1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 #include <linux/string_helpers.h> 9 10 #include "display/intel_display.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "gt/intel_gt_regs.h" 16 17 #include "i915_drv.h" 18 #include "i915_file_private.h" 19 #include "i915_gpu_error.h" 20 #include "i915_irq.h" 21 #include "intel_breadcrumbs.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_gt.h" 25 #include "intel_gt_pm.h" 26 #include "intel_gt_requests.h" 27 #include "intel_mchbar_regs.h" 28 #include "intel_pci_config.h" 29 #include "intel_reset.h" 30 31 #include "uc/intel_guc.h" 32 33 #define RESET_MAX_RETRIES 3 34 35 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 36 #define RESET_UNDER_STOP_MACHINE 0 37 38 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 39 { 40 struct drm_i915_file_private *file_priv = ctx->file_priv; 41 unsigned long prev_hang; 42 unsigned int score; 43 44 if (IS_ERR_OR_NULL(file_priv)) 45 return; 46 47 score = 0; 48 if (banned) 49 score = I915_CLIENT_SCORE_CONTEXT_BAN; 50 51 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 52 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 53 score += I915_CLIENT_SCORE_HANG_FAST; 54 55 if (score) { 56 atomic_add(score, &file_priv->ban_score); 57 58 drm_dbg(&ctx->i915->drm, 59 "client %s: gained %u ban score, now %u\n", 60 ctx->name, score, 61 atomic_read(&file_priv->ban_score)); 62 } 63 } 64 65 static bool mark_guilty(struct i915_request *rq) 66 { 67 struct i915_gem_context *ctx; 68 unsigned long prev_hang; 69 bool banned; 70 int i; 71 72 if (intel_context_is_closed(rq->context)) 73 return true; 74 75 rcu_read_lock(); 76 ctx = rcu_dereference(rq->context->gem_context); 77 if (ctx && !kref_get_unless_zero(&ctx->ref)) 78 ctx = NULL; 79 rcu_read_unlock(); 80 if (!ctx) 81 return intel_context_is_banned(rq->context); 82 83 atomic_inc(&ctx->guilty_count); 84 85 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 86 if (!i915_gem_context_is_bannable(ctx)) { 87 banned = false; 88 goto out; 89 } 90 91 drm_notice(&ctx->i915->drm, 92 "%s context reset due to GPU hang\n", 93 ctx->name); 94 95 /* Record the timestamp for the last N hangs */ 96 prev_hang = ctx->hang_timestamp[0]; 97 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 98 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 99 ctx->hang_timestamp[i] = jiffies; 100 101 /* If we have hung N+1 times in rapid succession, we ban the context! */ 102 banned = !i915_gem_context_is_recoverable(ctx); 103 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 104 banned = true; 105 if (banned) 106 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 107 ctx->name, atomic_read(&ctx->guilty_count)); 108 109 client_mark_guilty(ctx, banned); 110 111 out: 112 i915_gem_context_put(ctx); 113 return banned; 114 } 115 116 static void mark_innocent(struct i915_request *rq) 117 { 118 struct i915_gem_context *ctx; 119 120 rcu_read_lock(); 121 ctx = rcu_dereference(rq->context->gem_context); 122 if (ctx) 123 atomic_inc(&ctx->active_count); 124 rcu_read_unlock(); 125 } 126 127 void __i915_request_reset(struct i915_request *rq, bool guilty) 128 { 129 bool banned = false; 130 131 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); 132 GEM_BUG_ON(__i915_request_is_complete(rq)); 133 134 rcu_read_lock(); /* protect the GEM context */ 135 if (guilty) { 136 i915_request_set_error_once(rq, -EIO); 137 __i915_request_skip(rq); 138 banned = mark_guilty(rq); 139 } else { 140 i915_request_set_error_once(rq, -EAGAIN); 141 mark_innocent(rq); 142 } 143 rcu_read_unlock(); 144 145 if (banned) 146 intel_context_ban(rq->context, rq); 147 } 148 149 static bool i915_in_reset(struct pci_dev *pdev) 150 { 151 u8 gdrst; 152 153 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 154 return gdrst & GRDOM_RESET_STATUS; 155 } 156 157 static int i915_do_reset(struct intel_gt *gt, 158 intel_engine_mask_t engine_mask, 159 unsigned int retry) 160 { 161 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 162 int err; 163 164 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 165 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 166 udelay(50); 167 err = wait_for_atomic(i915_in_reset(pdev), 50); 168 169 /* Clear the reset request. */ 170 pci_write_config_byte(pdev, I915_GDRST, 0); 171 udelay(50); 172 if (!err) 173 err = wait_for_atomic(!i915_in_reset(pdev), 50); 174 175 return err; 176 } 177 178 static bool g4x_reset_complete(struct pci_dev *pdev) 179 { 180 u8 gdrst; 181 182 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 183 return (gdrst & GRDOM_RESET_ENABLE) == 0; 184 } 185 186 static int g33_do_reset(struct intel_gt *gt, 187 intel_engine_mask_t engine_mask, 188 unsigned int retry) 189 { 190 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 191 192 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 193 return wait_for_atomic(g4x_reset_complete(pdev), 50); 194 } 195 196 static int g4x_do_reset(struct intel_gt *gt, 197 intel_engine_mask_t engine_mask, 198 unsigned int retry) 199 { 200 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 201 struct intel_uncore *uncore = gt->uncore; 202 int ret; 203 204 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 205 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE); 206 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 207 208 pci_write_config_byte(pdev, I915_GDRST, 209 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 210 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 211 if (ret) { 212 GT_TRACE(gt, "Wait for media reset failed\n"); 213 goto out; 214 } 215 216 pci_write_config_byte(pdev, I915_GDRST, 217 GRDOM_RENDER | GRDOM_RESET_ENABLE); 218 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 219 if (ret) { 220 GT_TRACE(gt, "Wait for render reset failed\n"); 221 goto out; 222 } 223 224 out: 225 pci_write_config_byte(pdev, I915_GDRST, 0); 226 227 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0); 228 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 229 230 return ret; 231 } 232 233 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 234 unsigned int retry) 235 { 236 struct intel_uncore *uncore = gt->uncore; 237 int ret; 238 239 intel_uncore_write_fw(uncore, ILK_GDSR, 240 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 241 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 242 ILK_GRDOM_RESET_ENABLE, 0, 243 5000, 0, 244 NULL); 245 if (ret) { 246 GT_TRACE(gt, "Wait for render reset failed\n"); 247 goto out; 248 } 249 250 intel_uncore_write_fw(uncore, ILK_GDSR, 251 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 252 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 253 ILK_GRDOM_RESET_ENABLE, 0, 254 5000, 0, 255 NULL); 256 if (ret) { 257 GT_TRACE(gt, "Wait for media reset failed\n"); 258 goto out; 259 } 260 261 out: 262 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 263 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 264 return ret; 265 } 266 267 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 268 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 269 { 270 struct intel_uncore *uncore = gt->uncore; 271 int err; 272 273 /* 274 * GEN6_GDRST is not in the gt power well, no need to check 275 * for fifo space for the write or forcewake the chip for 276 * the read 277 */ 278 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 279 280 /* Wait for the device to ack the reset requests */ 281 err = __intel_wait_for_register_fw(uncore, 282 GEN6_GDRST, hw_domain_mask, 0, 283 500, 0, 284 NULL); 285 if (err) 286 GT_TRACE(gt, 287 "Wait for 0x%08x engines reset failed\n", 288 hw_domain_mask); 289 290 return err; 291 } 292 293 static int __gen6_reset_engines(struct intel_gt *gt, 294 intel_engine_mask_t engine_mask, 295 unsigned int retry) 296 { 297 struct intel_engine_cs *engine; 298 u32 hw_mask; 299 300 if (engine_mask == ALL_ENGINES) { 301 hw_mask = GEN6_GRDOM_FULL; 302 } else { 303 intel_engine_mask_t tmp; 304 305 hw_mask = 0; 306 for_each_engine_masked(engine, gt, engine_mask, tmp) { 307 hw_mask |= engine->reset_domain; 308 } 309 } 310 311 return gen6_hw_domain_reset(gt, hw_mask); 312 } 313 314 static int gen6_reset_engines(struct intel_gt *gt, 315 intel_engine_mask_t engine_mask, 316 unsigned int retry) 317 { 318 unsigned long flags; 319 int ret; 320 321 spin_lock_irqsave(>->uncore->lock, flags); 322 ret = __gen6_reset_engines(gt, engine_mask, retry); 323 spin_unlock_irqrestore(>->uncore->lock, flags); 324 325 return ret; 326 } 327 328 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 329 { 330 int vecs_id; 331 332 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 333 334 vecs_id = _VECS((engine->instance) / 2); 335 336 return engine->gt->engine[vecs_id]; 337 } 338 339 struct sfc_lock_data { 340 i915_reg_t lock_reg; 341 i915_reg_t ack_reg; 342 i915_reg_t usage_reg; 343 u32 lock_bit; 344 u32 ack_bit; 345 u32 usage_bit; 346 u32 reset_bit; 347 }; 348 349 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 350 struct sfc_lock_data *sfc_lock) 351 { 352 switch (engine->class) { 353 default: 354 MISSING_CASE(engine->class); 355 fallthrough; 356 case VIDEO_DECODE_CLASS: 357 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); 358 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 359 360 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 361 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 362 363 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 364 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 365 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 366 367 break; 368 case VIDEO_ENHANCEMENT_CLASS: 369 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); 370 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 371 372 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); 373 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 374 375 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); 376 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 377 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 378 379 break; 380 } 381 } 382 383 static int gen11_lock_sfc(struct intel_engine_cs *engine, 384 u32 *reset_mask, 385 u32 *unlock_mask) 386 { 387 struct intel_uncore *uncore = engine->uncore; 388 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 389 struct sfc_lock_data sfc_lock; 390 bool lock_obtained, lock_to_other = false; 391 int ret; 392 393 switch (engine->class) { 394 case VIDEO_DECODE_CLASS: 395 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 396 return 0; 397 398 fallthrough; 399 case VIDEO_ENHANCEMENT_CLASS: 400 get_sfc_forced_lock_data(engine, &sfc_lock); 401 402 break; 403 default: 404 return 0; 405 } 406 407 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 408 struct intel_engine_cs *paired_vecs; 409 410 if (engine->class != VIDEO_DECODE_CLASS || 411 GRAPHICS_VER(engine->i915) != 12) 412 return 0; 413 414 /* 415 * Wa_14010733141 416 * 417 * If the VCS-MFX isn't using the SFC, we also need to check 418 * whether VCS-HCP is using it. If so, we need to issue a *VE* 419 * forced lock on the VE engine that shares the same SFC. 420 */ 421 if (!(intel_uncore_read_fw(uncore, 422 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & 423 GEN12_HCP_SFC_USAGE_BIT)) 424 return 0; 425 426 paired_vecs = find_sfc_paired_vecs_engine(engine); 427 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 428 lock_to_other = true; 429 *unlock_mask |= paired_vecs->mask; 430 } else { 431 *unlock_mask |= engine->mask; 432 } 433 434 /* 435 * If the engine is using an SFC, tell the engine that a software reset 436 * is going to happen. The engine will then try to force lock the SFC. 437 * If SFC ends up being locked to the engine we want to reset, we have 438 * to reset it as well (we will unlock it once the reset sequence is 439 * completed). 440 */ 441 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit); 442 443 ret = __intel_wait_for_register_fw(uncore, 444 sfc_lock.ack_reg, 445 sfc_lock.ack_bit, 446 sfc_lock.ack_bit, 447 1000, 0, NULL); 448 449 /* 450 * Was the SFC released while we were trying to lock it? 451 * 452 * We should reset both the engine and the SFC if: 453 * - We were locking the SFC to this engine and the lock succeeded 454 * OR 455 * - We were locking the SFC to a different engine (Wa_14010733141) 456 * but the SFC was released before the lock was obtained. 457 * 458 * Otherwise we need only reset the engine by itself and we can 459 * leave the SFC alone. 460 */ 461 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 462 sfc_lock.usage_bit) != 0; 463 if (lock_obtained == lock_to_other) 464 return 0; 465 466 if (ret) { 467 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 468 return ret; 469 } 470 471 *reset_mask |= sfc_lock.reset_bit; 472 return 0; 473 } 474 475 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 476 { 477 struct intel_uncore *uncore = engine->uncore; 478 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 479 struct sfc_lock_data sfc_lock = {}; 480 481 if (engine->class != VIDEO_DECODE_CLASS && 482 engine->class != VIDEO_ENHANCEMENT_CLASS) 483 return; 484 485 if (engine->class == VIDEO_DECODE_CLASS && 486 (BIT(engine->instance) & vdbox_sfc_access) == 0) 487 return; 488 489 get_sfc_forced_lock_data(engine, &sfc_lock); 490 491 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0); 492 } 493 494 static int __gen11_reset_engines(struct intel_gt *gt, 495 intel_engine_mask_t engine_mask, 496 unsigned int retry) 497 { 498 struct intel_engine_cs *engine; 499 intel_engine_mask_t tmp; 500 u32 reset_mask, unlock_mask = 0; 501 int ret; 502 503 if (engine_mask == ALL_ENGINES) { 504 reset_mask = GEN11_GRDOM_FULL; 505 } else { 506 reset_mask = 0; 507 for_each_engine_masked(engine, gt, engine_mask, tmp) { 508 reset_mask |= engine->reset_domain; 509 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 510 if (ret) 511 goto sfc_unlock; 512 } 513 } 514 515 ret = gen6_hw_domain_reset(gt, reset_mask); 516 517 sfc_unlock: 518 /* 519 * We unlock the SFC based on the lock status and not the result of 520 * gen11_lock_sfc to make sure that we clean properly if something 521 * wrong happened during the lock (e.g. lock acquired after timeout 522 * expiration). 523 * 524 * Due to Wa_14010733141, we may have locked an SFC to an engine that 525 * wasn't being reset. So instead of calling gen11_unlock_sfc() 526 * on engine_mask, we instead call it on the mask of engines that our 527 * gen11_lock_sfc() calls told us actually had locks attempted. 528 */ 529 for_each_engine_masked(engine, gt, unlock_mask, tmp) 530 gen11_unlock_sfc(engine); 531 532 return ret; 533 } 534 535 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 536 { 537 struct intel_uncore *uncore = engine->uncore; 538 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 539 u32 request, mask, ack; 540 int ret; 541 542 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 543 return -ETIMEDOUT; 544 545 ack = intel_uncore_read_fw(uncore, reg); 546 if (ack & RESET_CTL_CAT_ERROR) { 547 /* 548 * For catastrophic errors, ready-for-reset sequence 549 * needs to be bypassed: HAS#396813 550 */ 551 request = RESET_CTL_CAT_ERROR; 552 mask = RESET_CTL_CAT_ERROR; 553 554 /* Catastrophic errors need to be cleared by HW */ 555 ack = 0; 556 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 557 request = RESET_CTL_REQUEST_RESET; 558 mask = RESET_CTL_READY_TO_RESET; 559 ack = RESET_CTL_READY_TO_RESET; 560 } else { 561 return 0; 562 } 563 564 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 565 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 566 700, 0, NULL); 567 if (ret) 568 drm_err(&engine->i915->drm, 569 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 570 engine->name, request, 571 intel_uncore_read_fw(uncore, reg)); 572 573 return ret; 574 } 575 576 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 577 { 578 intel_uncore_write_fw(engine->uncore, 579 RING_RESET_CTL(engine->mmio_base), 580 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 581 } 582 583 static int gen8_reset_engines(struct intel_gt *gt, 584 intel_engine_mask_t engine_mask, 585 unsigned int retry) 586 { 587 struct intel_engine_cs *engine; 588 const bool reset_non_ready = retry >= 1; 589 intel_engine_mask_t tmp; 590 unsigned long flags; 591 int ret; 592 593 spin_lock_irqsave(>->uncore->lock, flags); 594 595 for_each_engine_masked(engine, gt, engine_mask, tmp) { 596 ret = gen8_engine_reset_prepare(engine); 597 if (ret && !reset_non_ready) 598 goto skip_reset; 599 600 /* 601 * If this is not the first failed attempt to prepare, 602 * we decide to proceed anyway. 603 * 604 * By doing so we risk context corruption and with 605 * some gens (kbl), possible system hang if reset 606 * happens during active bb execution. 607 * 608 * We rather take context corruption instead of 609 * failed reset with a wedged driver/gpu. And 610 * active bb execution case should be covered by 611 * stop_engines() we have before the reset. 612 */ 613 } 614 615 /* 616 * Wa_22011100796:dg2, whenever Full soft reset is required, 617 * reset all individual engines firstly, and then do a full soft reset. 618 * 619 * This is best effort, so ignore any error from the initial reset. 620 */ 621 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) 622 __gen11_reset_engines(gt, gt->info.engine_mask, 0); 623 624 if (GRAPHICS_VER(gt->i915) >= 11) 625 ret = __gen11_reset_engines(gt, engine_mask, retry); 626 else 627 ret = __gen6_reset_engines(gt, engine_mask, retry); 628 629 skip_reset: 630 for_each_engine_masked(engine, gt, engine_mask, tmp) 631 gen8_engine_reset_cancel(engine); 632 633 spin_unlock_irqrestore(>->uncore->lock, flags); 634 635 return ret; 636 } 637 638 static int mock_reset(struct intel_gt *gt, 639 intel_engine_mask_t mask, 640 unsigned int retry) 641 { 642 return 0; 643 } 644 645 typedef int (*reset_func)(struct intel_gt *, 646 intel_engine_mask_t engine_mask, 647 unsigned int retry); 648 649 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 650 { 651 struct drm_i915_private *i915 = gt->i915; 652 653 if (is_mock_gt(gt)) 654 return mock_reset; 655 else if (GRAPHICS_VER(i915) >= 8) 656 return gen8_reset_engines; 657 else if (GRAPHICS_VER(i915) >= 6) 658 return gen6_reset_engines; 659 else if (GRAPHICS_VER(i915) >= 5) 660 return ilk_do_reset; 661 else if (IS_G4X(i915)) 662 return g4x_do_reset; 663 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 664 return g33_do_reset; 665 else if (GRAPHICS_VER(i915) >= 3) 666 return i915_do_reset; 667 else 668 return NULL; 669 } 670 671 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 672 { 673 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 674 reset_func reset; 675 int ret = -ETIMEDOUT; 676 int retry; 677 678 reset = intel_get_gpu_reset(gt); 679 if (!reset) 680 return -ENODEV; 681 682 /* 683 * If the power well sleeps during the reset, the reset 684 * request may be dropped and never completes (causing -EIO). 685 */ 686 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 687 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 688 GT_TRACE(gt, "engine_mask=%x\n", engine_mask); 689 preempt_disable(); 690 ret = reset(gt, engine_mask, retry); 691 preempt_enable(); 692 } 693 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 694 695 return ret; 696 } 697 698 bool intel_has_gpu_reset(const struct intel_gt *gt) 699 { 700 if (!gt->i915->params.reset) 701 return NULL; 702 703 return intel_get_gpu_reset(gt); 704 } 705 706 bool intel_has_reset_engine(const struct intel_gt *gt) 707 { 708 if (gt->i915->params.reset < 2) 709 return false; 710 711 return INTEL_INFO(gt->i915)->has_reset_engine; 712 } 713 714 int intel_reset_guc(struct intel_gt *gt) 715 { 716 u32 guc_domain = 717 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 718 int ret; 719 720 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 721 722 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 723 ret = gen6_hw_domain_reset(gt, guc_domain); 724 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 725 726 return ret; 727 } 728 729 /* 730 * Ensure irq handler finishes, and not run again. 731 * Also return the active request so that we only search for it once. 732 */ 733 static void reset_prepare_engine(struct intel_engine_cs *engine) 734 { 735 /* 736 * During the reset sequence, we must prevent the engine from 737 * entering RC6. As the context state is undefined until we restart 738 * the engine, if it does enter RC6 during the reset, the state 739 * written to the powercontext is undefined and so we may lose 740 * GPU state upon resume, i.e. fail to restart after a reset. 741 */ 742 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 743 if (engine->reset.prepare) 744 engine->reset.prepare(engine); 745 } 746 747 static void revoke_mmaps(struct intel_gt *gt) 748 { 749 int i; 750 751 for (i = 0; i < gt->ggtt->num_fences; i++) { 752 struct drm_vma_offset_node *node; 753 struct i915_vma *vma; 754 u64 vma_offset; 755 756 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 757 if (!vma) 758 continue; 759 760 if (!i915_vma_has_userfault(vma)) 761 continue; 762 763 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 764 765 if (!vma->mmo) 766 continue; 767 768 node = &vma->mmo->vma_node; 769 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 770 771 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 772 drm_vma_node_offset_addr(node) + vma_offset, 773 vma->size, 774 1); 775 } 776 } 777 778 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 779 { 780 struct intel_engine_cs *engine; 781 intel_engine_mask_t awake = 0; 782 enum intel_engine_id id; 783 784 /* For GuC mode, ensure submission is disabled before stopping ring */ 785 intel_uc_reset_prepare(>->uc); 786 787 for_each_engine(engine, gt, id) { 788 if (intel_engine_pm_get_if_awake(engine)) 789 awake |= engine->mask; 790 reset_prepare_engine(engine); 791 } 792 793 return awake; 794 } 795 796 static void gt_revoke(struct intel_gt *gt) 797 { 798 revoke_mmaps(gt); 799 } 800 801 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 802 { 803 struct intel_engine_cs *engine; 804 enum intel_engine_id id; 805 int err; 806 807 /* 808 * Everything depends on having the GTT running, so we need to start 809 * there. 810 */ 811 err = i915_ggtt_enable_hw(gt->i915); 812 if (err) 813 return err; 814 815 local_bh_disable(); 816 for_each_engine(engine, gt, id) 817 __intel_engine_reset(engine, stalled_mask & engine->mask); 818 local_bh_enable(); 819 820 intel_uc_reset(>->uc, ALL_ENGINES); 821 822 intel_ggtt_restore_fences(gt->ggtt); 823 824 return err; 825 } 826 827 static void reset_finish_engine(struct intel_engine_cs *engine) 828 { 829 if (engine->reset.finish) 830 engine->reset.finish(engine); 831 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 832 833 intel_engine_signal_breadcrumbs(engine); 834 } 835 836 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 837 { 838 struct intel_engine_cs *engine; 839 enum intel_engine_id id; 840 841 for_each_engine(engine, gt, id) { 842 reset_finish_engine(engine); 843 if (awake & engine->mask) 844 intel_engine_pm_put(engine); 845 } 846 847 intel_uc_reset_finish(>->uc); 848 } 849 850 static void nop_submit_request(struct i915_request *request) 851 { 852 RQ_TRACE(request, "-EIO\n"); 853 854 request = i915_request_mark_eio(request); 855 if (request) { 856 i915_request_submit(request); 857 intel_engine_signal_breadcrumbs(request->engine); 858 859 i915_request_put(request); 860 } 861 } 862 863 static void __intel_gt_set_wedged(struct intel_gt *gt) 864 { 865 struct intel_engine_cs *engine; 866 intel_engine_mask_t awake; 867 enum intel_engine_id id; 868 869 if (test_bit(I915_WEDGED, >->reset.flags)) 870 return; 871 872 GT_TRACE(gt, "start\n"); 873 874 /* 875 * First, stop submission to hw, but do not yet complete requests by 876 * rolling the global seqno forward (since this would complete requests 877 * for which we haven't set the fence error to EIO yet). 878 */ 879 awake = reset_prepare(gt); 880 881 /* Even if the GPU reset fails, it should still stop the engines */ 882 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 883 __intel_gt_reset(gt, ALL_ENGINES); 884 885 for_each_engine(engine, gt, id) 886 engine->submit_request = nop_submit_request; 887 888 /* 889 * Make sure no request can slip through without getting completed by 890 * either this call here to intel_engine_write_global_seqno, or the one 891 * in nop_submit_request. 892 */ 893 synchronize_rcu_expedited(); 894 set_bit(I915_WEDGED, >->reset.flags); 895 896 /* Mark all executing requests as skipped */ 897 local_bh_disable(); 898 for_each_engine(engine, gt, id) 899 if (engine->reset.cancel) 900 engine->reset.cancel(engine); 901 intel_uc_cancel_requests(>->uc); 902 local_bh_enable(); 903 904 reset_finish(gt, awake); 905 906 GT_TRACE(gt, "end\n"); 907 } 908 909 void intel_gt_set_wedged(struct intel_gt *gt) 910 { 911 intel_wakeref_t wakeref; 912 913 if (test_bit(I915_WEDGED, >->reset.flags)) 914 return; 915 916 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 917 mutex_lock(>->reset.mutex); 918 919 if (GEM_SHOW_DEBUG()) { 920 struct drm_printer p = drm_debug_printer(__func__); 921 struct intel_engine_cs *engine; 922 enum intel_engine_id id; 923 924 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 925 for_each_engine(engine, gt, id) { 926 if (intel_engine_is_idle(engine)) 927 continue; 928 929 intel_engine_dump(engine, &p, "%s\n", engine->name); 930 } 931 } 932 933 __intel_gt_set_wedged(gt); 934 935 mutex_unlock(>->reset.mutex); 936 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 937 } 938 939 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 940 { 941 struct intel_gt_timelines *timelines = >->timelines; 942 struct intel_timeline *tl; 943 bool ok; 944 945 if (!test_bit(I915_WEDGED, >->reset.flags)) 946 return true; 947 948 /* Never fully initialised, recovery impossible */ 949 if (intel_gt_has_unrecoverable_error(gt)) 950 return false; 951 952 GT_TRACE(gt, "start\n"); 953 954 /* 955 * Before unwedging, make sure that all pending operations 956 * are flushed and errored out - we may have requests waiting upon 957 * third party fences. We marked all inflight requests as EIO, and 958 * every execbuf since returned EIO, for consistency we want all 959 * the currently pending requests to also be marked as EIO, which 960 * is done inside our nop_submit_request - and so we must wait. 961 * 962 * No more can be submitted until we reset the wedged bit. 963 */ 964 spin_lock(&timelines->lock); 965 list_for_each_entry(tl, &timelines->active_list, link) { 966 struct dma_fence *fence; 967 968 fence = i915_active_fence_get(&tl->last_request); 969 if (!fence) 970 continue; 971 972 spin_unlock(&timelines->lock); 973 974 /* 975 * All internal dependencies (i915_requests) will have 976 * been flushed by the set-wedge, but we may be stuck waiting 977 * for external fences. These should all be capped to 10s 978 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 979 * in the worst case. 980 */ 981 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 982 dma_fence_put(fence); 983 984 /* Restart iteration after droping lock */ 985 spin_lock(&timelines->lock); 986 tl = list_entry(&timelines->active_list, typeof(*tl), link); 987 } 988 spin_unlock(&timelines->lock); 989 990 /* We must reset pending GPU events before restoring our submission */ 991 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 992 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 993 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 994 if (!ok) { 995 /* 996 * Warn CI about the unrecoverable wedged condition. 997 * Time for a reboot. 998 */ 999 add_taint_for_CI(gt->i915, TAINT_WARN); 1000 return false; 1001 } 1002 1003 /* 1004 * Undo nop_submit_request. We prevent all new i915 requests from 1005 * being queued (by disallowing execbuf whilst wedged) so having 1006 * waited for all active requests above, we know the system is idle 1007 * and do not have to worry about a thread being inside 1008 * engine->submit_request() as we swap over. So unlike installing 1009 * the nop_submit_request on reset, we can do this from normal 1010 * context and do not require stop_machine(). 1011 */ 1012 intel_engines_reset_default_submission(gt); 1013 1014 GT_TRACE(gt, "end\n"); 1015 1016 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 1017 clear_bit(I915_WEDGED, >->reset.flags); 1018 1019 return true; 1020 } 1021 1022 bool intel_gt_unset_wedged(struct intel_gt *gt) 1023 { 1024 bool result; 1025 1026 mutex_lock(>->reset.mutex); 1027 result = __intel_gt_unset_wedged(gt); 1028 mutex_unlock(>->reset.mutex); 1029 1030 return result; 1031 } 1032 1033 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1034 { 1035 int err, i; 1036 1037 err = __intel_gt_reset(gt, ALL_ENGINES); 1038 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1039 msleep(10 * (i + 1)); 1040 err = __intel_gt_reset(gt, ALL_ENGINES); 1041 } 1042 if (err) 1043 return err; 1044 1045 return gt_reset(gt, stalled_mask); 1046 } 1047 1048 static int resume(struct intel_gt *gt) 1049 { 1050 struct intel_engine_cs *engine; 1051 enum intel_engine_id id; 1052 int ret; 1053 1054 for_each_engine(engine, gt, id) { 1055 ret = intel_engine_resume(engine); 1056 if (ret) 1057 return ret; 1058 } 1059 1060 return 0; 1061 } 1062 1063 /** 1064 * intel_gt_reset - reset chip after a hang 1065 * @gt: #intel_gt to reset 1066 * @stalled_mask: mask of the stalled engines with the guilty requests 1067 * @reason: user error message for why we are resetting 1068 * 1069 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1070 * on failure. 1071 * 1072 * Procedure is fairly simple: 1073 * - reset the chip using the reset reg 1074 * - re-init context state 1075 * - re-init hardware status page 1076 * - re-init ring buffer 1077 * - re-init interrupt state 1078 * - re-init display 1079 */ 1080 void intel_gt_reset(struct intel_gt *gt, 1081 intel_engine_mask_t stalled_mask, 1082 const char *reason) 1083 { 1084 intel_engine_mask_t awake; 1085 int ret; 1086 1087 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1088 1089 might_sleep(); 1090 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1091 1092 /* 1093 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1094 * critical section like gpu reset. 1095 */ 1096 gt_revoke(gt); 1097 1098 mutex_lock(>->reset.mutex); 1099 1100 /* Clear any previous failed attempts at recovery. Time to try again. */ 1101 if (!__intel_gt_unset_wedged(gt)) 1102 goto unlock; 1103 1104 if (reason) 1105 drm_notice(>->i915->drm, 1106 "Resetting chip for %s\n", reason); 1107 atomic_inc(>->i915->gpu_error.reset_count); 1108 1109 awake = reset_prepare(gt); 1110 1111 if (!intel_has_gpu_reset(gt)) { 1112 if (gt->i915->params.reset) 1113 drm_err(>->i915->drm, "GPU reset not supported\n"); 1114 else 1115 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1116 goto error; 1117 } 1118 1119 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1120 intel_runtime_pm_disable_interrupts(gt->i915); 1121 1122 if (do_reset(gt, stalled_mask)) { 1123 drm_err(>->i915->drm, "Failed to reset chip\n"); 1124 goto taint; 1125 } 1126 1127 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1128 intel_runtime_pm_enable_interrupts(gt->i915); 1129 1130 intel_overlay_reset(gt->i915); 1131 1132 /* 1133 * Next we need to restore the context, but we don't use those 1134 * yet either... 1135 * 1136 * Ring buffer needs to be re-initialized in the KMS case, or if X 1137 * was running at the time of the reset (i.e. we weren't VT 1138 * switched away). 1139 */ 1140 ret = intel_gt_init_hw(gt); 1141 if (ret) { 1142 drm_err(>->i915->drm, 1143 "Failed to initialise HW following reset (%d)\n", 1144 ret); 1145 goto taint; 1146 } 1147 1148 ret = resume(gt); 1149 if (ret) 1150 goto taint; 1151 1152 finish: 1153 reset_finish(gt, awake); 1154 unlock: 1155 mutex_unlock(>->reset.mutex); 1156 return; 1157 1158 taint: 1159 /* 1160 * History tells us that if we cannot reset the GPU now, we 1161 * never will. This then impacts everything that is run 1162 * subsequently. On failing the reset, we mark the driver 1163 * as wedged, preventing further execution on the GPU. 1164 * We also want to go one step further and add a taint to the 1165 * kernel so that any subsequent faults can be traced back to 1166 * this failure. This is important for CI, where if the 1167 * GPU/driver fails we would like to reboot and restart testing 1168 * rather than continue on into oblivion. For everyone else, 1169 * the system should still plod along, but they have been warned! 1170 */ 1171 add_taint_for_CI(gt->i915, TAINT_WARN); 1172 error: 1173 __intel_gt_set_wedged(gt); 1174 goto finish; 1175 } 1176 1177 static int intel_gt_reset_engine(struct intel_engine_cs *engine) 1178 { 1179 return __intel_gt_reset(engine->gt, engine->mask); 1180 } 1181 1182 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1183 { 1184 struct intel_gt *gt = engine->gt; 1185 int ret; 1186 1187 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1188 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1189 1190 if (intel_engine_uses_guc(engine)) 1191 return -ENODEV; 1192 1193 if (!intel_engine_pm_get_if_awake(engine)) 1194 return 0; 1195 1196 reset_prepare_engine(engine); 1197 1198 if (msg) 1199 drm_notice(&engine->i915->drm, 1200 "Resetting %s for %s\n", engine->name, msg); 1201 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1202 1203 ret = intel_gt_reset_engine(engine); 1204 if (ret) { 1205 /* If we fail here, we expect to fallback to a global reset */ 1206 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1207 goto out; 1208 } 1209 1210 /* 1211 * The request that caused the hang is stuck on elsp, we know the 1212 * active request and can drop it, adjust head to skip the offending 1213 * request to resume executing remaining requests in the queue. 1214 */ 1215 __intel_engine_reset(engine, true); 1216 1217 /* 1218 * The engine and its registers (and workarounds in case of render) 1219 * have been reset to their default values. Follow the init_ring 1220 * process to program RING_MODE, HWSP and re-enable submission. 1221 */ 1222 ret = intel_engine_resume(engine); 1223 1224 out: 1225 intel_engine_cancel_stop_cs(engine); 1226 reset_finish_engine(engine); 1227 intel_engine_pm_put_async(engine); 1228 return ret; 1229 } 1230 1231 /** 1232 * intel_engine_reset - reset GPU engine to recover from a hang 1233 * @engine: engine to reset 1234 * @msg: reason for GPU reset; or NULL for no drm_notice() 1235 * 1236 * Reset a specific GPU engine. Useful if a hang is detected. 1237 * Returns zero on successful reset or otherwise an error code. 1238 * 1239 * Procedure is: 1240 * - identifies the request that caused the hang and it is dropped 1241 * - reset engine (which will force the engine to idle) 1242 * - re-init/configure engine 1243 */ 1244 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1245 { 1246 int err; 1247 1248 local_bh_disable(); 1249 err = __intel_engine_reset_bh(engine, msg); 1250 local_bh_enable(); 1251 1252 return err; 1253 } 1254 1255 static void intel_gt_reset_global(struct intel_gt *gt, 1256 u32 engine_mask, 1257 const char *reason) 1258 { 1259 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1260 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1261 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1262 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1263 struct intel_wedge_me w; 1264 1265 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1266 1267 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1268 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1269 1270 /* Use a watchdog to ensure that our reset completes */ 1271 intel_wedge_on_timeout(&w, gt, 60 * HZ) { 1272 intel_display_prepare_reset(gt->i915); 1273 1274 intel_gt_reset(gt, engine_mask, reason); 1275 1276 intel_display_finish_reset(gt->i915); 1277 } 1278 1279 if (!test_bit(I915_WEDGED, >->reset.flags)) 1280 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1281 } 1282 1283 /** 1284 * intel_gt_handle_error - handle a gpu error 1285 * @gt: the intel_gt 1286 * @engine_mask: mask representing engines that are hung 1287 * @flags: control flags 1288 * @fmt: Error message format string 1289 * 1290 * Do some basic checking of register state at error time and 1291 * dump it to the syslog. Also call i915_capture_error_state() to make 1292 * sure we get a record and make it available in debugfs. Fire a uevent 1293 * so userspace knows something bad happened (should trigger collection 1294 * of a ring dump etc.). 1295 */ 1296 void intel_gt_handle_error(struct intel_gt *gt, 1297 intel_engine_mask_t engine_mask, 1298 unsigned long flags, 1299 const char *fmt, ...) 1300 { 1301 struct intel_engine_cs *engine; 1302 intel_wakeref_t wakeref; 1303 intel_engine_mask_t tmp; 1304 char error_msg[80]; 1305 char *msg = NULL; 1306 1307 if (fmt) { 1308 va_list args; 1309 1310 va_start(args, fmt); 1311 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1312 va_end(args); 1313 1314 msg = error_msg; 1315 } 1316 1317 /* 1318 * In most cases it's guaranteed that we get here with an RPM 1319 * reference held, for example because there is a pending GPU 1320 * request that won't finish until the reset is done. This 1321 * isn't the case at least when we get here by doing a 1322 * simulated reset via debugfs, so get an RPM reference. 1323 */ 1324 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1325 1326 engine_mask &= gt->info.engine_mask; 1327 1328 if (flags & I915_ERROR_CAPTURE) { 1329 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); 1330 intel_gt_clear_error_registers(gt, engine_mask); 1331 } 1332 1333 /* 1334 * Try engine reset when available. We fall back to full reset if 1335 * single reset fails. 1336 */ 1337 if (!intel_uc_uses_guc_submission(>->uc) && 1338 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1339 local_bh_disable(); 1340 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1341 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1342 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1343 >->reset.flags)) 1344 continue; 1345 1346 if (__intel_engine_reset_bh(engine, msg) == 0) 1347 engine_mask &= ~engine->mask; 1348 1349 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1350 >->reset.flags); 1351 } 1352 local_bh_enable(); 1353 } 1354 1355 if (!engine_mask) 1356 goto out; 1357 1358 /* Full reset needs the mutex, stop any other user trying to do so. */ 1359 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1360 wait_event(gt->reset.queue, 1361 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1362 goto out; /* piggy-back on the other reset */ 1363 } 1364 1365 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1366 synchronize_rcu_expedited(); 1367 1368 /* 1369 * Prevent any other reset-engine attempt. We don't do this for GuC 1370 * submission the GuC owns the per-engine reset, not the i915. 1371 */ 1372 if (!intel_uc_uses_guc_submission(>->uc)) { 1373 for_each_engine(engine, gt, tmp) { 1374 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1375 >->reset.flags)) 1376 wait_on_bit(>->reset.flags, 1377 I915_RESET_ENGINE + engine->id, 1378 TASK_UNINTERRUPTIBLE); 1379 } 1380 } 1381 1382 /* Flush everyone using a resource about to be clobbered */ 1383 synchronize_srcu_expedited(>->reset.backoff_srcu); 1384 1385 intel_gt_reset_global(gt, engine_mask, msg); 1386 1387 if (!intel_uc_uses_guc_submission(>->uc)) { 1388 for_each_engine(engine, gt, tmp) 1389 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1390 >->reset.flags); 1391 } 1392 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1393 smp_mb__after_atomic(); 1394 wake_up_all(>->reset.queue); 1395 1396 out: 1397 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1398 } 1399 1400 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) 1401 { 1402 might_lock(>->reset.backoff_srcu); 1403 if (retry) 1404 might_sleep(); 1405 1406 rcu_read_lock(); 1407 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1408 rcu_read_unlock(); 1409 1410 if (!retry) 1411 return -EBUSY; 1412 1413 if (wait_event_interruptible(gt->reset.queue, 1414 !test_bit(I915_RESET_BACKOFF, 1415 >->reset.flags))) 1416 return -EINTR; 1417 1418 rcu_read_lock(); 1419 } 1420 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1421 rcu_read_unlock(); 1422 1423 return 0; 1424 } 1425 1426 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1427 { 1428 return _intel_gt_reset_lock(gt, srcu, false); 1429 } 1430 1431 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) 1432 { 1433 return _intel_gt_reset_lock(gt, srcu, true); 1434 } 1435 1436 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1437 __releases(>->reset.backoff_srcu) 1438 { 1439 srcu_read_unlock(>->reset.backoff_srcu, tag); 1440 } 1441 1442 int intel_gt_terminally_wedged(struct intel_gt *gt) 1443 { 1444 might_sleep(); 1445 1446 if (!intel_gt_is_wedged(gt)) 1447 return 0; 1448 1449 if (intel_gt_has_unrecoverable_error(gt)) 1450 return -EIO; 1451 1452 /* Reset still in progress? Maybe we will recover? */ 1453 if (wait_event_interruptible(gt->reset.queue, 1454 !test_bit(I915_RESET_BACKOFF, 1455 >->reset.flags))) 1456 return -EINTR; 1457 1458 return intel_gt_is_wedged(gt) ? -EIO : 0; 1459 } 1460 1461 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1462 { 1463 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1464 I915_WEDGED_ON_INIT); 1465 intel_gt_set_wedged(gt); 1466 i915_disable_error_state(gt->i915, -ENODEV); 1467 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1468 1469 /* Wedged on init is non-recoverable */ 1470 add_taint_for_CI(gt->i915, TAINT_WARN); 1471 } 1472 1473 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1474 { 1475 intel_gt_set_wedged(gt); 1476 i915_disable_error_state(gt->i915, -ENODEV); 1477 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1478 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1479 } 1480 1481 void intel_gt_init_reset(struct intel_gt *gt) 1482 { 1483 init_waitqueue_head(>->reset.queue); 1484 mutex_init(>->reset.mutex); 1485 init_srcu_struct(>->reset.backoff_srcu); 1486 1487 /* 1488 * While undesirable to wait inside the shrinker, complain anyway. 1489 * 1490 * If we have to wait during shrinking, we guarantee forward progress 1491 * by forcing the reset. Therefore during the reset we must not 1492 * re-enter the shrinker. By declaring that we take the reset mutex 1493 * within the shrinker, we forbid ourselves from performing any 1494 * fs-reclaim or taking related locks during reset. 1495 */ 1496 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1497 1498 /* no GPU until we are ready! */ 1499 __set_bit(I915_WEDGED, >->reset.flags); 1500 } 1501 1502 void intel_gt_fini_reset(struct intel_gt *gt) 1503 { 1504 cleanup_srcu_struct(>->reset.backoff_srcu); 1505 } 1506 1507 static void intel_wedge_me(struct work_struct *work) 1508 { 1509 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1510 1511 drm_err(&w->gt->i915->drm, 1512 "%s timed out, cancelling all in-flight rendering.\n", 1513 w->name); 1514 intel_gt_set_wedged(w->gt); 1515 } 1516 1517 void __intel_init_wedge(struct intel_wedge_me *w, 1518 struct intel_gt *gt, 1519 long timeout, 1520 const char *name) 1521 { 1522 w->gt = gt; 1523 w->name = name; 1524 1525 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1526 schedule_delayed_work(&w->work, timeout); 1527 } 1528 1529 void __intel_fini_wedge(struct intel_wedge_me *w) 1530 { 1531 cancel_delayed_work_sync(&w->work); 1532 destroy_delayed_work_on_stack(&w->work); 1533 w->gt = NULL; 1534 } 1535 1536 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1537 #include "selftest_reset.c" 1538 #include "selftest_hangcheck.c" 1539 #endif 1540