODEV;
779 
780 	/*
781 	 * If the power well sleeps during the reset, the reset
782 	 * request may be dropped and never completes (causing -EIO).
783 	 */
784 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
785 	for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
786 		intel_engine_mask_t reset_mask;
787 
788 		reset_mask = wa_14015076503_start(gt, engine_mask, !retry);
789 
790 		GT_TRACE(gt, "engine_mask=%x\n", reset_mask);
791 		preempt_disable();
792 		ret = reset(gt, reset_mask, retry);
793 		preempt_enable();
794 
795 		wa_14015076503_end(gt, reset_mask);
796 	}
797 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
798 
799 	return ret;
800 }
801 
802 bool intel_has_gpu_reset(const struct intel_gt *gt)
803 {
804 	if (!gt->i915->params.reset)
805 		return NULL;
806 
807 	return intel_get_gpu_reset(gt);
808 }
809 
810 bool intel_has_reset_engine(const struct intel_gt *gt)
811 {
812 	if (gt->i915->params.reset < 2)
813 		return false;
814 
815 	return INTEL_INFO(gt->i915)->has_reset_engine;
816 }
817 
818 int intel_reset_guc(struct intel_gt *gt)
819 {
820 	int ret;
821 
822 	GEM_BUG_ON(!HAS_GT_UC(gt->i915));
823 
824 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
825 	ret = __reset_guc(gt);
826 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
827 
828 	return ret;
829 }
830 
831 /*
832  * Ensure irq handler finishes, and not run again.
833  * Also return the active request so that we only search for it once.
834  */
835 static void reset_prepare_engine(struct intel_engine_cs *engine)
836 {
837 	/*
838 	 * During the reset sequence, we must prevent the engine from
839 	 * entering RC6. As the context state is undefined until we restart
840 	 * the engine, if it does enter RC6 during the reset, the state
841 	 * written to the powercontext is undefined and so we may lose
842 	 * GPU state upon resume, i.e. fail to restart after a reset.
843 	 */
844 	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
845 	if (engine->reset.prepare)
846 		engine->reset.prepare(engine);
847 }
848 
849 static void revoke_mmaps(struct intel_gt *gt)
850 {
851 	int i;
852 
853 	for (i = 0; i < gt->ggtt->num_fences; i++) {
854 		struct drm_vma_offset_node *node;
855 		struct i915_vma *vma;
856 		u64 vma_offset;
857 
858 		vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
859 		if (!vma)
860 			continue;
861 
862 		if (!i915_vma_has_userfault(vma))
863 			continue;
864 
865 		GEM_BUG_ON(vma->fence != &gt->ggtt->fence_regs[i]);
866 
867 		if (!vma->mmo)
868 			continue;
869 
870 		node = &vma->mmo->vma_node;
871 		vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
872 
873 		unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
874 				    drm_vma_node_offset_addr(node) + vma_offset,
875 				    vma->size,
876 				    1);
877 	}
878 }
879 
880 static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
881 {
882 	struct intel_engine_cs *engine;
883 	intel_engine_mask_t awake = 0;
884 	enum intel_engine_id id;
885 
886 	/* For GuC mode, ensure submission is disabled before stopping ring */
887 	intel_uc_reset_prepare(&gt->uc);
888 
889 	for_each_engine(engine, gt, id) {
890 		if (intel_engine_pm_get_if_awake(engine))
891 			awake |= engine->mask;
892 		reset_prepare_engine(engine);
893 	}
894 
895 	return awake;
896 }
897 
898 static void gt_revoke(struct intel_gt *gt)
899 {
900 	revoke_mmaps(gt);
901 }
902 
903 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
904 {
905 	struct intel_engine_cs *engine;
906 	enum intel_engine_id id;
907 	int err;
908 
909 	/*
910 	 * Everything depends on having the GTT running, so we need to start
911 	 * there.
912 	 */
913 	err = i915_ggtt_enable_hw(gt->i915);
914 	if (err)
915 		return err;
916 
917 	local_bh_disable();
918 	for_each_engine(engine, gt, id)
919 		__intel_engine_reset(engine, stalled_mask & engine->mask);
920 	local_bh_enable();
921 
922 	intel_uc_reset(&gt->uc, ALL_ENGINES);
923 
924 	intel_ggtt_restore_fences(gt->ggtt);
925 
926 	return err;
927 }
928 
929 static void reset_finish_engine(struct intel_engine_cs *engine)
930 {
931 	if (engine->reset.finish)
932 		engine->reset.finish(engine);
933 	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
934 
935 	intel_engine_signal_breadcrumbs(engine);
936 }
937 
938 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
939 {
940 	struct intel_engine_cs *engine;
941 	enum intel_engine_id id;
942 
943 	for_each_engine(engine, gt, id) {
944 		reset_finish_engine(engine);
945 		if (awake & engine->mask)
946 			intel_engine_pm_put(engine);
947 	}
948 
949 	intel_uc_reset_finish(&gt->uc);
950 }
951 
952 static void nop_submit_request(struct i915_request *request)
953 {
954 	RQ_TRACE(request, "-EIO\n");
955 
956 	request = i915_request_mark_eio(request);
957 	if (request) {
958 		i915_request_submit(request);
959 		intel_engine_signal_breadcrumbs(request->engine);
960 
961 		i915_request_put(request);
962 	}
963 }
964 
965 static void __intel_gt_set_wedged(struct intel_gt *gt)
966 {
967 	struct intel_engine_cs *engine;
968 	intel_engine_mask_t awake;
969 	enum intel_engine_id id;
970 
971 	if (test_bit(I915_WEDGED, &gt->reset.flags))
972 		return;
973 
974 	GT_TRACE(gt, "start\n");
975 
976 	/*
977 	 * First, stop submission to hw, but do not yet complete requests by
978 	 * rolling the global seqno forward (since this would complete requests
979 	 * for which we haven't set the fence error to EIO yet).
980 	 */
981 	awake = reset_prepare(gt);
982 
983 	/* Even if the GPU reset fails, it should still stop the engines */
984 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
985 		__intel_gt_reset(gt, ALL_ENGINES);
986 
987 	for_each_engine(engine, gt, id)
988 		engine->submit_request = nop_submit_request;
989 
990 	/*
991 	 * Make sure no request can slip through without getting completed by
992 	 * either this call here to intel_engine_write_global_seqno, or the one
993 	 * in nop_submit_request.
994 	 */
995 	synchronize_rcu_expedited();
996 	set_bit(I915_WEDGED, &gt->reset.flags);
997 
998 	/* Mark all executing requests as skipped */
999 	local_bh_disable();
1000 	for_each_engine(engine, gt, id)
1001 		if (engine->reset.cancel)
1002 			engine->reset.cancel(engine);
1003 	intel_uc_cancel_requests(&gt->uc);
1004 	local_bh_enable();
1005 
1006 	reset_finish(gt, awake);
1007 
1008 	GT_TRACE(gt, "end\n");
1009 }
1010 
1011 void intel_gt_set_wedged(struct intel_gt *gt)
1012 {
1013 	intel_wakeref_t wakeref;
1014 
1015 	if (test_bit(I915_WEDGED, &gt->reset.flags))
1016 		return;
1017 
1018 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1019 	mutex_lock(&gt->reset.mutex);
1020 
1021 	if (GEM_SHOW_DEBUG()) {
1022 		struct drm_printer p = drm_debug_printer(__func__);
1023 		struct intel_engine_cs *engine;
1024 		enum intel_engine_id id;
1025 
1026 		drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
1027 		for_each_engine(engine, gt, id) {
1028 			if (intel_engine_is_idle(engine))
1029 				continue;
1030 
1031 			intel_engine_dump(engine, &p, "%s\n", engine->name);
1032 		}
1033 	}
1034 
1035 	__intel_gt_set_wedged(gt);
1036 
1037 	mutex_unlock(&gt->reset.mutex);
1038 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1039 }
1040 
1041 static bool __intel_gt_unset_wedged(struct intel_gt *gt)
1042 {
1043 	struct intel_gt_timelines *timelines = &gt->timelines;
1044 	struct intel_timeline *tl;
1045 	bool ok;
1046 
1047 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
1048 		return true;
1049 
1050 	/* Never fully initialised, recovery impossible */
1051 	if (intel_gt_has_unrecoverable_error(gt))
1052 		return false;
1053 
1054 	GT_TRACE(gt, "start\n");
1055 
1056 	/*
1057 	 * Before unwedging, make sure that all pending operations
1058 	 * are flushed and errored out - we may have requests waiting upon
1059 	 * third party fences. We marked all inflight requests as EIO, and
1060 	 * every execbuf since returned EIO, for consistency we want all
1061 	 * the currently pending requests to also be marked as EIO, which
1062 	 * is done inside our nop_submit_request - and so we must wait.
1063 	 *
1064 	 * No more can be submitted until we reset the wedged bit.
1065 	 */
1066 	spin_lock(&timelines->lock);
1067 	list_for_each_entry(tl, &timelines->active_list, link) {
1068 		struct dma_fence *fence;
1069 
1070 		fence = i915_active_fence_get(&tl->last_request);
1071 		if (!fence)
1072 			continue;
1073 
1074 		spin_unlock(&timelines->lock);
1075 
1076 		/*
1077 		 * All internal dependencies (i915_requests) will have
1078 		 * been flushed by the set-wedge, but we may be stuck waiting
1079 		 * for external fences. These should all be capped to 10s
1080 		 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded
1081 		 * in the worst case.
1082 		 */
1083 		dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
1084 		dma_fence_put(fence);
1085 
1086 		/* Restart iteration after droping lock */
1087 		spin_lock(&timelines->lock);
1088 		tl = list_entry(&timelines->active_list, typeof(*tl), link);
1089 	}
1090 	spin_unlock(&timelines->lock);
1091 
1092 	/* We must reset pending GPU events before restoring our submission */
1093 	ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
1094 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1095 		ok = __intel_gt_reset(gt, ALL_ENGINES) == 0;
1096 	if (!ok) {
1097 		/*
1098 		 * Warn CI about the unrecoverable wedged condition.
1099 		 * Time for a reboot.
1100 		 */
1101 		add_taint_for_CI(gt->i915, TAINT_WARN);
1102 		return false;
1103 	}
1104 
1105 	/*
1106 	 * Undo nop_submit_request. We prevent all new i915 requests from
1107 	 * being queued (by disallowing execbuf whilst wedged) so having
1108 	 * waited for all active requests above, we know the system is idle
1109 	 * and do not have to worry about a thread being inside
1110 	 * engine->submit_request() as we swap over. So unlike installing
1111 	 * the nop_submit_request on reset, we can do this from normal
1112 	 * context and do not require stop_machine().
1113 	 */
1114 	intel_engines_reset_default_submission(gt);
1115 
1116 	GT_TRACE(gt, "end\n");
1117 
1118 	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
1119 	clear_bit(I915_WEDGED, &gt->reset.flags);
1120 
1121 	return true;
1122 }
1123 
1124 bool intel_gt_unset_wedged(struct intel_gt *gt)
1125 {
1126 	bool result;
1127 
1128 	mutex_lock(&gt->reset.mutex);
1129 	result = __intel_gt_unset_wedged(gt);
1130 	mutex_unlock(&gt->reset.mutex);
1131 
1132 	return result;
1133 }
1134 
1135 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
1136 {
1137 	int err, i;
1138 
1139 	err = __intel_gt_reset(gt, ALL_ENGINES);
1140 	for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
1141 		msleep(10 * (i + 1));
1142 		err = __intel_gt_reset(gt, ALL_ENGINES);
1143 	}
1144 	if (err)
1145 		return err;
1146 
1147 	return gt_reset(gt, stalled_mask);
1148 }
1149 
1150 static int resume(struct intel_gt *gt)
1151 {
1152 	struct intel_engine_cs *engine;
1153 	enum intel_engine_id id;
1154 	int ret;
1155 
1156 	for_each_engine(engine, gt, id) {
1157 		ret = intel_engine_resume(engine);
1158 		if (ret)
1159 			return ret;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 /**
1166  * intel_gt_reset - reset chip after a hang
1167  * @gt: #intel_gt to reset
1168  * @stalled_mask: mask of the stalled engines with the guilty requests
1169  * @reason: user error message for why we are resetting
1170  *
1171  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1172  * on failure.
1173  *
1174  * Procedure is fairly simple:
1175  *   - reset the chip using the reset reg
1176  *   - re-init context state
1177  *   - re-init hardware status page
1178  *   - re-init ring buffer
1179  *   - re-init interrupt state
1180  *   - re-init display
1181  */
1182 void intel_gt_reset(struct intel_gt *gt,
1183 		    intel_engine_mask_t stalled_mask,
1184 		    const char *reason)
1185 {
1186 	intel_engine_mask_t awake;
1187 	int ret;
1188 
1189 	GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
1190 
1191 	might_sleep();
1192 	GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1193 
1194 	/*
1195 	 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence
1196 	 * critical section like gpu reset.
1197 	 */
1198 	gt_revoke(gt);
1199 
1200 	mutex_lock(&gt->reset.mutex);
1201 
1202 	/* Clear any previous failed attempts at recovery. Time to try again. */
1203 	if (!__intel_gt_unset_wedged(gt))
1204 		goto unlock;
1205 
1206 	if (reason)
1207 		drm_notice(&gt->i915->drm,
1208 			   "Resetting chip for %s\n", reason);
1209 	atomic_inc(&gt->i915->gpu_error.reset_count);
1210 
1211 	awake = reset_prepare(gt);
1212 
1213 	if (!intel_has_gpu_reset(gt)) {
1214 		if (gt->i915->params.reset)
1215 			drm_err(&gt->i915->drm, "GPU reset not supported\n");
1216 		else
1217 			drm_dbg(&gt->i915->drm, "GPU reset disabled\n");
1218 		goto error;
1219 	}
1220 
1221 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1222 		intel_runtime_pm_disable_interrupts(gt->i915);
1223 
1224 	if (do_reset(gt, stalled_mask)) {
1225 		drm_err(&gt->i915->drm, "Failed to reset chip\n");
1226 		goto taint;
1227 	}
1228 
1229 	if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
1230 		intel_runtime_pm_enable_interrupts(gt->i915);
1231 
1232 	intel_overlay_reset(gt->i915);
1233 
1234 	/*
1235 	 * Next we need to restore the context, but we don't use those
1236 	 * yet either...
1237 	 *
1238 	 * Ring buffer needs to be re-initialized in the KMS case, or if X
1239 	 * was running at the time of the reset (i.e. we weren't VT
1240 	 * switched away).
1241 	 */
1242 	ret = intel_gt_init_hw(gt);
1243 	if (ret) {
1244 		drm_err(&gt->i915->drm,
1245 			"Failed to initialise HW following reset (%d)\n",
1246 			ret);
1247 		goto taint;
1248 	}
1249 
1250 	ret = resume(gt);
1251 	if (ret)
1252 		goto taint;
1253 
1254 finish:
1255 	reset_finish(gt, awake);
1256 unlock:
1257 	mutex_unlock(&gt->reset.mutex);
1258 	return;
1259 
1260 taint:
1261 	/*
1262 	 * History tells us that if we cannot reset the GPU now, we
1263 	 * never will. This then impacts everything that is run
1264 	 * subsequently. On failing the reset, we mark the driver
1265 	 * as wedged, preventing further execution on the GPU.
1266 	 * We also want to go one step further and add a taint to the
1267 	 * kernel so that any subsequent faults can be traced back to
1268 	 * this failure. This is important for CI, where if the
1269 	 * GPU/driver fails we would like to reboot and restart testing
1270 	 * rather than continue on into oblivion. For everyone else,
1271 	 * the system should still plod along, but they have been warned!
1272 	 */
1273 	add_taint_for_CI(gt->i915, TAINT_WARN);
1274 error:
1275 	__intel_gt_set_wedged(gt);
1276 	goto finish;
1277 }
1278 
1279 static int intel_gt_reset_engine(struct intel_engine_cs *engine)
1280 {
1281 	return __intel_gt_reset(engine->gt, engine->mask);
1282 }
1283 
1284 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg)
1285 {
1286 	struct intel_gt *gt = engine->gt;
1287 	int ret;
1288 
1289 	ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
1290 	GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags));
1291 
1292 	if (intel_engine_uses_guc(engine))
1293 		return -ENODEV;
1294 
1295 	if (!intel_engine_pm_get_if_awake(engine))
1296 		return 0;
1297 
1298 	reset_prepare_engine(engine);
1299 
1300 	if (msg)
1301 		drm_notice(&engine->i915->drm,
1302 			   "Resetting %s for %s\n", engine->name, msg);
1303 	atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]);
1304 
1305 	ret = intel_gt_reset_engine(engine);
1306 	if (ret) {
1307 		/* If we fail here, we expect to fallback to a global reset */
1308 		ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret);
1309 		goto out;
1310 	}
1311 
1312 	/*
1313 	 * The request that caused the hang is stuck on elsp, we know the
1314 	 * active request and can drop it, adjust head to skip the offending
1315 	 * request to resume executing remaining requests in the queue.
1316 	 */
1317 	__intel_engine_reset(engine, true);
1318 
1319 	/*
1320 	 * The engine and its registers (and workarounds in case of render)
1321 	 * have been reset to their default values. Follow the init_ring
1322 	 * process to program RING_MODE, HWSP and re-enable submission.
1323 	 */
1324 	ret = intel_engine_resume(engine);
1325 
1326 out:
1327 	intel_engine_cancel_stop_cs(engine);
1328 	reset_finish_engine(engine);
1329 	intel_engine_pm_put_async(engine);
1330 	return ret;
1331 }
1332 
1333 /**
1334  * intel_engine_reset - reset GPU engine to recover from a hang
1335  * @engine: engine to reset
1336  * @msg: reason for GPU reset; or NULL for no drm_notice()
1337  *
1338  * Reset a specific GPU engine. Useful if a hang is detected.
1339  * Returns zero on successful reset or otherwise an error code.
1340  *
1341  * Procedure is:
1342  *  - identifies the request that caused the hang and it is dropped
1343  *  - reset engine (which will force the engine to idle)
1344  *  - re-init/configure engine
1345  */
1346 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
1347 {
1348 	int err;
1349 
1350 	local_bh_disable();
1351 	err = __intel_engine_reset_bh(engine, msg);
1352 	local_bh_enable();
1353 
1354 	return err;
1355 }
1356 
1357 static void intel_gt_reset_global(struct intel_gt *gt,
1358 				  u32 engine_mask,
1359 				  const char *reason)
1360 {
1361 	struct kobject *kobj = &gt->i915->drm.primary->kdev->kobj;
1362 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1363 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1364 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1365 	struct intel_wedge_me w;
1366 
1367 	kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
1368 
1369 	GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask);
1370 	kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
1371 
1372 	/* Use a watchdog to ensure that our reset completes */
1373 	intel_wedge_on_timeout(&w, gt, 60 * HZ) {
1374 		intel_display_reset_prepare(gt->i915);
1375 
1376 		intel_gt_reset(gt, engine_mask, reason);
1377 
1378 		intel_display_reset_finish(gt->i915);
1379 	}
1380 
1381 	if (!test_bit(I915_WEDGED, &gt->reset.flags))
1382 		kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
1383 }
1384 
1385 /**
1386  * intel_gt_handle_error - handle a gpu error
1387  * @gt: the intel_gt
1388  * @engine_mask: mask representing engines that are hung
1389  * @flags: control flags
1390  * @fmt: Error message format string
1391  *
1392  * Do some basic checking of register state at error time and
1393  * dump it to the syslog.  Also call i915_capture_error_state() to make
1394  * sure we get a record and make it available in debugfs.  Fire a uevent
1395  * so userspace knows something bad happened (should trigger collection
1396  * of a ring dump etc.).
1397  */
1398 void intel_gt_handle_error(struct intel_gt *gt,
1399 			   intel_engine_mask_t engine_mask,
1400 			   unsigned long flags,
1401 			   const char *fmt, ...)
1402 {
1403 	struct intel_engine_cs *engine;
1404 	intel_wakeref_t wakeref;
1405 	intel_engine_mask_t tmp;
1406 	char error_msg[80];
1407 	char *msg = NULL;
1408 
1409 	if (fmt) {
1410 		va_list args;
1411 
1412 		va_start(args, fmt);
1413 		vscnprintf(error_msg, sizeof(error_msg), fmt, args);
1414 		va_end(args);
1415 
1416 		msg = error_msg;
1417 	}
1418 
1419 	/*
1420 	 * In most cases it's guaranteed that we get here with an RPM
1421 	 * reference held, for example because there is a pending GPU
1422 	 * request that won't finish until the reset is done. This
1423 	 * isn't the case at least when we get here by doing a
1424 	 * simulated reset via debugfs, so get an RPM reference.
1425 	 */
1426 	wakeref = intel_runtime_pm_get(gt->uncore->rpm);
1427 
1428 	engine_mask &= gt->info.engine_mask;
1429 
1430 	if (flags & I915_ERROR_CAPTURE) {
1431 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE);
1432 		intel_gt_clear_error_registers(gt, engine_mask);
1433 	}
1434 
1435 	/*
1436 	 * Try engine reset when available. We fall back to full reset if
1437 	 * single reset fails.
1438 	 */
1439 	if (!intel_uc_uses_guc_submission(&gt->uc) &&
1440 	    intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
1441 		local_bh_disable();
1442 		for_each_engine_masked(engine, gt, engine_mask, tmp) {
1443 			BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
1444 			if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1445 					     &gt->reset.flags))
1446 				continue;
1447 
1448 			if (__intel_engine_reset_bh(engine, msg) == 0)
1449 				engine_mask &= ~engine->mask;
1450 
1451 			clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
1452 					      &gt->reset.flags);
1453 		}
1454 		local_bh_enable();
1455 	}
1456 
1457 	if (!engine_mask)
1458 		goto out;
1459 
1460 	/* Full reset needs the mutex, stop any other user trying to do so. */
1461 	if (test_and_set_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1462 		wait_event(gt->reset.queue,
1463 			   !test_bit(I915_RESET_BACKOFF, &gt->reset.flags));
1464 		goto out; /* piggy-back on the other reset */
1465 	}
1466 
1467 	/* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
1468 	synchronize_rcu_expedited();
1469 
1470 	/*
1471 	 * Prevent any other reset-engine attempt. We don't do this for GuC
1472 	 * submission the GuC owns the per-engine reset, not the i915.
1473 	 */
1474 	if (!intel_uc_uses_guc_submission(&gt->uc)) {
1475 		for_each_engine(engine, gt, tmp) {
1476 			while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
1477 						&gt->reset.flags))
1478 				wait_on_bit(&gt->reset.flags,
1479 					    I915_RESET_ENGINE + engine->id,
1480 					    TASK_UNINTERRUPTIBLE);
1481 		}
1482 	}
1483 
1484 	/* Flush everyone using a resource about to be clobbered */
1485 	synchronize_srcu_expedited(&gt->reset.backoff_srcu);
1486 
1487 	intel_gt_reset_global(gt, engine_mask, msg);
1488 
1489 	if (!intel_uc_uses_guc_submission(&gt->uc)) {
1490 		for_each_engine(engine, gt, tmp)
1491 			clear_bit_unlock(I915_RESET_ENGINE + engine->id,
1492 					 &gt->reset.flags);
1493 	}
1494 	clear_bit_unlock(I915_RESET_BACKOFF, &gt->reset.flags);
1495 	smp_mb__after_atomic();
1496 	wake_up_all(&gt->reset.queue);
1497 
1498 out:
1499 	intel_runtime_pm_put(gt->uncore->rpm, wakeref);
1500 }
1501 
1502 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry)
1503 {
1504 	might_lock(&gt->reset.backoff_srcu);
1505 	if (retry)
1506 		might_sleep();
1507 
1508 	rcu_read_lock();
1509 	while (test_bit(I915_RESET_BACKOFF, &gt->reset.flags)) {
1510 		rcu_read_unlock();
1511 
1512 		if (!retry)
1513 			return -EBUSY;
1514 
1515 		if (wait_event_interruptible(gt->reset.queue,
1516 					     !test_bit(I915_RESET_BACKOFF,
1517 						       &gt->reset.flags)))
1518 			return -EINTR;
1519 
1520 		rcu_read_lock();
1521 	}
1522 	*srcu = srcu_read_lock(&gt->reset.backoff_srcu);
1523 	rcu_read_unlock();
1524 
1525 	return 0;
1526 }
1527 
1528 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
1529 {
1530 	return _intel_gt_reset_lock(gt, srcu, false);
1531 }
1532 
1533 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu)
1534 {
1535 	return _intel_gt_reset_lock(gt, srcu, true);
1536 }
1537 
1538 void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
1539 __releases(&gt->reset.backoff_srcu)
1540 {
1541 	srcu_read_unlock(&gt->reset.backoff_srcu, tag);
1542 }
1543 
1544 int intel_gt_terminally_wedged(struct intel_gt *gt)
1545 {
1546 	might_sleep();
1547 
1548 	if (!intel_gt_is_wedged(gt))
1549 		return 0;
1550 
1551 	if (intel_gt_has_unrecoverable_error(gt))
1552 		return -EIO;
1553 
1554 	/* Reset still in progress? Maybe we will recover? */
1555 	if (wait_event_interruptible(gt->reset.queue,
1556 				     !test_bit(I915_RESET_BACKOFF,
1557 					       &gt->reset.flags)))
1558 		return -EINTR;
1559 
1560 	return intel_gt_is_wedged(gt) ? -EIO : 0;
1561 }
1562 
1563 void intel_gt_set_wedged_on_init(struct intel_gt *gt)
1564 {
1565 	BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
1566 		     I915_WEDGED_ON_INIT);
1567 	intel_gt_set_wedged(gt);
1568 	i915_disable_error_state(gt->i915, -ENODEV);
1569 	set_bit(I915_WEDGED_ON_INIT, &gt->reset.flags);
1570 
1571 	/* Wedged on init is non-recoverable */
1572 	add_taint_for_CI(gt->i915, TAINT_WARN);
1573 }
1574 
1575 void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
1576 {
1577 	intel_gt_set_wedged(gt);
1578 	i915_disable_error_state(gt->i915, -ENODEV);
1579 	set_bit(I915_WEDGED_ON_FINI, &gt->reset.flags);
1580 	intel_gt_retire_requests(gt); /* cleanup any wedged requests */
1581 }
1582 
1583 void intel_gt_init_reset(struct intel_gt *gt)
1584 {
1585 	init_waitqueue_head(&gt->reset.queue);
1586 	mutex_init(&gt->reset.mutex);
1587 	init_srcu_struct(&gt->reset.backoff_srcu);
1588 
1589 	/*
1590 	 * While undesirable to wait inside the shrinker, complain anyway.
1591 	 *
1592 	 * If we have to wait during shrinking, we guarantee forward progress
1593 	 * by forcing the reset. Therefore during the reset we must not
1594 	 * re-enter the shrinker. By declaring that we take the reset mutex
1595 	 * within the shrinker, we forbid ourselves from performing any
1596 	 * fs-reclaim or taking related locks during reset.
1597 	 */
1598 	i915_gem_shrinker_taints_mutex(gt->i915, &gt->reset.mutex);
1599 
1600 	/* no GPU until we are ready! */
1601 	__set_bit(I915_WEDGED, &gt->reset.flags);
1602 }
1603 
1604 void intel_gt_fini_reset(struct intel_gt *gt)
1605 {
1606 	cleanup_srcu_struct(&gt->reset.backoff_srcu);
1607 }
1608 
1609 static void intel_wedge_me(struct work_struct *work)
1610 {
1611 	struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
1612 
1613 	drm_err(&w->gt->i915->drm,
1614 		"%s timed out, cancelling all in-flight rendering.\n",
1615 		w->name);
1616 	intel_gt_set_wedged(w->gt);
1617 }
1618 
1619 void __intel_init_wedge(struct intel_wedge_me *w,
1620 			struct intel_gt *gt,
1621 			long timeout,
1622 			const char *name)
1623 {
1624 	w->gt = gt;
1625 	w->name = name;
1626 
1627 	INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
1628 	queue_delayed_work(gt->i915->unordered_wq, &w->work, timeout);
1629 }
1630 
1631 void __intel_fini_wedge(struct intel_wedge_me *w)
1632 {
1633 	cancel_delayed_work_sync(&w->work);
1634 	destroy_delayed_work_on_stack(&w->work);
1635 	w->gt = NULL;
1636 }
1637 
1638 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1639 #include "selftest_reset.c"
1640 #include "selftest_hangcheck.c"
1641 #endif
1642