1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "intel_context.h" 8 #include "intel_gpu_commands.h" 9 #include "intel_gt.h" 10 #include "intel_gtt.h" 11 #include "intel_migrate.h" 12 #include "intel_ring.h" 13 #include "gem/i915_gem_lmem.h" 14 15 struct insert_pte_data { 16 u64 offset; 17 }; 18 19 #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */ 20 21 #define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \ 22 DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0) 23 static bool engine_supports_migration(struct intel_engine_cs *engine) 24 { 25 if (!engine) 26 return false; 27 28 /* 29 * We need the ability to prevent aribtration (MI_ARB_ON_OFF), 30 * the ability to write PTE using inline data (MI_STORE_DATA) 31 * and of course the ability to do the block transfer (blits). 32 */ 33 GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS); 34 35 return true; 36 } 37 38 static void xehpsdv_toggle_pdes(struct i915_address_space *vm, 39 struct i915_page_table *pt, 40 void *data) 41 { 42 struct insert_pte_data *d = data; 43 44 /* 45 * Insert a dummy PTE into every PT that will map to LMEM to ensure 46 * we have a correctly setup PDE structure for later use. 47 */ 48 vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM); 49 GEM_BUG_ON(!pt->is_compact); 50 d->offset += SZ_2M; 51 } 52 53 static void xehpsdv_insert_pte(struct i915_address_space *vm, 54 struct i915_page_table *pt, 55 void *data) 56 { 57 struct insert_pte_data *d = data; 58 59 /* 60 * We are playing tricks here, since the actual pt, from the hw 61 * pov, is only 256bytes with 32 entries, or 4096bytes with 512 62 * entries, but we are still guaranteed that the physical 63 * alignment is 64K underneath for the pt, and we are careful 64 * not to access the space in the void. 65 */ 66 vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM); 67 d->offset += SZ_64K; 68 } 69 70 static void insert_pte(struct i915_address_space *vm, 71 struct i915_page_table *pt, 72 void *data) 73 { 74 struct insert_pte_data *d = data; 75 76 vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, 77 i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0); 78 d->offset += PAGE_SIZE; 79 } 80 81 static struct i915_address_space *migrate_vm(struct intel_gt *gt) 82 { 83 struct i915_vm_pt_stash stash = {}; 84 struct i915_ppgtt *vm; 85 int err; 86 int i; 87 88 /* 89 * We construct a very special VM for use by all migration contexts, 90 * it is kept pinned so that it can be used at any time. As we need 91 * to pre-allocate the page directories for the migration VM, this 92 * limits us to only using a small number of prepared vma. 93 * 94 * To be able to pipeline and reschedule migration operations while 95 * avoiding unnecessary contention on the vm itself, the PTE updates 96 * are inline with the blits. All the blits use the same fixed 97 * addresses, with the backing store redirection being updated on the 98 * fly. Only 2 implicit vma are used for all migration operations. 99 * 100 * We lay the ppGTT out as: 101 * 102 * [0, CHUNK_SZ) -> first object 103 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object 104 * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE 105 * 106 * By exposing the dma addresses of the page directories themselves 107 * within the ppGTT, we are then able to rewrite the PTE prior to use. 108 * But the PTE update and subsequent migration operation must be atomic, 109 * i.e. within the same non-preemptible window so that we do not switch 110 * to another migration context that overwrites the PTE. 111 * 112 * This changes quite a bit on platforms with HAS_64K_PAGES support, 113 * where we instead have three windows, each CHUNK_SIZE in size. The 114 * first is reserved for mapping system-memory, and that just uses the 115 * 512 entry layout using 4K GTT pages. The other two windows just map 116 * lmem pages and must use the new compact 32 entry layout using 64K GTT 117 * pages, which ensures we can address any lmem object that the user 118 * throws at us. We then also use the xehpsdv_toggle_pdes as a way of 119 * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the 120 * compact layout for each of these page-tables, that fall within the 121 * [CHUNK_SIZE, 3 * CHUNK_SIZE) range. 122 * 123 * We lay the ppGTT out as: 124 * 125 * [0, CHUNK_SZ) -> first window/object, maps smem 126 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src 127 * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst 128 * 129 * For the PTE window it's also quite different, since each PTE must 130 * point to some 64K page, one for each PT(since it's in lmem), and yet 131 * each is only <= 4096bytes, but since the unused space within that PTE 132 * range is never touched, this should be fine. 133 * 134 * So basically each PT now needs 64K of virtual memory, instead of 4K, 135 * which looks like: 136 * 137 * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE 138 */ 139 140 vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY); 141 if (IS_ERR(vm)) 142 return ERR_CAST(vm); 143 144 if (!vm->vm.allocate_va_range || !vm->vm.foreach) { 145 err = -ENODEV; 146 goto err_vm; 147 } 148 149 if (HAS_64K_PAGES(gt->i915)) 150 stash.pt_sz = I915_GTT_PAGE_SIZE_64K; 151 152 /* 153 * Each engine instance is assigned its own chunk in the VM, so 154 * that we can run multiple instances concurrently 155 */ 156 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 157 struct intel_engine_cs *engine; 158 u64 base = (u64)i << 32; 159 struct insert_pte_data d = {}; 160 struct i915_gem_ww_ctx ww; 161 u64 sz; 162 163 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 164 if (!engine_supports_migration(engine)) 165 continue; 166 167 /* 168 * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need 169 * 4x2 page directories for source/destination. 170 */ 171 if (HAS_64K_PAGES(gt->i915)) 172 sz = 3 * CHUNK_SZ; 173 else 174 sz = 2 * CHUNK_SZ; 175 d.offset = base + sz; 176 177 /* 178 * We need another page directory setup so that we can write 179 * the 8x512 PTE in each chunk. 180 */ 181 if (HAS_64K_PAGES(gt->i915)) 182 sz += (sz / SZ_2M) * SZ_64K; 183 else 184 sz += (sz >> 12) * sizeof(u64); 185 186 err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz); 187 if (err) 188 goto err_vm; 189 190 for_i915_gem_ww(&ww, err, true) { 191 err = i915_vm_lock_objects(&vm->vm, &ww); 192 if (err) 193 continue; 194 err = i915_vm_map_pt_stash(&vm->vm, &stash); 195 if (err) 196 continue; 197 198 vm->vm.allocate_va_range(&vm->vm, &stash, base, sz); 199 } 200 i915_vm_free_pt_stash(&vm->vm, &stash); 201 if (err) 202 goto err_vm; 203 204 /* Now allow the GPU to rewrite the PTE via its own ppGTT */ 205 if (HAS_64K_PAGES(gt->i915)) { 206 vm->vm.foreach(&vm->vm, base, d.offset - base, 207 xehpsdv_insert_pte, &d); 208 d.offset = base + CHUNK_SZ; 209 vm->vm.foreach(&vm->vm, 210 d.offset, 211 2 * CHUNK_SZ, 212 xehpsdv_toggle_pdes, &d); 213 } else { 214 vm->vm.foreach(&vm->vm, base, d.offset - base, 215 insert_pte, &d); 216 } 217 } 218 219 return &vm->vm; 220 221 err_vm: 222 i915_vm_put(&vm->vm); 223 return ERR_PTR(err); 224 } 225 226 static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt) 227 { 228 struct intel_engine_cs *engine; 229 int i; 230 231 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 232 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 233 if (engine_supports_migration(engine)) 234 return engine; 235 } 236 237 return NULL; 238 } 239 240 static struct intel_context *pinned_context(struct intel_gt *gt) 241 { 242 static struct lock_class_key key; 243 struct intel_engine_cs *engine; 244 struct i915_address_space *vm; 245 struct intel_context *ce; 246 247 engine = first_copy_engine(gt); 248 if (!engine) 249 return ERR_PTR(-ENODEV); 250 251 vm = migrate_vm(gt); 252 if (IS_ERR(vm)) 253 return ERR_CAST(vm); 254 255 ce = intel_engine_create_pinned_context(engine, vm, SZ_512K, 256 I915_GEM_HWS_MIGRATE, 257 &key, "migrate"); 258 i915_vm_put(vm); 259 return ce; 260 } 261 262 int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt) 263 { 264 struct intel_context *ce; 265 266 memset(m, 0, sizeof(*m)); 267 268 ce = pinned_context(gt); 269 if (IS_ERR(ce)) 270 return PTR_ERR(ce); 271 272 m->context = ce; 273 return 0; 274 } 275 276 static int random_index(unsigned int max) 277 { 278 return upper_32_bits(mul_u32_u32(get_random_u32(), max)); 279 } 280 281 static struct intel_context *__migrate_engines(struct intel_gt *gt) 282 { 283 struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE]; 284 struct intel_engine_cs *engine; 285 unsigned int count, i; 286 287 count = 0; 288 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { 289 engine = gt->engine_class[COPY_ENGINE_CLASS][i]; 290 if (engine_supports_migration(engine)) 291 engines[count++] = engine; 292 } 293 294 return intel_context_create(engines[random_index(count)]); 295 } 296 297 struct intel_context *intel_migrate_create_context(struct intel_migrate *m) 298 { 299 struct intel_context *ce; 300 301 /* 302 * We randomly distribute contexts across the engines upon constrction, 303 * as they all share the same pinned vm, and so in order to allow 304 * multiple blits to run in parallel, we must construct each blit 305 * to use a different range of the vm for its GTT. This has to be 306 * known at construction, so we can not use the late greedy load 307 * balancing of the virtual-engine. 308 */ 309 ce = __migrate_engines(m->context->engine->gt); 310 if (IS_ERR(ce)) 311 return ce; 312 313 ce->ring = NULL; 314 ce->ring_size = SZ_256K; 315 316 i915_vm_put(ce->vm); 317 ce->vm = i915_vm_get(m->context->vm); 318 319 return ce; 320 } 321 322 static inline struct sgt_dma sg_sgt(struct scatterlist *sg) 323 { 324 dma_addr_t addr = sg_dma_address(sg); 325 326 return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; 327 } 328 329 static int emit_no_arbitration(struct i915_request *rq) 330 { 331 u32 *cs; 332 333 cs = intel_ring_begin(rq, 2); 334 if (IS_ERR(cs)) 335 return PTR_ERR(cs); 336 337 /* Explicitly disable preemption for this request. */ 338 *cs++ = MI_ARB_ON_OFF; 339 *cs++ = MI_NOOP; 340 intel_ring_advance(rq, cs); 341 342 return 0; 343 } 344 345 static int emit_pte(struct i915_request *rq, 346 struct sgt_dma *it, 347 enum i915_cache_level cache_level, 348 bool is_lmem, 349 u64 offset, 350 int length) 351 { 352 bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915); 353 const u64 encode = rq->context->vm->pte_encode(0, cache_level, 354 is_lmem ? PTE_LM : 0); 355 struct intel_ring *ring = rq->ring; 356 int pkt, dword_length; 357 u32 total = 0; 358 u32 page_size; 359 u32 *hdr, *cs; 360 361 GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8); 362 363 page_size = I915_GTT_PAGE_SIZE; 364 dword_length = 0x400; 365 366 /* Compute the page directory offset for the target address range */ 367 if (has_64K_pages) { 368 GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M)); 369 370 offset /= SZ_2M; 371 offset *= SZ_64K; 372 offset += 3 * CHUNK_SZ; 373 374 if (is_lmem) { 375 page_size = I915_GTT_PAGE_SIZE_64K; 376 dword_length = 0x40; 377 } 378 } else { 379 offset >>= 12; 380 offset *= sizeof(u64); 381 offset += 2 * CHUNK_SZ; 382 } 383 384 offset += (u64)rq->engine->instance << 32; 385 386 cs = intel_ring_begin(rq, 6); 387 if (IS_ERR(cs)) 388 return PTR_ERR(cs); 389 390 /* Pack as many PTE updates as possible into a single MI command */ 391 pkt = min_t(int, dword_length, ring->space / sizeof(u32) + 5); 392 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); 393 394 hdr = cs; 395 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */ 396 *cs++ = lower_32_bits(offset); 397 *cs++ = upper_32_bits(offset); 398 399 do { 400 if (cs - hdr >= pkt) { 401 int dword_rem; 402 403 *hdr += cs - hdr - 2; 404 *cs++ = MI_NOOP; 405 406 ring->emit = (void *)cs - ring->vaddr; 407 intel_ring_advance(rq, cs); 408 intel_ring_update_space(ring); 409 410 cs = intel_ring_begin(rq, 6); 411 if (IS_ERR(cs)) 412 return PTR_ERR(cs); 413 414 dword_rem = dword_length; 415 if (has_64K_pages) { 416 if (IS_ALIGNED(total, SZ_2M)) { 417 offset = round_up(offset, SZ_64K); 418 } else { 419 dword_rem = SZ_2M - (total & (SZ_2M - 1)); 420 dword_rem /= page_size; 421 dword_rem *= 2; 422 } 423 } 424 425 pkt = min_t(int, dword_rem, ring->space / sizeof(u32) + 5); 426 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); 427 428 hdr = cs; 429 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); 430 *cs++ = lower_32_bits(offset); 431 *cs++ = upper_32_bits(offset); 432 } 433 434 GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size)); 435 436 *cs++ = lower_32_bits(encode | it->dma); 437 *cs++ = upper_32_bits(encode | it->dma); 438 439 offset += 8; 440 total += page_size; 441 442 it->dma += page_size; 443 if (it->dma >= it->max) { 444 it->sg = __sg_next(it->sg); 445 if (!it->sg || sg_dma_len(it->sg) == 0) 446 break; 447 448 it->dma = sg_dma_address(it->sg); 449 it->max = it->dma + sg_dma_len(it->sg); 450 } 451 } while (total < length); 452 453 *hdr += cs - hdr - 2; 454 *cs++ = MI_NOOP; 455 456 ring->emit = (void *)cs - ring->vaddr; 457 intel_ring_advance(rq, cs); 458 intel_ring_update_space(ring); 459 460 return total; 461 } 462 463 static bool wa_1209644611_applies(int ver, u32 size) 464 { 465 u32 height = size >> PAGE_SHIFT; 466 467 if (ver != 11) 468 return false; 469 470 return height % 4 == 3 && height <= 8; 471 } 472 473 /** 474 * DOC: Flat-CCS - Memory compression for Local memory 475 * 476 * On Xe-HP and later devices, we use dedicated compression control state (CCS) 477 * stored in local memory for each surface, to support the 3D and media 478 * compression formats. 479 * 480 * The memory required for the CCS of the entire local memory is 1/256 of the 481 * local memory size. So before the kernel boot, the required memory is reserved 482 * for the CCS data and a secure register will be programmed with the CCS base 483 * address. 484 * 485 * Flat CCS data needs to be cleared when a lmem object is allocated. 486 * And CCS data can be copied in and out of CCS region through 487 * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly. 488 * 489 * I915 supports Flat-CCS on lmem only objects. When an objects has smem in 490 * its preference list, on memory pressure, i915 needs to migrate the lmem 491 * content into smem. If the lmem object is Flat-CCS compressed by userspace, 492 * then i915 needs to decompress it. But I915 lack the required information 493 * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects. 494 * 495 * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can 496 * be temporarily evicted to smem, along with the auxiliary CCS state, where 497 * it can be potentially swapped-out at a later point, if required. 498 * If userspace later touches the evicted pages, then we always move 499 * the backing memory back to lmem, which includes restoring the saved CCS state, 500 * and potentially performing any required swap-in. 501 * 502 * For the migration of the lmem objects with smem in placement list, such as 503 * {lmem, smem}, objects are treated as non Flat-CCS capable objects. 504 */ 505 506 static inline u32 *i915_flush_dw(u32 *cmd, u32 flags) 507 { 508 *cmd++ = MI_FLUSH_DW | flags; 509 *cmd++ = 0; 510 *cmd++ = 0; 511 512 return cmd; 513 } 514 515 static int emit_copy_ccs(struct i915_request *rq, 516 u32 dst_offset, u8 dst_access, 517 u32 src_offset, u8 src_access, int size) 518 { 519 struct drm_i915_private *i915 = rq->engine->i915; 520 int mocs = rq->engine->gt->mocs.uc_index << 1; 521 u32 num_ccs_blks; 522 u32 *cs; 523 524 cs = intel_ring_begin(rq, 12); 525 if (IS_ERR(cs)) 526 return PTR_ERR(cs); 527 528 num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size), 529 NUM_CCS_BYTES_PER_BLOCK); 530 GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER); 531 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); 532 533 /* 534 * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS 535 * data in and out of the CCS region. 536 * 537 * We can copy at most 1024 blocks of 256 bytes using one 538 * XY_CTRL_SURF_COPY_BLT instruction. 539 * 540 * In case we need to copy more than 1024 blocks, we need to add 541 * another instruction to the same batch buffer. 542 * 543 * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS. 544 * 545 * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM. 546 */ 547 *cs++ = XY_CTRL_SURF_COPY_BLT | 548 src_access << SRC_ACCESS_TYPE_SHIFT | 549 dst_access << DST_ACCESS_TYPE_SHIFT | 550 ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT; 551 *cs++ = src_offset; 552 *cs++ = rq->engine->instance | 553 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); 554 *cs++ = dst_offset; 555 *cs++ = rq->engine->instance | 556 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); 557 558 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); 559 *cs++ = MI_NOOP; 560 561 intel_ring_advance(rq, cs); 562 563 return 0; 564 } 565 566 static int emit_copy(struct i915_request *rq, 567 u32 dst_offset, u32 src_offset, int size) 568 { 569 const int ver = GRAPHICS_VER(rq->engine->i915); 570 u32 instance = rq->engine->instance; 571 u32 *cs; 572 573 cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6); 574 if (IS_ERR(cs)) 575 return PTR_ERR(cs); 576 577 if (ver >= 9 && !wa_1209644611_applies(ver, size)) { 578 *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2); 579 *cs++ = BLT_DEPTH_32 | PAGE_SIZE; 580 *cs++ = 0; 581 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 582 *cs++ = dst_offset; 583 *cs++ = instance; 584 *cs++ = 0; 585 *cs++ = PAGE_SIZE; 586 *cs++ = src_offset; 587 *cs++ = instance; 588 } else if (ver >= 8) { 589 *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2); 590 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; 591 *cs++ = 0; 592 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 593 *cs++ = dst_offset; 594 *cs++ = instance; 595 *cs++ = 0; 596 *cs++ = PAGE_SIZE; 597 *cs++ = src_offset; 598 *cs++ = instance; 599 } else { 600 GEM_BUG_ON(instance); 601 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); 602 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; 603 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE; 604 *cs++ = dst_offset; 605 *cs++ = PAGE_SIZE; 606 *cs++ = src_offset; 607 } 608 609 intel_ring_advance(rq, cs); 610 return 0; 611 } 612 613 static u64 scatter_list_length(struct scatterlist *sg) 614 { 615 u64 len = 0; 616 617 while (sg && sg_dma_len(sg)) { 618 len += sg_dma_len(sg); 619 sg = sg_next(sg); 620 } 621 622 return len; 623 } 624 625 static int 626 calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem, 627 u64 bytes_to_cpy, u64 ccs_bytes_to_cpy) 628 { 629 if (ccs_bytes_to_cpy && !src_is_lmem) 630 /* 631 * When CHUNK_SZ is passed all the pages upto CHUNK_SZ 632 * will be taken for the blt. in Flat-ccs supported 633 * platform Smem obj will have more pages than required 634 * for main meory hence limit it to the required size 635 * for main memory 636 */ 637 return min_t(u64, bytes_to_cpy, CHUNK_SZ); 638 else 639 return CHUNK_SZ; 640 } 641 642 static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy) 643 { 644 u64 len; 645 646 do { 647 GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg)); 648 len = it->max - it->dma; 649 if (len > bytes_to_cpy) { 650 it->dma += bytes_to_cpy; 651 break; 652 } 653 654 bytes_to_cpy -= len; 655 656 it->sg = __sg_next(it->sg); 657 it->dma = sg_dma_address(it->sg); 658 it->max = it->dma + sg_dma_len(it->sg); 659 } while (bytes_to_cpy); 660 } 661 662 int 663 intel_context_migrate_copy(struct intel_context *ce, 664 const struct i915_deps *deps, 665 struct scatterlist *src, 666 enum i915_cache_level src_cache_level, 667 bool src_is_lmem, 668 struct scatterlist *dst, 669 enum i915_cache_level dst_cache_level, 670 bool dst_is_lmem, 671 struct i915_request **out) 672 { 673 struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs; 674 struct drm_i915_private *i915 = ce->engine->i915; 675 u64 ccs_bytes_to_cpy = 0, bytes_to_cpy; 676 enum i915_cache_level ccs_cache_level; 677 u32 src_offset, dst_offset; 678 u8 src_access, dst_access; 679 struct i915_request *rq; 680 u64 src_sz, dst_sz; 681 bool ccs_is_src, overwrite_ccs; 682 int err; 683 684 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); 685 GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem)); 686 *out = NULL; 687 688 GEM_BUG_ON(ce->ring->size < SZ_64K); 689 690 src_sz = scatter_list_length(src); 691 bytes_to_cpy = src_sz; 692 693 if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) { 694 src_access = !src_is_lmem && dst_is_lmem; 695 dst_access = !src_access; 696 697 dst_sz = scatter_list_length(dst); 698 if (src_is_lmem) { 699 it_ccs = it_dst; 700 ccs_cache_level = dst_cache_level; 701 ccs_is_src = false; 702 } else if (dst_is_lmem) { 703 bytes_to_cpy = dst_sz; 704 it_ccs = it_src; 705 ccs_cache_level = src_cache_level; 706 ccs_is_src = true; 707 } 708 709 /* 710 * When there is a eviction of ccs needed smem will have the 711 * extra pages for the ccs data 712 * 713 * TO-DO: Want to move the size mismatch check to a WARN_ON, 714 * but still we have some requests of smem->lmem with same size. 715 * Need to fix it. 716 */ 717 ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0; 718 if (ccs_bytes_to_cpy) 719 get_ccs_sg_sgt(&it_ccs, bytes_to_cpy); 720 } 721 722 overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem; 723 724 src_offset = 0; 725 dst_offset = CHUNK_SZ; 726 if (HAS_64K_PAGES(ce->engine->i915)) { 727 src_offset = 0; 728 dst_offset = 0; 729 if (src_is_lmem) 730 src_offset = CHUNK_SZ; 731 if (dst_is_lmem) 732 dst_offset = 2 * CHUNK_SZ; 733 } 734 735 do { 736 int len; 737 738 rq = i915_request_create(ce); 739 if (IS_ERR(rq)) { 740 err = PTR_ERR(rq); 741 goto out_ce; 742 } 743 744 if (deps) { 745 err = i915_request_await_deps(rq, deps); 746 if (err) 747 goto out_rq; 748 749 if (rq->engine->emit_init_breadcrumb) { 750 err = rq->engine->emit_init_breadcrumb(rq); 751 if (err) 752 goto out_rq; 753 } 754 755 deps = NULL; 756 } 757 758 /* The PTE updates + copy must not be interrupted. */ 759 err = emit_no_arbitration(rq); 760 if (err) 761 goto out_rq; 762 763 src_sz = calculate_chunk_sz(i915, src_is_lmem, 764 bytes_to_cpy, ccs_bytes_to_cpy); 765 766 len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem, 767 src_offset, src_sz); 768 if (!len) { 769 err = -EINVAL; 770 goto out_rq; 771 } 772 if (len < 0) { 773 err = len; 774 goto out_rq; 775 } 776 777 err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem, 778 dst_offset, len); 779 if (err < 0) 780 goto out_rq; 781 if (err < len) { 782 err = -EINVAL; 783 goto out_rq; 784 } 785 786 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 787 if (err) 788 goto out_rq; 789 790 err = emit_copy(rq, dst_offset, src_offset, len); 791 if (err) 792 goto out_rq; 793 794 bytes_to_cpy -= len; 795 796 if (ccs_bytes_to_cpy) { 797 int ccs_sz; 798 799 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 800 if (err) 801 goto out_rq; 802 803 ccs_sz = GET_CCS_BYTES(i915, len); 804 err = emit_pte(rq, &it_ccs, ccs_cache_level, false, 805 ccs_is_src ? src_offset : dst_offset, 806 ccs_sz); 807 if (err < 0) 808 goto out_rq; 809 if (err < ccs_sz) { 810 err = -EINVAL; 811 goto out_rq; 812 } 813 814 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 815 if (err) 816 goto out_rq; 817 818 err = emit_copy_ccs(rq, dst_offset, dst_access, 819 src_offset, src_access, len); 820 if (err) 821 goto out_rq; 822 823 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 824 if (err) 825 goto out_rq; 826 ccs_bytes_to_cpy -= ccs_sz; 827 } else if (overwrite_ccs) { 828 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 829 if (err) 830 goto out_rq; 831 832 /* 833 * While we can't always restore/manage the CCS state, 834 * we still need to ensure we don't leak the CCS state 835 * from the previous user, so make sure we overwrite it 836 * with something. 837 */ 838 err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS, 839 dst_offset, DIRECT_ACCESS, len); 840 if (err) 841 goto out_rq; 842 843 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 844 if (err) 845 goto out_rq; 846 } 847 848 /* Arbitration is re-enabled between requests. */ 849 out_rq: 850 if (*out) 851 i915_request_put(*out); 852 *out = i915_request_get(rq); 853 i915_request_add(rq); 854 855 if (err) 856 break; 857 858 if (!bytes_to_cpy && !ccs_bytes_to_cpy) { 859 if (src_is_lmem) 860 WARN_ON(it_src.sg && sg_dma_len(it_src.sg)); 861 else 862 WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg)); 863 break; 864 } 865 866 if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) || 867 !it_dst.sg || !sg_dma_len(it_dst.sg) || 868 (ccs_bytes_to_cpy && (!it_ccs.sg || 869 !sg_dma_len(it_ccs.sg))))) { 870 err = -EINVAL; 871 break; 872 } 873 874 cond_resched(); 875 } while (1); 876 877 out_ce: 878 return err; 879 } 880 881 static int emit_clear(struct i915_request *rq, u32 offset, int size, 882 u32 value, bool is_lmem) 883 { 884 struct drm_i915_private *i915 = rq->engine->i915; 885 int mocs = rq->engine->gt->mocs.uc_index << 1; 886 const int ver = GRAPHICS_VER(i915); 887 int ring_sz; 888 u32 *cs; 889 890 GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX); 891 892 if (HAS_FLAT_CCS(i915) && ver >= 12) 893 ring_sz = XY_FAST_COLOR_BLT_DW; 894 else if (ver >= 8) 895 ring_sz = 8; 896 else 897 ring_sz = 6; 898 899 cs = intel_ring_begin(rq, ring_sz); 900 if (IS_ERR(cs)) 901 return PTR_ERR(cs); 902 903 if (HAS_FLAT_CCS(i915) && ver >= 12) { 904 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | 905 (XY_FAST_COLOR_BLT_DW - 2); 906 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | 907 (PAGE_SIZE - 1); 908 *cs++ = 0; 909 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 910 *cs++ = offset; 911 *cs++ = rq->engine->instance; 912 *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; 913 /* BG7 */ 914 *cs++ = value; 915 *cs++ = 0; 916 *cs++ = 0; 917 *cs++ = 0; 918 /* BG11 */ 919 *cs++ = 0; 920 *cs++ = 0; 921 /* BG13 */ 922 *cs++ = 0; 923 *cs++ = 0; 924 *cs++ = 0; 925 } else if (ver >= 8) { 926 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2); 927 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; 928 *cs++ = 0; 929 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 930 *cs++ = offset; 931 *cs++ = rq->engine->instance; 932 *cs++ = value; 933 *cs++ = MI_NOOP; 934 } else { 935 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); 936 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; 937 *cs++ = 0; 938 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; 939 *cs++ = offset; 940 *cs++ = value; 941 } 942 943 intel_ring_advance(rq, cs); 944 return 0; 945 } 946 947 int 948 intel_context_migrate_clear(struct intel_context *ce, 949 const struct i915_deps *deps, 950 struct scatterlist *sg, 951 enum i915_cache_level cache_level, 952 bool is_lmem, 953 u32 value, 954 struct i915_request **out) 955 { 956 struct drm_i915_private *i915 = ce->engine->i915; 957 struct sgt_dma it = sg_sgt(sg); 958 struct i915_request *rq; 959 u32 offset; 960 int err; 961 962 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); 963 *out = NULL; 964 965 GEM_BUG_ON(ce->ring->size < SZ_64K); 966 967 offset = 0; 968 if (HAS_64K_PAGES(i915) && is_lmem) 969 offset = CHUNK_SZ; 970 971 do { 972 int len; 973 974 rq = i915_request_create(ce); 975 if (IS_ERR(rq)) { 976 err = PTR_ERR(rq); 977 goto out_ce; 978 } 979 980 if (deps) { 981 err = i915_request_await_deps(rq, deps); 982 if (err) 983 goto out_rq; 984 985 if (rq->engine->emit_init_breadcrumb) { 986 err = rq->engine->emit_init_breadcrumb(rq); 987 if (err) 988 goto out_rq; 989 } 990 991 deps = NULL; 992 } 993 994 /* The PTE updates + clear must not be interrupted. */ 995 err = emit_no_arbitration(rq); 996 if (err) 997 goto out_rq; 998 999 len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ); 1000 if (len <= 0) { 1001 err = len; 1002 goto out_rq; 1003 } 1004 1005 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 1006 if (err) 1007 goto out_rq; 1008 1009 err = emit_clear(rq, offset, len, value, is_lmem); 1010 if (err) 1011 goto out_rq; 1012 1013 if (HAS_FLAT_CCS(i915) && is_lmem && !value) { 1014 /* 1015 * copy the content of memory into corresponding 1016 * ccs surface 1017 */ 1018 err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset, 1019 DIRECT_ACCESS, len); 1020 if (err) 1021 goto out_rq; 1022 } 1023 1024 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 1025 1026 /* Arbitration is re-enabled between requests. */ 1027 out_rq: 1028 if (*out) 1029 i915_request_put(*out); 1030 *out = i915_request_get(rq); 1031 i915_request_add(rq); 1032 if (err || !it.sg || !sg_dma_len(it.sg)) 1033 break; 1034 1035 cond_resched(); 1036 } while (1); 1037 1038 out_ce: 1039 return err; 1040 } 1041 1042 int intel_migrate_copy(struct intel_migrate *m, 1043 struct i915_gem_ww_ctx *ww, 1044 const struct i915_deps *deps, 1045 struct scatterlist *src, 1046 enum i915_cache_level src_cache_level, 1047 bool src_is_lmem, 1048 struct scatterlist *dst, 1049 enum i915_cache_level dst_cache_level, 1050 bool dst_is_lmem, 1051 struct i915_request **out) 1052 { 1053 struct intel_context *ce; 1054 int err; 1055 1056 *out = NULL; 1057 if (!m->context) 1058 return -ENODEV; 1059 1060 ce = intel_migrate_create_context(m); 1061 if (IS_ERR(ce)) 1062 ce = intel_context_get(m->context); 1063 GEM_BUG_ON(IS_ERR(ce)); 1064 1065 err = intel_context_pin_ww(ce, ww); 1066 if (err) 1067 goto out; 1068 1069 err = intel_context_migrate_copy(ce, deps, 1070 src, src_cache_level, src_is_lmem, 1071 dst, dst_cache_level, dst_is_lmem, 1072 out); 1073 1074 intel_context_unpin(ce); 1075 out: 1076 intel_context_put(ce); 1077 return err; 1078 } 1079 1080 int 1081 intel_migrate_clear(struct intel_migrate *m, 1082 struct i915_gem_ww_ctx *ww, 1083 const struct i915_deps *deps, 1084 struct scatterlist *sg, 1085 enum i915_cache_level cache_level, 1086 bool is_lmem, 1087 u32 value, 1088 struct i915_request **out) 1089 { 1090 struct intel_context *ce; 1091 int err; 1092 1093 *out = NULL; 1094 if (!m->context) 1095 return -ENODEV; 1096 1097 ce = intel_migrate_create_context(m); 1098 if (IS_ERR(ce)) 1099 ce = intel_context_get(m->context); 1100 GEM_BUG_ON(IS_ERR(ce)); 1101 1102 err = intel_context_pin_ww(ce, ww); 1103 if (err) 1104 goto out; 1105 1106 err = intel_context_migrate_clear(ce, deps, sg, cache_level, 1107 is_lmem, value, out); 1108 1109 intel_context_unpin(ce); 1110 out: 1111 intel_context_put(ce); 1112 return err; 1113 } 1114 1115 void intel_migrate_fini(struct intel_migrate *m) 1116 { 1117 struct intel_context *ce; 1118 1119 ce = fetch_and_zero(&m->context); 1120 if (!ce) 1121 return; 1122 1123 intel_engine_destroy_pinned_context(ce); 1124 } 1125 1126 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1127 #include "selftest_migrate.c" 1128 #endif 1129