1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "intel_context.h" 8 #include "intel_gpu_commands.h" 9 #include "intel_gt.h" 10 #include "intel_gtt.h" 11 #include "intel_migrate.h" 12 #include "intel_ring.h" 13 14 struct insert_pte_data { 15 u64 offset; 16 }; 17 18 #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */ 19 20 #define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \ 21 DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0) 22 static bool engine_supports_migration(struct intel_engine_cs *engine) 23 { 24 if (!engine) 25 return false; 26 27 /* 28 * We need the ability to prevent aribtration (MI_ARB_ON_OFF), 29 * the ability to write PTE using inline data (MI_STORE_DATA) 30 * and of course the ability to do the block transfer (blits). 31 */ 32 GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS); 33 34 return true; 35 } 36 37 static void xehpsdv_toggle_pdes(struct i915_address_space *vm, 38 struct i915_page_table *pt, 39 void *data) 40 { 41 struct insert_pte_data *d = data; 42 43 /* 44 * Insert a dummy PTE into every PT that will map to LMEM to ensure 45 * we have a correctly setup PDE structure for later use. 46 */ 47 vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM); 48 GEM_BUG_ON(!pt->is_compact); 49 d->offset += SZ_2M; 50 } 51 52 static void xehpsdv_insert_pte(struct i915_address_space *vm, 53 struct i915_page_table *pt, 54 void *data) 55 { 56 struct insert_pte_data *d = data; 57 58 /* 59 * We are playing tricks here, since the actual pt, from the hw 60 * pov, is only 256bytes with 32 entries, or 4096bytes with 512 61 * entries, but we are still guaranteed that the physical 62 * alignment is 64K underneath for the pt, and we are careful 63 * not to access the space in the void. 64 */ 65 vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM); 66 d->offset += SZ_64K; 67 } 68 69 static void insert_pte(struct i915_address_space *vm, 70 struct i915_page_table *pt, 71 void *data) 72 { 73 struct insert_pte_data *d = data; 74 75 vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, 76 i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0); 77 d->offset += PAGE_SIZE; 78 } 79 80 static struct i915_address_space *migrate_vm(struct intel_gt *gt) 81 { 82 struct i915_vm_pt_stash stash = {}; 83 struct i915_ppgtt *vm; 84 int err; 85 int i; 86 87 /* 88 * We construct a very special VM for use by all migration contexts, 89 * it is kept pinned so that it can be used at any time. As we need 90 * to pre-allocate the page directories for the migration VM, this 91 * limits us to only using a small number of prepared vma. 92 * 93 * To be able to pipeline and reschedule migration operations while 94 * avoiding unnecessary contention on the vm itself, the PTE updates 95 * are inline with the blits. All the blits use the same fixed 96 * addresses, with the backing store redirection being updated on the 97 * fly. Only 2 implicit vma are used for all migration operations. 98 * 99 * We lay the ppGTT out as: 100 * 101 * [0, CHUNK_SZ) -> first object 102 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object 103 * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE 104 * 105 * By exposing the dma addresses of the page directories themselves 106 * within the ppGTT, we are then able to rewrite the PTE prior to use. 107 * But the PTE update and subsequent migration operation must be atomic, 108 * i.e. within the same non-preemptible window so that we do not switch 109 * to another migration context that overwrites the PTE. 110 * 111 * This changes quite a bit on platforms with HAS_64K_PAGES support, 112 * where we instead have three windows, each CHUNK_SIZE in size. The 113 * first is reserved for mapping system-memory, and that just uses the 114 * 512 entry layout using 4K GTT pages. The other two windows just map 115 * lmem pages and must use the new compact 32 entry layout using 64K GTT 116 * pages, which ensures we can address any lmem object that the user 117 * throws at us. We then also use the xehpsdv_toggle_pdes as a way of 118 * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the 119 * compact layout for each of these page-tables, that fall within the 120 * [CHUNK_SIZE, 3 * CHUNK_SIZE) range. 121 * 122 * We lay the ppGTT out as: 123 * 124 * [0, CHUNK_SZ) -> first window/object, maps smem 125 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src 126 * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst 127 * 128 * For the PTE window it's also quite different, since each PTE must 129 * point to some 64K page, one for each PT(since it's in lmem), and yet 130 * each is only <= 4096bytes, but since the unused space within that PTE 131 * range is never touched, this should be fine. 132 * 133 * So basically each PT now needs 64K of virtual memory, instead of 4K, 134 * which looks like: 135 * 136 * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE 137 */ 138 139 vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY); 140 if (IS_ERR(vm)) 141 return ERR_CAST(vm); 142 143 if (!vm->vm.allocate_va_range || !vm->vm.foreach) { 144 err = -ENODEV; 145 goto err_vm; 146 } 147 148 if (HAS_64K_PAGES(gt->i915)) 149 stash.pt_sz = I915_GTT_PAGE_SIZE_64K; 150 151 /* 152 * Each engine instance is assigned its own chunk in the VM, so 153 * that we can run multiple instances concurrently 154 */ 155 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 156 struct intel_engine_cs *engine; 157 u64 base = (u64)i << 32; 158 struct insert_pte_data d = {}; 159 struct i915_gem_ww_ctx ww; 160 u64 sz; 161 162 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 163 if (!engine_supports_migration(engine)) 164 continue; 165 166 /* 167 * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need 168 * 4x2 page directories for source/destination. 169 */ 170 if (HAS_64K_PAGES(gt->i915)) 171 sz = 3 * CHUNK_SZ; 172 else 173 sz = 2 * CHUNK_SZ; 174 d.offset = base + sz; 175 176 /* 177 * We need another page directory setup so that we can write 178 * the 8x512 PTE in each chunk. 179 */ 180 if (HAS_64K_PAGES(gt->i915)) 181 sz += (sz / SZ_2M) * SZ_64K; 182 else 183 sz += (sz >> 12) * sizeof(u64); 184 185 err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz); 186 if (err) 187 goto err_vm; 188 189 for_i915_gem_ww(&ww, err, true) { 190 err = i915_vm_lock_objects(&vm->vm, &ww); 191 if (err) 192 continue; 193 err = i915_vm_map_pt_stash(&vm->vm, &stash); 194 if (err) 195 continue; 196 197 vm->vm.allocate_va_range(&vm->vm, &stash, base, sz); 198 } 199 i915_vm_free_pt_stash(&vm->vm, &stash); 200 if (err) 201 goto err_vm; 202 203 /* Now allow the GPU to rewrite the PTE via its own ppGTT */ 204 if (HAS_64K_PAGES(gt->i915)) { 205 vm->vm.foreach(&vm->vm, base, d.offset - base, 206 xehpsdv_insert_pte, &d); 207 d.offset = base + CHUNK_SZ; 208 vm->vm.foreach(&vm->vm, 209 d.offset, 210 2 * CHUNK_SZ, 211 xehpsdv_toggle_pdes, &d); 212 } else { 213 vm->vm.foreach(&vm->vm, base, d.offset - base, 214 insert_pte, &d); 215 } 216 } 217 218 return &vm->vm; 219 220 err_vm: 221 i915_vm_put(&vm->vm); 222 return ERR_PTR(err); 223 } 224 225 static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt) 226 { 227 struct intel_engine_cs *engine; 228 int i; 229 230 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 231 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 232 if (engine_supports_migration(engine)) 233 return engine; 234 } 235 236 return NULL; 237 } 238 239 static struct intel_context *pinned_context(struct intel_gt *gt) 240 { 241 static struct lock_class_key key; 242 struct intel_engine_cs *engine; 243 struct i915_address_space *vm; 244 struct intel_context *ce; 245 246 engine = first_copy_engine(gt); 247 if (!engine) 248 return ERR_PTR(-ENODEV); 249 250 vm = migrate_vm(gt); 251 if (IS_ERR(vm)) 252 return ERR_CAST(vm); 253 254 ce = intel_engine_create_pinned_context(engine, vm, SZ_512K, 255 I915_GEM_HWS_MIGRATE, 256 &key, "migrate"); 257 i915_vm_put(vm); 258 return ce; 259 } 260 261 int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt) 262 { 263 struct intel_context *ce; 264 265 memset(m, 0, sizeof(*m)); 266 267 ce = pinned_context(gt); 268 if (IS_ERR(ce)) 269 return PTR_ERR(ce); 270 271 m->context = ce; 272 return 0; 273 } 274 275 static int random_index(unsigned int max) 276 { 277 return upper_32_bits(mul_u32_u32(get_random_u32(), max)); 278 } 279 280 static struct intel_context *__migrate_engines(struct intel_gt *gt) 281 { 282 struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE]; 283 struct intel_engine_cs *engine; 284 unsigned int count, i; 285 286 count = 0; 287 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 288 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 289 if (engine_supports_migration(engine)) 290 engines[count++] = engine; 291 } 292 293 return intel_context_create(engines[random_index(count)]); 294 } 295 296 struct intel_context *intel_migrate_create_context(struct intel_migrate *m) 297 { 298 struct intel_context *ce; 299 300 /* 301 * We randomly distribute contexts across the engines upon constrction, 302 * as they all share the same pinned vm, and so in order to allow 303 * multiple blits to run in parallel, we must construct each blit 304 * to use a different range of the vm for its GTT. This has to be 305 * known at construction, so we can not use the late greedy load 306 * balancing of the virtual-engine. 307 */ 308 ce = __migrate_engines(m->context->engine->gt); 309 if (IS_ERR(ce)) 310 return ce; 311 312 ce->ring = NULL; 313 ce->ring_size = SZ_256K; 314 315 i915_vm_put(ce->vm); 316 ce->vm = i915_vm_get(m->context->vm); 317 318 return ce; 319 } 320 321 static inline struct sgt_dma sg_sgt(struct scatterlist *sg) 322 { 323 dma_addr_t addr = sg_dma_address(sg); 324 325 return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; 326 } 327 328 static int emit_no_arbitration(struct i915_request *rq) 329 { 330 u32 *cs; 331 332 cs = intel_ring_begin(rq, 2); 333 if (IS_ERR(cs)) 334 return PTR_ERR(cs); 335 336 /* Explicitly disable preemption for this request. */ 337 *cs++ = MI_ARB_ON_OFF; 338 *cs++ = MI_NOOP; 339 intel_ring_advance(rq, cs); 340 341 return 0; 342 } 343 344 static int emit_pte(struct i915_request *rq, 345 struct sgt_dma *it, 346 enum i915_cache_level cache_level, 347 bool is_lmem, 348 u64 offset, 349 int length) 350 { 351 bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915); 352 const u64 encode = rq->context->vm->pte_encode(0, cache_level, 353 is_lmem ? PTE_LM : 0); 354 struct intel_ring *ring = rq->ring; 355 int pkt, dword_length; 356 u32 total = 0; 357 u32 page_size; 358 u32 *hdr, *cs; 359 360 GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8); 361 362 page_size = I915_GTT_PAGE_SIZE; 363 dword_length = 0x400; 364 365 /* Compute the page directory offset for the target address range */ 366 if (has_64K_pages) { 367 GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M)); 368 369 offset /= SZ_2M; 370 offset *= SZ_64K; 371 offset += 3 * CHUNK_SZ; 372 373 if (is_lmem) { 374 page_size = I915_GTT_PAGE_SIZE_64K; 375 dword_length = 0x40; 376 } 377 } else { 378 offset >>= 12; 379 offset *= sizeof(u64); 380 offset += 2 * CHUNK_SZ; 381 } 382 383 offset += (u64)rq->engine->instance << 32; 384 385 cs = intel_ring_begin(rq, 6); 386 if (IS_ERR(cs)) 387 return PTR_ERR(cs); 388 389 /* Pack as many PTE updates as possible into a single MI command */ 390 pkt = min_t(int, dword_length, ring->space / sizeof(u32) + 5); 391 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); 392 393 hdr = cs; 394 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */ 395 *cs++ = lower_32_bits(offset); 396 *cs++ = upper_32_bits(offset); 397 398 do { 399 if (cs - hdr >= pkt) { 400 int dword_rem; 401 402 *hdr += cs - hdr - 2; 403 *cs++ = MI_NOOP; 404 405 ring->emit = (void *)cs - ring->vaddr; 406 intel_ring_advance(rq, cs); 407 intel_ring_update_space(ring); 408 409 cs = intel_ring_begin(rq, 6); 410 if (IS_ERR(cs)) 411 return PTR_ERR(cs); 412 413 dword_rem = dword_length; 414 if (has_64K_pages) { 415 if (IS_ALIGNED(total, SZ_2M)) { 416 offset = round_up(offset, SZ_64K); 417 } else { 418 dword_rem = SZ_2M - (total & (SZ_2M - 1)); 419 dword_rem /= page_size; 420 dword_rem *= 2; 421 } 422 } 423 424 pkt = min_t(int, dword_rem, ring->space / sizeof(u32) + 5); 425 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); 426 427 hdr = cs; 428 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); 429 *cs++ = lower_32_bits(offset); 430 *cs++ = upper_32_bits(offset); 431 } 432 433 GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size)); 434 435 *cs++ = lower_32_bits(encode | it->dma); 436 *cs++ = upper_32_bits(encode | it->dma); 437 438 offset += 8; 439 total += page_size; 440 441 it->dma += page_size; 442 if (it->dma >= it->max) { 443 it->sg = __sg_next(it->sg); 444 if (!it->sg || sg_dma_len(it->sg) == 0) 445 break; 446 447 it->dma = sg_dma_address(it->sg); 448 it->max = it->dma + sg_dma_len(it->sg); 449 } 450 } while (total < length); 451 452 *hdr += cs - hdr - 2; 453 *cs++ = MI_NOOP; 454 455 ring->emit = (void *)cs - ring->vaddr; 456 intel_ring_advance(rq, cs); 457 intel_ring_update_space(ring); 458 459 return total; 460 } 461 462 static bool wa_1209644611_applies(int ver, u32 size) 463 { 464 u32 height = size >> PAGE_SHIFT; 465 466 if (ver != 11) 467 return false; 468 469 return height % 4 == 3 && height <= 8; 470 } 471 472 /** 473 * DOC: Flat-CCS - Memory compression for Local memory 474 * 475 * On Xe-HP and later devices, we use dedicated compression control state (CCS) 476 * stored in local memory for each surface, to support the 3D and media 477 * compression formats. 478 * 479 * The memory required for the CCS of the entire local memory is 1/256 of the 480 * local memory size. So before the kernel boot, the required memory is reserved 481 * for the CCS data and a secure register will be programmed with the CCS base 482 * address. 483 * 484 * Flat CCS data needs to be cleared when a lmem object is allocated. 485 * And CCS data can be copied in and out of CCS region through 486 * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly. 487 * 488 * I915 supports Flat-CCS on lmem only objects. When an objects has smem in 489 * its preference list, on memory pressure, i915 needs to migrate the lmem 490 * content into smem. If the lmem object is Flat-CCS compressed by userspace, 491 * then i915 needs to decompress it. But I915 lack the required information 492 * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects. 493 * 494 * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can 495 * be temporarily evicted to smem, along with the auxiliary CCS state, where 496 * it can be potentially swapped-out at a later point, if required. 497 * If userspace later touches the evicted pages, then we always move 498 * the backing memory back to lmem, which includes restoring the saved CCS state, 499 * and potentially performing any required swap-in. 500 * 501 * For the migration of the lmem objects with smem in placement list, such as 502 * {lmem, smem}, objects are treated as non Flat-CCS capable objects. 503 */ 504 505 static inline u32 *i915_flush_dw(u32 *cmd, u32 flags) 506 { 507 *cmd++ = MI_FLUSH_DW | flags; 508 *cmd++ = 0; 509 *cmd++ = 0; 510 511 return cmd; 512 } 513 514 static int emit_copy_ccs(struct i915_request *rq, 515 u32 dst_offset, u8 dst_access, 516 u32 src_offset, u8 src_access, int size) 517 { 518 struct drm_i915_private *i915 = rq->engine->i915; 519 int mocs = rq->engine->gt->mocs.uc_index << 1; 520 u32 num_ccs_blks; 521 u32 *cs; 522 523 cs = intel_ring_begin(rq, 12); 524 if (IS_ERR(cs)) 525 return PTR_ERR(cs); 526 527 num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size), 528 NUM_CCS_BYTES_PER_BLOCK); 529 GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER); 530 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); 531 532 /* 533 * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS 534 * data in and out of the CCS region. 535 * 536 * We can copy at most 1024 blocks of 256 bytes using one 537 * XY_CTRL_SURF_COPY_BLT instruction. 538 * 539 * In case we need to copy more than 1024 blocks, we need to add 540 * another instruction to the same batch buffer. 541 * 542 * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS. 543 * 544 * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM. 545 */ 546 *cs++ = XY_CTRL_SURF_COPY_BLT | 547 src_access << SRC_ACCESS_TYPE_SHIFT | 548 dst_access << DST_ACCESS_TYPE_SHIFT | 549 ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT; 550 *cs++ = src_offset; 551 *cs++ = rq->engine->instance | 552 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); 553 *cs++ = dst_offset; 554 *cs++ = rq->engine->instance | 555 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); 556 557 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); 558 *cs++ = MI_NOOP; 559 560 intel_ring_advance(rq, cs); 561 562 return 0; 563 } 564 565 static int emit_copy(struct i915_request *rq, 566 u32 dst_offset, u32 src_offset, int size) 567 { 568 const int ver = GRAPHICS_VER(rq->engine->i915); 569 u32 instance = rq->engine->instance; 570 u32 *cs; 571 572 cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6); 573 if (IS_ERR(cs)) 574 return PTR_ERR(cs); 575 576 if (ver >= 9 && !wa_1209644611_applies(ver, size)) { 577 *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2); 578 *cs++ = BLT_DEPTH_32 | PAGE_SIZE; 579 *cs++ = 0; 580 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 581 *cs++ = dst_offset; 582 *cs++ = instance; 583 *cs++ = 0; 584 *cs++ = PAGE_SIZE; 585 *cs++ = src_offset; 586 *cs++ = instance; 587 } else if (ver >= 8) { 588 *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2); 589 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; 590 *cs++ = 0; 591 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 592 *cs++ = dst_offset; 593 *cs++ = instance; 594 *cs++ = 0; 595 *cs++ = PAGE_SIZE; 596 *cs++ = src_offset; 597 *cs++ = instance; 598 } else { 599 GEM_BUG_ON(instance); 600 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); 601 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; 602 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE; 603 *cs++ = dst_offset; 604 *cs++ = PAGE_SIZE; 605 *cs++ = src_offset; 606 } 607 608 intel_ring_advance(rq, cs); 609 return 0; 610 } 611 612 static u64 scatter_list_length(struct scatterlist *sg) 613 { 614 u64 len = 0; 615 616 while (sg && sg_dma_len(sg)) { 617 len += sg_dma_len(sg); 618 sg = sg_next(sg); 619 } 620 621 return len; 622 } 623 624 static int 625 calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem, 626 u64 bytes_to_cpy, u64 ccs_bytes_to_cpy) 627 { 628 if (ccs_bytes_to_cpy && !src_is_lmem) 629 /* 630 * When CHUNK_SZ is passed all the pages upto CHUNK_SZ 631 * will be taken for the blt. in Flat-ccs supported 632 * platform Smem obj will have more pages than required 633 * for main meory hence limit it to the required size 634 * for main memory 635 */ 636 return min_t(u64, bytes_to_cpy, CHUNK_SZ); 637 else 638 return CHUNK_SZ; 639 } 640 641 static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy) 642 { 643 u64 len; 644 645 do { 646 GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg)); 647 len = it->max - it->dma; 648 if (len > bytes_to_cpy) { 649 it->dma += bytes_to_cpy; 650 break; 651 } 652 653 bytes_to_cpy -= len; 654 655 it->sg = __sg_next(it->sg); 656 it->dma = sg_dma_address(it->sg); 657 it->max = it->dma + sg_dma_len(it->sg); 658 } while (bytes_to_cpy); 659 } 660 661 int 662 intel_context_migrate_copy(struct intel_context *ce, 663 const struct i915_deps *deps, 664 struct scatterlist *src, 665 enum i915_cache_level src_cache_level, 666 bool src_is_lmem, 667 struct scatterlist *dst, 668 enum i915_cache_level dst_cache_level, 669 bool dst_is_lmem, 670 struct i915_request **out) 671 { 672 struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs; 673 struct drm_i915_private *i915 = ce->engine->i915; 674 u64 ccs_bytes_to_cpy = 0, bytes_to_cpy; 675 enum i915_cache_level ccs_cache_level; 676 u32 src_offset, dst_offset; 677 u8 src_access, dst_access; 678 struct i915_request *rq; 679 u64 src_sz, dst_sz; 680 bool ccs_is_src, overwrite_ccs; 681 int err; 682 683 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); 684 GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem)); 685 *out = NULL; 686 687 GEM_BUG_ON(ce->ring->size < SZ_64K); 688 689 src_sz = scatter_list_length(src); 690 bytes_to_cpy = src_sz; 691 692 if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) { 693 src_access = !src_is_lmem && dst_is_lmem; 694 dst_access = !src_access; 695 696 dst_sz = scatter_list_length(dst); 697 if (src_is_lmem) { 698 it_ccs = it_dst; 699 ccs_cache_level = dst_cache_level; 700 ccs_is_src = false; 701 } else if (dst_is_lmem) { 702 bytes_to_cpy = dst_sz; 703 it_ccs = it_src; 704 ccs_cache_level = src_cache_level; 705 ccs_is_src = true; 706 } 707 708 /* 709 * When there is a eviction of ccs needed smem will have the 710 * extra pages for the ccs data 711 * 712 * TO-DO: Want to move the size mismatch check to a WARN_ON, 713 * but still we have some requests of smem->lmem with same size. 714 * Need to fix it. 715 */ 716 ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0; 717 if (ccs_bytes_to_cpy) 718 get_ccs_sg_sgt(&it_ccs, bytes_to_cpy); 719 } 720 721 overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem; 722 723 src_offset = 0; 724 dst_offset = CHUNK_SZ; 725 if (HAS_64K_PAGES(ce->engine->i915)) { 726 src_offset = 0; 727 dst_offset = 0; 728 if (src_is_lmem) 729 src_offset = CHUNK_SZ; 730 if (dst_is_lmem) 731 dst_offset = 2 * CHUNK_SZ; 732 } 733 734 do { 735 int len; 736 737 rq = i915_request_create(ce); 738 if (IS_ERR(rq)) { 739 err = PTR_ERR(rq); 740 goto out_ce; 741 } 742 743 if (deps) { 744 err = i915_request_await_deps(rq, deps); 745 if (err) 746 goto out_rq; 747 748 if (rq->engine->emit_init_breadcrumb) { 749 err = rq->engine->emit_init_breadcrumb(rq); 750 if (err) 751 goto out_rq; 752 } 753 754 deps = NULL; 755 } 756 757 /* The PTE updates + copy must not be interrupted. */ 758 err = emit_no_arbitration(rq); 759 if (err) 760 goto out_rq; 761 762 src_sz = calculate_chunk_sz(i915, src_is_lmem, 763 bytes_to_cpy, ccs_bytes_to_cpy); 764 765 len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem, 766 src_offset, src_sz); 767 if (!len) { 768 err = -EINVAL; 769 goto out_rq; 770 } 771 if (len < 0) { 772 err = len; 773 goto out_rq; 774 } 775 776 err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem, 777 dst_offset, len); 778 if (err < 0) 779 goto out_rq; 780 if (err < len) { 781 err = -EINVAL; 782 goto out_rq; 783 } 784 785 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 786 if (err) 787 goto out_rq; 788 789 err = emit_copy(rq, dst_offset, src_offset, len); 790 if (err) 791 goto out_rq; 792 793 bytes_to_cpy -= len; 794 795 if (ccs_bytes_to_cpy) { 796 int ccs_sz; 797 798 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 799 if (err) 800 goto out_rq; 801 802 ccs_sz = GET_CCS_BYTES(i915, len); 803 err = emit_pte(rq, &it_ccs, ccs_cache_level, false, 804 ccs_is_src ? src_offset : dst_offset, 805 ccs_sz); 806 if (err < 0) 807 goto out_rq; 808 if (err < ccs_sz) { 809 err = -EINVAL; 810 goto out_rq; 811 } 812 813 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 814 if (err) 815 goto out_rq; 816 817 err = emit_copy_ccs(rq, dst_offset, dst_access, 818 src_offset, src_access, len); 819 if (err) 820 goto out_rq; 821 822 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 823 if (err) 824 goto out_rq; 825 ccs_bytes_to_cpy -= ccs_sz; 826 } else if (overwrite_ccs) { 827 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 828 if (err) 829 goto out_rq; 830 831 /* 832 * While we can't always restore/manage the CCS state, 833 * we still need to ensure we don't leak the CCS state 834 * from the previous user, so make sure we overwrite it 835 * with something. 836 */ 837 err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS, 838 dst_offset, DIRECT_ACCESS, len); 839 if (err) 840 goto out_rq; 841 842 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 843 if (err) 844 goto out_rq; 845 } 846 847 /* Arbitration is re-enabled between requests. */ 848 out_rq: 849 if (*out) 850 i915_request_put(*out); 851 *out = i915_request_get(rq); 852 i915_request_add(rq); 853 854 if (err) 855 break; 856 857 if (!bytes_to_cpy && !ccs_bytes_to_cpy) { 858 if (src_is_lmem) 859 WARN_ON(it_src.sg && sg_dma_len(it_src.sg)); 860 else 861 WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg)); 862 break; 863 } 864 865 if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) || 866 !it_dst.sg || !sg_dma_len(it_dst.sg) || 867 (ccs_bytes_to_cpy && (!it_ccs.sg || 868 !sg_dma_len(it_ccs.sg))))) { 869 err = -EINVAL; 870 break; 871 } 872 873 cond_resched(); 874 } while (1); 875 876 out_ce: 877 return err; 878 } 879 880 static int emit_clear(struct i915_request *rq, u32 offset, int size, 881 u32 value, bool is_lmem) 882 { 883 struct drm_i915_private *i915 = rq->engine->i915; 884 int mocs = rq->engine->gt->mocs.uc_index << 1; 885 const int ver = GRAPHICS_VER(i915); 886 int ring_sz; 887 u32 *cs; 888 889 GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX); 890 891 if (HAS_FLAT_CCS(i915) && ver >= 12) 892 ring_sz = XY_FAST_COLOR_BLT_DW; 893 else if (ver >= 8) 894 ring_sz = 8; 895 else 896 ring_sz = 6; 897 898 cs = intel_ring_begin(rq, ring_sz); 899 if (IS_ERR(cs)) 900 return PTR_ERR(cs); 901 902 if (HAS_FLAT_CCS(i915) && ver >= 12) { 903 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | 904 (XY_FAST_COLOR_BLT_DW - 2); 905 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | 906 (PAGE_SIZE - 1); 907 *cs++ = 0; 908 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 909 *cs++ = offset; 910 *cs++ = rq->engine->instance; 911 *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; 912 /* BG7 */ 913 *cs++ = value; 914 *cs++ = 0; 915 *cs++ = 0; 916 *cs++ = 0; 917 /* BG11 */ 918 *cs++ = 0; 919 *cs++ = 0; 920 /* BG13 */ 921 *cs++ = 0; 922 *cs++ = 0; 923 *cs++ = 0; 924 } else if (ver >= 8) { 925 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2); 926 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; 927 *cs++ = 0; 928 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 929 *cs++ = offset; 930 *cs++ = rq->engine->instance; 931 *cs++ = value; 932 *cs++ = MI_NOOP; 933 } else { 934 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); 935 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; 936 *cs++ = 0; 937 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 938 *cs++ = offset; 939 *cs++ = value; 940 } 941 942 intel_ring_advance(rq, cs); 943 return 0; 944 } 945 946 int 947 intel_context_migrate_clear(struct intel_context *ce, 948 const struct i915_deps *deps, 949 struct scatterlist *sg, 950 enum i915_cache_level cache_level, 951 bool is_lmem, 952 u32 value, 953 struct i915_request **out) 954 { 955 struct drm_i915_private *i915 = ce->engine->i915; 956 struct sgt_dma it = sg_sgt(sg); 957 struct i915_request *rq; 958 u32 offset; 959 int err; 960 961 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); 962 *out = NULL; 963 964 GEM_BUG_ON(ce->ring->size < SZ_64K); 965 966 offset = 0; 967 if (HAS_64K_PAGES(i915) && is_lmem) 968 offset = CHUNK_SZ; 969 970 do { 971 int len; 972 973 rq = i915_request_create(ce); 974 if (IS_ERR(rq)) { 975 err = PTR_ERR(rq); 976 goto out_ce; 977 } 978 979 if (deps) { 980 err = i915_request_await_deps(rq, deps); 981 if (err) 982 goto out_rq; 983 984 if (rq->engine->emit_init_breadcrumb) { 985 err = rq->engine->emit_init_breadcrumb(rq); 986 if (err) 987 goto out_rq; 988 } 989 990 deps = NULL; 991 } 992 993 /* The PTE updates + clear must not be interrupted. */ 994 err = emit_no_arbitration(rq); 995 if (err) 996 goto out_rq; 997 998 len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ); 999 if (len <= 0) { 1000 err = len; 1001 goto out_rq; 1002 } 1003 1004 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 1005 if (err) 1006 goto out_rq; 1007 1008 err = emit_clear(rq, offset, len, value, is_lmem); 1009 if (err) 1010 goto out_rq; 1011 1012 if (HAS_FLAT_CCS(i915) && is_lmem && !value) { 1013 /* 1014 * copy the content of memory into corresponding 1015 * ccs surface 1016 */ 1017 err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset, 1018 DIRECT_ACCESS, len); 1019 if (err) 1020 goto out_rq; 1021 } 1022 1023 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 1024 1025 /* Arbitration is re-enabled between requests. */ 1026 out_rq: 1027 if (*out) 1028 i915_request_put(*out); 1029 *out = i915_request_get(rq); 1030 i915_request_add(rq); 1031 if (err || !it.sg || !sg_dma_len(it.sg)) 1032 break; 1033 1034 cond_resched(); 1035 } while (1); 1036 1037 out_ce: 1038 return err; 1039 } 1040 1041 int intel_migrate_copy(struct intel_migrate *m, 1042 struct i915_gem_ww_ctx *ww, 1043 const struct i915_deps *deps, 1044 struct scatterlist *src, 1045 enum i915_cache_level src_cache_level, 1046 bool src_is_lmem, 1047 struct scatterlist *dst, 1048 enum i915_cache_level dst_cache_level, 1049 bool dst_is_lmem, 1050 struct i915_request **out) 1051 { 1052 struct intel_context *ce; 1053 int err; 1054 1055 *out = NULL; 1056 if (!m->context) 1057 return -ENODEV; 1058 1059 ce = intel_migrate_create_context(m); 1060 if (IS_ERR(ce)) 1061 ce = intel_context_get(m->context); 1062 GEM_BUG_ON(IS_ERR(ce)); 1063 1064 err = intel_context_pin_ww(ce, ww); 1065 if (err) 1066 goto out; 1067 1068 err = intel_context_migrate_copy(ce, deps, 1069 src, src_cache_level, src_is_lmem, 1070 dst, dst_cache_level, dst_is_lmem, 1071 out); 1072 1073 intel_context_unpin(ce); 1074 out: 1075 intel_context_put(ce); 1076 return err; 1077 } 1078 1079 int 1080 intel_migrate_clear(struct intel_migrate *m, 1081 struct i915_gem_ww_ctx *ww, 1082 const struct i915_deps *deps, 1083 struct scatterlist *sg, 1084 enum i915_cache_level cache_level, 1085 bool is_lmem, 1086 u32 value, 1087 struct i915_request **out) 1088 { 1089 struct intel_context *ce; 1090 int err; 1091 1092 *out = NULL; 1093 if (!m->context) 1094 return -ENODEV; 1095 1096 ce = intel_migrate_create_context(m); 1097 if (IS_ERR(ce)) 1098 ce = intel_context_get(m->context); 1099 GEM_BUG_ON(IS_ERR(ce)); 1100 1101 err = intel_context_pin_ww(ce, ww); 1102 if (err) 1103 goto out; 1104 1105 err = intel_context_migrate_clear(ce, deps, sg, cache_level, 1106 is_lmem, value, out); 1107 1108 intel_context_unpin(ce); 1109 out: 1110 intel_context_put(ce); 1111 return err; 1112 } 1113 1114 void intel_migrate_fini(struct intel_migrate *m) 1115 { 1116 struct intel_context *ce; 1117 1118 ce = fetch_and_zero(&m->context); 1119 if (!ce) 1120 return; 1121 1122 intel_engine_destroy_pinned_context(ce); 1123 } 1124 1125 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1126 #include "selftest_migrate.c" 1127 #endif 1128