1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 8 #include "gen8_engine_cs.h" 9 #include "i915_drv.h" 10 #include "i915_perf.h" 11 #include "i915_reg.h" 12 #include "intel_context.h" 13 #include "intel_engine.h" 14 #include "intel_engine_regs.h" 15 #include "intel_gpu_commands.h" 16 #include "intel_gt.h" 17 #include "intel_gt_regs.h" 18 #include "intel_lrc.h" 19 #include "intel_lrc_reg.h" 20 #include "intel_ring.h" 21 #include "shmem_utils.h" 22 23 /* 24 * The per-platform tables are u8-encoded in @data. Decode @data and set the 25 * addresses' offset and commands in @regs. The following encoding is used 26 * for each byte. There are 2 steps: decoding commands and decoding addresses. 27 * 28 * Commands: 29 * [7]: create NOPs - number of NOPs are set in lower bits 30 * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set 31 * MI_LRI_FORCE_POSTED 32 * [5:0]: Number of NOPs or registers to set values to in case of 33 * MI_LOAD_REGISTER_IMM 34 * 35 * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count" 36 * number of registers. They are set by using the REG/REG16 macros: the former 37 * is used for offsets smaller than 0x200 while the latter is for values bigger 38 * than that. Those macros already set all the bits documented below correctly: 39 * 40 * [7]: When a register offset needs more than 6 bits, use additional bytes, to 41 * follow, for the lower bits 42 * [6:0]: Register offset, without considering the engine base. 43 * 44 * This function only tweaks the commands and register offsets. Values are not 45 * filled out. 46 */ 47 static void set_offsets(u32 *regs, 48 const u8 *data, 49 const struct intel_engine_cs *engine, 50 bool close) 51 #define NOP(x) (BIT(7) | (x)) 52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6))) 53 #define POSTED BIT(0) 54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200)) 55 #define REG16(x) \ 56 (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \ 57 (((x) >> 2) & 0x7f) 58 #define END 0 59 { 60 const u32 base = engine->mmio_base; 61 62 while (*data) { 63 u8 count, flags; 64 65 if (*data & BIT(7)) { /* skip */ 66 count = *data++ & ~BIT(7); 67 regs += count; 68 continue; 69 } 70 71 count = *data & 0x3f; 72 flags = *data >> 6; 73 data++; 74 75 *regs = MI_LOAD_REGISTER_IMM(count); 76 if (flags & POSTED) 77 *regs |= MI_LRI_FORCE_POSTED; 78 if (GRAPHICS_VER(engine->i915) >= 11) 79 *regs |= MI_LRI_LRM_CS_MMIO; 80 regs++; 81 82 GEM_BUG_ON(!count); 83 do { 84 u32 offset = 0; 85 u8 v; 86 87 do { 88 v = *data++; 89 offset <<= 7; 90 offset |= v & ~BIT(7); 91 } while (v & BIT(7)); 92 93 regs[0] = base + (offset << 2); 94 regs += 2; 95 } while (--count); 96 } 97 98 if (close) { 99 /* Close the batch; used mainly by live_lrc_layout() */ 100 *regs = MI_BATCH_BUFFER_END; 101 if (GRAPHICS_VER(engine->i915) >= 11) 102 *regs |= BIT(0); 103 } 104 } 105 106 static const u8 gen8_xcs_offsets[] = { 107 NOP(1), 108 LRI(11, 0), 109 REG16(0x244), 110 REG(0x034), 111 REG(0x030), 112 REG(0x038), 113 REG(0x03c), 114 REG(0x168), 115 REG(0x140), 116 REG(0x110), 117 REG(0x11c), 118 REG(0x114), 119 REG(0x118), 120 121 NOP(9), 122 LRI(9, 0), 123 REG16(0x3a8), 124 REG16(0x28c), 125 REG16(0x288), 126 REG16(0x284), 127 REG16(0x280), 128 REG16(0x27c), 129 REG16(0x278), 130 REG16(0x274), 131 REG16(0x270), 132 133 NOP(13), 134 LRI(2, 0), 135 REG16(0x200), 136 REG(0x028), 137 138 END 139 }; 140 141 static const u8 gen9_xcs_offsets[] = { 142 NOP(1), 143 LRI(14, POSTED), 144 REG16(0x244), 145 REG(0x034), 146 REG(0x030), 147 REG(0x038), 148 REG(0x03c), 149 REG(0x168), 150 REG(0x140), 151 REG(0x110), 152 REG(0x11c), 153 REG(0x114), 154 REG(0x118), 155 REG(0x1c0), 156 REG(0x1c4), 157 REG(0x1c8), 158 159 NOP(3), 160 LRI(9, POSTED), 161 REG16(0x3a8), 162 REG16(0x28c), 163 REG16(0x288), 164 REG16(0x284), 165 REG16(0x280), 166 REG16(0x27c), 167 REG16(0x278), 168 REG16(0x274), 169 REG16(0x270), 170 171 NOP(13), 172 LRI(1, POSTED), 173 REG16(0x200), 174 175 NOP(13), 176 LRI(44, POSTED), 177 REG(0x028), 178 REG(0x09c), 179 REG(0x0c0), 180 REG(0x178), 181 REG(0x17c), 182 REG16(0x358), 183 REG(0x170), 184 REG(0x150), 185 REG(0x154), 186 REG(0x158), 187 REG16(0x41c), 188 REG16(0x600), 189 REG16(0x604), 190 REG16(0x608), 191 REG16(0x60c), 192 REG16(0x610), 193 REG16(0x614), 194 REG16(0x618), 195 REG16(0x61c), 196 REG16(0x620), 197 REG16(0x624), 198 REG16(0x628), 199 REG16(0x62c), 200 REG16(0x630), 201 REG16(0x634), 202 REG16(0x638), 203 REG16(0x63c), 204 REG16(0x640), 205 REG16(0x644), 206 REG16(0x648), 207 REG16(0x64c), 208 REG16(0x650), 209 REG16(0x654), 210 REG16(0x658), 211 REG16(0x65c), 212 REG16(0x660), 213 REG16(0x664), 214 REG16(0x668), 215 REG16(0x66c), 216 REG16(0x670), 217 REG16(0x674), 218 REG16(0x678), 219 REG16(0x67c), 220 REG(0x068), 221 222 END 223 }; 224 225 static const u8 gen12_xcs_offsets[] = { 226 NOP(1), 227 LRI(13, POSTED), 228 REG16(0x244), 229 REG(0x034), 230 REG(0x030), 231 REG(0x038), 232 REG(0x03c), 233 REG(0x168), 234 REG(0x140), 235 REG(0x110), 236 REG(0x1c0), 237 REG(0x1c4), 238 REG(0x1c8), 239 REG(0x180), 240 REG16(0x2b4), 241 242 NOP(5), 243 LRI(9, POSTED), 244 REG16(0x3a8), 245 REG16(0x28c), 246 REG16(0x288), 247 REG16(0x284), 248 REG16(0x280), 249 REG16(0x27c), 250 REG16(0x278), 251 REG16(0x274), 252 REG16(0x270), 253 254 END 255 }; 256 257 static const u8 dg2_xcs_offsets[] = { 258 NOP(1), 259 LRI(15, POSTED), 260 REG16(0x244), 261 REG(0x034), 262 REG(0x030), 263 REG(0x038), 264 REG(0x03c), 265 REG(0x168), 266 REG(0x140), 267 REG(0x110), 268 REG(0x1c0), 269 REG(0x1c4), 270 REG(0x1c8), 271 REG(0x180), 272 REG16(0x2b4), 273 REG(0x120), 274 REG(0x124), 275 276 NOP(1), 277 LRI(9, POSTED), 278 REG16(0x3a8), 279 REG16(0x28c), 280 REG16(0x288), 281 REG16(0x284), 282 REG16(0x280), 283 REG16(0x27c), 284 REG16(0x278), 285 REG16(0x274), 286 REG16(0x270), 287 288 END 289 }; 290 291 static const u8 gen8_rcs_offsets[] = { 292 NOP(1), 293 LRI(14, POSTED), 294 REG16(0x244), 295 REG(0x034), 296 REG(0x030), 297 REG(0x038), 298 REG(0x03c), 299 REG(0x168), 300 REG(0x140), 301 REG(0x110), 302 REG(0x11c), 303 REG(0x114), 304 REG(0x118), 305 REG(0x1c0), 306 REG(0x1c4), 307 REG(0x1c8), 308 309 NOP(3), 310 LRI(9, POSTED), 311 REG16(0x3a8), 312 REG16(0x28c), 313 REG16(0x288), 314 REG16(0x284), 315 REG16(0x280), 316 REG16(0x27c), 317 REG16(0x278), 318 REG16(0x274), 319 REG16(0x270), 320 321 NOP(13), 322 LRI(1, 0), 323 REG(0x0c8), 324 325 END 326 }; 327 328 static const u8 gen9_rcs_offsets[] = { 329 NOP(1), 330 LRI(14, POSTED), 331 REG16(0x244), 332 REG(0x34), 333 REG(0x30), 334 REG(0x38), 335 REG(0x3c), 336 REG(0x168), 337 REG(0x140), 338 REG(0x110), 339 REG(0x11c), 340 REG(0x114), 341 REG(0x118), 342 REG(0x1c0), 343 REG(0x1c4), 344 REG(0x1c8), 345 346 NOP(3), 347 LRI(9, POSTED), 348 REG16(0x3a8), 349 REG16(0x28c), 350 REG16(0x288), 351 REG16(0x284), 352 REG16(0x280), 353 REG16(0x27c), 354 REG16(0x278), 355 REG16(0x274), 356 REG16(0x270), 357 358 NOP(13), 359 LRI(1, 0), 360 REG(0xc8), 361 362 NOP(13), 363 LRI(44, POSTED), 364 REG(0x28), 365 REG(0x9c), 366 REG(0xc0), 367 REG(0x178), 368 REG(0x17c), 369 REG16(0x358), 370 REG(0x170), 371 REG(0x150), 372 REG(0x154), 373 REG(0x158), 374 REG16(0x41c), 375 REG16(0x600), 376 REG16(0x604), 377 REG16(0x608), 378 REG16(0x60c), 379 REG16(0x610), 380 REG16(0x614), 381 REG16(0x618), 382 REG16(0x61c), 383 REG16(0x620), 384 REG16(0x624), 385 REG16(0x628), 386 REG16(0x62c), 387 REG16(0x630), 388 REG16(0x634), 389 REG16(0x638), 390 REG16(0x63c), 391 REG16(0x640), 392 REG16(0x644), 393 REG16(0x648), 394 REG16(0x64c), 395 REG16(0x650), 396 REG16(0x654), 397 REG16(0x658), 398 REG16(0x65c), 399 REG16(0x660), 400 REG16(0x664), 401 REG16(0x668), 402 REG16(0x66c), 403 REG16(0x670), 404 REG16(0x674), 405 REG16(0x678), 406 REG16(0x67c), 407 REG(0x68), 408 409 END 410 }; 411 412 static const u8 gen11_rcs_offsets[] = { 413 NOP(1), 414 LRI(15, POSTED), 415 REG16(0x244), 416 REG(0x034), 417 REG(0x030), 418 REG(0x038), 419 REG(0x03c), 420 REG(0x168), 421 REG(0x140), 422 REG(0x110), 423 REG(0x11c), 424 REG(0x114), 425 REG(0x118), 426 REG(0x1c0), 427 REG(0x1c4), 428 REG(0x1c8), 429 REG(0x180), 430 431 NOP(1), 432 LRI(9, POSTED), 433 REG16(0x3a8), 434 REG16(0x28c), 435 REG16(0x288), 436 REG16(0x284), 437 REG16(0x280), 438 REG16(0x27c), 439 REG16(0x278), 440 REG16(0x274), 441 REG16(0x270), 442 443 LRI(1, POSTED), 444 REG(0x1b0), 445 446 NOP(10), 447 LRI(1, 0), 448 REG(0x0c8), 449 450 END 451 }; 452 453 static const u8 gen12_rcs_offsets[] = { 454 NOP(1), 455 LRI(13, POSTED), 456 REG16(0x244), 457 REG(0x034), 458 REG(0x030), 459 REG(0x038), 460 REG(0x03c), 461 REG(0x168), 462 REG(0x140), 463 REG(0x110), 464 REG(0x1c0), 465 REG(0x1c4), 466 REG(0x1c8), 467 REG(0x180), 468 REG16(0x2b4), 469 470 NOP(5), 471 LRI(9, POSTED), 472 REG16(0x3a8), 473 REG16(0x28c), 474 REG16(0x288), 475 REG16(0x284), 476 REG16(0x280), 477 REG16(0x27c), 478 REG16(0x278), 479 REG16(0x274), 480 REG16(0x270), 481 482 LRI(3, POSTED), 483 REG(0x1b0), 484 REG16(0x5a8), 485 REG16(0x5ac), 486 487 NOP(6), 488 LRI(1, 0), 489 REG(0x0c8), 490 NOP(3 + 9 + 1), 491 492 LRI(51, POSTED), 493 REG16(0x588), 494 REG16(0x588), 495 REG16(0x588), 496 REG16(0x588), 497 REG16(0x588), 498 REG16(0x588), 499 REG(0x028), 500 REG(0x09c), 501 REG(0x0c0), 502 REG(0x178), 503 REG(0x17c), 504 REG16(0x358), 505 REG(0x170), 506 REG(0x150), 507 REG(0x154), 508 REG(0x158), 509 REG16(0x41c), 510 REG16(0x600), 511 REG16(0x604), 512 REG16(0x608), 513 REG16(0x60c), 514 REG16(0x610), 515 REG16(0x614), 516 REG16(0x618), 517 REG16(0x61c), 518 REG16(0x620), 519 REG16(0x624), 520 REG16(0x628), 521 REG16(0x62c), 522 REG16(0x630), 523 REG16(0x634), 524 REG16(0x638), 525 REG16(0x63c), 526 REG16(0x640), 527 REG16(0x644), 528 REG16(0x648), 529 REG16(0x64c), 530 REG16(0x650), 531 REG16(0x654), 532 REG16(0x658), 533 REG16(0x65c), 534 REG16(0x660), 535 REG16(0x664), 536 REG16(0x668), 537 REG16(0x66c), 538 REG16(0x670), 539 REG16(0x674), 540 REG16(0x678), 541 REG16(0x67c), 542 REG(0x068), 543 REG(0x084), 544 NOP(1), 545 546 END 547 }; 548 549 static const u8 xehp_rcs_offsets[] = { 550 NOP(1), 551 LRI(13, POSTED), 552 REG16(0x244), 553 REG(0x034), 554 REG(0x030), 555 REG(0x038), 556 REG(0x03c), 557 REG(0x168), 558 REG(0x140), 559 REG(0x110), 560 REG(0x1c0), 561 REG(0x1c4), 562 REG(0x1c8), 563 REG(0x180), 564 REG16(0x2b4), 565 566 NOP(5), 567 LRI(9, POSTED), 568 REG16(0x3a8), 569 REG16(0x28c), 570 REG16(0x288), 571 REG16(0x284), 572 REG16(0x280), 573 REG16(0x27c), 574 REG16(0x278), 575 REG16(0x274), 576 REG16(0x270), 577 578 LRI(3, POSTED), 579 REG(0x1b0), 580 REG16(0x5a8), 581 REG16(0x5ac), 582 583 NOP(6), 584 LRI(1, 0), 585 REG(0x0c8), 586 587 END 588 }; 589 590 static const u8 dg2_rcs_offsets[] = { 591 NOP(1), 592 LRI(15, POSTED), 593 REG16(0x244), 594 REG(0x034), 595 REG(0x030), 596 REG(0x038), 597 REG(0x03c), 598 REG(0x168), 599 REG(0x140), 600 REG(0x110), 601 REG(0x1c0), 602 REG(0x1c4), 603 REG(0x1c8), 604 REG(0x180), 605 REG16(0x2b4), 606 REG(0x120), 607 REG(0x124), 608 609 NOP(1), 610 LRI(9, POSTED), 611 REG16(0x3a8), 612 REG16(0x28c), 613 REG16(0x288), 614 REG16(0x284), 615 REG16(0x280), 616 REG16(0x27c), 617 REG16(0x278), 618 REG16(0x274), 619 REG16(0x270), 620 621 LRI(3, POSTED), 622 REG(0x1b0), 623 REG16(0x5a8), 624 REG16(0x5ac), 625 626 NOP(6), 627 LRI(1, 0), 628 REG(0x0c8), 629 630 END 631 }; 632 633 static const u8 mtl_rcs_offsets[] = { 634 NOP(1), 635 LRI(15, POSTED), 636 REG16(0x244), 637 REG(0x034), 638 REG(0x030), 639 REG(0x038), 640 REG(0x03c), 641 REG(0x168), 642 REG(0x140), 643 REG(0x110), 644 REG(0x1c0), 645 REG(0x1c4), 646 REG(0x1c8), 647 REG(0x180), 648 REG16(0x2b4), 649 REG(0x120), 650 REG(0x124), 651 652 NOP(1), 653 LRI(9, POSTED), 654 REG16(0x3a8), 655 REG16(0x28c), 656 REG16(0x288), 657 REG16(0x284), 658 REG16(0x280), 659 REG16(0x27c), 660 REG16(0x278), 661 REG16(0x274), 662 REG16(0x270), 663 664 NOP(2), 665 LRI(2, POSTED), 666 REG16(0x5a8), 667 REG16(0x5ac), 668 669 NOP(6), 670 LRI(1, 0), 671 REG(0x0c8), 672 673 END 674 }; 675 676 #undef END 677 #undef REG16 678 #undef REG 679 #undef LRI 680 #undef NOP 681 682 static const u8 *reg_offsets(const struct intel_engine_cs *engine) 683 { 684 /* 685 * The gen12+ lists only have the registers we program in the basic 686 * default state. We rely on the context image using relative 687 * addressing to automatic fixup the register state between the 688 * physical engines for virtual engine. 689 */ 690 GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 && 691 !intel_engine_has_relative_mmio(engine)); 692 693 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) { 694 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) 695 return mtl_rcs_offsets; 696 else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 697 return dg2_rcs_offsets; 698 else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 699 return xehp_rcs_offsets; 700 else if (GRAPHICS_VER(engine->i915) >= 12) 701 return gen12_rcs_offsets; 702 else if (GRAPHICS_VER(engine->i915) >= 11) 703 return gen11_rcs_offsets; 704 else if (GRAPHICS_VER(engine->i915) >= 9) 705 return gen9_rcs_offsets; 706 else 707 return gen8_rcs_offsets; 708 } else { 709 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 710 return dg2_xcs_offsets; 711 else if (GRAPHICS_VER(engine->i915) >= 12) 712 return gen12_xcs_offsets; 713 else if (GRAPHICS_VER(engine->i915) >= 9) 714 return gen9_xcs_offsets; 715 else 716 return gen8_xcs_offsets; 717 } 718 } 719 720 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine) 721 { 722 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 723 return 0x70; 724 else if (GRAPHICS_VER(engine->i915) >= 12) 725 return 0x60; 726 else if (GRAPHICS_VER(engine->i915) >= 9) 727 return 0x54; 728 else if (engine->class == RENDER_CLASS) 729 return 0x58; 730 else 731 return -1; 732 } 733 734 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine) 735 { 736 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 737 return 0x80; 738 else if (GRAPHICS_VER(engine->i915) >= 12) 739 return 0x70; 740 else if (GRAPHICS_VER(engine->i915) >= 9) 741 return 0x64; 742 else if (GRAPHICS_VER(engine->i915) >= 8 && 743 engine->class == RENDER_CLASS) 744 return 0xc4; 745 else 746 return -1; 747 } 748 749 static int lrc_ring_gpr0(const struct intel_engine_cs *engine) 750 { 751 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 752 return 0x84; 753 else if (GRAPHICS_VER(engine->i915) >= 12) 754 return 0x74; 755 else if (GRAPHICS_VER(engine->i915) >= 9) 756 return 0x68; 757 else if (engine->class == RENDER_CLASS) 758 return 0xd8; 759 else 760 return -1; 761 } 762 763 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine) 764 { 765 if (GRAPHICS_VER(engine->i915) >= 12) 766 return 0x12; 767 else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS) 768 return 0x18; 769 else 770 return -1; 771 } 772 773 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine) 774 { 775 int x; 776 777 x = lrc_ring_wa_bb_per_ctx(engine); 778 if (x < 0) 779 return x; 780 781 return x + 2; 782 } 783 784 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine) 785 { 786 int x; 787 788 x = lrc_ring_indirect_ptr(engine); 789 if (x < 0) 790 return x; 791 792 return x + 2; 793 } 794 795 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine) 796 { 797 798 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 799 /* 800 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL 801 * simply to match the RCS context image layout. 802 */ 803 return 0xc6; 804 else if (engine->class != RENDER_CLASS) 805 return -1; 806 else if (GRAPHICS_VER(engine->i915) >= 12) 807 return 0xb6; 808 else if (GRAPHICS_VER(engine->i915) >= 11) 809 return 0xaa; 810 else 811 return -1; 812 } 813 814 static u32 815 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine) 816 { 817 if (GRAPHICS_VER(engine->i915) >= 12) 818 return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 819 else if (GRAPHICS_VER(engine->i915) >= 11) 820 return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 821 else if (GRAPHICS_VER(engine->i915) >= 9) 822 return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 823 else if (GRAPHICS_VER(engine->i915) >= 8) 824 return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 825 826 GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8); 827 828 return 0; 829 } 830 831 static void 832 lrc_setup_indirect_ctx(u32 *regs, 833 const struct intel_engine_cs *engine, 834 u32 ctx_bb_ggtt_addr, 835 u32 size) 836 { 837 GEM_BUG_ON(!size); 838 GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES)); 839 GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1); 840 regs[lrc_ring_indirect_ptr(engine) + 1] = 841 ctx_bb_ggtt_addr | (size / CACHELINE_BYTES); 842 843 GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1); 844 regs[lrc_ring_indirect_offset(engine) + 1] = 845 lrc_ring_indirect_offset_default(engine) << 6; 846 } 847 848 static void init_common_regs(u32 * const regs, 849 const struct intel_context *ce, 850 const struct intel_engine_cs *engine, 851 bool inhibit) 852 { 853 u32 ctl; 854 int loc; 855 856 ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH); 857 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); 858 if (inhibit) 859 ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT; 860 if (GRAPHICS_VER(engine->i915) < 11) 861 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | 862 CTX_CTRL_RS_CTX_ENABLE); 863 regs[CTX_CONTEXT_CONTROL] = ctl; 864 865 regs[CTX_TIMESTAMP] = ce->stats.runtime.last; 866 867 loc = lrc_ring_bb_offset(engine); 868 if (loc != -1) 869 regs[loc + 1] = 0; 870 } 871 872 static void init_wa_bb_regs(u32 * const regs, 873 const struct intel_engine_cs *engine) 874 { 875 const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx; 876 877 if (wa_ctx->per_ctx.size) { 878 const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 879 880 GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1); 881 regs[lrc_ring_wa_bb_per_ctx(engine) + 1] = 882 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; 883 } 884 885 if (wa_ctx->indirect_ctx.size) { 886 lrc_setup_indirect_ctx(regs, engine, 887 i915_ggtt_offset(wa_ctx->vma) + 888 wa_ctx->indirect_ctx.offset, 889 wa_ctx->indirect_ctx.size); 890 } 891 } 892 893 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt) 894 { 895 if (i915_vm_is_4lvl(&ppgtt->vm)) { 896 /* 64b PPGTT (48bit canonical) 897 * PDP0_DESCRIPTOR contains the base address to PML4 and 898 * other PDP Descriptors are ignored. 899 */ 900 ASSIGN_CTX_PML4(ppgtt, regs); 901 } else { 902 ASSIGN_CTX_PDP(ppgtt, regs, 3); 903 ASSIGN_CTX_PDP(ppgtt, regs, 2); 904 ASSIGN_CTX_PDP(ppgtt, regs, 1); 905 ASSIGN_CTX_PDP(ppgtt, regs, 0); 906 } 907 } 908 909 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm) 910 { 911 if (i915_is_ggtt(vm)) 912 return i915_vm_to_ggtt(vm)->alias; 913 else 914 return i915_vm_to_ppgtt(vm); 915 } 916 917 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine) 918 { 919 int x; 920 921 x = lrc_ring_mi_mode(engine); 922 if (x != -1) { 923 regs[x + 1] &= ~STOP_RING; 924 regs[x + 1] |= STOP_RING << 16; 925 } 926 } 927 928 static void __lrc_init_regs(u32 *regs, 929 const struct intel_context *ce, 930 const struct intel_engine_cs *engine, 931 bool inhibit) 932 { 933 /* 934 * A context is actually a big batch buffer with several 935 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The 936 * values we are setting here are only for the first context restore: 937 * on a subsequent save, the GPU will recreate this batchbuffer with new 938 * values (including all the missing MI_LOAD_REGISTER_IMM commands that 939 * we are not initializing here). 940 * 941 * Must keep consistent with virtual_update_register_offsets(). 942 */ 943 944 if (inhibit) 945 memset(regs, 0, PAGE_SIZE); 946 947 set_offsets(regs, reg_offsets(engine), engine, inhibit); 948 949 init_common_regs(regs, ce, engine, inhibit); 950 init_ppgtt_regs(regs, vm_alias(ce->vm)); 951 952 init_wa_bb_regs(regs, engine); 953 954 __reset_stop_ring(regs, engine); 955 } 956 957 void lrc_init_regs(const struct intel_context *ce, 958 const struct intel_engine_cs *engine, 959 bool inhibit) 960 { 961 __lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit); 962 } 963 964 void lrc_reset_regs(const struct intel_context *ce, 965 const struct intel_engine_cs *engine) 966 { 967 __reset_stop_ring(ce->lrc_reg_state, engine); 968 } 969 970 static void 971 set_redzone(void *vaddr, const struct intel_engine_cs *engine) 972 { 973 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 974 return; 975 976 vaddr += engine->context_size; 977 978 memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE); 979 } 980 981 static void 982 check_redzone(const void *vaddr, const struct intel_engine_cs *engine) 983 { 984 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 985 return; 986 987 vaddr += engine->context_size; 988 989 if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE)) 990 drm_err_once(&engine->i915->drm, 991 "%s context redzone overwritten!\n", 992 engine->name); 993 } 994 995 static u32 context_wa_bb_offset(const struct intel_context *ce) 996 { 997 return PAGE_SIZE * ce->wa_bb_page; 998 } 999 1000 static u32 *context_indirect_bb(const struct intel_context *ce) 1001 { 1002 void *ptr; 1003 1004 GEM_BUG_ON(!ce->wa_bb_page); 1005 1006 ptr = ce->lrc_reg_state; 1007 ptr -= LRC_STATE_OFFSET; /* back to start of context image */ 1008 ptr += context_wa_bb_offset(ce); 1009 1010 return ptr; 1011 } 1012 1013 void lrc_init_state(struct intel_context *ce, 1014 struct intel_engine_cs *engine, 1015 void *state) 1016 { 1017 bool inhibit = true; 1018 1019 set_redzone(state, engine); 1020 1021 if (engine->default_state) { 1022 shmem_read(engine->default_state, 0, 1023 state, engine->context_size); 1024 __set_bit(CONTEXT_VALID_BIT, &ce->flags); 1025 inhibit = false; 1026 } 1027 1028 /* Clear the ppHWSP (inc. per-context counters) */ 1029 memset(state, 0, PAGE_SIZE); 1030 1031 /* Clear the indirect wa and storage */ 1032 if (ce->wa_bb_page) 1033 memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE); 1034 1035 /* 1036 * The second page of the context object contains some registers which 1037 * must be set up prior to the first execution. 1038 */ 1039 __lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit); 1040 } 1041 1042 u32 lrc_indirect_bb(const struct intel_context *ce) 1043 { 1044 return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce); 1045 } 1046 1047 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs) 1048 { 1049 /* If predication is active, this will be noop'ed */ 1050 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2); 1051 *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA; 1052 *cs++ = 0; 1053 *cs++ = 0; /* No predication */ 1054 1055 /* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */ 1056 *cs++ = MI_BATCH_BUFFER_END | BIT(15); 1057 *cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE; 1058 1059 /* Instructions are no longer predicated (disabled), we can proceed */ 1060 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2); 1061 *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA; 1062 *cs++ = 0; 1063 *cs++ = 1; /* enable predication before the next BB */ 1064 1065 *cs++ = MI_BATCH_BUFFER_END; 1066 GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA); 1067 1068 return cs; 1069 } 1070 1071 static struct i915_vma * 1072 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine) 1073 { 1074 struct drm_i915_gem_object *obj; 1075 struct i915_vma *vma; 1076 u32 context_size; 1077 1078 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); 1079 1080 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 1081 context_size += I915_GTT_PAGE_SIZE; /* for redzone */ 1082 1083 if (GRAPHICS_VER(engine->i915) >= 12) { 1084 ce->wa_bb_page = context_size / PAGE_SIZE; 1085 context_size += PAGE_SIZE; 1086 } 1087 1088 if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) { 1089 ce->parallel.guc.parent_page = context_size / PAGE_SIZE; 1090 context_size += PARENT_SCRATCH_SIZE; 1091 } 1092 1093 obj = i915_gem_object_create_lmem(engine->i915, context_size, 1094 I915_BO_ALLOC_PM_VOLATILE); 1095 if (IS_ERR(obj)) { 1096 obj = i915_gem_object_create_shmem(engine->i915, context_size); 1097 /* 1098 * Wa_22016122933: For MTL the shared memory needs to be mapped 1099 * as WC on CPU side and UC (PAT index 2) on GPU side 1100 */ 1101 if (IS_METEORLAKE(engine->i915)) 1102 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 1103 } 1104 if (IS_ERR(obj)) 1105 return ERR_CAST(obj); 1106 1107 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1108 if (IS_ERR(vma)) { 1109 i915_gem_object_put(obj); 1110 return vma; 1111 } 1112 1113 return vma; 1114 } 1115 1116 static struct intel_timeline * 1117 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine) 1118 { 1119 struct intel_timeline *tl = fetch_and_zero(&ce->timeline); 1120 1121 return intel_timeline_create_from_engine(engine, page_unmask_bits(tl)); 1122 } 1123 1124 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine) 1125 { 1126 struct intel_ring *ring; 1127 struct i915_vma *vma; 1128 int err; 1129 1130 GEM_BUG_ON(ce->state); 1131 1132 vma = __lrc_alloc_state(ce, engine); 1133 if (IS_ERR(vma)) 1134 return PTR_ERR(vma); 1135 1136 ring = intel_engine_create_ring(engine, ce->ring_size); 1137 if (IS_ERR(ring)) { 1138 err = PTR_ERR(ring); 1139 goto err_vma; 1140 } 1141 1142 if (!page_mask_bits(ce->timeline)) { 1143 struct intel_timeline *tl; 1144 1145 /* 1146 * Use the static global HWSP for the kernel context, and 1147 * a dynamically allocated cacheline for everyone else. 1148 */ 1149 if (unlikely(ce->timeline)) 1150 tl = pinned_timeline(ce, engine); 1151 else 1152 tl = intel_timeline_create(engine->gt); 1153 if (IS_ERR(tl)) { 1154 err = PTR_ERR(tl); 1155 goto err_ring; 1156 } 1157 1158 ce->timeline = tl; 1159 } 1160 1161 ce->ring = ring; 1162 ce->state = vma; 1163 1164 return 0; 1165 1166 err_ring: 1167 intel_ring_put(ring); 1168 err_vma: 1169 i915_vma_put(vma); 1170 return err; 1171 } 1172 1173 void lrc_reset(struct intel_context *ce) 1174 { 1175 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1176 1177 intel_ring_reset(ce->ring, ce->ring->emit); 1178 1179 /* Scrub away the garbage */ 1180 lrc_init_regs(ce, ce->engine, true); 1181 ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail); 1182 } 1183 1184 int 1185 lrc_pre_pin(struct intel_context *ce, 1186 struct intel_engine_cs *engine, 1187 struct i915_gem_ww_ctx *ww, 1188 void **vaddr) 1189 { 1190 GEM_BUG_ON(!ce->state); 1191 GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); 1192 1193 *vaddr = i915_gem_object_pin_map(ce->state->obj, 1194 i915_coherent_map_type(ce->engine->i915, 1195 ce->state->obj, 1196 false) | 1197 I915_MAP_OVERRIDE); 1198 1199 return PTR_ERR_OR_ZERO(*vaddr); 1200 } 1201 1202 int 1203 lrc_pin(struct intel_context *ce, 1204 struct intel_engine_cs *engine, 1205 void *vaddr) 1206 { 1207 ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET; 1208 1209 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) 1210 lrc_init_state(ce, engine, vaddr); 1211 1212 ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail); 1213 return 0; 1214 } 1215 1216 void lrc_unpin(struct intel_context *ce) 1217 { 1218 if (unlikely(ce->parallel.last_rq)) { 1219 i915_request_put(ce->parallel.last_rq); 1220 ce->parallel.last_rq = NULL; 1221 } 1222 check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET, 1223 ce->engine); 1224 } 1225 1226 void lrc_post_unpin(struct intel_context *ce) 1227 { 1228 i915_gem_object_unpin_map(ce->state->obj); 1229 } 1230 1231 void lrc_fini(struct intel_context *ce) 1232 { 1233 if (!ce->state) 1234 return; 1235 1236 intel_ring_put(fetch_and_zero(&ce->ring)); 1237 i915_vma_put(fetch_and_zero(&ce->state)); 1238 } 1239 1240 void lrc_destroy(struct kref *kref) 1241 { 1242 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 1243 1244 GEM_BUG_ON(!i915_active_is_idle(&ce->active)); 1245 GEM_BUG_ON(intel_context_is_pinned(ce)); 1246 1247 lrc_fini(ce); 1248 1249 intel_context_fini(ce); 1250 intel_context_free(ce); 1251 } 1252 1253 static u32 * 1254 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs) 1255 { 1256 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1257 MI_SRM_LRM_GLOBAL_GTT | 1258 MI_LRI_LRM_CS_MMIO; 1259 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1260 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1261 CTX_TIMESTAMP * sizeof(u32); 1262 *cs++ = 0; 1263 1264 *cs++ = MI_LOAD_REGISTER_REG | 1265 MI_LRR_SOURCE_CS_MMIO | 1266 MI_LRI_LRM_CS_MMIO; 1267 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1268 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0)); 1269 1270 *cs++ = MI_LOAD_REGISTER_REG | 1271 MI_LRR_SOURCE_CS_MMIO | 1272 MI_LRI_LRM_CS_MMIO; 1273 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1274 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0)); 1275 1276 return cs; 1277 } 1278 1279 static u32 * 1280 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs) 1281 { 1282 GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1); 1283 1284 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1285 MI_SRM_LRM_GLOBAL_GTT | 1286 MI_LRI_LRM_CS_MMIO; 1287 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1288 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1289 (lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32); 1290 *cs++ = 0; 1291 1292 return cs; 1293 } 1294 1295 static u32 * 1296 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs) 1297 { 1298 GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1); 1299 1300 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1301 MI_SRM_LRM_GLOBAL_GTT | 1302 MI_LRI_LRM_CS_MMIO; 1303 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1304 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1305 (lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32); 1306 *cs++ = 0; 1307 1308 *cs++ = MI_LOAD_REGISTER_REG | 1309 MI_LRR_SOURCE_CS_MMIO | 1310 MI_LRI_LRM_CS_MMIO; 1311 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1312 *cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0)); 1313 1314 return cs; 1315 } 1316 1317 /* 1318 * On DG2 during context restore of a preempted context in GPGPU mode, 1319 * RCS restore hang is detected. This is extremely timing dependent. 1320 * To address this below sw wabb is implemented for DG2 A steppings. 1321 */ 1322 static u32 * 1323 dg2_emit_rcs_hang_wabb(const struct intel_context *ce, u32 *cs) 1324 { 1325 *cs++ = MI_LOAD_REGISTER_IMM(1); 1326 *cs++ = i915_mmio_reg_offset(GEN12_STATE_ACK_DEBUG(ce->engine->mmio_base)); 1327 *cs++ = 0x21; 1328 1329 *cs++ = MI_LOAD_REGISTER_REG; 1330 *cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base)); 1331 *cs++ = i915_mmio_reg_offset(XEHP_CULLBIT1); 1332 1333 *cs++ = MI_LOAD_REGISTER_REG; 1334 *cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base)); 1335 *cs++ = i915_mmio_reg_offset(XEHP_CULLBIT2); 1336 1337 return cs; 1338 } 1339 1340 /* 1341 * The bspec's tuning guide asks us to program a vertical watermark value of 1342 * 0x3FF. However this register is not saved/restored properly by the 1343 * hardware, so we're required to apply the desired value via INDIRECT_CTX 1344 * batch buffer to ensure the value takes effect properly. All other bits 1345 * in this register should remain at 0 (the hardware default). 1346 */ 1347 static u32 * 1348 dg2_emit_draw_watermark_setting(u32 *cs) 1349 { 1350 *cs++ = MI_LOAD_REGISTER_IMM(1); 1351 *cs++ = i915_mmio_reg_offset(DRAW_WATERMARK); 1352 *cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF); 1353 1354 return cs; 1355 } 1356 1357 static u32 * 1358 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs) 1359 { 1360 cs = gen12_emit_timestamp_wa(ce, cs); 1361 cs = gen12_emit_cmd_buf_wa(ce, cs); 1362 cs = gen12_emit_restore_scratch(ce, cs); 1363 1364 /* Wa_22011450934:dg2 */ 1365 if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_A0, STEP_B0) || 1366 IS_DG2_GRAPHICS_STEP(ce->engine->i915, G11, STEP_A0, STEP_B0)) 1367 cs = dg2_emit_rcs_hang_wabb(ce, cs); 1368 1369 /* Wa_16013000631:dg2 */ 1370 if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) || 1371 IS_DG2_G11(ce->engine->i915)) 1372 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0); 1373 1374 cs = gen12_emit_aux_table_inv(ce->engine, cs); 1375 1376 /* Wa_16014892111 */ 1377 if (IS_MTL_GRAPHICS_STEP(ce->engine->i915, M, STEP_A0, STEP_B0) || 1378 IS_MTL_GRAPHICS_STEP(ce->engine->i915, P, STEP_A0, STEP_B0) || 1379 IS_DG2(ce->engine->i915)) 1380 cs = dg2_emit_draw_watermark_setting(cs); 1381 1382 return cs; 1383 } 1384 1385 static u32 * 1386 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs) 1387 { 1388 cs = gen12_emit_timestamp_wa(ce, cs); 1389 cs = gen12_emit_restore_scratch(ce, cs); 1390 1391 /* Wa_16013000631:dg2 */ 1392 if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) || 1393 IS_DG2_G11(ce->engine->i915)) 1394 if (ce->engine->class == COMPUTE_CLASS) 1395 cs = gen8_emit_pipe_control(cs, 1396 PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 1397 0); 1398 1399 return gen12_emit_aux_table_inv(ce->engine, cs); 1400 } 1401 1402 static void 1403 setup_indirect_ctx_bb(const struct intel_context *ce, 1404 const struct intel_engine_cs *engine, 1405 u32 *(*emit)(const struct intel_context *, u32 *)) 1406 { 1407 u32 * const start = context_indirect_bb(ce); 1408 u32 *cs; 1409 1410 cs = emit(ce, start); 1411 GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs)); 1412 while ((unsigned long)cs % CACHELINE_BYTES) 1413 *cs++ = MI_NOOP; 1414 1415 GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start)); 1416 setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start)); 1417 1418 lrc_setup_indirect_ctx(ce->lrc_reg_state, engine, 1419 lrc_indirect_bb(ce), 1420 (cs - start) * sizeof(*cs)); 1421 } 1422 1423 /* 1424 * The context descriptor encodes various attributes of a context, 1425 * including its GTT address and some flags. Because it's fairly 1426 * expensive to calculate, we'll just do it once and cache the result, 1427 * which remains valid until the context is unpinned. 1428 * 1429 * This is what a descriptor looks like, from LSB to MSB:: 1430 * 1431 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) 1432 * bits 12-31: LRCA, GTT address of (the HWSP of) this context 1433 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) 1434 * bits 53-54: mbz, reserved for use by hardware 1435 * bits 55-63: group ID, currently unused and set to 0 1436 * 1437 * Starting from Gen11, the upper dword of the descriptor has a new format: 1438 * 1439 * bits 32-36: reserved 1440 * bits 37-47: SW context ID 1441 * bits 48:53: engine instance 1442 * bit 54: mbz, reserved for use by hardware 1443 * bits 55-60: SW counter 1444 * bits 61-63: engine class 1445 * 1446 * On Xe_HP, the upper dword of the descriptor has a new format: 1447 * 1448 * bits 32-37: virtual function number 1449 * bit 38: mbz, reserved for use by hardware 1450 * bits 39-54: SW context ID 1451 * bits 55-57: reserved 1452 * bits 58-63: SW counter 1453 * 1454 * engine info, SW context ID and SW counter need to form a unique number 1455 * (Context ID) per lrc. 1456 */ 1457 static u32 lrc_descriptor(const struct intel_context *ce) 1458 { 1459 u32 desc; 1460 1461 desc = INTEL_LEGACY_32B_CONTEXT; 1462 if (i915_vm_is_4lvl(ce->vm)) 1463 desc = INTEL_LEGACY_64B_CONTEXT; 1464 desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT; 1465 1466 desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE; 1467 if (GRAPHICS_VER(ce->vm->i915) == 8) 1468 desc |= GEN8_CTX_L3LLC_COHERENT; 1469 1470 return i915_ggtt_offset(ce->state) | desc; 1471 } 1472 1473 u32 lrc_update_regs(const struct intel_context *ce, 1474 const struct intel_engine_cs *engine, 1475 u32 head) 1476 { 1477 struct intel_ring *ring = ce->ring; 1478 u32 *regs = ce->lrc_reg_state; 1479 1480 GEM_BUG_ON(!intel_ring_offset_valid(ring, head)); 1481 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); 1482 1483 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); 1484 regs[CTX_RING_HEAD] = head; 1485 regs[CTX_RING_TAIL] = ring->tail; 1486 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 1487 1488 /* RPCS */ 1489 if (engine->class == RENDER_CLASS) { 1490 regs[CTX_R_PWR_CLK_STATE] = 1491 intel_sseu_make_rpcs(engine->gt, &ce->sseu); 1492 1493 i915_oa_init_reg_state(ce, engine); 1494 } 1495 1496 if (ce->wa_bb_page) { 1497 u32 *(*fn)(const struct intel_context *ce, u32 *cs); 1498 1499 fn = gen12_emit_indirect_ctx_xcs; 1500 if (ce->engine->class == RENDER_CLASS) 1501 fn = gen12_emit_indirect_ctx_rcs; 1502 1503 /* Mutually exclusive wrt to global indirect bb */ 1504 GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size); 1505 setup_indirect_ctx_bb(ce, engine, fn); 1506 } 1507 1508 return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE; 1509 } 1510 1511 void lrc_update_offsets(struct intel_context *ce, 1512 struct intel_engine_cs *engine) 1513 { 1514 set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false); 1515 } 1516 1517 void lrc_check_regs(const struct intel_context *ce, 1518 const struct intel_engine_cs *engine, 1519 const char *when) 1520 { 1521 const struct intel_ring *ring = ce->ring; 1522 u32 *regs = ce->lrc_reg_state; 1523 bool valid = true; 1524 int x; 1525 1526 if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) { 1527 pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n", 1528 engine->name, 1529 regs[CTX_RING_START], 1530 i915_ggtt_offset(ring->vma)); 1531 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); 1532 valid = false; 1533 } 1534 1535 if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) != 1536 (RING_CTL_SIZE(ring->size) | RING_VALID)) { 1537 pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n", 1538 engine->name, 1539 regs[CTX_RING_CTL], 1540 (u32)(RING_CTL_SIZE(ring->size) | RING_VALID)); 1541 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 1542 valid = false; 1543 } 1544 1545 x = lrc_ring_mi_mode(engine); 1546 if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) { 1547 pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n", 1548 engine->name, regs[x + 1]); 1549 regs[x + 1] &= ~STOP_RING; 1550 regs[x + 1] |= STOP_RING << 16; 1551 valid = false; 1552 } 1553 1554 WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when); 1555 } 1556 1557 /* 1558 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after 1559 * PIPE_CONTROL instruction. This is required for the flush to happen correctly 1560 * but there is a slight complication as this is applied in WA batch where the 1561 * values are only initialized once so we cannot take register value at the 1562 * beginning and reuse it further; hence we save its value to memory, upload a 1563 * constant value with bit21 set and then we restore it back with the saved value. 1564 * To simplify the WA, a constant value is formed by using the default value 1565 * of this register. This shouldn't be a problem because we are only modifying 1566 * it for a short period and this batch in non-premptible. We can ofcourse 1567 * use additional instructions that read the actual value of the register 1568 * at that time and set our bit of interest but it makes the WA complicated. 1569 * 1570 * This WA is also required for Gen9 so extracting as a function avoids 1571 * code duplication. 1572 */ 1573 static u32 * 1574 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) 1575 { 1576 /* NB no one else is allowed to scribble over scratch + 256! */ 1577 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1578 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1579 *batch++ = intel_gt_scratch_offset(engine->gt, 1580 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); 1581 *batch++ = 0; 1582 1583 *batch++ = MI_LOAD_REGISTER_IMM(1); 1584 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1585 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; 1586 1587 batch = gen8_emit_pipe_control(batch, 1588 PIPE_CONTROL_CS_STALL | 1589 PIPE_CONTROL_DC_FLUSH_ENABLE, 1590 0); 1591 1592 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1593 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1594 *batch++ = intel_gt_scratch_offset(engine->gt, 1595 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); 1596 *batch++ = 0; 1597 1598 return batch; 1599 } 1600 1601 /* 1602 * Typically we only have one indirect_ctx and per_ctx batch buffer which are 1603 * initialized at the beginning and shared across all contexts but this field 1604 * helps us to have multiple batches at different offsets and select them based 1605 * on a criteria. At the moment this batch always start at the beginning of the page 1606 * and at this point we don't have multiple wa_ctx batch buffers. 1607 * 1608 * The number of WA applied are not known at the beginning; we use this field 1609 * to return the no of DWORDS written. 1610 * 1611 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END 1612 * so it adds NOOPs as padding to make it cacheline aligned. 1613 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together 1614 * makes a complete batch buffer. 1615 */ 1616 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1617 { 1618 /* WaDisableCtxRestoreArbitration:bdw,chv */ 1619 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1620 1621 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ 1622 if (IS_BROADWELL(engine->i915)) 1623 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1624 1625 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ 1626 /* Actual scratch location is at 128 bytes offset */ 1627 batch = gen8_emit_pipe_control(batch, 1628 PIPE_CONTROL_FLUSH_L3 | 1629 PIPE_CONTROL_STORE_DATA_INDEX | 1630 PIPE_CONTROL_CS_STALL | 1631 PIPE_CONTROL_QW_WRITE, 1632 LRC_PPHWSP_SCRATCH_ADDR); 1633 1634 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1635 1636 /* Pad to end of cacheline */ 1637 while ((unsigned long)batch % CACHELINE_BYTES) 1638 *batch++ = MI_NOOP; 1639 1640 /* 1641 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because 1642 * execution depends on the length specified in terms of cache lines 1643 * in the register CTX_RCS_INDIRECT_CTX 1644 */ 1645 1646 return batch; 1647 } 1648 1649 struct lri { 1650 i915_reg_t reg; 1651 u32 value; 1652 }; 1653 1654 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) 1655 { 1656 GEM_BUG_ON(!count || count > 63); 1657 1658 *batch++ = MI_LOAD_REGISTER_IMM(count); 1659 do { 1660 *batch++ = i915_mmio_reg_offset(lri->reg); 1661 *batch++ = lri->value; 1662 } while (lri++, --count); 1663 *batch++ = MI_NOOP; 1664 1665 return batch; 1666 } 1667 1668 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1669 { 1670 static const struct lri lri[] = { 1671 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ 1672 { 1673 COMMON_SLICE_CHICKEN2, 1674 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 1675 0), 1676 }, 1677 1678 /* BSpec: 11391 */ 1679 { 1680 FF_SLICE_CHICKEN, 1681 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, 1682 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), 1683 }, 1684 1685 /* BSpec: 11299 */ 1686 { 1687 _3D_CHICKEN3, 1688 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, 1689 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), 1690 } 1691 }; 1692 1693 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1694 1695 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ 1696 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1697 1698 /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */ 1699 batch = gen8_emit_pipe_control(batch, 1700 PIPE_CONTROL_FLUSH_L3 | 1701 PIPE_CONTROL_STORE_DATA_INDEX | 1702 PIPE_CONTROL_CS_STALL | 1703 PIPE_CONTROL_QW_WRITE, 1704 LRC_PPHWSP_SCRATCH_ADDR); 1705 1706 batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); 1707 1708 /* WaMediaPoolStateCmdInWABB:bxt,glk */ 1709 if (HAS_POOLED_EU(engine->i915)) { 1710 /* 1711 * EU pool configuration is setup along with golden context 1712 * during context initialization. This value depends on 1713 * device type (2x6 or 3x6) and needs to be updated based 1714 * on which subslice is disabled especially for 2x6 1715 * devices, however it is safe to load default 1716 * configuration of 3x6 device instead of masking off 1717 * corresponding bits because HW ignores bits of a disabled 1718 * subslice and drops down to appropriate config. Please 1719 * see render_state_setup() in i915_gem_render_state.c for 1720 * possible configurations, to avoid duplication they are 1721 * not shown here again. 1722 */ 1723 *batch++ = GEN9_MEDIA_POOL_STATE; 1724 *batch++ = GEN9_MEDIA_POOL_ENABLE; 1725 *batch++ = 0x00777000; 1726 *batch++ = 0; 1727 *batch++ = 0; 1728 *batch++ = 0; 1729 } 1730 1731 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1732 1733 /* Pad to end of cacheline */ 1734 while ((unsigned long)batch % CACHELINE_BYTES) 1735 *batch++ = MI_NOOP; 1736 1737 return batch; 1738 } 1739 1740 #define CTX_WA_BB_SIZE (PAGE_SIZE) 1741 1742 static int lrc_create_wa_ctx(struct intel_engine_cs *engine) 1743 { 1744 struct drm_i915_gem_object *obj; 1745 struct i915_vma *vma; 1746 int err; 1747 1748 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE); 1749 if (IS_ERR(obj)) 1750 return PTR_ERR(obj); 1751 1752 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1753 if (IS_ERR(vma)) { 1754 err = PTR_ERR(vma); 1755 goto err; 1756 } 1757 1758 engine->wa_ctx.vma = vma; 1759 return 0; 1760 1761 err: 1762 i915_gem_object_put(obj); 1763 return err; 1764 } 1765 1766 void lrc_fini_wa_ctx(struct intel_engine_cs *engine) 1767 { 1768 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); 1769 } 1770 1771 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); 1772 1773 void lrc_init_wa_ctx(struct intel_engine_cs *engine) 1774 { 1775 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 1776 struct i915_wa_ctx_bb *wa_bb[] = { 1777 &wa_ctx->indirect_ctx, &wa_ctx->per_ctx 1778 }; 1779 wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)]; 1780 struct i915_gem_ww_ctx ww; 1781 void *batch, *batch_ptr; 1782 unsigned int i; 1783 int err; 1784 1785 if (GRAPHICS_VER(engine->i915) >= 11 || 1786 !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) 1787 return; 1788 1789 if (GRAPHICS_VER(engine->i915) == 9) { 1790 wa_bb_fn[0] = gen9_init_indirectctx_bb; 1791 wa_bb_fn[1] = NULL; 1792 } else if (GRAPHICS_VER(engine->i915) == 8) { 1793 wa_bb_fn[0] = gen8_init_indirectctx_bb; 1794 wa_bb_fn[1] = NULL; 1795 } 1796 1797 err = lrc_create_wa_ctx(engine); 1798 if (err) { 1799 /* 1800 * We continue even if we fail to initialize WA batch 1801 * because we only expect rare glitches but nothing 1802 * critical to prevent us from using GPU 1803 */ 1804 drm_err(&engine->i915->drm, 1805 "Ignoring context switch w/a allocation error:%d\n", 1806 err); 1807 return; 1808 } 1809 1810 if (!engine->wa_ctx.vma) 1811 return; 1812 1813 i915_gem_ww_ctx_init(&ww, true); 1814 retry: 1815 err = i915_gem_object_lock(wa_ctx->vma->obj, &ww); 1816 if (!err) 1817 err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH); 1818 if (err) 1819 goto err; 1820 1821 batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB); 1822 if (IS_ERR(batch)) { 1823 err = PTR_ERR(batch); 1824 goto err_unpin; 1825 } 1826 1827 /* 1828 * Emit the two workaround batch buffers, recording the offset from the 1829 * start of the workaround batch buffer object for each and their 1830 * respective sizes. 1831 */ 1832 batch_ptr = batch; 1833 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { 1834 wa_bb[i]->offset = batch_ptr - batch; 1835 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, 1836 CACHELINE_BYTES))) { 1837 err = -EINVAL; 1838 break; 1839 } 1840 if (wa_bb_fn[i]) 1841 batch_ptr = wa_bb_fn[i](engine, batch_ptr); 1842 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); 1843 } 1844 GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE); 1845 1846 __i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch); 1847 __i915_gem_object_release_map(wa_ctx->vma->obj); 1848 1849 /* Verify that we can handle failure to setup the wa_ctx */ 1850 if (!err) 1851 err = i915_inject_probe_error(engine->i915, -ENODEV); 1852 1853 err_unpin: 1854 if (err) 1855 i915_vma_unpin(wa_ctx->vma); 1856 err: 1857 if (err == -EDEADLK) { 1858 err = i915_gem_ww_ctx_backoff(&ww); 1859 if (!err) 1860 goto retry; 1861 } 1862 i915_gem_ww_ctx_fini(&ww); 1863 1864 if (err) { 1865 i915_vma_put(engine->wa_ctx.vma); 1866 1867 /* Clear all flags to prevent further use */ 1868 memset(wa_ctx, 0, sizeof(*wa_ctx)); 1869 } 1870 } 1871 1872 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt) 1873 { 1874 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1875 stats->runtime.num_underflow++; 1876 stats->runtime.max_underflow = 1877 max_t(u32, stats->runtime.max_underflow, -dt); 1878 #endif 1879 } 1880 1881 static u32 lrc_get_runtime(const struct intel_context *ce) 1882 { 1883 /* 1884 * We can use either ppHWSP[16] which is recorded before the context 1885 * switch (and so excludes the cost of context switches) or use the 1886 * value from the context image itself, which is saved/restored earlier 1887 * and so includes the cost of the save. 1888 */ 1889 return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]); 1890 } 1891 1892 void lrc_update_runtime(struct intel_context *ce) 1893 { 1894 struct intel_context_stats *stats = &ce->stats; 1895 u32 old; 1896 s32 dt; 1897 1898 old = stats->runtime.last; 1899 stats->runtime.last = lrc_get_runtime(ce); 1900 dt = stats->runtime.last - old; 1901 if (!dt) 1902 return; 1903 1904 if (unlikely(dt < 0)) { 1905 CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n", 1906 old, stats->runtime.last, dt); 1907 st_runtime_underflow(stats, dt); 1908 return; 1909 } 1910 1911 ewma_runtime_add(&stats->runtime.avg, dt); 1912 stats->runtime.total += dt; 1913 } 1914 1915 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1916 #include "selftest_lrc.c" 1917 #endif 1918