1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "intel_context.h" 8 #include "intel_gpu_commands.h" 9 #include "intel_gt.h" 10 #include "intel_gtt.h" 11 #include "intel_migrate.h" 12 #include "intel_ring.h" 13 #include "gem/i915_gem_lmem.h" 14 15 struct insert_pte_data { 16 u64 offset; 17 }; 18 19 #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */ 20 21 #define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \ 22 DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0) 23 static bool engine_supports_migration(struct intel_engine_cs *engine) 24 { 25 if (!engine) 26 return false; 27 28 /* 29 * We need the ability to prevent aribtration (MI_ARB_ON_OFF), 30 * the ability to write PTE using inline data (MI_STORE_DATA) 31 * and of course the ability to do the block transfer (blits). 32 */ 33 GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS); 34 35 return true; 36 } 37 38 static void xehpsdv_toggle_pdes(struct i915_address_space *vm, 39 struct i915_page_table *pt, 40 void *data) 41 { 42 struct insert_pte_data *d = data; 43 44 /* 45 * Insert a dummy PTE into every PT that will map to LMEM to ensure 46 * we have a correctly setup PDE structure for later use. 47 */ 48 vm->insert_page(vm, 0, d->offset, 49 i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), 50 PTE_LM); 51 GEM_BUG_ON(!pt->is_compact); 52 d->offset += SZ_2M; 53 } 54 55 static void xehpsdv_insert_pte(struct i915_address_space *vm, 56 struct i915_page_table *pt, 57 void *data) 58 { 59 struct insert_pte_data *d = data; 60 61 /* 62 * We are playing tricks here, since the actual pt, from the hw 63 * pov, is only 256bytes with 32 entries, or 4096bytes with 512 64 * entries, but we are still guaranteed that the physical 65 * alignment is 64K underneath for the pt, and we are careful 66 * not to access the space in the void. 67 */ 68 vm->insert_page(vm, px_dma(pt), d->offset, 69 i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), 70 PTE_LM); 71 d->offset += SZ_64K; 72 } 73 74 static void insert_pte(struct i915_address_space *vm, 75 struct i915_page_table *pt, 76 void *data) 77 { 78 struct insert_pte_data *d = data; 79 80 vm->insert_page(vm, px_dma(pt), d->offset, 81 i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE), 82 i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0); 83 d->offset += PAGE_SIZE; 84 } 85 86 static struct i915_address_space *migrate_vm(struct intel_gt *gt) 87 { 88 struct i915_vm_pt_stash stash = {}; 89 struct i915_ppgtt *vm; 90 int err; 91 int i; 92 93 /* 94 * We construct a very special VM for use by all migration contexts, 95 * it is kept pinned so that it can be used at any time. As we need 96 * to pre-allocate the page directories for the migration VM, this 97 * limits us to only using a small number of prepared vma. 98 * 99 * To be able to pipeline and reschedule migration operations while 100 * avoiding unnecessary contention on the vm itself, the PTE updates 101 * are inline with the blits. All the blits use the same fixed 102 * addresses, with the backing store redirection being updated on the 103 * fly. Only 2 implicit vma are used for all migration operations. 104 * 105 * We lay the ppGTT out as: 106 * 107 * [0, CHUNK_SZ) -> first object 108 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object 109 * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE 110 * 111 * By exposing the dma addresses of the page directories themselves 112 * within the ppGTT, we are then able to rewrite the PTE prior to use. 113 * But the PTE update and subsequent migration operation must be atomic, 114 * i.e. within the same non-preemptible window so that we do not switch 115 * to another migration context that overwrites the PTE. 116 * 117 * This changes quite a bit on platforms with HAS_64K_PAGES support, 118 * where we instead have three windows, each CHUNK_SIZE in size. The 119 * first is reserved for mapping system-memory, and that just uses the 120 * 512 entry layout using 4K GTT pages. The other two windows just map 121 * lmem pages and must use the new compact 32 entry layout using 64K GTT 122 * pages, which ensures we can address any lmem object that the user 123 * throws at us. We then also use the xehpsdv_toggle_pdes as a way of 124 * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the 125 * compact layout for each of these page-tables, that fall within the 126 * [CHUNK_SIZE, 3 * CHUNK_SIZE) range. 127 * 128 * We lay the ppGTT out as: 129 * 130 * [0, CHUNK_SZ) -> first window/object, maps smem 131 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src 132 * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst 133 * 134 * For the PTE window it's also quite different, since each PTE must 135 * point to some 64K page, one for each PT(since it's in lmem), and yet 136 * each is only <= 4096bytes, but since the unused space within that PTE 137 * range is never touched, this should be fine. 138 * 139 * So basically each PT now needs 64K of virtual memory, instead of 4K, 140 * which looks like: 141 * 142 * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE 143 */ 144 145 vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY); 146 if (IS_ERR(vm)) 147 return ERR_CAST(vm); 148 149 if (!vm->vm.allocate_va_range || !vm->vm.foreach) { 150 err = -ENODEV; 151 goto err_vm; 152 } 153 154 if (HAS_64K_PAGES(gt->i915)) 155 stash.pt_sz = I915_GTT_PAGE_SIZE_64K; 156 157 /* 158 * Each engine instance is assigned its own chunk in the VM, so 159 * that we can run multiple instances concurrently 160 */ 161 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 162 struct intel_engine_cs *engine; 163 u64 base = (u64)i << 32; 164 struct insert_pte_data d = {}; 165 struct i915_gem_ww_ctx ww; 166 u64 sz; 167 168 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 169 if (!engine_supports_migration(engine)) 170 continue; 171 172 /* 173 * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need 174 * 4x2 page directories for source/destination. 175 */ 176 if (HAS_64K_PAGES(gt->i915)) 177 sz = 3 * CHUNK_SZ; 178 else 179 sz = 2 * CHUNK_SZ; 180 d.offset = base + sz; 181 182 /* 183 * We need another page directory setup so that we can write 184 * the 8x512 PTE in each chunk. 185 */ 186 if (HAS_64K_PAGES(gt->i915)) 187 sz += (sz / SZ_2M) * SZ_64K; 188 else 189 sz += (sz >> 12) * sizeof(u64); 190 191 err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz); 192 if (err) 193 goto err_vm; 194 195 for_i915_gem_ww(&ww, err, true) { 196 err = i915_vm_lock_objects(&vm->vm, &ww); 197 if (err) 198 continue; 199 err = i915_vm_map_pt_stash(&vm->vm, &stash); 200 if (err) 201 continue; 202 203 vm->vm.allocate_va_range(&vm->vm, &stash, base, sz); 204 } 205 i915_vm_free_pt_stash(&vm->vm, &stash); 206 if (err) 207 goto err_vm; 208 209 /* Now allow the GPU to rewrite the PTE via its own ppGTT */ 210 if (HAS_64K_PAGES(gt->i915)) { 211 vm->vm.foreach(&vm->vm, base, d.offset - base, 212 xehpsdv_insert_pte, &d); 213 d.offset = base + CHUNK_SZ; 214 vm->vm.foreach(&vm->vm, 215 d.offset, 216 2 * CHUNK_SZ, 217 xehpsdv_toggle_pdes, &d); 218 } else { 219 vm->vm.foreach(&vm->vm, base, d.offset - base, 220 insert_pte, &d); 221 } 222 } 223 224 return &vm->vm; 225 226 err_vm: 227 i915_vm_put(&vm->vm); 228 return ERR_PTR(err); 229 } 230 231 static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt) 232 { 233 struct intel_engine_cs *engine; 234 int i; 235 236 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 237 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 238 if (engine_supports_migration(engine)) 239 return engine; 240 } 241 242 return NULL; 243 } 244 245 static struct intel_context *pinned_context(struct intel_gt *gt) 246 { 247 static struct lock_class_key key; 248 struct intel_engine_cs *engine; 249 struct i915_address_space *vm; 250 struct intel_context *ce; 251 252 engine = first_copy_engine(gt); 253 if (!engine) 254 return ERR_PTR(-ENODEV); 255 256 vm = migrate_vm(gt); 257 if (IS_ERR(vm)) 258 return ERR_CAST(vm); 259 260 ce = intel_engine_create_pinned_context(engine, vm, SZ_512K, 261 I915_GEM_HWS_MIGRATE, 262 &key, "migrate"); 263 i915_vm_put(vm); 264 return ce; 265 } 266 267 int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt) 268 { 269 struct intel_context *ce; 270 271 memset(m, 0, sizeof(*m)); 272 273 ce = pinned_context(gt); 274 if (IS_ERR(ce)) 275 return PTR_ERR(ce); 276 277 m->context = ce; 278 return 0; 279 } 280 281 static int random_index(unsigned int max) 282 { 283 return upper_32_bits(mul_u32_u32(get_random_u32(), max)); 284 } 285 286 static struct intel_context *__migrate_engines(struct intel_gt *gt) 287 { 288 struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE]; 289 struct intel_engine_cs *engine; 290 unsigned int count, i; 291 292 count = 0; 293 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 294 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 295 if (engine_supports_migration(engine)) 296 engines[count++] = engine; 297 } 298 299 return intel_context_create(engines[random_index(count)]); 300 } 301 302 struct intel_context *intel_migrate_create_context(struct intel_migrate *m) 303 { 304 struct intel_context *ce; 305 306 /* 307 * We randomly distribute contexts across the engines upon constrction, 308 * as they all share the same pinned vm, and so in order to allow 309 * multiple blits to run in parallel, we must construct each blit 310 * to use a different range of the vm for its GTT. This has to be 311 * known at construction, so we can not use the late greedy load 312 * balancing of the virtual-engine. 313 */ 314 ce = __migrate_engines(m->context->engine->gt); 315 if (IS_ERR(ce)) 316 return ce; 317 318 ce->ring = NULL; 319 ce->ring_size = SZ_256K; 320 321 i915_vm_put(ce->vm); 322 ce->vm = i915_vm_get(m->context->vm); 323 324 return ce; 325 } 326 327 static inline struct sgt_dma sg_sgt(struct scatterlist *sg) 328 { 329 dma_addr_t addr = sg_dma_address(sg); 330 331 return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; 332 } 333 334 static int emit_no_arbitration(struct i915_request *rq) 335 { 336 u32 *cs; 337 338 cs = intel_ring_begin(rq, 2); 339 if (IS_ERR(cs)) 340 return PTR_ERR(cs); 341 342 /* Explicitly disable preemption for this request. */ 343 *cs++ = MI_ARB_ON_OFF; 344 *cs++ = MI_NOOP; 345 intel_ring_advance(rq, cs); 346 347 return 0; 348 } 349 350 static int max_pte_pkt_size(struct i915_request *rq, int pkt) 351 { 352 struct intel_ring *ring = rq->ring; 353 354 pkt = min_t(int, pkt, (ring->space - rq->reserved_space) / sizeof(u32) + 5); 355 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); 356 357 return pkt; 358 } 359 360 #define I915_EMIT_PTE_NUM_DWORDS 6 361 362 static int emit_pte(struct i915_request *rq, 363 struct sgt_dma *it, 364 unsigned int pat_index, 365 bool is_lmem, 366 u64 offset, 367 int length) 368 { 369 bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915); 370 const u64 encode = rq->context->vm->pte_encode(0, pat_index, 371 is_lmem ? PTE_LM : 0); 372 struct intel_ring *ring = rq->ring; 373 int pkt, dword_length; 374 u32 total = 0; 375 u32 page_size; 376 u32 *hdr, *cs; 377 378 GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8); 379 380 page_size = I915_GTT_PAGE_SIZE; 381 dword_length = 0x400; 382 383 /* Compute the page directory offset for the target address range */ 384 if (has_64K_pages) { 385 GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M)); 386 387 offset /= SZ_2M; 388 offset *= SZ_64K; 389 offset += 3 * CHUNK_SZ; 390 391 if (is_lmem) { 392 page_size = I915_GTT_PAGE_SIZE_64K; 393 dword_length = 0x40; 394 } 395 } else { 396 offset >>= 12; 397 offset *= sizeof(u64); 398 offset += 2 * CHUNK_SZ; 399 } 400 401 offset += (u64)rq->engine->instance << 32; 402 403 cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS); 404 if (IS_ERR(cs)) 405 return PTR_ERR(cs); 406 407 /* Pack as many PTE updates as possible into a single MI command */ 408 pkt = max_pte_pkt_size(rq, dword_length); 409 410 hdr = cs; 411 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */ 412 *cs++ = lower_32_bits(offset); 413 *cs++ = upper_32_bits(offset); 414 415 do { 416 if (cs - hdr >= pkt) { 417 int dword_rem; 418 419 *hdr += cs - hdr - 2; 420 *cs++ = MI_NOOP; 421 422 ring->emit = (void *)cs - ring->vaddr; 423 intel_ring_advance(rq, cs); 424 intel_ring_update_space(ring); 425 426 cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS); 427 if (IS_ERR(cs)) 428 return PTR_ERR(cs); 429 430 dword_rem = dword_length; 431 if (has_64K_pages) { 432 if (IS_ALIGNED(total, SZ_2M)) { 433 offset = round_up(offset, SZ_64K); 434 } else { 435 dword_rem = SZ_2M - (total & (SZ_2M - 1)); 436 dword_rem /= page_size; 437 dword_rem *= 2; 438 } 439 } 440 441 pkt = max_pte_pkt_size(rq, dword_rem); 442 443 hdr = cs; 444 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); 445 *cs++ = lower_32_bits(offset); 446 *cs++ = upper_32_bits(offset); 447 } 448 449 GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size)); 450 451 *cs++ = lower_32_bits(encode | it->dma); 452 *cs++ = upper_32_bits(encode | it->dma); 453 454 offset += 8; 455 total += page_size; 456 457 it->dma += page_size; 458 if (it->dma >= it->max) { 459 it->sg = __sg_next(it->sg); 460 if (!it->sg || sg_dma_len(it->sg) == 0) 461 break; 462 463 it->dma = sg_dma_address(it->sg); 464 it->max = it->dma + sg_dma_len(it->sg); 465 } 466 } while (total < length); 467 468 *hdr += cs - hdr - 2; 469 *cs++ = MI_NOOP; 470 471 ring->emit = (void *)cs - ring->vaddr; 472 intel_ring_advance(rq, cs); 473 intel_ring_update_space(ring); 474 475 return total; 476 } 477 478 static bool wa_1209644611_applies(int ver, u32 size) 479 { 480 u32 height = size >> PAGE_SHIFT; 481 482 if (ver != 11) 483 return false; 484 485 return height % 4 == 3 && height <= 8; 486 } 487 488 /** 489 * DOC: Flat-CCS - Memory compression for Local memory 490 * 491 * On Xe-HP and later devices, we use dedicated compression control state (CCS) 492 * stored in local memory for each surface, to support the 3D and media 493 * compression formats. 494 * 495 * The memory required for the CCS of the entire local memory is 1/256 of the 496 * local memory size. So before the kernel boot, the required memory is reserved 497 * for the CCS data and a secure register will be programmed with the CCS base 498 * address. 499 * 500 * Flat CCS data needs to be cleared when a lmem object is allocated. 501 * And CCS data can be copied in and out of CCS region through 502 * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly. 503 * 504 * I915 supports Flat-CCS on lmem only objects. When an objects has smem in 505 * its preference list, on memory pressure, i915 needs to migrate the lmem 506 * content into smem. If the lmem object is Flat-CCS compressed by userspace, 507 * then i915 needs to decompress it. But I915 lack the required information 508 * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects. 509 * 510 * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can 511 * be temporarily evicted to smem, along with the auxiliary CCS state, where 512 * it can be potentially swapped-out at a later point, if required. 513 * If userspace later touches the evicted pages, then we always move 514 * the backing memory back to lmem, which includes restoring the saved CCS state, 515 * and potentially performing any required swap-in. 516 * 517 * For the migration of the lmem objects with smem in placement list, such as 518 * {lmem, smem}, objects are treated as non Flat-CCS capable objects. 519 */ 520 521 static inline u32 *i915_flush_dw(u32 *cmd, u32 flags) 522 { 523 *cmd++ = MI_FLUSH_DW | flags; 524 *cmd++ = 0; 525 *cmd++ = 0; 526 527 return cmd; 528 } 529 530 static int emit_copy_ccs(struct i915_request *rq, 531 u32 dst_offset, u8 dst_access, 532 u32 src_offset, u8 src_access, int size) 533 { 534 struct drm_i915_private *i915 = rq->engine->i915; 535 int mocs = rq->engine->gt->mocs.uc_index << 1; 536 u32 num_ccs_blks; 537 u32 *cs; 538 539 cs = intel_ring_begin(rq, 12); 540 if (IS_ERR(cs)) 541 return PTR_ERR(cs); 542 543 num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size), 544 NUM_CCS_BYTES_PER_BLOCK); 545 GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER); 546 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); 547 548 /* 549 * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS 550 * data in and out of the CCS region. 551 * 552 * We can copy at most 1024 blocks of 256 bytes using one 553 * XY_CTRL_SURF_COPY_BLT instruction. 554 * 555 * In case we need to copy more than 1024 blocks, we need to add 556 * another instruction to the same batch buffer. 557 * 558 * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS. 559 * 560 * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM. 561 */ 562 *cs++ = XY_CTRL_SURF_COPY_BLT | 563 src_access << SRC_ACCESS_TYPE_SHIFT | 564 dst_access << DST_ACCESS_TYPE_SHIFT | 565 ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT; 566 *cs++ = src_offset; 567 *cs++ = rq->engine->instance | 568 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); 569 *cs++ = dst_offset; 570 *cs++ = rq->engine->instance | 571 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); 572 573 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); 574 *cs++ = MI_NOOP; 575 576 intel_ring_advance(rq, cs); 577 578 return 0; 579 } 580 581 static int emit_copy(struct i915_request *rq, 582 u32 dst_offset, u32 src_offset, int size) 583 { 584 const int ver = GRAPHICS_VER(rq->engine->i915); 585 u32 instance = rq->engine->instance; 586 u32 *cs; 587 588 cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6); 589 if (IS_ERR(cs)) 590 return PTR_ERR(cs); 591 592 if (ver >= 9 && !wa_1209644611_applies(ver, size)) { 593 *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2); 594 *cs++ = BLT_DEPTH_32 | PAGE_SIZE; 595 *cs++ = 0; 596 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 597 *cs++ = dst_offset; 598 *cs++ = instance; 599 *cs++ = 0; 600 *cs++ = PAGE_SIZE; 601 *cs++ = src_offset; 602 *cs++ = instance; 603 } else if (ver >= 8) { 604 *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2); 605 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; 606 *cs++ = 0; 607 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 608 *cs++ = dst_offset; 609 *cs++ = instance; 610 *cs++ = 0; 611 *cs++ = PAGE_SIZE; 612 *cs++ = src_offset; 613 *cs++ = instance; 614 } else { 615 GEM_BUG_ON(instance); 616 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); 617 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; 618 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE; 619 *cs++ = dst_offset; 620 *cs++ = PAGE_SIZE; 621 *cs++ = src_offset; 622 } 623 624 intel_ring_advance(rq, cs); 625 return 0; 626 } 627 628 static u64 scatter_list_length(struct scatterlist *sg) 629 { 630 u64 len = 0; 631 632 while (sg && sg_dma_len(sg)) { 633 len += sg_dma_len(sg); 634 sg = sg_next(sg); 635 } 636 637 return len; 638 } 639 640 static int 641 calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem, 642 u64 bytes_to_cpy, u64 ccs_bytes_to_cpy) 643 { 644 if (ccs_bytes_to_cpy && !src_is_lmem) 645 /* 646 * When CHUNK_SZ is passed all the pages upto CHUNK_SZ 647 * will be taken for the blt. in Flat-ccs supported 648 * platform Smem obj will have more pages than required 649 * for main meory hence limit it to the required size 650 * for main memory 651 */ 652 return min_t(u64, bytes_to_cpy, CHUNK_SZ); 653 else 654 return CHUNK_SZ; 655 } 656 657 static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy) 658 { 659 u64 len; 660 661 do { 662 GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg)); 663 len = it->max - it->dma; 664 if (len > bytes_to_cpy) { 665 it->dma += bytes_to_cpy; 666 break; 667 } 668 669 bytes_to_cpy -= len; 670 671 it->sg = __sg_next(it->sg); 672 it->dma = sg_dma_address(it->sg); 673 it->max = it->dma + sg_dma_len(it->sg); 674 } while (bytes_to_cpy); 675 } 676 677 int 678 intel_context_migrate_copy(struct intel_context *ce, 679 const struct i915_deps *deps, 680 struct scatterlist *src, 681 unsigned int src_pat_index, 682 bool src_is_lmem, 683 struct scatterlist *dst, 684 unsigned int dst_pat_index, 685 bool dst_is_lmem, 686 struct i915_request **out) 687 { 688 struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs; 689 struct drm_i915_private *i915 = ce->engine->i915; 690 u64 ccs_bytes_to_cpy = 0, bytes_to_cpy; 691 unsigned int ccs_pat_index; 692 u32 src_offset, dst_offset; 693 u8 src_access, dst_access; 694 struct i915_request *rq; 695 u64 src_sz, dst_sz; 696 bool ccs_is_src, overwrite_ccs; 697 int err; 698 699 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); 700 GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem)); 701 *out = NULL; 702 703 GEM_BUG_ON(ce->ring->size < SZ_64K); 704 705 src_sz = scatter_list_length(src); 706 bytes_to_cpy = src_sz; 707 708 if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) { 709 src_access = !src_is_lmem && dst_is_lmem; 710 dst_access = !src_access; 711 712 dst_sz = scatter_list_length(dst); 713 if (src_is_lmem) { 714 it_ccs = it_dst; 715 ccs_pat_index = dst_pat_index; 716 ccs_is_src = false; 717 } else if (dst_is_lmem) { 718 bytes_to_cpy = dst_sz; 719 it_ccs = it_src; 720 ccs_pat_index = src_pat_index; 721 ccs_is_src = true; 722 } 723 724 /* 725 * When there is a eviction of ccs needed smem will have the 726 * extra pages for the ccs data 727 * 728 * TO-DO: Want to move the size mismatch check to a WARN_ON, 729 * but still we have some requests of smem->lmem with same size. 730 * Need to fix it. 731 */ 732 ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0; 733 if (ccs_bytes_to_cpy) 734 get_ccs_sg_sgt(&it_ccs, bytes_to_cpy); 735 } 736 737 overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem; 738 739 src_offset = 0; 740 dst_offset = CHUNK_SZ; 741 if (HAS_64K_PAGES(ce->engine->i915)) { 742 src_offset = 0; 743 dst_offset = 0; 744 if (src_is_lmem) 745 src_offset = CHUNK_SZ; 746 if (dst_is_lmem) 747 dst_offset = 2 * CHUNK_SZ; 748 } 749 750 do { 751 int len; 752 753 rq = i915_request_create(ce); 754 if (IS_ERR(rq)) { 755 err = PTR_ERR(rq); 756 goto out_ce; 757 } 758 759 if (deps) { 760 err = i915_request_await_deps(rq, deps); 761 if (err) 762 goto out_rq; 763 764 if (rq->engine->emit_init_breadcrumb) { 765 err = rq->engine->emit_init_breadcrumb(rq); 766 if (err) 767 goto out_rq; 768 } 769 770 deps = NULL; 771 } 772 773 /* The PTE updates + copy must not be interrupted. */ 774 err = emit_no_arbitration(rq); 775 if (err) 776 goto out_rq; 777 778 src_sz = calculate_chunk_sz(i915, src_is_lmem, 779 bytes_to_cpy, ccs_bytes_to_cpy); 780 781 len = emit_pte(rq, &it_src, src_pat_index, src_is_lmem, 782 src_offset, src_sz); 783 if (!len) { 784 err = -EINVAL; 785 goto out_rq; 786 } 787 if (len < 0) { 788 err = len; 789 goto out_rq; 790 } 791 792 err = emit_pte(rq, &it_dst, dst_pat_index, dst_is_lmem, 793 dst_offset, len); 794 if (err < 0) 795 goto out_rq; 796 if (err < len) { 797 err = -EINVAL; 798 goto out_rq; 799 } 800 801 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 802 if (err) 803 goto out_rq; 804 805 err = emit_copy(rq, dst_offset, src_offset, len); 806 if (err) 807 goto out_rq; 808 809 bytes_to_cpy -= len; 810 811 if (ccs_bytes_to_cpy) { 812 int ccs_sz; 813 814 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 815 if (err) 816 goto out_rq; 817 818 ccs_sz = GET_CCS_BYTES(i915, len); 819 err = emit_pte(rq, &it_ccs, ccs_pat_index, false, 820 ccs_is_src ? src_offset : dst_offset, 821 ccs_sz); 822 if (err < 0) 823 goto out_rq; 824 if (err < ccs_sz) { 825 err = -EINVAL; 826 goto out_rq; 827 } 828 829 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 830 if (err) 831 goto out_rq; 832 833 err = emit_copy_ccs(rq, dst_offset, dst_access, 834 src_offset, src_access, len); 835 if (err) 836 goto out_rq; 837 838 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 839 if (err) 840 goto out_rq; 841 ccs_bytes_to_cpy -= ccs_sz; 842 } else if (overwrite_ccs) { 843 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 844 if (err) 845 goto out_rq; 846 847 if (src_is_lmem) { 848 /* 849 * If the src is already in lmem, then we must 850 * be doing an lmem -> lmem transfer, and so 851 * should be safe to directly copy the CCS 852 * state. In this case we have either 853 * initialised the CCS aux state when first 854 * clearing the pages (since it is already 855 * allocated in lmem), or the user has 856 * potentially populated it, in which case we 857 * need to copy the CCS state as-is. 858 */ 859 err = emit_copy_ccs(rq, 860 dst_offset, INDIRECT_ACCESS, 861 src_offset, INDIRECT_ACCESS, 862 len); 863 } else { 864 /* 865 * While we can't always restore/manage the CCS 866 * state, we still need to ensure we don't leak 867 * the CCS state from the previous user, so make 868 * sure we overwrite it with something. 869 */ 870 err = emit_copy_ccs(rq, 871 dst_offset, INDIRECT_ACCESS, 872 dst_offset, DIRECT_ACCESS, 873 len); 874 } 875 876 if (err) 877 goto out_rq; 878 879 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 880 if (err) 881 goto out_rq; 882 } 883 884 /* Arbitration is re-enabled between requests. */ 885 out_rq: 886 if (*out) 887 i915_request_put(*out); 888 *out = i915_request_get(rq); 889 i915_request_add(rq); 890 891 if (err) 892 break; 893 894 if (!bytes_to_cpy && !ccs_bytes_to_cpy) { 895 if (src_is_lmem) 896 WARN_ON(it_src.sg && sg_dma_len(it_src.sg)); 897 else 898 WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg)); 899 break; 900 } 901 902 if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) || 903 !it_dst.sg || !sg_dma_len(it_dst.sg) || 904 (ccs_bytes_to_cpy && (!it_ccs.sg || 905 !sg_dma_len(it_ccs.sg))))) { 906 err = -EINVAL; 907 break; 908 } 909 910 cond_resched(); 911 } while (1); 912 913 out_ce: 914 return err; 915 } 916 917 static int emit_clear(struct i915_request *rq, u32 offset, int size, 918 u32 value, bool is_lmem) 919 { 920 struct drm_i915_private *i915 = rq->engine->i915; 921 int mocs = rq->engine->gt->mocs.uc_index << 1; 922 const int ver = GRAPHICS_VER(i915); 923 int ring_sz; 924 u32 *cs; 925 926 GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX); 927 928 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 929 ring_sz = XY_FAST_COLOR_BLT_DW; 930 else if (ver >= 8) 931 ring_sz = 8; 932 else 933 ring_sz = 6; 934 935 cs = intel_ring_begin(rq, ring_sz); 936 if (IS_ERR(cs)) 937 return PTR_ERR(cs); 938 939 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { 940 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | 941 (XY_FAST_COLOR_BLT_DW - 2); 942 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | 943 (PAGE_SIZE - 1); 944 *cs++ = 0; 945 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 946 *cs++ = offset; 947 *cs++ = rq->engine->instance; 948 *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; 949 /* BG7 */ 950 *cs++ = value; 951 *cs++ = 0; 952 *cs++ = 0; 953 *cs++ = 0; 954 /* BG11 */ 955 *cs++ = 0; 956 *cs++ = 0; 957 /* BG13 */ 958 *cs++ = 0; 959 *cs++ = 0; 960 *cs++ = 0; 961 } else if (ver >= 8) { 962 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2); 963 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; 964 *cs++ = 0; 965 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 966 *cs++ = offset; 967 *cs++ = rq->engine->instance; 968 *cs++ = value; 969 *cs++ = MI_NOOP; 970 } else { 971 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); 972 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; 973 *cs++ = 0; 974 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 975 *cs++ = offset; 976 *cs++ = value; 977 } 978 979 intel_ring_advance(rq, cs); 980 return 0; 981 } 982 983 int 984 intel_context_migrate_clear(struct intel_context *ce, 985 const struct i915_deps *deps, 986 struct scatterlist *sg, 987 unsigned int pat_index, 988 bool is_lmem, 989 u32 value, 990 struct i915_request **out) 991 { 992 struct drm_i915_private *i915 = ce->engine->i915; 993 struct sgt_dma it = sg_sgt(sg); 994 struct i915_request *rq; 995 u32 offset; 996 int err; 997 998 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); 999 *out = NULL; 1000 1001 GEM_BUG_ON(ce->ring->size < SZ_64K); 1002 1003 offset = 0; 1004 if (HAS_64K_PAGES(i915) && is_lmem) 1005 offset = CHUNK_SZ; 1006 1007 do { 1008 int len; 1009 1010 rq = i915_request_create(ce); 1011 if (IS_ERR(rq)) { 1012 err = PTR_ERR(rq); 1013 goto out_ce; 1014 } 1015 1016 if (deps) { 1017 err = i915_request_await_deps(rq, deps); 1018 if (err) 1019 goto out_rq; 1020 1021 if (rq->engine->emit_init_breadcrumb) { 1022 err = rq->engine->emit_init_breadcrumb(rq); 1023 if (err) 1024 goto out_rq; 1025 } 1026 1027 deps = NULL; 1028 } 1029 1030 /* The PTE updates + clear must not be interrupted. */ 1031 err = emit_no_arbitration(rq); 1032 if (err) 1033 goto out_rq; 1034 1035 len = emit_pte(rq, &it, pat_index, is_lmem, offset, CHUNK_SZ); 1036 if (len <= 0) { 1037 err = len; 1038 goto out_rq; 1039 } 1040 1041 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 1042 if (err) 1043 goto out_rq; 1044 1045 err = emit_clear(rq, offset, len, value, is_lmem); 1046 if (err) 1047 goto out_rq; 1048 1049 if (HAS_FLAT_CCS(i915) && is_lmem && !value) { 1050 /* 1051 * copy the content of memory into corresponding 1052 * ccs surface 1053 */ 1054 err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset, 1055 DIRECT_ACCESS, len); 1056 if (err) 1057 goto out_rq; 1058 } 1059 1060 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 1061 1062 /* Arbitration is re-enabled between requests. */ 1063 out_rq: 1064 if (*out) 1065 i915_request_put(*out); 1066 *out = i915_request_get(rq); 1067 i915_request_add(rq); 1068 if (err || !it.sg || !sg_dma_len(it.sg)) 1069 break; 1070 1071 cond_resched(); 1072 } while (1); 1073 1074 out_ce: 1075 return err; 1076 } 1077 1078 int intel_migrate_copy(struct intel_migrate *m, 1079 struct i915_gem_ww_ctx *ww, 1080 const struct i915_deps *deps, 1081 struct scatterlist *src, 1082 unsigned int src_pat_index, 1083 bool src_is_lmem, 1084 struct scatterlist *dst, 1085 unsigned int dst_pat_index, 1086 bool dst_is_lmem, 1087 struct i915_request **out) 1088 { 1089 struct intel_context *ce; 1090 int err; 1091 1092 *out = NULL; 1093 if (!m->context) 1094 return -ENODEV; 1095 1096 ce = intel_migrate_create_context(m); 1097 if (IS_ERR(ce)) 1098 ce = intel_context_get(m->context); 1099 GEM_BUG_ON(IS_ERR(ce)); 1100 1101 err = intel_context_pin_ww(ce, ww); 1102 if (err) 1103 goto out; 1104 1105 err = intel_context_migrate_copy(ce, deps, 1106 src, src_pat_index, src_is_lmem, 1107 dst, dst_pat_index, dst_is_lmem, 1108 out); 1109 1110 intel_context_unpin(ce); 1111 out: 1112 intel_context_put(ce); 1113 return err; 1114 } 1115 1116 int 1117 intel_migrate_clear(struct intel_migrate *m, 1118 struct i915_gem_ww_ctx *ww, 1119 const struct i915_deps *deps, 1120 struct scatterlist *sg, 1121 unsigned int pat_index, 1122 bool is_lmem, 1123 u32 value, 1124 struct i915_request **out) 1125 { 1126 struct intel_context *ce; 1127 int err; 1128 1129 *out = NULL; 1130 if (!m->context) 1131 return -ENODEV; 1132 1133 ce = intel_migrate_create_context(m); 1134 if (IS_ERR(ce)) 1135 ce = intel_context_get(m->context); 1136 GEM_BUG_ON(IS_ERR(ce)); 1137 1138 err = intel_context_pin_ww(ce, ww); 1139 if (err) 1140 goto out; 1141 1142 err = intel_context_migrate_clear(ce, deps, sg, pat_index, 1143 is_lmem, value, out); 1144 1145 intel_context_unpin(ce); 1146 out: 1147 intel_context_put(ce); 1148 return err; 1149 } 1150 1151 void intel_migrate_fini(struct intel_migrate *m) 1152 { 1153 struct intel_context *ce; 1154 1155 ce = fetch_and_zero(&m->context); 1156 if (!ce) 1157 return; 1158 1159 intel_engine_destroy_pinned_context(ce); 1160 } 1161 1162 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1163 #include "selftest_migrate.c" 1164 #endif 1165