1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/pm_runtime.h> 8 9 #include "i915_drv.h" 10 #include "intel_gt.h" 11 #include "intel_gt_pm.h" 12 #include "intel_rc6.h" 13 #include "intel_sideband.h" 14 15 /** 16 * DOC: RC6 17 * 18 * RC6 is a special power stage which allows the GPU to enter an very 19 * low-voltage mode when idle, using down to 0V while at this stage. This 20 * stage is entered automatically when the GPU is idle when RC6 support is 21 * enabled, and as soon as new workload arises GPU wakes up automatically as 22 * well. 23 * 24 * There are different RC6 modes available in Intel GPU, which differentiate 25 * among each other with the latency required to enter and leave RC6 and 26 * voltage consumed by the GPU in different states. 27 * 28 * The combination of the following flags define which states GPU is allowed 29 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and 30 * RC6pp is deepest RC6. Their support by hardware varies according to the 31 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one 32 * which brings the most power savings; deeper states save more power, but 33 * require higher latency to switch to and wake up. 34 */ 35 36 static struct intel_gt *rc6_to_gt(struct intel_rc6 *rc6) 37 { 38 return container_of(rc6, struct intel_gt, rc6); 39 } 40 41 static struct intel_uncore *rc6_to_uncore(struct intel_rc6 *rc) 42 { 43 return rc6_to_gt(rc)->uncore; 44 } 45 46 static struct drm_i915_private *rc6_to_i915(struct intel_rc6 *rc) 47 { 48 return rc6_to_gt(rc)->i915; 49 } 50 51 static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val) 52 { 53 intel_uncore_write_fw(uncore, reg, val); 54 } 55 56 static void gen11_rc6_enable(struct intel_rc6 *rc6) 57 { 58 struct intel_uncore *uncore = rc6_to_uncore(rc6); 59 struct intel_engine_cs *engine; 60 enum intel_engine_id id; 61 62 /* 2b: Program RC6 thresholds.*/ 63 set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); 64 set(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150); 65 66 set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ 67 set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ 68 for_each_engine(engine, rc6_to_gt(rc6), id) 69 set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); 70 71 set(uncore, GUC_MAX_IDLE_COUNT, 0xA); 72 73 set(uncore, GEN6_RC_SLEEP, 0); 74 75 set(uncore, GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */ 76 77 /* 78 * 2c: Program Coarse Power Gating Policies. 79 * 80 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we 81 * use instead is a more conservative estimate for the maximum time 82 * it takes us to service a CS interrupt and submit a new ELSP - that 83 * is the time which the GPU is idle waiting for the CPU to select the 84 * next request to execute. If the idle hysteresis is less than that 85 * interrupt service latency, the hardware will automatically gate 86 * the power well and we will then incur the wake up cost on top of 87 * the service latency. A similar guide from plane_state is that we 88 * do not want the enable hysteresis to less than the wakeup latency. 89 * 90 * igt/gem_exec_nop/sequential provides a rough estimate for the 91 * service latency, and puts it around 10us for Broadwell (and other 92 * big core) and around 40us for Broxton (and other low power cores). 93 * [Note that for legacy ringbuffer submission, this is less than 1us!] 94 * However, the wakeup latency on Broxton is closer to 100us. To be 95 * conservative, we have to factor in a context switch on top (due 96 * to ksoftirqd). 97 */ 98 set(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250); 99 set(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 250); 100 101 /* 3a: Enable RC6 */ 102 set(uncore, GEN6_RC_CONTROL, 103 GEN6_RC_CTL_HW_ENABLE | 104 GEN6_RC_CTL_RC6_ENABLE | 105 GEN6_RC_CTL_EI_MODE(1)); 106 107 set(uncore, GEN9_PG_ENABLE, 108 GEN9_RENDER_PG_ENABLE | 109 GEN9_MEDIA_PG_ENABLE | 110 GEN11_MEDIA_SAMPLER_PG_ENABLE); 111 } 112 113 static void gen9_rc6_enable(struct intel_rc6 *rc6) 114 { 115 struct intel_uncore *uncore = rc6_to_uncore(rc6); 116 struct intel_engine_cs *engine; 117 enum intel_engine_id id; 118 u32 rc6_mode; 119 120 /* 2b: Program RC6 thresholds.*/ 121 if (INTEL_GEN(rc6_to_i915(rc6)) >= 10) { 122 set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); 123 set(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150); 124 } else if (IS_SKYLAKE(rc6_to_i915(rc6))) { 125 /* 126 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only 127 * when CPG is enabled 128 */ 129 set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16); 130 } else { 131 set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16); 132 } 133 134 set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ 135 set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ 136 for_each_engine(engine, rc6_to_gt(rc6), id) 137 set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); 138 139 set(uncore, GUC_MAX_IDLE_COUNT, 0xA); 140 141 set(uncore, GEN6_RC_SLEEP, 0); 142 143 /* 144 * 2c: Program Coarse Power Gating Policies. 145 * 146 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we 147 * use instead is a more conservative estimate for the maximum time 148 * it takes us to service a CS interrupt and submit a new ELSP - that 149 * is the time which the GPU is idle waiting for the CPU to select the 150 * next request to execute. If the idle hysteresis is less than that 151 * interrupt service latency, the hardware will automatically gate 152 * the power well and we will then incur the wake up cost on top of 153 * the service latency. A similar guide from plane_state is that we 154 * do not want the enable hysteresis to less than the wakeup latency. 155 * 156 * igt/gem_exec_nop/sequential provides a rough estimate for the 157 * service latency, and puts it around 10us for Broadwell (and other 158 * big core) and around 40us for Broxton (and other low power cores). 159 * [Note that for legacy ringbuffer submission, this is less than 1us!] 160 * However, the wakeup latency on Broxton is closer to 100us. To be 161 * conservative, we have to factor in a context switch on top (due 162 * to ksoftirqd). 163 */ 164 set(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250); 165 set(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 250); 166 167 /* 3a: Enable RC6 */ 168 set(uncore, GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */ 169 170 /* WaRsUseTimeoutMode:cnl (pre-prod) */ 171 if (IS_CNL_REVID(rc6_to_i915(rc6), CNL_REVID_A0, CNL_REVID_C0)) 172 rc6_mode = GEN7_RC_CTL_TO_MODE; 173 else 174 rc6_mode = GEN6_RC_CTL_EI_MODE(1); 175 176 set(uncore, GEN6_RC_CONTROL, 177 GEN6_RC_CTL_HW_ENABLE | 178 GEN6_RC_CTL_RC6_ENABLE | 179 rc6_mode); 180 181 /* 182 * WaRsDisableCoarsePowerGating:skl,cnl 183 * - Render/Media PG need to be disabled with RC6. 184 */ 185 if (!NEEDS_WaRsDisableCoarsePowerGating(rc6_to_i915(rc6))) 186 set(uncore, GEN9_PG_ENABLE, 187 GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE); 188 } 189 190 static void gen8_rc6_enable(struct intel_rc6 *rc6) 191 { 192 struct intel_uncore *uncore = rc6_to_uncore(rc6); 193 struct intel_engine_cs *engine; 194 enum intel_engine_id id; 195 196 /* 2b: Program RC6 thresholds.*/ 197 set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); 198 set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ 199 set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ 200 for_each_engine(engine, rc6_to_gt(rc6), id) 201 set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); 202 set(uncore, GEN6_RC_SLEEP, 0); 203 set(uncore, GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */ 204 205 /* 3: Enable RC6 */ 206 set(uncore, GEN6_RC_CONTROL, 207 GEN6_RC_CTL_HW_ENABLE | 208 GEN7_RC_CTL_TO_MODE | 209 GEN6_RC_CTL_RC6_ENABLE); 210 } 211 212 static void gen6_rc6_enable(struct intel_rc6 *rc6) 213 { 214 struct intel_uncore *uncore = rc6_to_uncore(rc6); 215 struct drm_i915_private *i915 = rc6_to_i915(rc6); 216 struct intel_engine_cs *engine; 217 enum intel_engine_id id; 218 u32 rc6vids, rc6_mask; 219 int ret; 220 221 set(uncore, GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); 222 set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); 223 set(uncore, GEN6_RC6pp_WAKE_RATE_LIMIT, 30); 224 set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); 225 set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); 226 227 for_each_engine(engine, rc6_to_gt(rc6), id) 228 set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); 229 230 set(uncore, GEN6_RC_SLEEP, 0); 231 set(uncore, GEN6_RC1e_THRESHOLD, 1000); 232 if (IS_IVYBRIDGE(i915)) 233 set(uncore, GEN6_RC6_THRESHOLD, 125000); 234 else 235 set(uncore, GEN6_RC6_THRESHOLD, 50000); 236 set(uncore, GEN6_RC6p_THRESHOLD, 150000); 237 set(uncore, GEN6_RC6pp_THRESHOLD, 64000); /* unused */ 238 239 /* We don't use those on Haswell */ 240 rc6_mask = GEN6_RC_CTL_RC6_ENABLE; 241 if (HAS_RC6p(i915)) 242 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; 243 if (HAS_RC6pp(i915)) 244 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; 245 set(uncore, GEN6_RC_CONTROL, 246 rc6_mask | 247 GEN6_RC_CTL_EI_MODE(1) | 248 GEN6_RC_CTL_HW_ENABLE); 249 250 rc6vids = 0; 251 ret = sandybridge_pcode_read(i915, GEN6_PCODE_READ_RC6VIDS, 252 &rc6vids, NULL); 253 if (IS_GEN(i915, 6) && ret) { 254 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n"); 255 } else if (IS_GEN(i915, 6) && 256 (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) { 257 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n", 258 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450); 259 rc6vids &= 0xffff00; 260 rc6vids |= GEN6_ENCODE_RC6_VID(450); 261 ret = sandybridge_pcode_write(i915, GEN6_PCODE_WRITE_RC6VIDS, rc6vids); 262 if (ret) 263 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n"); 264 } 265 } 266 267 /* Check that the pcbr address is not empty. */ 268 static int chv_rc6_init(struct intel_rc6 *rc6) 269 { 270 struct intel_uncore *uncore = rc6_to_uncore(rc6); 271 resource_size_t pctx_paddr, paddr; 272 resource_size_t pctx_size = 32 * SZ_1K; 273 u32 pcbr; 274 275 pcbr = intel_uncore_read(uncore, VLV_PCBR); 276 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) { 277 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); 278 paddr = rc6_to_i915(rc6)->dsm.end + 1 - pctx_size; 279 GEM_BUG_ON(paddr > U32_MAX); 280 281 pctx_paddr = (paddr & ~4095); 282 intel_uncore_write(uncore, VLV_PCBR, pctx_paddr); 283 } 284 285 return 0; 286 } 287 288 static int vlv_rc6_init(struct intel_rc6 *rc6) 289 { 290 struct drm_i915_private *i915 = rc6_to_i915(rc6); 291 struct intel_uncore *uncore = rc6_to_uncore(rc6); 292 struct drm_i915_gem_object *pctx; 293 resource_size_t pctx_paddr; 294 resource_size_t pctx_size = 24 * SZ_1K; 295 u32 pcbr; 296 297 pcbr = intel_uncore_read(uncore, VLV_PCBR); 298 if (pcbr) { 299 /* BIOS set it up already, grab the pre-alloc'd space */ 300 resource_size_t pcbr_offset; 301 302 pcbr_offset = (pcbr & ~4095) - i915->dsm.start; 303 pctx = i915_gem_object_create_stolen_for_preallocated(i915, 304 pcbr_offset, 305 I915_GTT_OFFSET_NONE, 306 pctx_size); 307 if (IS_ERR(pctx)) 308 return PTR_ERR(pctx); 309 310 goto out; 311 } 312 313 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); 314 315 /* 316 * From the Gunit register HAS: 317 * The Gfx driver is expected to program this register and ensure 318 * proper allocation within Gfx stolen memory. For example, this 319 * register should be programmed such than the PCBR range does not 320 * overlap with other ranges, such as the frame buffer, protected 321 * memory, or any other relevant ranges. 322 */ 323 pctx = i915_gem_object_create_stolen(i915, pctx_size); 324 if (IS_ERR(pctx)) { 325 DRM_DEBUG("not enough stolen space for PCTX, disabling\n"); 326 return PTR_ERR(pctx); 327 } 328 329 GEM_BUG_ON(range_overflows_t(u64, 330 i915->dsm.start, 331 pctx->stolen->start, 332 U32_MAX)); 333 pctx_paddr = i915->dsm.start + pctx->stolen->start; 334 intel_uncore_write(uncore, VLV_PCBR, pctx_paddr); 335 336 out: 337 rc6->pctx = pctx; 338 return 0; 339 } 340 341 static void chv_rc6_enable(struct intel_rc6 *rc6) 342 { 343 struct intel_uncore *uncore = rc6_to_uncore(rc6); 344 struct intel_engine_cs *engine; 345 enum intel_engine_id id; 346 347 /* 2a: Program RC6 thresholds.*/ 348 set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); 349 set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ 350 set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ 351 352 for_each_engine(engine, rc6_to_gt(rc6), id) 353 set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); 354 set(uncore, GEN6_RC_SLEEP, 0); 355 356 /* TO threshold set to 500 us (0x186 * 1.28 us) */ 357 set(uncore, GEN6_RC6_THRESHOLD, 0x186); 358 359 /* Allows RC6 residency counter to work */ 360 set(uncore, VLV_COUNTER_CONTROL, 361 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | 362 VLV_MEDIA_RC6_COUNT_EN | 363 VLV_RENDER_RC6_COUNT_EN)); 364 365 /* 3: Enable RC6 */ 366 set(uncore, GEN6_RC_CONTROL, GEN7_RC_CTL_TO_MODE); 367 } 368 369 static void vlv_rc6_enable(struct intel_rc6 *rc6) 370 { 371 struct intel_uncore *uncore = rc6_to_uncore(rc6); 372 struct intel_engine_cs *engine; 373 enum intel_engine_id id; 374 375 set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000); 376 set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); 377 set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); 378 379 for_each_engine(engine, rc6_to_gt(rc6), id) 380 set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); 381 382 set(uncore, GEN6_RC6_THRESHOLD, 0x557); 383 384 /* Allows RC6 residency counter to work */ 385 set(uncore, VLV_COUNTER_CONTROL, 386 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | 387 VLV_MEDIA_RC0_COUNT_EN | 388 VLV_RENDER_RC0_COUNT_EN | 389 VLV_MEDIA_RC6_COUNT_EN | 390 VLV_RENDER_RC6_COUNT_EN)); 391 392 set(uncore, GEN6_RC_CONTROL, 393 GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL); 394 } 395 396 static bool bxt_check_bios_rc6_setup(struct intel_rc6 *rc6) 397 { 398 struct intel_uncore *uncore = rc6_to_uncore(rc6); 399 struct drm_i915_private *i915 = rc6_to_i915(rc6); 400 u32 rc6_ctx_base, rc_ctl, rc_sw_target; 401 bool enable_rc6 = true; 402 403 rc_ctl = intel_uncore_read(uncore, GEN6_RC_CONTROL); 404 rc_sw_target = intel_uncore_read(uncore, GEN6_RC_STATE); 405 rc_sw_target &= RC_SW_TARGET_STATE_MASK; 406 rc_sw_target >>= RC_SW_TARGET_STATE_SHIFT; 407 DRM_DEBUG_DRIVER("BIOS enabled RC states: " 408 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n", 409 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE), 410 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE), 411 rc_sw_target); 412 413 if (!(intel_uncore_read(uncore, RC6_LOCATION) & RC6_CTX_IN_DRAM)) { 414 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n"); 415 enable_rc6 = false; 416 } 417 418 /* 419 * The exact context size is not known for BXT, so assume a page size 420 * for this check. 421 */ 422 rc6_ctx_base = 423 intel_uncore_read(uncore, RC6_CTX_BASE) & RC6_CTX_BASE_MASK; 424 if (!(rc6_ctx_base >= i915->dsm_reserved.start && 425 rc6_ctx_base + PAGE_SIZE < i915->dsm_reserved.end)) { 426 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n"); 427 enable_rc6 = false; 428 } 429 430 if (!((intel_uncore_read(uncore, PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1 && 431 (intel_uncore_read(uncore, PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1 && 432 (intel_uncore_read(uncore, PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1 && 433 (intel_uncore_read(uncore, PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1)) { 434 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n"); 435 enable_rc6 = false; 436 } 437 438 if (!intel_uncore_read(uncore, GEN8_PUSHBUS_CONTROL) || 439 !intel_uncore_read(uncore, GEN8_PUSHBUS_ENABLE) || 440 !intel_uncore_read(uncore, GEN8_PUSHBUS_SHIFT)) { 441 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n"); 442 enable_rc6 = false; 443 } 444 445 if (!intel_uncore_read(uncore, GEN6_GFXPAUSE)) { 446 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n"); 447 enable_rc6 = false; 448 } 449 450 if (!intel_uncore_read(uncore, GEN8_MISC_CTRL0)) { 451 DRM_DEBUG_DRIVER("GPM control not setup properly.\n"); 452 enable_rc6 = false; 453 } 454 455 return enable_rc6; 456 } 457 458 static bool rc6_supported(struct intel_rc6 *rc6) 459 { 460 struct drm_i915_private *i915 = rc6_to_i915(rc6); 461 462 if (!HAS_RC6(i915)) 463 return false; 464 465 if (intel_vgpu_active(i915)) 466 return false; 467 468 if (is_mock_gt(rc6_to_gt(rc6))) 469 return false; 470 471 if (IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(rc6)) { 472 dev_notice(i915->drm.dev, 473 "RC6 and powersaving disabled by BIOS\n"); 474 return false; 475 } 476 477 return true; 478 } 479 480 static void rpm_get(struct intel_rc6 *rc6) 481 { 482 GEM_BUG_ON(rc6->wakeref); 483 pm_runtime_get_sync(&rc6_to_i915(rc6)->drm.pdev->dev); 484 rc6->wakeref = true; 485 } 486 487 static void rpm_put(struct intel_rc6 *rc6) 488 { 489 GEM_BUG_ON(!rc6->wakeref); 490 pm_runtime_put(&rc6_to_i915(rc6)->drm.pdev->dev); 491 rc6->wakeref = false; 492 } 493 494 static bool intel_rc6_ctx_corrupted(struct intel_rc6 *rc6) 495 { 496 return !intel_uncore_read(rc6_to_uncore(rc6), GEN8_RC6_CTX_INFO); 497 } 498 499 static void intel_rc6_ctx_wa_init(struct intel_rc6 *rc6) 500 { 501 struct drm_i915_private *i915 = rc6_to_i915(rc6); 502 503 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915)) 504 return; 505 506 if (intel_rc6_ctx_corrupted(rc6)) { 507 DRM_INFO("RC6 context corrupted, disabling runtime power management\n"); 508 rc6->ctx_corrupted = true; 509 } 510 } 511 512 /** 513 * intel_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA 514 * @rc6: rc6 state 515 * 516 * Perform any steps needed to re-init the RC6 CTX WA after system resume. 517 */ 518 void intel_rc6_ctx_wa_resume(struct intel_rc6 *rc6) 519 { 520 if (rc6->ctx_corrupted && !intel_rc6_ctx_corrupted(rc6)) { 521 DRM_INFO("RC6 context restored, re-enabling runtime power management\n"); 522 rc6->ctx_corrupted = false; 523 } 524 } 525 526 /** 527 * intel_rc6_ctx_wa_check - check for a new RC6 CTX corruption 528 * @rc6: rc6 state 529 * 530 * Check if an RC6 CTX corruption has happened since the last check and if so 531 * disable RC6 and runtime power management. 532 */ 533 void intel_rc6_ctx_wa_check(struct intel_rc6 *rc6) 534 { 535 struct drm_i915_private *i915 = rc6_to_i915(rc6); 536 537 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915)) 538 return; 539 540 if (rc6->ctx_corrupted) 541 return; 542 543 if (!intel_rc6_ctx_corrupted(rc6)) 544 return; 545 546 DRM_NOTE("RC6 context corruption, disabling runtime power management\n"); 547 548 intel_rc6_disable(rc6); 549 rc6->ctx_corrupted = true; 550 551 return; 552 } 553 554 static void __intel_rc6_disable(struct intel_rc6 *rc6) 555 { 556 struct drm_i915_private *i915 = rc6_to_i915(rc6); 557 struct intel_uncore *uncore = rc6_to_uncore(rc6); 558 559 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 560 if (INTEL_GEN(i915) >= 9) 561 set(uncore, GEN9_PG_ENABLE, 0); 562 set(uncore, GEN6_RC_CONTROL, 0); 563 set(uncore, GEN6_RC_STATE, 0); 564 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 565 } 566 567 void intel_rc6_init(struct intel_rc6 *rc6) 568 { 569 struct drm_i915_private *i915 = rc6_to_i915(rc6); 570 int err; 571 572 /* Disable runtime-pm until we can save the GPU state with rc6 pctx */ 573 rpm_get(rc6); 574 575 if (!rc6_supported(rc6)) 576 return; 577 578 intel_rc6_ctx_wa_init(rc6); 579 580 if (IS_CHERRYVIEW(i915)) 581 err = chv_rc6_init(rc6); 582 else if (IS_VALLEYVIEW(i915)) 583 err = vlv_rc6_init(rc6); 584 else 585 err = 0; 586 587 /* Sanitize rc6, ensure it is disabled before we are ready. */ 588 __intel_rc6_disable(rc6); 589 590 rc6->supported = err == 0; 591 } 592 593 void intel_rc6_sanitize(struct intel_rc6 *rc6) 594 { 595 if (rc6->enabled) { /* unbalanced suspend/resume */ 596 rpm_get(rc6); 597 rc6->enabled = false; 598 } 599 600 if (rc6->supported) 601 __intel_rc6_disable(rc6); 602 } 603 604 void intel_rc6_enable(struct intel_rc6 *rc6) 605 { 606 struct drm_i915_private *i915 = rc6_to_i915(rc6); 607 struct intel_uncore *uncore = rc6_to_uncore(rc6); 608 609 if (!rc6->supported) 610 return; 611 612 GEM_BUG_ON(rc6->enabled); 613 614 if (rc6->ctx_corrupted) 615 return; 616 617 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 618 619 if (IS_CHERRYVIEW(i915)) 620 chv_rc6_enable(rc6); 621 else if (IS_VALLEYVIEW(i915)) 622 vlv_rc6_enable(rc6); 623 else if (INTEL_GEN(i915) >= 11) 624 gen11_rc6_enable(rc6); 625 else if (INTEL_GEN(i915) >= 9) 626 gen9_rc6_enable(rc6); 627 else if (IS_BROADWELL(i915)) 628 gen8_rc6_enable(rc6); 629 else if (INTEL_GEN(i915) >= 6) 630 gen6_rc6_enable(rc6); 631 632 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 633 634 /* rc6 is ready, runtime-pm is go! */ 635 rpm_put(rc6); 636 rc6->enabled = true; 637 } 638 639 void intel_rc6_disable(struct intel_rc6 *rc6) 640 { 641 if (!rc6->enabled) 642 return; 643 644 rpm_get(rc6); 645 rc6->enabled = false; 646 647 __intel_rc6_disable(rc6); 648 } 649 650 void intel_rc6_fini(struct intel_rc6 *rc6) 651 { 652 struct drm_i915_gem_object *pctx; 653 654 intel_rc6_disable(rc6); 655 656 pctx = fetch_and_zero(&rc6->pctx); 657 if (pctx) 658 i915_gem_object_put(pctx); 659 660 if (rc6->wakeref) 661 rpm_put(rc6); 662 } 663 664 static u64 vlv_residency_raw(struct intel_uncore *uncore, const i915_reg_t reg) 665 { 666 u32 lower, upper, tmp; 667 int loop = 2; 668 669 /* 670 * The register accessed do not need forcewake. We borrow 671 * uncore lock to prevent concurrent access to range reg. 672 */ 673 lockdep_assert_held(&uncore->lock); 674 675 /* 676 * vlv and chv residency counters are 40 bits in width. 677 * With a control bit, we can choose between upper or lower 678 * 32bit window into this counter. 679 * 680 * Although we always use the counter in high-range mode elsewhere, 681 * userspace may attempt to read the value before rc6 is initialised, 682 * before we have set the default VLV_COUNTER_CONTROL value. So always 683 * set the high bit to be safe. 684 */ 685 set(uncore, VLV_COUNTER_CONTROL, 686 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); 687 upper = intel_uncore_read_fw(uncore, reg); 688 do { 689 tmp = upper; 690 691 set(uncore, VLV_COUNTER_CONTROL, 692 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH)); 693 lower = intel_uncore_read_fw(uncore, reg); 694 695 set(uncore, VLV_COUNTER_CONTROL, 696 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); 697 upper = intel_uncore_read_fw(uncore, reg); 698 } while (upper != tmp && --loop); 699 700 /* 701 * Everywhere else we always use VLV_COUNTER_CONTROL with the 702 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set 703 * now. 704 */ 705 706 return lower | (u64)upper << 8; 707 } 708 709 u64 intel_rc6_residency_ns(struct intel_rc6 *rc6, const i915_reg_t reg) 710 { 711 struct drm_i915_private *i915 = rc6_to_i915(rc6); 712 struct intel_uncore *uncore = rc6_to_uncore(rc6); 713 u64 time_hw, prev_hw, overflow_hw; 714 unsigned int fw_domains; 715 unsigned long flags; 716 unsigned int i; 717 u32 mul, div; 718 719 if (!rc6->supported) 720 return 0; 721 722 /* 723 * Store previous hw counter values for counter wrap-around handling. 724 * 725 * There are only four interesting registers and they live next to each 726 * other so we can use the relative address, compared to the smallest 727 * one as the index into driver storage. 728 */ 729 i = (i915_mmio_reg_offset(reg) - 730 i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32); 731 if (WARN_ON_ONCE(i >= ARRAY_SIZE(rc6->cur_residency))) 732 return 0; 733 734 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ); 735 736 spin_lock_irqsave(&uncore->lock, flags); 737 intel_uncore_forcewake_get__locked(uncore, fw_domains); 738 739 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */ 740 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { 741 mul = 1000000; 742 div = i915->czclk_freq; 743 overflow_hw = BIT_ULL(40); 744 time_hw = vlv_residency_raw(uncore, reg); 745 } else { 746 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */ 747 if (IS_GEN9_LP(i915)) { 748 mul = 10000; 749 div = 12; 750 } else { 751 mul = 1280; 752 div = 1; 753 } 754 755 overflow_hw = BIT_ULL(32); 756 time_hw = intel_uncore_read_fw(uncore, reg); 757 } 758 759 /* 760 * Counter wrap handling. 761 * 762 * But relying on a sufficient frequency of queries otherwise counters 763 * can still wrap. 764 */ 765 prev_hw = rc6->prev_hw_residency[i]; 766 rc6->prev_hw_residency[i] = time_hw; 767 768 /* RC6 delta from last sample. */ 769 if (time_hw >= prev_hw) 770 time_hw -= prev_hw; 771 else 772 time_hw += overflow_hw - prev_hw; 773 774 /* Add delta to RC6 extended raw driver copy. */ 775 time_hw += rc6->cur_residency[i]; 776 rc6->cur_residency[i] = time_hw; 777 778 intel_uncore_forcewake_put__locked(uncore, fw_domains); 779 spin_unlock_irqrestore(&uncore->lock, flags); 780 781 return mul_u64_u32_div(time_hw, mul, div); 782 } 783 784 u64 intel_rc6_residency_us(struct intel_rc6 *rc6, i915_reg_t reg) 785 { 786 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(rc6, reg), 1000); 787 } 788