xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision f77d1a49)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22 
23 /*
24  * The per-platform tables are u8-encoded in @data. Decode @data and set the
25  * addresses' offset and commands in @regs. The following encoding is used
26  * for each byte. There are 2 steps: decoding commands and decoding addresses.
27  *
28  * Commands:
29  * [7]: create NOPs - number of NOPs are set in lower bits
30  * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
31  *      MI_LRI_FORCE_POSTED
32  * [5:0]: Number of NOPs or registers to set values to in case of
33  *        MI_LOAD_REGISTER_IMM
34  *
35  * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
36  * number of registers. They are set by using the REG/REG16 macros: the former
37  * is used for offsets smaller than 0x200 while the latter is for values bigger
38  * than that. Those macros already set all the bits documented below correctly:
39  *
40  * [7]: When a register offset needs more than 6 bits, use additional bytes, to
41  *      follow, for the lower bits
42  * [6:0]: Register offset, without considering the engine base.
43  *
44  * This function only tweaks the commands and register offsets. Values are not
45  * filled out.
46  */
47 static void set_offsets(u32 *regs,
48 			const u8 *data,
49 			const struct intel_engine_cs *engine,
50 			bool close)
51 #define NOP(x) (BIT(7) | (x))
52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
53 #define POSTED BIT(0)
54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
55 #define REG16(x) \
56 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
57 	(((x) >> 2) & 0x7f)
58 #define END 0
59 {
60 	const u32 base = engine->mmio_base;
61 
62 	while (*data) {
63 		u8 count, flags;
64 
65 		if (*data & BIT(7)) { /* skip */
66 			count = *data++ & ~BIT(7);
67 			regs += count;
68 			continue;
69 		}
70 
71 		count = *data & 0x3f;
72 		flags = *data >> 6;
73 		data++;
74 
75 		*regs = MI_LOAD_REGISTER_IMM(count);
76 		if (flags & POSTED)
77 			*regs |= MI_LRI_FORCE_POSTED;
78 		if (GRAPHICS_VER(engine->i915) >= 11)
79 			*regs |= MI_LRI_LRM_CS_MMIO;
80 		regs++;
81 
82 		GEM_BUG_ON(!count);
83 		do {
84 			u32 offset = 0;
85 			u8 v;
86 
87 			do {
88 				v = *data++;
89 				offset <<= 7;
90 				offset |= v & ~BIT(7);
91 			} while (v & BIT(7));
92 
93 			regs[0] = base + (offset << 2);
94 			regs += 2;
95 		} while (--count);
96 	}
97 
98 	if (close) {
99 		/* Close the batch; used mainly by live_lrc_layout() */
100 		*regs = MI_BATCH_BUFFER_END;
101 		if (GRAPHICS_VER(engine->i915) >= 11)
102 			*regs |= BIT(0);
103 	}
104 }
105 
106 static const u8 gen8_xcs_offsets[] = {
107 	NOP(1),
108 	LRI(11, 0),
109 	REG16(0x244),
110 	REG(0x034),
111 	REG(0x030),
112 	REG(0x038),
113 	REG(0x03c),
114 	REG(0x168),
115 	REG(0x140),
116 	REG(0x110),
117 	REG(0x11c),
118 	REG(0x114),
119 	REG(0x118),
120 
121 	NOP(9),
122 	LRI(9, 0),
123 	REG16(0x3a8),
124 	REG16(0x28c),
125 	REG16(0x288),
126 	REG16(0x284),
127 	REG16(0x280),
128 	REG16(0x27c),
129 	REG16(0x278),
130 	REG16(0x274),
131 	REG16(0x270),
132 
133 	NOP(13),
134 	LRI(2, 0),
135 	REG16(0x200),
136 	REG(0x028),
137 
138 	END
139 };
140 
141 static const u8 gen9_xcs_offsets[] = {
142 	NOP(1),
143 	LRI(14, POSTED),
144 	REG16(0x244),
145 	REG(0x034),
146 	REG(0x030),
147 	REG(0x038),
148 	REG(0x03c),
149 	REG(0x168),
150 	REG(0x140),
151 	REG(0x110),
152 	REG(0x11c),
153 	REG(0x114),
154 	REG(0x118),
155 	REG(0x1c0),
156 	REG(0x1c4),
157 	REG(0x1c8),
158 
159 	NOP(3),
160 	LRI(9, POSTED),
161 	REG16(0x3a8),
162 	REG16(0x28c),
163 	REG16(0x288),
164 	REG16(0x284),
165 	REG16(0x280),
166 	REG16(0x27c),
167 	REG16(0x278),
168 	REG16(0x274),
169 	REG16(0x270),
170 
171 	NOP(13),
172 	LRI(1, POSTED),
173 	REG16(0x200),
174 
175 	NOP(13),
176 	LRI(44, POSTED),
177 	REG(0x028),
178 	REG(0x09c),
179 	REG(0x0c0),
180 	REG(0x178),
181 	REG(0x17c),
182 	REG16(0x358),
183 	REG(0x170),
184 	REG(0x150),
185 	REG(0x154),
186 	REG(0x158),
187 	REG16(0x41c),
188 	REG16(0x600),
189 	REG16(0x604),
190 	REG16(0x608),
191 	REG16(0x60c),
192 	REG16(0x610),
193 	REG16(0x614),
194 	REG16(0x618),
195 	REG16(0x61c),
196 	REG16(0x620),
197 	REG16(0x624),
198 	REG16(0x628),
199 	REG16(0x62c),
200 	REG16(0x630),
201 	REG16(0x634),
202 	REG16(0x638),
203 	REG16(0x63c),
204 	REG16(0x640),
205 	REG16(0x644),
206 	REG16(0x648),
207 	REG16(0x64c),
208 	REG16(0x650),
209 	REG16(0x654),
210 	REG16(0x658),
211 	REG16(0x65c),
212 	REG16(0x660),
213 	REG16(0x664),
214 	REG16(0x668),
215 	REG16(0x66c),
216 	REG16(0x670),
217 	REG16(0x674),
218 	REG16(0x678),
219 	REG16(0x67c),
220 	REG(0x068),
221 
222 	END
223 };
224 
225 static const u8 gen12_xcs_offsets[] = {
226 	NOP(1),
227 	LRI(13, POSTED),
228 	REG16(0x244),
229 	REG(0x034),
230 	REG(0x030),
231 	REG(0x038),
232 	REG(0x03c),
233 	REG(0x168),
234 	REG(0x140),
235 	REG(0x110),
236 	REG(0x1c0),
237 	REG(0x1c4),
238 	REG(0x1c8),
239 	REG(0x180),
240 	REG16(0x2b4),
241 
242 	NOP(5),
243 	LRI(9, POSTED),
244 	REG16(0x3a8),
245 	REG16(0x28c),
246 	REG16(0x288),
247 	REG16(0x284),
248 	REG16(0x280),
249 	REG16(0x27c),
250 	REG16(0x278),
251 	REG16(0x274),
252 	REG16(0x270),
253 
254 	END
255 };
256 
257 static const u8 dg2_xcs_offsets[] = {
258 	NOP(1),
259 	LRI(15, POSTED),
260 	REG16(0x244),
261 	REG(0x034),
262 	REG(0x030),
263 	REG(0x038),
264 	REG(0x03c),
265 	REG(0x168),
266 	REG(0x140),
267 	REG(0x110),
268 	REG(0x1c0),
269 	REG(0x1c4),
270 	REG(0x1c8),
271 	REG(0x180),
272 	REG16(0x2b4),
273 	REG(0x120),
274 	REG(0x124),
275 
276 	NOP(1),
277 	LRI(9, POSTED),
278 	REG16(0x3a8),
279 	REG16(0x28c),
280 	REG16(0x288),
281 	REG16(0x284),
282 	REG16(0x280),
283 	REG16(0x27c),
284 	REG16(0x278),
285 	REG16(0x274),
286 	REG16(0x270),
287 
288 	END
289 };
290 
291 static const u8 gen8_rcs_offsets[] = {
292 	NOP(1),
293 	LRI(14, POSTED),
294 	REG16(0x244),
295 	REG(0x034),
296 	REG(0x030),
297 	REG(0x038),
298 	REG(0x03c),
299 	REG(0x168),
300 	REG(0x140),
301 	REG(0x110),
302 	REG(0x11c),
303 	REG(0x114),
304 	REG(0x118),
305 	REG(0x1c0),
306 	REG(0x1c4),
307 	REG(0x1c8),
308 
309 	NOP(3),
310 	LRI(9, POSTED),
311 	REG16(0x3a8),
312 	REG16(0x28c),
313 	REG16(0x288),
314 	REG16(0x284),
315 	REG16(0x280),
316 	REG16(0x27c),
317 	REG16(0x278),
318 	REG16(0x274),
319 	REG16(0x270),
320 
321 	NOP(13),
322 	LRI(1, 0),
323 	REG(0x0c8),
324 
325 	END
326 };
327 
328 static const u8 gen9_rcs_offsets[] = {
329 	NOP(1),
330 	LRI(14, POSTED),
331 	REG16(0x244),
332 	REG(0x34),
333 	REG(0x30),
334 	REG(0x38),
335 	REG(0x3c),
336 	REG(0x168),
337 	REG(0x140),
338 	REG(0x110),
339 	REG(0x11c),
340 	REG(0x114),
341 	REG(0x118),
342 	REG(0x1c0),
343 	REG(0x1c4),
344 	REG(0x1c8),
345 
346 	NOP(3),
347 	LRI(9, POSTED),
348 	REG16(0x3a8),
349 	REG16(0x28c),
350 	REG16(0x288),
351 	REG16(0x284),
352 	REG16(0x280),
353 	REG16(0x27c),
354 	REG16(0x278),
355 	REG16(0x274),
356 	REG16(0x270),
357 
358 	NOP(13),
359 	LRI(1, 0),
360 	REG(0xc8),
361 
362 	NOP(13),
363 	LRI(44, POSTED),
364 	REG(0x28),
365 	REG(0x9c),
366 	REG(0xc0),
367 	REG(0x178),
368 	REG(0x17c),
369 	REG16(0x358),
370 	REG(0x170),
371 	REG(0x150),
372 	REG(0x154),
373 	REG(0x158),
374 	REG16(0x41c),
375 	REG16(0x600),
376 	REG16(0x604),
377 	REG16(0x608),
378 	REG16(0x60c),
379 	REG16(0x610),
380 	REG16(0x614),
381 	REG16(0x618),
382 	REG16(0x61c),
383 	REG16(0x620),
384 	REG16(0x624),
385 	REG16(0x628),
386 	REG16(0x62c),
387 	REG16(0x630),
388 	REG16(0x634),
389 	REG16(0x638),
390 	REG16(0x63c),
391 	REG16(0x640),
392 	REG16(0x644),
393 	REG16(0x648),
394 	REG16(0x64c),
395 	REG16(0x650),
396 	REG16(0x654),
397 	REG16(0x658),
398 	REG16(0x65c),
399 	REG16(0x660),
400 	REG16(0x664),
401 	REG16(0x668),
402 	REG16(0x66c),
403 	REG16(0x670),
404 	REG16(0x674),
405 	REG16(0x678),
406 	REG16(0x67c),
407 	REG(0x68),
408 
409 	END
410 };
411 
412 static const u8 gen11_rcs_offsets[] = {
413 	NOP(1),
414 	LRI(15, POSTED),
415 	REG16(0x244),
416 	REG(0x034),
417 	REG(0x030),
418 	REG(0x038),
419 	REG(0x03c),
420 	REG(0x168),
421 	REG(0x140),
422 	REG(0x110),
423 	REG(0x11c),
424 	REG(0x114),
425 	REG(0x118),
426 	REG(0x1c0),
427 	REG(0x1c4),
428 	REG(0x1c8),
429 	REG(0x180),
430 
431 	NOP(1),
432 	LRI(9, POSTED),
433 	REG16(0x3a8),
434 	REG16(0x28c),
435 	REG16(0x288),
436 	REG16(0x284),
437 	REG16(0x280),
438 	REG16(0x27c),
439 	REG16(0x278),
440 	REG16(0x274),
441 	REG16(0x270),
442 
443 	LRI(1, POSTED),
444 	REG(0x1b0),
445 
446 	NOP(10),
447 	LRI(1, 0),
448 	REG(0x0c8),
449 
450 	END
451 };
452 
453 static const u8 gen12_rcs_offsets[] = {
454 	NOP(1),
455 	LRI(13, POSTED),
456 	REG16(0x244),
457 	REG(0x034),
458 	REG(0x030),
459 	REG(0x038),
460 	REG(0x03c),
461 	REG(0x168),
462 	REG(0x140),
463 	REG(0x110),
464 	REG(0x1c0),
465 	REG(0x1c4),
466 	REG(0x1c8),
467 	REG(0x180),
468 	REG16(0x2b4),
469 
470 	NOP(5),
471 	LRI(9, POSTED),
472 	REG16(0x3a8),
473 	REG16(0x28c),
474 	REG16(0x288),
475 	REG16(0x284),
476 	REG16(0x280),
477 	REG16(0x27c),
478 	REG16(0x278),
479 	REG16(0x274),
480 	REG16(0x270),
481 
482 	LRI(3, POSTED),
483 	REG(0x1b0),
484 	REG16(0x5a8),
485 	REG16(0x5ac),
486 
487 	NOP(6),
488 	LRI(1, 0),
489 	REG(0x0c8),
490 	NOP(3 + 9 + 1),
491 
492 	LRI(51, POSTED),
493 	REG16(0x588),
494 	REG16(0x588),
495 	REG16(0x588),
496 	REG16(0x588),
497 	REG16(0x588),
498 	REG16(0x588),
499 	REG(0x028),
500 	REG(0x09c),
501 	REG(0x0c0),
502 	REG(0x178),
503 	REG(0x17c),
504 	REG16(0x358),
505 	REG(0x170),
506 	REG(0x150),
507 	REG(0x154),
508 	REG(0x158),
509 	REG16(0x41c),
510 	REG16(0x600),
511 	REG16(0x604),
512 	REG16(0x608),
513 	REG16(0x60c),
514 	REG16(0x610),
515 	REG16(0x614),
516 	REG16(0x618),
517 	REG16(0x61c),
518 	REG16(0x620),
519 	REG16(0x624),
520 	REG16(0x628),
521 	REG16(0x62c),
522 	REG16(0x630),
523 	REG16(0x634),
524 	REG16(0x638),
525 	REG16(0x63c),
526 	REG16(0x640),
527 	REG16(0x644),
528 	REG16(0x648),
529 	REG16(0x64c),
530 	REG16(0x650),
531 	REG16(0x654),
532 	REG16(0x658),
533 	REG16(0x65c),
534 	REG16(0x660),
535 	REG16(0x664),
536 	REG16(0x668),
537 	REG16(0x66c),
538 	REG16(0x670),
539 	REG16(0x674),
540 	REG16(0x678),
541 	REG16(0x67c),
542 	REG(0x068),
543 	REG(0x084),
544 	NOP(1),
545 
546 	END
547 };
548 
549 static const u8 xehp_rcs_offsets[] = {
550 	NOP(1),
551 	LRI(13, POSTED),
552 	REG16(0x244),
553 	REG(0x034),
554 	REG(0x030),
555 	REG(0x038),
556 	REG(0x03c),
557 	REG(0x168),
558 	REG(0x140),
559 	REG(0x110),
560 	REG(0x1c0),
561 	REG(0x1c4),
562 	REG(0x1c8),
563 	REG(0x180),
564 	REG16(0x2b4),
565 
566 	NOP(5),
567 	LRI(9, POSTED),
568 	REG16(0x3a8),
569 	REG16(0x28c),
570 	REG16(0x288),
571 	REG16(0x284),
572 	REG16(0x280),
573 	REG16(0x27c),
574 	REG16(0x278),
575 	REG16(0x274),
576 	REG16(0x270),
577 
578 	LRI(3, POSTED),
579 	REG(0x1b0),
580 	REG16(0x5a8),
581 	REG16(0x5ac),
582 
583 	NOP(6),
584 	LRI(1, 0),
585 	REG(0x0c8),
586 
587 	END
588 };
589 
590 static const u8 dg2_rcs_offsets[] = {
591 	NOP(1),
592 	LRI(15, POSTED),
593 	REG16(0x244),
594 	REG(0x034),
595 	REG(0x030),
596 	REG(0x038),
597 	REG(0x03c),
598 	REG(0x168),
599 	REG(0x140),
600 	REG(0x110),
601 	REG(0x1c0),
602 	REG(0x1c4),
603 	REG(0x1c8),
604 	REG(0x180),
605 	REG16(0x2b4),
606 	REG(0x120),
607 	REG(0x124),
608 
609 	NOP(1),
610 	LRI(9, POSTED),
611 	REG16(0x3a8),
612 	REG16(0x28c),
613 	REG16(0x288),
614 	REG16(0x284),
615 	REG16(0x280),
616 	REG16(0x27c),
617 	REG16(0x278),
618 	REG16(0x274),
619 	REG16(0x270),
620 
621 	LRI(3, POSTED),
622 	REG(0x1b0),
623 	REG16(0x5a8),
624 	REG16(0x5ac),
625 
626 	NOP(6),
627 	LRI(1, 0),
628 	REG(0x0c8),
629 
630 	END
631 };
632 
633 static const u8 mtl_rcs_offsets[] = {
634 	NOP(1),
635 	LRI(15, POSTED),
636 	REG16(0x244),
637 	REG(0x034),
638 	REG(0x030),
639 	REG(0x038),
640 	REG(0x03c),
641 	REG(0x168),
642 	REG(0x140),
643 	REG(0x110),
644 	REG(0x1c0),
645 	REG(0x1c4),
646 	REG(0x1c8),
647 	REG(0x180),
648 	REG16(0x2b4),
649 	REG(0x120),
650 	REG(0x124),
651 
652 	NOP(1),
653 	LRI(9, POSTED),
654 	REG16(0x3a8),
655 	REG16(0x28c),
656 	REG16(0x288),
657 	REG16(0x284),
658 	REG16(0x280),
659 	REG16(0x27c),
660 	REG16(0x278),
661 	REG16(0x274),
662 	REG16(0x270),
663 
664 	NOP(2),
665 	LRI(2, POSTED),
666 	REG16(0x5a8),
667 	REG16(0x5ac),
668 
669 	NOP(6),
670 	LRI(1, 0),
671 	REG(0x0c8),
672 
673 	END
674 };
675 
676 #undef END
677 #undef REG16
678 #undef REG
679 #undef LRI
680 #undef NOP
681 
682 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
683 {
684 	/*
685 	 * The gen12+ lists only have the registers we program in the basic
686 	 * default state. We rely on the context image using relative
687 	 * addressing to automatic fixup the register state between the
688 	 * physical engines for virtual engine.
689 	 */
690 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
691 		   !intel_engine_has_relative_mmio(engine));
692 
693 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) {
694 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70))
695 			return mtl_rcs_offsets;
696 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
697 			return dg2_rcs_offsets;
698 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
699 			return xehp_rcs_offsets;
700 		else if (GRAPHICS_VER(engine->i915) >= 12)
701 			return gen12_rcs_offsets;
702 		else if (GRAPHICS_VER(engine->i915) >= 11)
703 			return gen11_rcs_offsets;
704 		else if (GRAPHICS_VER(engine->i915) >= 9)
705 			return gen9_rcs_offsets;
706 		else
707 			return gen8_rcs_offsets;
708 	} else {
709 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
710 			return dg2_xcs_offsets;
711 		else if (GRAPHICS_VER(engine->i915) >= 12)
712 			return gen12_xcs_offsets;
713 		else if (GRAPHICS_VER(engine->i915) >= 9)
714 			return gen9_xcs_offsets;
715 		else
716 			return gen8_xcs_offsets;
717 	}
718 }
719 
720 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
721 {
722 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
723 		return 0x70;
724 	else if (GRAPHICS_VER(engine->i915) >= 12)
725 		return 0x60;
726 	else if (GRAPHICS_VER(engine->i915) >= 9)
727 		return 0x54;
728 	else if (engine->class == RENDER_CLASS)
729 		return 0x58;
730 	else
731 		return -1;
732 }
733 
734 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine)
735 {
736 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
737 		return 0x80;
738 	else if (GRAPHICS_VER(engine->i915) >= 12)
739 		return 0x70;
740 	else if (GRAPHICS_VER(engine->i915) >= 9)
741 		return 0x64;
742 	else if (GRAPHICS_VER(engine->i915) >= 8 &&
743 		 engine->class == RENDER_CLASS)
744 		return 0xc4;
745 	else
746 		return -1;
747 }
748 
749 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
750 {
751 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
752 		return 0x84;
753 	else if (GRAPHICS_VER(engine->i915) >= 12)
754 		return 0x74;
755 	else if (GRAPHICS_VER(engine->i915) >= 9)
756 		return 0x68;
757 	else if (engine->class == RENDER_CLASS)
758 		return 0xd8;
759 	else
760 		return -1;
761 }
762 
763 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
764 {
765 	if (GRAPHICS_VER(engine->i915) >= 12)
766 		return 0x12;
767 	else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
768 		return 0x18;
769 	else
770 		return -1;
771 }
772 
773 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
774 {
775 	int x;
776 
777 	x = lrc_ring_wa_bb_per_ctx(engine);
778 	if (x < 0)
779 		return x;
780 
781 	return x + 2;
782 }
783 
784 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
785 {
786 	int x;
787 
788 	x = lrc_ring_indirect_ptr(engine);
789 	if (x < 0)
790 		return x;
791 
792 	return x + 2;
793 }
794 
795 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
796 {
797 
798 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
799 		/*
800 		 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
801 		 * simply to match the RCS context image layout.
802 		 */
803 		return 0xc6;
804 	else if (engine->class != RENDER_CLASS)
805 		return -1;
806 	else if (GRAPHICS_VER(engine->i915) >= 12)
807 		return 0xb6;
808 	else if (GRAPHICS_VER(engine->i915) >= 11)
809 		return 0xaa;
810 	else
811 		return -1;
812 }
813 
814 static u32
815 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
816 {
817 	if (GRAPHICS_VER(engine->i915) >= 12)
818 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
819 	else if (GRAPHICS_VER(engine->i915) >= 11)
820 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
821 	else if (GRAPHICS_VER(engine->i915) >= 9)
822 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
823 	else if (GRAPHICS_VER(engine->i915) >= 8)
824 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
825 
826 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8);
827 
828 	return 0;
829 }
830 
831 static void
832 lrc_setup_indirect_ctx(u32 *regs,
833 		       const struct intel_engine_cs *engine,
834 		       u32 ctx_bb_ggtt_addr,
835 		       u32 size)
836 {
837 	GEM_BUG_ON(!size);
838 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
839 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
840 	regs[lrc_ring_indirect_ptr(engine) + 1] =
841 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
842 
843 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
844 	regs[lrc_ring_indirect_offset(engine) + 1] =
845 		lrc_ring_indirect_offset_default(engine) << 6;
846 }
847 
848 static void init_common_regs(u32 * const regs,
849 			     const struct intel_context *ce,
850 			     const struct intel_engine_cs *engine,
851 			     bool inhibit)
852 {
853 	u32 ctl;
854 	int loc;
855 
856 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
857 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
858 	if (inhibit)
859 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
860 	if (GRAPHICS_VER(engine->i915) < 11)
861 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
862 					   CTX_CTRL_RS_CTX_ENABLE);
863 	regs[CTX_CONTEXT_CONTROL] = ctl;
864 
865 	regs[CTX_TIMESTAMP] = ce->stats.runtime.last;
866 
867 	loc = lrc_ring_bb_offset(engine);
868 	if (loc != -1)
869 		regs[loc + 1] = 0;
870 }
871 
872 static void init_wa_bb_regs(u32 * const regs,
873 			    const struct intel_engine_cs *engine)
874 {
875 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
876 
877 	if (wa_ctx->per_ctx.size) {
878 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
879 
880 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
881 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
882 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
883 	}
884 
885 	if (wa_ctx->indirect_ctx.size) {
886 		lrc_setup_indirect_ctx(regs, engine,
887 				       i915_ggtt_offset(wa_ctx->vma) +
888 				       wa_ctx->indirect_ctx.offset,
889 				       wa_ctx->indirect_ctx.size);
890 	}
891 }
892 
893 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
894 {
895 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
896 		/* 64b PPGTT (48bit canonical)
897 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
898 		 * other PDP Descriptors are ignored.
899 		 */
900 		ASSIGN_CTX_PML4(ppgtt, regs);
901 	} else {
902 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
903 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
904 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
905 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
906 	}
907 }
908 
909 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
910 {
911 	if (i915_is_ggtt(vm))
912 		return i915_vm_to_ggtt(vm)->alias;
913 	else
914 		return i915_vm_to_ppgtt(vm);
915 }
916 
917 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
918 {
919 	int x;
920 
921 	x = lrc_ring_mi_mode(engine);
922 	if (x != -1) {
923 		regs[x + 1] &= ~STOP_RING;
924 		regs[x + 1] |= STOP_RING << 16;
925 	}
926 }
927 
928 static void __lrc_init_regs(u32 *regs,
929 			    const struct intel_context *ce,
930 			    const struct intel_engine_cs *engine,
931 			    bool inhibit)
932 {
933 	/*
934 	 * A context is actually a big batch buffer with several
935 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
936 	 * values we are setting here are only for the first context restore:
937 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
938 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
939 	 * we are not initializing here).
940 	 *
941 	 * Must keep consistent with virtual_update_register_offsets().
942 	 */
943 
944 	if (inhibit)
945 		memset(regs, 0, PAGE_SIZE);
946 
947 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
948 
949 	init_common_regs(regs, ce, engine, inhibit);
950 	init_ppgtt_regs(regs, vm_alias(ce->vm));
951 
952 	init_wa_bb_regs(regs, engine);
953 
954 	__reset_stop_ring(regs, engine);
955 }
956 
957 void lrc_init_regs(const struct intel_context *ce,
958 		   const struct intel_engine_cs *engine,
959 		   bool inhibit)
960 {
961 	__lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
962 }
963 
964 void lrc_reset_regs(const struct intel_context *ce,
965 		    const struct intel_engine_cs *engine)
966 {
967 	__reset_stop_ring(ce->lrc_reg_state, engine);
968 }
969 
970 static void
971 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
972 {
973 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
974 		return;
975 
976 	vaddr += engine->context_size;
977 
978 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
979 }
980 
981 static void
982 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
983 {
984 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
985 		return;
986 
987 	vaddr += engine->context_size;
988 
989 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
990 		drm_err_once(&engine->i915->drm,
991 			     "%s context redzone overwritten!\n",
992 			     engine->name);
993 }
994 
995 static u32 context_wa_bb_offset(const struct intel_context *ce)
996 {
997 	return PAGE_SIZE * ce->wa_bb_page;
998 }
999 
1000 static u32 *context_indirect_bb(const struct intel_context *ce)
1001 {
1002 	void *ptr;
1003 
1004 	GEM_BUG_ON(!ce->wa_bb_page);
1005 
1006 	ptr = ce->lrc_reg_state;
1007 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1008 	ptr += context_wa_bb_offset(ce);
1009 
1010 	return ptr;
1011 }
1012 
1013 void lrc_init_state(struct intel_context *ce,
1014 		    struct intel_engine_cs *engine,
1015 		    void *state)
1016 {
1017 	bool inhibit = true;
1018 
1019 	set_redzone(state, engine);
1020 
1021 	if (engine->default_state) {
1022 		shmem_read(engine->default_state, 0,
1023 			   state, engine->context_size);
1024 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
1025 		inhibit = false;
1026 	}
1027 
1028 	/* Clear the ppHWSP (inc. per-context counters) */
1029 	memset(state, 0, PAGE_SIZE);
1030 
1031 	/* Clear the indirect wa and storage */
1032 	if (ce->wa_bb_page)
1033 		memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE);
1034 
1035 	/*
1036 	 * The second page of the context object contains some registers which
1037 	 * must be set up prior to the first execution.
1038 	 */
1039 	__lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
1040 }
1041 
1042 u32 lrc_indirect_bb(const struct intel_context *ce)
1043 {
1044 	return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce);
1045 }
1046 
1047 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs)
1048 {
1049 	/* If predication is active, this will be noop'ed */
1050 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1051 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1052 	*cs++ = 0;
1053 	*cs++ = 0; /* No predication */
1054 
1055 	/* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */
1056 	*cs++ = MI_BATCH_BUFFER_END | BIT(15);
1057 	*cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE;
1058 
1059 	/* Instructions are no longer predicated (disabled), we can proceed */
1060 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1061 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1062 	*cs++ = 0;
1063 	*cs++ = 1; /* enable predication before the next BB */
1064 
1065 	*cs++ = MI_BATCH_BUFFER_END;
1066 	GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA);
1067 
1068 	return cs;
1069 }
1070 
1071 static struct i915_vma *
1072 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
1073 {
1074 	struct drm_i915_gem_object *obj;
1075 	struct i915_vma *vma;
1076 	u32 context_size;
1077 
1078 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1079 
1080 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1081 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
1082 
1083 	if (GRAPHICS_VER(engine->i915) >= 12) {
1084 		ce->wa_bb_page = context_size / PAGE_SIZE;
1085 		context_size += PAGE_SIZE;
1086 	}
1087 
1088 	if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
1089 		ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
1090 		context_size += PARENT_SCRATCH_SIZE;
1091 	}
1092 
1093 	obj = i915_gem_object_create_lmem(engine->i915, context_size,
1094 					  I915_BO_ALLOC_PM_VOLATILE);
1095 	if (IS_ERR(obj)) {
1096 		obj = i915_gem_object_create_shmem(engine->i915, context_size);
1097 		/*
1098 		 * Wa_22016122933: For MTL the shared memory needs to be mapped
1099 		 * as WC on CPU side and UC (PAT index 2) on GPU side
1100 		 */
1101 		if (IS_METEORLAKE(engine->i915))
1102 			i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
1103 	}
1104 	if (IS_ERR(obj))
1105 		return ERR_CAST(obj);
1106 
1107 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1108 	if (IS_ERR(vma)) {
1109 		i915_gem_object_put(obj);
1110 		return vma;
1111 	}
1112 
1113 	return vma;
1114 }
1115 
1116 static struct intel_timeline *
1117 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
1118 {
1119 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
1120 
1121 	return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
1122 }
1123 
1124 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
1125 {
1126 	struct intel_ring *ring;
1127 	struct i915_vma *vma;
1128 	int err;
1129 
1130 	GEM_BUG_ON(ce->state);
1131 
1132 	vma = __lrc_alloc_state(ce, engine);
1133 	if (IS_ERR(vma))
1134 		return PTR_ERR(vma);
1135 
1136 	ring = intel_engine_create_ring(engine, ce->ring_size);
1137 	if (IS_ERR(ring)) {
1138 		err = PTR_ERR(ring);
1139 		goto err_vma;
1140 	}
1141 
1142 	if (!page_mask_bits(ce->timeline)) {
1143 		struct intel_timeline *tl;
1144 
1145 		/*
1146 		 * Use the static global HWSP for the kernel context, and
1147 		 * a dynamically allocated cacheline for everyone else.
1148 		 */
1149 		if (unlikely(ce->timeline))
1150 			tl = pinned_timeline(ce, engine);
1151 		else
1152 			tl = intel_timeline_create(engine->gt);
1153 		if (IS_ERR(tl)) {
1154 			err = PTR_ERR(tl);
1155 			goto err_ring;
1156 		}
1157 
1158 		ce->timeline = tl;
1159 	}
1160 
1161 	ce->ring = ring;
1162 	ce->state = vma;
1163 
1164 	return 0;
1165 
1166 err_ring:
1167 	intel_ring_put(ring);
1168 err_vma:
1169 	i915_vma_put(vma);
1170 	return err;
1171 }
1172 
1173 void lrc_reset(struct intel_context *ce)
1174 {
1175 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1176 
1177 	intel_ring_reset(ce->ring, ce->ring->emit);
1178 
1179 	/* Scrub away the garbage */
1180 	lrc_init_regs(ce, ce->engine, true);
1181 	ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1182 }
1183 
1184 int
1185 lrc_pre_pin(struct intel_context *ce,
1186 	    struct intel_engine_cs *engine,
1187 	    struct i915_gem_ww_ctx *ww,
1188 	    void **vaddr)
1189 {
1190 	GEM_BUG_ON(!ce->state);
1191 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1192 
1193 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
1194 					 i915_coherent_map_type(ce->engine->i915,
1195 								ce->state->obj,
1196 								false) |
1197 					 I915_MAP_OVERRIDE);
1198 
1199 	return PTR_ERR_OR_ZERO(*vaddr);
1200 }
1201 
1202 int
1203 lrc_pin(struct intel_context *ce,
1204 	struct intel_engine_cs *engine,
1205 	void *vaddr)
1206 {
1207 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1208 
1209 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1210 		lrc_init_state(ce, engine, vaddr);
1211 
1212 	ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1213 	return 0;
1214 }
1215 
1216 void lrc_unpin(struct intel_context *ce)
1217 {
1218 	if (unlikely(ce->parallel.last_rq)) {
1219 		i915_request_put(ce->parallel.last_rq);
1220 		ce->parallel.last_rq = NULL;
1221 	}
1222 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1223 		      ce->engine);
1224 }
1225 
1226 void lrc_post_unpin(struct intel_context *ce)
1227 {
1228 	i915_gem_object_unpin_map(ce->state->obj);
1229 }
1230 
1231 void lrc_fini(struct intel_context *ce)
1232 {
1233 	if (!ce->state)
1234 		return;
1235 
1236 	intel_ring_put(fetch_and_zero(&ce->ring));
1237 	i915_vma_put(fetch_and_zero(&ce->state));
1238 }
1239 
1240 void lrc_destroy(struct kref *kref)
1241 {
1242 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1243 
1244 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1245 	GEM_BUG_ON(intel_context_is_pinned(ce));
1246 
1247 	lrc_fini(ce);
1248 
1249 	intel_context_fini(ce);
1250 	intel_context_free(ce);
1251 }
1252 
1253 static u32 *
1254 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1255 {
1256 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1257 		MI_SRM_LRM_GLOBAL_GTT |
1258 		MI_LRI_LRM_CS_MMIO;
1259 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1260 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1261 		CTX_TIMESTAMP * sizeof(u32);
1262 	*cs++ = 0;
1263 
1264 	*cs++ = MI_LOAD_REGISTER_REG |
1265 		MI_LRR_SOURCE_CS_MMIO |
1266 		MI_LRI_LRM_CS_MMIO;
1267 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1268 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1269 
1270 	*cs++ = MI_LOAD_REGISTER_REG |
1271 		MI_LRR_SOURCE_CS_MMIO |
1272 		MI_LRI_LRM_CS_MMIO;
1273 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1274 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1275 
1276 	return cs;
1277 }
1278 
1279 static u32 *
1280 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1281 {
1282 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1283 
1284 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1285 		MI_SRM_LRM_GLOBAL_GTT |
1286 		MI_LRI_LRM_CS_MMIO;
1287 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1288 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1289 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1290 	*cs++ = 0;
1291 
1292 	return cs;
1293 }
1294 
1295 static u32 *
1296 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1297 {
1298 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1299 
1300 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1301 		MI_SRM_LRM_GLOBAL_GTT |
1302 		MI_LRI_LRM_CS_MMIO;
1303 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1304 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1305 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1306 	*cs++ = 0;
1307 
1308 	*cs++ = MI_LOAD_REGISTER_REG |
1309 		MI_LRR_SOURCE_CS_MMIO |
1310 		MI_LRI_LRM_CS_MMIO;
1311 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1312 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1313 
1314 	return cs;
1315 }
1316 
1317 /*
1318  * On DG2 during context restore of a preempted context in GPGPU mode,
1319  * RCS restore hang is detected. This is extremely timing dependent.
1320  * To address this below sw wabb is implemented for DG2 A steppings.
1321  */
1322 static u32 *
1323 dg2_emit_rcs_hang_wabb(const struct intel_context *ce, u32 *cs)
1324 {
1325 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1326 	*cs++ = i915_mmio_reg_offset(GEN12_STATE_ACK_DEBUG(ce->engine->mmio_base));
1327 	*cs++ = 0x21;
1328 
1329 	*cs++ = MI_LOAD_REGISTER_REG;
1330 	*cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base));
1331 	*cs++ = i915_mmio_reg_offset(XEHP_CULLBIT1);
1332 
1333 	*cs++ = MI_LOAD_REGISTER_REG;
1334 	*cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base));
1335 	*cs++ = i915_mmio_reg_offset(XEHP_CULLBIT2);
1336 
1337 	return cs;
1338 }
1339 
1340 /*
1341  * The bspec's tuning guide asks us to program a vertical watermark value of
1342  * 0x3FF.  However this register is not saved/restored properly by the
1343  * hardware, so we're required to apply the desired value via INDIRECT_CTX
1344  * batch buffer to ensure the value takes effect properly.  All other bits
1345  * in this register should remain at 0 (the hardware default).
1346  */
1347 static u32 *
1348 dg2_emit_draw_watermark_setting(u32 *cs)
1349 {
1350 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1351 	*cs++ = i915_mmio_reg_offset(DRAW_WATERMARK);
1352 	*cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF);
1353 
1354 	return cs;
1355 }
1356 
1357 static u32 *
1358 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1359 {
1360 	cs = gen12_emit_timestamp_wa(ce, cs);
1361 	cs = gen12_emit_cmd_buf_wa(ce, cs);
1362 	cs = gen12_emit_restore_scratch(ce, cs);
1363 
1364 	/* Wa_22011450934:dg2 */
1365 	if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_A0, STEP_B0) ||
1366 	    IS_DG2_GRAPHICS_STEP(ce->engine->i915, G11, STEP_A0, STEP_B0))
1367 		cs = dg2_emit_rcs_hang_wabb(ce, cs);
1368 
1369 	/* Wa_16013000631:dg2 */
1370 	if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) ||
1371 	    IS_DG2_G11(ce->engine->i915))
1372 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1373 
1374 	cs = gen12_emit_aux_table_inv(ce->engine, cs);
1375 
1376 	/* Wa_16014892111 */
1377 	if (IS_MTL_GRAPHICS_STEP(ce->engine->i915, M, STEP_A0, STEP_B0) ||
1378 	    IS_MTL_GRAPHICS_STEP(ce->engine->i915, P, STEP_A0, STEP_B0) ||
1379 	    IS_DG2(ce->engine->i915))
1380 		cs = dg2_emit_draw_watermark_setting(cs);
1381 
1382 	return cs;
1383 }
1384 
1385 static u32 *
1386 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1387 {
1388 	cs = gen12_emit_timestamp_wa(ce, cs);
1389 	cs = gen12_emit_restore_scratch(ce, cs);
1390 
1391 	/* Wa_16013000631:dg2 */
1392 	if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) ||
1393 	    IS_DG2_G11(ce->engine->i915))
1394 		if (ce->engine->class == COMPUTE_CLASS)
1395 			cs = gen8_emit_pipe_control(cs,
1396 						    PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE,
1397 						    0);
1398 
1399 	return gen12_emit_aux_table_inv(ce->engine, cs);
1400 }
1401 
1402 static void
1403 setup_indirect_ctx_bb(const struct intel_context *ce,
1404 		      const struct intel_engine_cs *engine,
1405 		      u32 *(*emit)(const struct intel_context *, u32 *))
1406 {
1407 	u32 * const start = context_indirect_bb(ce);
1408 	u32 *cs;
1409 
1410 	cs = emit(ce, start);
1411 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1412 	while ((unsigned long)cs % CACHELINE_BYTES)
1413 		*cs++ = MI_NOOP;
1414 
1415 	GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start));
1416 	setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start));
1417 
1418 	lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1419 			       lrc_indirect_bb(ce),
1420 			       (cs - start) * sizeof(*cs));
1421 }
1422 
1423 /*
1424  * The context descriptor encodes various attributes of a context,
1425  * including its GTT address and some flags. Because it's fairly
1426  * expensive to calculate, we'll just do it once and cache the result,
1427  * which remains valid until the context is unpinned.
1428  *
1429  * This is what a descriptor looks like, from LSB to MSB::
1430  *
1431  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
1432  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
1433  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
1434  *      bits 53-54:    mbz, reserved for use by hardware
1435  *      bits 55-63:    group ID, currently unused and set to 0
1436  *
1437  * Starting from Gen11, the upper dword of the descriptor has a new format:
1438  *
1439  *      bits 32-36:    reserved
1440  *      bits 37-47:    SW context ID
1441  *      bits 48:53:    engine instance
1442  *      bit 54:        mbz, reserved for use by hardware
1443  *      bits 55-60:    SW counter
1444  *      bits 61-63:    engine class
1445  *
1446  * On Xe_HP, the upper dword of the descriptor has a new format:
1447  *
1448  *      bits 32-37:    virtual function number
1449  *      bit 38:        mbz, reserved for use by hardware
1450  *      bits 39-54:    SW context ID
1451  *      bits 55-57:    reserved
1452  *      bits 58-63:    SW counter
1453  *
1454  * engine info, SW context ID and SW counter need to form a unique number
1455  * (Context ID) per lrc.
1456  */
1457 static u32 lrc_descriptor(const struct intel_context *ce)
1458 {
1459 	u32 desc;
1460 
1461 	desc = INTEL_LEGACY_32B_CONTEXT;
1462 	if (i915_vm_is_4lvl(ce->vm))
1463 		desc = INTEL_LEGACY_64B_CONTEXT;
1464 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1465 
1466 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1467 	if (GRAPHICS_VER(ce->vm->i915) == 8)
1468 		desc |= GEN8_CTX_L3LLC_COHERENT;
1469 
1470 	return i915_ggtt_offset(ce->state) | desc;
1471 }
1472 
1473 u32 lrc_update_regs(const struct intel_context *ce,
1474 		    const struct intel_engine_cs *engine,
1475 		    u32 head)
1476 {
1477 	struct intel_ring *ring = ce->ring;
1478 	u32 *regs = ce->lrc_reg_state;
1479 
1480 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1481 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1482 
1483 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1484 	regs[CTX_RING_HEAD] = head;
1485 	regs[CTX_RING_TAIL] = ring->tail;
1486 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1487 
1488 	/* RPCS */
1489 	if (engine->class == RENDER_CLASS) {
1490 		regs[CTX_R_PWR_CLK_STATE] =
1491 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1492 
1493 		i915_oa_init_reg_state(ce, engine);
1494 	}
1495 
1496 	if (ce->wa_bb_page) {
1497 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1498 
1499 		fn = gen12_emit_indirect_ctx_xcs;
1500 		if (ce->engine->class == RENDER_CLASS)
1501 			fn = gen12_emit_indirect_ctx_rcs;
1502 
1503 		/* Mutually exclusive wrt to global indirect bb */
1504 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1505 		setup_indirect_ctx_bb(ce, engine, fn);
1506 	}
1507 
1508 	return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1509 }
1510 
1511 void lrc_update_offsets(struct intel_context *ce,
1512 			struct intel_engine_cs *engine)
1513 {
1514 	set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1515 }
1516 
1517 void lrc_check_regs(const struct intel_context *ce,
1518 		    const struct intel_engine_cs *engine,
1519 		    const char *when)
1520 {
1521 	const struct intel_ring *ring = ce->ring;
1522 	u32 *regs = ce->lrc_reg_state;
1523 	bool valid = true;
1524 	int x;
1525 
1526 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1527 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1528 		       engine->name,
1529 		       regs[CTX_RING_START],
1530 		       i915_ggtt_offset(ring->vma));
1531 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1532 		valid = false;
1533 	}
1534 
1535 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1536 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1537 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1538 		       engine->name,
1539 		       regs[CTX_RING_CTL],
1540 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1541 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1542 		valid = false;
1543 	}
1544 
1545 	x = lrc_ring_mi_mode(engine);
1546 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1547 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1548 		       engine->name, regs[x + 1]);
1549 		regs[x + 1] &= ~STOP_RING;
1550 		regs[x + 1] |= STOP_RING << 16;
1551 		valid = false;
1552 	}
1553 
1554 	WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1555 }
1556 
1557 /*
1558  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1559  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1560  * but there is a slight complication as this is applied in WA batch where the
1561  * values are only initialized once so we cannot take register value at the
1562  * beginning and reuse it further; hence we save its value to memory, upload a
1563  * constant value with bit21 set and then we restore it back with the saved value.
1564  * To simplify the WA, a constant value is formed by using the default value
1565  * of this register. This shouldn't be a problem because we are only modifying
1566  * it for a short period and this batch in non-premptible. We can ofcourse
1567  * use additional instructions that read the actual value of the register
1568  * at that time and set our bit of interest but it makes the WA complicated.
1569  *
1570  * This WA is also required for Gen9 so extracting as a function avoids
1571  * code duplication.
1572  */
1573 static u32 *
1574 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1575 {
1576 	/* NB no one else is allowed to scribble over scratch + 256! */
1577 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1578 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1579 	*batch++ = intel_gt_scratch_offset(engine->gt,
1580 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1581 	*batch++ = 0;
1582 
1583 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1584 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1585 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1586 
1587 	batch = gen8_emit_pipe_control(batch,
1588 				       PIPE_CONTROL_CS_STALL |
1589 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1590 				       0);
1591 
1592 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1593 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1594 	*batch++ = intel_gt_scratch_offset(engine->gt,
1595 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1596 	*batch++ = 0;
1597 
1598 	return batch;
1599 }
1600 
1601 /*
1602  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1603  * initialized at the beginning and shared across all contexts but this field
1604  * helps us to have multiple batches at different offsets and select them based
1605  * on a criteria. At the moment this batch always start at the beginning of the page
1606  * and at this point we don't have multiple wa_ctx batch buffers.
1607  *
1608  * The number of WA applied are not known at the beginning; we use this field
1609  * to return the no of DWORDS written.
1610  *
1611  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1612  * so it adds NOOPs as padding to make it cacheline aligned.
1613  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1614  * makes a complete batch buffer.
1615  */
1616 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1617 {
1618 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1619 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1620 
1621 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1622 	if (IS_BROADWELL(engine->i915))
1623 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1624 
1625 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1626 	/* Actual scratch location is at 128 bytes offset */
1627 	batch = gen8_emit_pipe_control(batch,
1628 				       PIPE_CONTROL_FLUSH_L3 |
1629 				       PIPE_CONTROL_STORE_DATA_INDEX |
1630 				       PIPE_CONTROL_CS_STALL |
1631 				       PIPE_CONTROL_QW_WRITE,
1632 				       LRC_PPHWSP_SCRATCH_ADDR);
1633 
1634 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1635 
1636 	/* Pad to end of cacheline */
1637 	while ((unsigned long)batch % CACHELINE_BYTES)
1638 		*batch++ = MI_NOOP;
1639 
1640 	/*
1641 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1642 	 * execution depends on the length specified in terms of cache lines
1643 	 * in the register CTX_RCS_INDIRECT_CTX
1644 	 */
1645 
1646 	return batch;
1647 }
1648 
1649 struct lri {
1650 	i915_reg_t reg;
1651 	u32 value;
1652 };
1653 
1654 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1655 {
1656 	GEM_BUG_ON(!count || count > 63);
1657 
1658 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1659 	do {
1660 		*batch++ = i915_mmio_reg_offset(lri->reg);
1661 		*batch++ = lri->value;
1662 	} while (lri++, --count);
1663 	*batch++ = MI_NOOP;
1664 
1665 	return batch;
1666 }
1667 
1668 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1669 {
1670 	static const struct lri lri[] = {
1671 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1672 		{
1673 			COMMON_SLICE_CHICKEN2,
1674 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1675 				       0),
1676 		},
1677 
1678 		/* BSpec: 11391 */
1679 		{
1680 			FF_SLICE_CHICKEN,
1681 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1682 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1683 		},
1684 
1685 		/* BSpec: 11299 */
1686 		{
1687 			_3D_CHICKEN3,
1688 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1689 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1690 		}
1691 	};
1692 
1693 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1694 
1695 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1696 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1697 
1698 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1699 	batch = gen8_emit_pipe_control(batch,
1700 				       PIPE_CONTROL_FLUSH_L3 |
1701 				       PIPE_CONTROL_STORE_DATA_INDEX |
1702 				       PIPE_CONTROL_CS_STALL |
1703 				       PIPE_CONTROL_QW_WRITE,
1704 				       LRC_PPHWSP_SCRATCH_ADDR);
1705 
1706 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1707 
1708 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1709 	if (HAS_POOLED_EU(engine->i915)) {
1710 		/*
1711 		 * EU pool configuration is setup along with golden context
1712 		 * during context initialization. This value depends on
1713 		 * device type (2x6 or 3x6) and needs to be updated based
1714 		 * on which subslice is disabled especially for 2x6
1715 		 * devices, however it is safe to load default
1716 		 * configuration of 3x6 device instead of masking off
1717 		 * corresponding bits because HW ignores bits of a disabled
1718 		 * subslice and drops down to appropriate config. Please
1719 		 * see render_state_setup() in i915_gem_render_state.c for
1720 		 * possible configurations, to avoid duplication they are
1721 		 * not shown here again.
1722 		 */
1723 		*batch++ = GEN9_MEDIA_POOL_STATE;
1724 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1725 		*batch++ = 0x00777000;
1726 		*batch++ = 0;
1727 		*batch++ = 0;
1728 		*batch++ = 0;
1729 	}
1730 
1731 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1732 
1733 	/* Pad to end of cacheline */
1734 	while ((unsigned long)batch % CACHELINE_BYTES)
1735 		*batch++ = MI_NOOP;
1736 
1737 	return batch;
1738 }
1739 
1740 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1741 
1742 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1743 {
1744 	struct drm_i915_gem_object *obj;
1745 	struct i915_vma *vma;
1746 	int err;
1747 
1748 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1749 	if (IS_ERR(obj))
1750 		return PTR_ERR(obj);
1751 
1752 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1753 	if (IS_ERR(vma)) {
1754 		err = PTR_ERR(vma);
1755 		goto err;
1756 	}
1757 
1758 	engine->wa_ctx.vma = vma;
1759 	return 0;
1760 
1761 err:
1762 	i915_gem_object_put(obj);
1763 	return err;
1764 }
1765 
1766 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1767 {
1768 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1769 }
1770 
1771 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1772 
1773 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1774 {
1775 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1776 	struct i915_wa_ctx_bb *wa_bb[] = {
1777 		&wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1778 	};
1779 	wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1780 	struct i915_gem_ww_ctx ww;
1781 	void *batch, *batch_ptr;
1782 	unsigned int i;
1783 	int err;
1784 
1785 	if (GRAPHICS_VER(engine->i915) >= 11 ||
1786 	    !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
1787 		return;
1788 
1789 	if (GRAPHICS_VER(engine->i915) == 9) {
1790 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1791 		wa_bb_fn[1] = NULL;
1792 	} else if (GRAPHICS_VER(engine->i915) == 8) {
1793 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1794 		wa_bb_fn[1] = NULL;
1795 	}
1796 
1797 	err = lrc_create_wa_ctx(engine);
1798 	if (err) {
1799 		/*
1800 		 * We continue even if we fail to initialize WA batch
1801 		 * because we only expect rare glitches but nothing
1802 		 * critical to prevent us from using GPU
1803 		 */
1804 		drm_err(&engine->i915->drm,
1805 			"Ignoring context switch w/a allocation error:%d\n",
1806 			err);
1807 		return;
1808 	}
1809 
1810 	if (!engine->wa_ctx.vma)
1811 		return;
1812 
1813 	i915_gem_ww_ctx_init(&ww, true);
1814 retry:
1815 	err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1816 	if (!err)
1817 		err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1818 	if (err)
1819 		goto err;
1820 
1821 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1822 	if (IS_ERR(batch)) {
1823 		err = PTR_ERR(batch);
1824 		goto err_unpin;
1825 	}
1826 
1827 	/*
1828 	 * Emit the two workaround batch buffers, recording the offset from the
1829 	 * start of the workaround batch buffer object for each and their
1830 	 * respective sizes.
1831 	 */
1832 	batch_ptr = batch;
1833 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1834 		wa_bb[i]->offset = batch_ptr - batch;
1835 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1836 						  CACHELINE_BYTES))) {
1837 			err = -EINVAL;
1838 			break;
1839 		}
1840 		if (wa_bb_fn[i])
1841 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1842 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1843 	}
1844 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1845 
1846 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1847 	__i915_gem_object_release_map(wa_ctx->vma->obj);
1848 
1849 	/* Verify that we can handle failure to setup the wa_ctx */
1850 	if (!err)
1851 		err = i915_inject_probe_error(engine->i915, -ENODEV);
1852 
1853 err_unpin:
1854 	if (err)
1855 		i915_vma_unpin(wa_ctx->vma);
1856 err:
1857 	if (err == -EDEADLK) {
1858 		err = i915_gem_ww_ctx_backoff(&ww);
1859 		if (!err)
1860 			goto retry;
1861 	}
1862 	i915_gem_ww_ctx_fini(&ww);
1863 
1864 	if (err) {
1865 		i915_vma_put(engine->wa_ctx.vma);
1866 
1867 		/* Clear all flags to prevent further use */
1868 		memset(wa_ctx, 0, sizeof(*wa_ctx));
1869 	}
1870 }
1871 
1872 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt)
1873 {
1874 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1875 	stats->runtime.num_underflow++;
1876 	stats->runtime.max_underflow =
1877 		max_t(u32, stats->runtime.max_underflow, -dt);
1878 #endif
1879 }
1880 
1881 static u32 lrc_get_runtime(const struct intel_context *ce)
1882 {
1883 	/*
1884 	 * We can use either ppHWSP[16] which is recorded before the context
1885 	 * switch (and so excludes the cost of context switches) or use the
1886 	 * value from the context image itself, which is saved/restored earlier
1887 	 * and so includes the cost of the save.
1888 	 */
1889 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1890 }
1891 
1892 void lrc_update_runtime(struct intel_context *ce)
1893 {
1894 	struct intel_context_stats *stats = &ce->stats;
1895 	u32 old;
1896 	s32 dt;
1897 
1898 	old = stats->runtime.last;
1899 	stats->runtime.last = lrc_get_runtime(ce);
1900 	dt = stats->runtime.last - old;
1901 	if (!dt)
1902 		return;
1903 
1904 	if (unlikely(dt < 0)) {
1905 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1906 			 old, stats->runtime.last, dt);
1907 		st_runtime_underflow(stats, dt);
1908 		return;
1909 	}
1910 
1911 	ewma_runtime_add(&stats->runtime.avg, dt);
1912 	stats->runtime.total += dt;
1913 }
1914 
1915 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1916 #include "selftest_lrc.c"
1917 #endif
1918