xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision f17f06a0)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include "i915_drv.h"
137 #include "i915_perf.h"
138 #include "i915_trace.h"
139 #include "i915_vgpu.h"
140 #include "intel_context.h"
141 #include "intel_engine_pm.h"
142 #include "intel_gt.h"
143 #include "intel_gt_pm.h"
144 #include "intel_gt_requests.h"
145 #include "intel_lrc_reg.h"
146 #include "intel_mocs.h"
147 #include "intel_reset.h"
148 #include "intel_ring.h"
149 #include "intel_workarounds.h"
150 
151 #define RING_EXECLIST_QFULL		(1 << 0x2)
152 #define RING_EXECLIST1_VALID		(1 << 0x3)
153 #define RING_EXECLIST0_VALID		(1 << 0x4)
154 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
155 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
156 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
157 
158 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
159 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
160 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
161 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
162 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
163 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
164 
165 #define GEN8_CTX_STATUS_COMPLETED_MASK \
166 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
167 
168 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
169 
170 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
171 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
172 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
173 #define GEN12_IDLE_CTX_ID		0x7FF
174 #define GEN12_CSB_CTX_VALID(csb_dw) \
175 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
176 
177 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
178 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
179 #define WA_TAIL_DWORDS 2
180 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
181 
182 struct virtual_engine {
183 	struct intel_engine_cs base;
184 	struct intel_context context;
185 
186 	/*
187 	 * We allow only a single request through the virtual engine at a time
188 	 * (each request in the timeline waits for the completion fence of
189 	 * the previous before being submitted). By restricting ourselves to
190 	 * only submitting a single request, each request is placed on to a
191 	 * physical to maximise load spreading (by virtue of the late greedy
192 	 * scheduling -- each real engine takes the next available request
193 	 * upon idling).
194 	 */
195 	struct i915_request *request;
196 
197 	/*
198 	 * We keep a rbtree of available virtual engines inside each physical
199 	 * engine, sorted by priority. Here we preallocate the nodes we need
200 	 * for the virtual engine, indexed by physical_engine->id.
201 	 */
202 	struct ve_node {
203 		struct rb_node rb;
204 		int prio;
205 	} nodes[I915_NUM_ENGINES];
206 
207 	/*
208 	 * Keep track of bonded pairs -- restrictions upon on our selection
209 	 * of physical engines any particular request may be submitted to.
210 	 * If we receive a submit-fence from a master engine, we will only
211 	 * use one of sibling_mask physical engines.
212 	 */
213 	struct ve_bond {
214 		const struct intel_engine_cs *master;
215 		intel_engine_mask_t sibling_mask;
216 	} *bonds;
217 	unsigned int num_bonds;
218 
219 	/* And finally, which physical engines this virtual engine maps onto. */
220 	unsigned int num_siblings;
221 	struct intel_engine_cs *siblings[0];
222 };
223 
224 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
225 {
226 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
227 	return container_of(engine, struct virtual_engine, base);
228 }
229 
230 static int __execlists_context_alloc(struct intel_context *ce,
231 				     struct intel_engine_cs *engine);
232 
233 static void execlists_init_reg_state(u32 *reg_state,
234 				     const struct intel_context *ce,
235 				     const struct intel_engine_cs *engine,
236 				     const struct intel_ring *ring,
237 				     bool close);
238 static void
239 __execlists_update_reg_state(const struct intel_context *ce,
240 			     const struct intel_engine_cs *engine,
241 			     u32 head);
242 
243 static void mark_eio(struct i915_request *rq)
244 {
245 	if (i915_request_completed(rq))
246 		return;
247 
248 	GEM_BUG_ON(i915_request_signaled(rq));
249 
250 	dma_fence_set_error(&rq->fence, -EIO);
251 	i915_request_mark_complete(rq);
252 }
253 
254 static struct i915_request *
255 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
256 {
257 	struct i915_request *active = rq;
258 
259 	rcu_read_lock();
260 	list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
261 		if (i915_request_completed(rq))
262 			break;
263 
264 		active = rq;
265 	}
266 	rcu_read_unlock();
267 
268 	return active;
269 }
270 
271 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
272 {
273 	return (i915_ggtt_offset(engine->status_page.vma) +
274 		I915_GEM_HWS_PREEMPT_ADDR);
275 }
276 
277 static inline void
278 ring_set_paused(const struct intel_engine_cs *engine, int state)
279 {
280 	/*
281 	 * We inspect HWS_PREEMPT with a semaphore inside
282 	 * engine->emit_fini_breadcrumb. If the dword is true,
283 	 * the ring is paused as the semaphore will busywait
284 	 * until the dword is false.
285 	 */
286 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
287 	if (state)
288 		wmb();
289 }
290 
291 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
292 {
293 	return rb_entry(rb, struct i915_priolist, node);
294 }
295 
296 static inline int rq_prio(const struct i915_request *rq)
297 {
298 	return rq->sched.attr.priority;
299 }
300 
301 static int effective_prio(const struct i915_request *rq)
302 {
303 	int prio = rq_prio(rq);
304 
305 	/*
306 	 * If this request is special and must not be interrupted at any
307 	 * cost, so be it. Note we are only checking the most recent request
308 	 * in the context and so may be masking an earlier vip request. It
309 	 * is hoped that under the conditions where nopreempt is used, this
310 	 * will not matter (i.e. all requests to that context will be
311 	 * nopreempt for as long as desired).
312 	 */
313 	if (i915_request_has_nopreempt(rq))
314 		prio = I915_PRIORITY_UNPREEMPTABLE;
315 
316 	/*
317 	 * On unwinding the active request, we give it a priority bump
318 	 * if it has completed waiting on any semaphore. If we know that
319 	 * the request has already started, we can prevent an unwanted
320 	 * preempt-to-idle cycle by taking that into account now.
321 	 */
322 	if (__i915_request_has_started(rq))
323 		prio |= I915_PRIORITY_NOSEMAPHORE;
324 
325 	/* Restrict mere WAIT boosts from triggering preemption */
326 	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
327 	return prio | __NO_PREEMPTION;
328 }
329 
330 static int queue_prio(const struct intel_engine_execlists *execlists)
331 {
332 	struct i915_priolist *p;
333 	struct rb_node *rb;
334 
335 	rb = rb_first_cached(&execlists->queue);
336 	if (!rb)
337 		return INT_MIN;
338 
339 	/*
340 	 * As the priolist[] are inverted, with the highest priority in [0],
341 	 * we have to flip the index value to become priority.
342 	 */
343 	p = to_priolist(rb);
344 	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
345 }
346 
347 static inline bool need_preempt(const struct intel_engine_cs *engine,
348 				const struct i915_request *rq,
349 				struct rb_node *rb)
350 {
351 	int last_prio;
352 
353 	if (!intel_engine_has_semaphores(engine))
354 		return false;
355 
356 	/*
357 	 * Check if the current priority hint merits a preemption attempt.
358 	 *
359 	 * We record the highest value priority we saw during rescheduling
360 	 * prior to this dequeue, therefore we know that if it is strictly
361 	 * less than the current tail of ESLP[0], we do not need to force
362 	 * a preempt-to-idle cycle.
363 	 *
364 	 * However, the priority hint is a mere hint that we may need to
365 	 * preempt. If that hint is stale or we may be trying to preempt
366 	 * ourselves, ignore the request.
367 	 *
368 	 * More naturally we would write
369 	 *      prio >= max(0, last);
370 	 * except that we wish to prevent triggering preemption at the same
371 	 * priority level: the task that is running should remain running
372 	 * to preserve FIFO ordering of dependencies.
373 	 */
374 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
375 	if (engine->execlists.queue_priority_hint <= last_prio)
376 		return false;
377 
378 	/*
379 	 * Check against the first request in ELSP[1], it will, thanks to the
380 	 * power of PI, be the highest priority of that context.
381 	 */
382 	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
383 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
384 		return true;
385 
386 	if (rb) {
387 		struct virtual_engine *ve =
388 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
389 		bool preempt = false;
390 
391 		if (engine == ve->siblings[0]) { /* only preempt one sibling */
392 			struct i915_request *next;
393 
394 			rcu_read_lock();
395 			next = READ_ONCE(ve->request);
396 			if (next)
397 				preempt = rq_prio(next) > last_prio;
398 			rcu_read_unlock();
399 		}
400 
401 		if (preempt)
402 			return preempt;
403 	}
404 
405 	/*
406 	 * If the inflight context did not trigger the preemption, then maybe
407 	 * it was the set of queued requests? Pick the highest priority in
408 	 * the queue (the first active priolist) and see if it deserves to be
409 	 * running instead of ELSP[0].
410 	 *
411 	 * The highest priority request in the queue can not be either
412 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
413 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
414 	 */
415 	return queue_prio(&engine->execlists) > last_prio;
416 }
417 
418 __maybe_unused static inline bool
419 assert_priority_queue(const struct i915_request *prev,
420 		      const struct i915_request *next)
421 {
422 	/*
423 	 * Without preemption, the prev may refer to the still active element
424 	 * which we refuse to let go.
425 	 *
426 	 * Even with preemption, there are times when we think it is better not
427 	 * to preempt and leave an ostensibly lower priority request in flight.
428 	 */
429 	if (i915_request_is_active(prev))
430 		return true;
431 
432 	return rq_prio(prev) >= rq_prio(next);
433 }
434 
435 /*
436  * The context descriptor encodes various attributes of a context,
437  * including its GTT address and some flags. Because it's fairly
438  * expensive to calculate, we'll just do it once and cache the result,
439  * which remains valid until the context is unpinned.
440  *
441  * This is what a descriptor looks like, from LSB to MSB::
442  *
443  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
444  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
445  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
446  *      bits 53-54:    mbz, reserved for use by hardware
447  *      bits 55-63:    group ID, currently unused and set to 0
448  *
449  * Starting from Gen11, the upper dword of the descriptor has a new format:
450  *
451  *      bits 32-36:    reserved
452  *      bits 37-47:    SW context ID
453  *      bits 48:53:    engine instance
454  *      bit 54:        mbz, reserved for use by hardware
455  *      bits 55-60:    SW counter
456  *      bits 61-63:    engine class
457  *
458  * engine info, SW context ID and SW counter need to form a unique number
459  * (Context ID) per lrc.
460  */
461 static u64
462 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
463 {
464 	u64 desc;
465 
466 	desc = INTEL_LEGACY_32B_CONTEXT;
467 	if (i915_vm_is_4lvl(ce->vm))
468 		desc = INTEL_LEGACY_64B_CONTEXT;
469 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
470 
471 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
472 	if (IS_GEN(engine->i915, 8))
473 		desc |= GEN8_CTX_L3LLC_COHERENT;
474 
475 	desc |= i915_ggtt_offset(ce->state); /* bits 12-31 */
476 	/*
477 	 * The following 32bits are copied into the OA reports (dword 2).
478 	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
479 	 * anything below.
480 	 */
481 	if (INTEL_GEN(engine->i915) >= 11) {
482 		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
483 								/* bits 48-53 */
484 
485 		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
486 								/* bits 61-63 */
487 	}
488 
489 	return desc;
490 }
491 
492 static inline unsigned int dword_in_page(void *addr)
493 {
494 	return offset_in_page(addr) / sizeof(u32);
495 }
496 
497 static void set_offsets(u32 *regs,
498 			const u8 *data,
499 			const struct intel_engine_cs *engine,
500 			bool clear)
501 #define NOP(x) (BIT(7) | (x))
502 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
503 #define POSTED BIT(0)
504 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
505 #define REG16(x) \
506 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
507 	(((x) >> 2) & 0x7f)
508 #define END(x) 0, (x)
509 {
510 	const u32 base = engine->mmio_base;
511 
512 	while (*data) {
513 		u8 count, flags;
514 
515 		if (*data & BIT(7)) { /* skip */
516 			count = *data++ & ~BIT(7);
517 			if (clear)
518 				memset32(regs, MI_NOOP, count);
519 			regs += count;
520 			continue;
521 		}
522 
523 		count = *data & 0x3f;
524 		flags = *data >> 6;
525 		data++;
526 
527 		*regs = MI_LOAD_REGISTER_IMM(count);
528 		if (flags & POSTED)
529 			*regs |= MI_LRI_FORCE_POSTED;
530 		if (INTEL_GEN(engine->i915) >= 11)
531 			*regs |= MI_LRI_CS_MMIO;
532 		regs++;
533 
534 		GEM_BUG_ON(!count);
535 		do {
536 			u32 offset = 0;
537 			u8 v;
538 
539 			do {
540 				v = *data++;
541 				offset <<= 7;
542 				offset |= v & ~BIT(7);
543 			} while (v & BIT(7));
544 
545 			regs[0] = base + (offset << 2);
546 			if (clear)
547 				regs[1] = 0;
548 			regs += 2;
549 		} while (--count);
550 	}
551 
552 	if (clear) {
553 		u8 count = *++data;
554 
555 		/* Clear past the tail for HW access */
556 		GEM_BUG_ON(dword_in_page(regs) > count);
557 		memset32(regs, MI_NOOP, count - dword_in_page(regs));
558 
559 		/* Close the batch; used mainly by live_lrc_layout() */
560 		*regs = MI_BATCH_BUFFER_END;
561 		if (INTEL_GEN(engine->i915) >= 10)
562 			*regs |= BIT(0);
563 	}
564 }
565 
566 static const u8 gen8_xcs_offsets[] = {
567 	NOP(1),
568 	LRI(11, 0),
569 	REG16(0x244),
570 	REG(0x034),
571 	REG(0x030),
572 	REG(0x038),
573 	REG(0x03c),
574 	REG(0x168),
575 	REG(0x140),
576 	REG(0x110),
577 	REG(0x11c),
578 	REG(0x114),
579 	REG(0x118),
580 
581 	NOP(9),
582 	LRI(9, 0),
583 	REG16(0x3a8),
584 	REG16(0x28c),
585 	REG16(0x288),
586 	REG16(0x284),
587 	REG16(0x280),
588 	REG16(0x27c),
589 	REG16(0x278),
590 	REG16(0x274),
591 	REG16(0x270),
592 
593 	NOP(13),
594 	LRI(2, 0),
595 	REG16(0x200),
596 	REG(0x028),
597 
598 	END(80)
599 };
600 
601 static const u8 gen9_xcs_offsets[] = {
602 	NOP(1),
603 	LRI(14, POSTED),
604 	REG16(0x244),
605 	REG(0x034),
606 	REG(0x030),
607 	REG(0x038),
608 	REG(0x03c),
609 	REG(0x168),
610 	REG(0x140),
611 	REG(0x110),
612 	REG(0x11c),
613 	REG(0x114),
614 	REG(0x118),
615 	REG(0x1c0),
616 	REG(0x1c4),
617 	REG(0x1c8),
618 
619 	NOP(3),
620 	LRI(9, POSTED),
621 	REG16(0x3a8),
622 	REG16(0x28c),
623 	REG16(0x288),
624 	REG16(0x284),
625 	REG16(0x280),
626 	REG16(0x27c),
627 	REG16(0x278),
628 	REG16(0x274),
629 	REG16(0x270),
630 
631 	NOP(13),
632 	LRI(1, POSTED),
633 	REG16(0x200),
634 
635 	NOP(13),
636 	LRI(44, POSTED),
637 	REG(0x028),
638 	REG(0x09c),
639 	REG(0x0c0),
640 	REG(0x178),
641 	REG(0x17c),
642 	REG16(0x358),
643 	REG(0x170),
644 	REG(0x150),
645 	REG(0x154),
646 	REG(0x158),
647 	REG16(0x41c),
648 	REG16(0x600),
649 	REG16(0x604),
650 	REG16(0x608),
651 	REG16(0x60c),
652 	REG16(0x610),
653 	REG16(0x614),
654 	REG16(0x618),
655 	REG16(0x61c),
656 	REG16(0x620),
657 	REG16(0x624),
658 	REG16(0x628),
659 	REG16(0x62c),
660 	REG16(0x630),
661 	REG16(0x634),
662 	REG16(0x638),
663 	REG16(0x63c),
664 	REG16(0x640),
665 	REG16(0x644),
666 	REG16(0x648),
667 	REG16(0x64c),
668 	REG16(0x650),
669 	REG16(0x654),
670 	REG16(0x658),
671 	REG16(0x65c),
672 	REG16(0x660),
673 	REG16(0x664),
674 	REG16(0x668),
675 	REG16(0x66c),
676 	REG16(0x670),
677 	REG16(0x674),
678 	REG16(0x678),
679 	REG16(0x67c),
680 	REG(0x068),
681 
682 	END(176)
683 };
684 
685 static const u8 gen12_xcs_offsets[] = {
686 	NOP(1),
687 	LRI(13, POSTED),
688 	REG16(0x244),
689 	REG(0x034),
690 	REG(0x030),
691 	REG(0x038),
692 	REG(0x03c),
693 	REG(0x168),
694 	REG(0x140),
695 	REG(0x110),
696 	REG(0x1c0),
697 	REG(0x1c4),
698 	REG(0x1c8),
699 	REG(0x180),
700 	REG16(0x2b4),
701 
702 	NOP(5),
703 	LRI(9, POSTED),
704 	REG16(0x3a8),
705 	REG16(0x28c),
706 	REG16(0x288),
707 	REG16(0x284),
708 	REG16(0x280),
709 	REG16(0x27c),
710 	REG16(0x278),
711 	REG16(0x274),
712 	REG16(0x270),
713 
714 	END(80)
715 };
716 
717 static const u8 gen8_rcs_offsets[] = {
718 	NOP(1),
719 	LRI(14, POSTED),
720 	REG16(0x244),
721 	REG(0x034),
722 	REG(0x030),
723 	REG(0x038),
724 	REG(0x03c),
725 	REG(0x168),
726 	REG(0x140),
727 	REG(0x110),
728 	REG(0x11c),
729 	REG(0x114),
730 	REG(0x118),
731 	REG(0x1c0),
732 	REG(0x1c4),
733 	REG(0x1c8),
734 
735 	NOP(3),
736 	LRI(9, POSTED),
737 	REG16(0x3a8),
738 	REG16(0x28c),
739 	REG16(0x288),
740 	REG16(0x284),
741 	REG16(0x280),
742 	REG16(0x27c),
743 	REG16(0x278),
744 	REG16(0x274),
745 	REG16(0x270),
746 
747 	NOP(13),
748 	LRI(1, 0),
749 	REG(0x0c8),
750 
751 	END(80)
752 };
753 
754 static const u8 gen9_rcs_offsets[] = {
755 	NOP(1),
756 	LRI(14, POSTED),
757 	REG16(0x244),
758 	REG(0x34),
759 	REG(0x30),
760 	REG(0x38),
761 	REG(0x3c),
762 	REG(0x168),
763 	REG(0x140),
764 	REG(0x110),
765 	REG(0x11c),
766 	REG(0x114),
767 	REG(0x118),
768 	REG(0x1c0),
769 	REG(0x1c4),
770 	REG(0x1c8),
771 
772 	NOP(3),
773 	LRI(9, POSTED),
774 	REG16(0x3a8),
775 	REG16(0x28c),
776 	REG16(0x288),
777 	REG16(0x284),
778 	REG16(0x280),
779 	REG16(0x27c),
780 	REG16(0x278),
781 	REG16(0x274),
782 	REG16(0x270),
783 
784 	NOP(13),
785 	LRI(1, 0),
786 	REG(0xc8),
787 
788 	NOP(13),
789 	LRI(44, POSTED),
790 	REG(0x28),
791 	REG(0x9c),
792 	REG(0xc0),
793 	REG(0x178),
794 	REG(0x17c),
795 	REG16(0x358),
796 	REG(0x170),
797 	REG(0x150),
798 	REG(0x154),
799 	REG(0x158),
800 	REG16(0x41c),
801 	REG16(0x600),
802 	REG16(0x604),
803 	REG16(0x608),
804 	REG16(0x60c),
805 	REG16(0x610),
806 	REG16(0x614),
807 	REG16(0x618),
808 	REG16(0x61c),
809 	REG16(0x620),
810 	REG16(0x624),
811 	REG16(0x628),
812 	REG16(0x62c),
813 	REG16(0x630),
814 	REG16(0x634),
815 	REG16(0x638),
816 	REG16(0x63c),
817 	REG16(0x640),
818 	REG16(0x644),
819 	REG16(0x648),
820 	REG16(0x64c),
821 	REG16(0x650),
822 	REG16(0x654),
823 	REG16(0x658),
824 	REG16(0x65c),
825 	REG16(0x660),
826 	REG16(0x664),
827 	REG16(0x668),
828 	REG16(0x66c),
829 	REG16(0x670),
830 	REG16(0x674),
831 	REG16(0x678),
832 	REG16(0x67c),
833 	REG(0x68),
834 
835 	END(176)
836 };
837 
838 static const u8 gen11_rcs_offsets[] = {
839 	NOP(1),
840 	LRI(15, POSTED),
841 	REG16(0x244),
842 	REG(0x034),
843 	REG(0x030),
844 	REG(0x038),
845 	REG(0x03c),
846 	REG(0x168),
847 	REG(0x140),
848 	REG(0x110),
849 	REG(0x11c),
850 	REG(0x114),
851 	REG(0x118),
852 	REG(0x1c0),
853 	REG(0x1c4),
854 	REG(0x1c8),
855 	REG(0x180),
856 
857 	NOP(1),
858 	LRI(9, POSTED),
859 	REG16(0x3a8),
860 	REG16(0x28c),
861 	REG16(0x288),
862 	REG16(0x284),
863 	REG16(0x280),
864 	REG16(0x27c),
865 	REG16(0x278),
866 	REG16(0x274),
867 	REG16(0x270),
868 
869 	LRI(1, POSTED),
870 	REG(0x1b0),
871 
872 	NOP(10),
873 	LRI(1, 0),
874 	REG(0x0c8),
875 
876 	END(80)
877 };
878 
879 static const u8 gen12_rcs_offsets[] = {
880 	NOP(1),
881 	LRI(13, POSTED),
882 	REG16(0x244),
883 	REG(0x034),
884 	REG(0x030),
885 	REG(0x038),
886 	REG(0x03c),
887 	REG(0x168),
888 	REG(0x140),
889 	REG(0x110),
890 	REG(0x1c0),
891 	REG(0x1c4),
892 	REG(0x1c8),
893 	REG(0x180),
894 	REG16(0x2b4),
895 
896 	NOP(5),
897 	LRI(9, POSTED),
898 	REG16(0x3a8),
899 	REG16(0x28c),
900 	REG16(0x288),
901 	REG16(0x284),
902 	REG16(0x280),
903 	REG16(0x27c),
904 	REG16(0x278),
905 	REG16(0x274),
906 	REG16(0x270),
907 
908 	LRI(3, POSTED),
909 	REG(0x1b0),
910 	REG16(0x5a8),
911 	REG16(0x5ac),
912 
913 	NOP(6),
914 	LRI(1, 0),
915 	REG(0x0c8),
916 
917 	END(80)
918 };
919 
920 #undef END
921 #undef REG16
922 #undef REG
923 #undef LRI
924 #undef NOP
925 
926 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
927 {
928 	/*
929 	 * The gen12+ lists only have the registers we program in the basic
930 	 * default state. We rely on the context image using relative
931 	 * addressing to automatic fixup the register state between the
932 	 * physical engines for virtual engine.
933 	 */
934 	GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
935 		   !intel_engine_has_relative_mmio(engine));
936 
937 	if (engine->class == RENDER_CLASS) {
938 		if (INTEL_GEN(engine->i915) >= 12)
939 			return gen12_rcs_offsets;
940 		else if (INTEL_GEN(engine->i915) >= 11)
941 			return gen11_rcs_offsets;
942 		else if (INTEL_GEN(engine->i915) >= 9)
943 			return gen9_rcs_offsets;
944 		else
945 			return gen8_rcs_offsets;
946 	} else {
947 		if (INTEL_GEN(engine->i915) >= 12)
948 			return gen12_xcs_offsets;
949 		else if (INTEL_GEN(engine->i915) >= 9)
950 			return gen9_xcs_offsets;
951 		else
952 			return gen8_xcs_offsets;
953 	}
954 }
955 
956 static struct i915_request *
957 __unwind_incomplete_requests(struct intel_engine_cs *engine)
958 {
959 	struct i915_request *rq, *rn, *active = NULL;
960 	struct list_head *uninitialized_var(pl);
961 	int prio = I915_PRIORITY_INVALID;
962 
963 	lockdep_assert_held(&engine->active.lock);
964 
965 	list_for_each_entry_safe_reverse(rq, rn,
966 					 &engine->active.requests,
967 					 sched.link) {
968 		if (i915_request_completed(rq))
969 			continue; /* XXX */
970 
971 		__i915_request_unsubmit(rq);
972 
973 		/*
974 		 * Push the request back into the queue for later resubmission.
975 		 * If this request is not native to this physical engine (i.e.
976 		 * it came from a virtual source), push it back onto the virtual
977 		 * engine so that it can be moved across onto another physical
978 		 * engine as load dictates.
979 		 */
980 		if (likely(rq->execution_mask == engine->mask)) {
981 			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
982 			if (rq_prio(rq) != prio) {
983 				prio = rq_prio(rq);
984 				pl = i915_sched_lookup_priolist(engine, prio);
985 			}
986 			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
987 
988 			list_move(&rq->sched.link, pl);
989 			set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
990 
991 			active = rq;
992 		} else {
993 			struct intel_engine_cs *owner = rq->context->engine;
994 
995 			/*
996 			 * Decouple the virtual breadcrumb before moving it
997 			 * back to the virtual engine -- we don't want the
998 			 * request to complete in the background and try
999 			 * and cancel the breadcrumb on the virtual engine
1000 			 * (instead of the old engine where it is linked)!
1001 			 */
1002 			if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1003 				     &rq->fence.flags)) {
1004 				spin_lock_nested(&rq->lock,
1005 						 SINGLE_DEPTH_NESTING);
1006 				i915_request_cancel_breadcrumb(rq);
1007 				spin_unlock(&rq->lock);
1008 			}
1009 			rq->engine = owner;
1010 			owner->submit_request(rq);
1011 			active = NULL;
1012 		}
1013 	}
1014 
1015 	return active;
1016 }
1017 
1018 struct i915_request *
1019 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
1020 {
1021 	struct intel_engine_cs *engine =
1022 		container_of(execlists, typeof(*engine), execlists);
1023 
1024 	return __unwind_incomplete_requests(engine);
1025 }
1026 
1027 static inline void
1028 execlists_context_status_change(struct i915_request *rq, unsigned long status)
1029 {
1030 	/*
1031 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
1032 	 * The compiler should eliminate this function as dead-code.
1033 	 */
1034 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
1035 		return;
1036 
1037 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
1038 				   status, rq);
1039 }
1040 
1041 static void intel_engine_context_in(struct intel_engine_cs *engine)
1042 {
1043 	unsigned long flags;
1044 
1045 	if (READ_ONCE(engine->stats.enabled) == 0)
1046 		return;
1047 
1048 	write_seqlock_irqsave(&engine->stats.lock, flags);
1049 
1050 	if (engine->stats.enabled > 0) {
1051 		if (engine->stats.active++ == 0)
1052 			engine->stats.start = ktime_get();
1053 		GEM_BUG_ON(engine->stats.active == 0);
1054 	}
1055 
1056 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1057 }
1058 
1059 static void intel_engine_context_out(struct intel_engine_cs *engine)
1060 {
1061 	unsigned long flags;
1062 
1063 	if (READ_ONCE(engine->stats.enabled) == 0)
1064 		return;
1065 
1066 	write_seqlock_irqsave(&engine->stats.lock, flags);
1067 
1068 	if (engine->stats.enabled > 0) {
1069 		ktime_t last;
1070 
1071 		if (engine->stats.active && --engine->stats.active == 0) {
1072 			/*
1073 			 * Decrement the active context count and in case GPU
1074 			 * is now idle add up to the running total.
1075 			 */
1076 			last = ktime_sub(ktime_get(), engine->stats.start);
1077 
1078 			engine->stats.total = ktime_add(engine->stats.total,
1079 							last);
1080 		} else if (engine->stats.active == 0) {
1081 			/*
1082 			 * After turning on engine stats, context out might be
1083 			 * the first event in which case we account from the
1084 			 * time stats gathering was turned on.
1085 			 */
1086 			last = ktime_sub(ktime_get(), engine->stats.enabled_at);
1087 
1088 			engine->stats.total = ktime_add(engine->stats.total,
1089 							last);
1090 		}
1091 	}
1092 
1093 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1094 }
1095 
1096 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
1097 {
1098 	if (INTEL_GEN(engine->i915) >= 12)
1099 		return 0x60;
1100 	else if (INTEL_GEN(engine->i915) >= 9)
1101 		return 0x54;
1102 	else if (engine->class == RENDER_CLASS)
1103 		return 0x58;
1104 	else
1105 		return -1;
1106 }
1107 
1108 static void
1109 execlists_check_context(const struct intel_context *ce,
1110 			const struct intel_engine_cs *engine)
1111 {
1112 	const struct intel_ring *ring = ce->ring;
1113 	u32 *regs = ce->lrc_reg_state;
1114 	bool valid = true;
1115 	int x;
1116 
1117 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1118 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1119 		       engine->name,
1120 		       regs[CTX_RING_START],
1121 		       i915_ggtt_offset(ring->vma));
1122 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1123 		valid = false;
1124 	}
1125 
1126 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1127 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1128 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1129 		       engine->name,
1130 		       regs[CTX_RING_CTL],
1131 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1132 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1133 		valid = false;
1134 	}
1135 
1136 	x = lrc_ring_mi_mode(engine);
1137 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1138 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1139 		       engine->name, regs[x + 1]);
1140 		regs[x + 1] &= ~STOP_RING;
1141 		regs[x + 1] |= STOP_RING << 16;
1142 		valid = false;
1143 	}
1144 
1145 	WARN_ONCE(!valid, "Invalid lrc state found before submission\n");
1146 }
1147 
1148 static void restore_default_state(struct intel_context *ce,
1149 				  struct intel_engine_cs *engine)
1150 {
1151 	u32 *regs = ce->lrc_reg_state;
1152 
1153 	if (engine->pinned_default_state)
1154 		memcpy(regs, /* skip restoring the vanilla PPHWSP */
1155 		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1156 		       engine->context_size - PAGE_SIZE);
1157 
1158 	execlists_init_reg_state(regs, ce, engine, ce->ring, false);
1159 }
1160 
1161 static void reset_active(struct i915_request *rq,
1162 			 struct intel_engine_cs *engine)
1163 {
1164 	struct intel_context * const ce = rq->context;
1165 	u32 head;
1166 
1167 	/*
1168 	 * The executing context has been cancelled. We want to prevent
1169 	 * further execution along this context and propagate the error on
1170 	 * to anything depending on its results.
1171 	 *
1172 	 * In __i915_request_submit(), we apply the -EIO and remove the
1173 	 * requests' payloads for any banned requests. But first, we must
1174 	 * rewind the context back to the start of the incomplete request so
1175 	 * that we do not jump back into the middle of the batch.
1176 	 *
1177 	 * We preserve the breadcrumbs and semaphores of the incomplete
1178 	 * requests so that inter-timeline dependencies (i.e other timelines)
1179 	 * remain correctly ordered. And we defer to __i915_request_submit()
1180 	 * so that all asynchronous waits are correctly handled.
1181 	 */
1182 	ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
1183 		     rq->fence.context, rq->fence.seqno);
1184 
1185 	/* On resubmission of the active request, payload will be scrubbed */
1186 	if (i915_request_completed(rq))
1187 		head = rq->tail;
1188 	else
1189 		head = active_request(ce->timeline, rq)->head;
1190 	head = intel_ring_wrap(ce->ring, head);
1191 
1192 	/* Scrub the context image to prevent replaying the previous batch */
1193 	restore_default_state(ce, engine);
1194 	__execlists_update_reg_state(ce, engine, head);
1195 
1196 	/* We've switched away, so this should be a no-op, but intent matters */
1197 	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
1198 }
1199 
1200 static inline struct intel_engine_cs *
1201 __execlists_schedule_in(struct i915_request *rq)
1202 {
1203 	struct intel_engine_cs * const engine = rq->engine;
1204 	struct intel_context * const ce = rq->context;
1205 
1206 	intel_context_get(ce);
1207 
1208 	if (unlikely(intel_context_is_banned(ce)))
1209 		reset_active(rq, engine);
1210 
1211 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1212 		execlists_check_context(ce, engine);
1213 
1214 	if (ce->tag) {
1215 		/* Use a fixed tag for OA and friends */
1216 		ce->lrc_desc |= (u64)ce->tag << 32;
1217 	} else {
1218 		/* We don't need a strict matching tag, just different values */
1219 		ce->lrc_desc &= ~GENMASK_ULL(47, 37);
1220 		ce->lrc_desc |=
1221 			(u64)(++engine->context_tag % NUM_CONTEXT_TAG) <<
1222 			GEN11_SW_CTX_ID_SHIFT;
1223 		BUILD_BUG_ON(NUM_CONTEXT_TAG > GEN12_MAX_CONTEXT_HW_ID);
1224 	}
1225 
1226 	__intel_gt_pm_get(engine->gt);
1227 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
1228 	intel_engine_context_in(engine);
1229 
1230 	return engine;
1231 }
1232 
1233 static inline struct i915_request *
1234 execlists_schedule_in(struct i915_request *rq, int idx)
1235 {
1236 	struct intel_context * const ce = rq->context;
1237 	struct intel_engine_cs *old;
1238 
1239 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
1240 	trace_i915_request_in(rq, idx);
1241 
1242 	old = READ_ONCE(ce->inflight);
1243 	do {
1244 		if (!old) {
1245 			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
1246 			break;
1247 		}
1248 	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
1249 
1250 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
1251 	return i915_request_get(rq);
1252 }
1253 
1254 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
1255 {
1256 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
1257 	struct i915_request *next = READ_ONCE(ve->request);
1258 
1259 	if (next && next->execution_mask & ~rq->execution_mask)
1260 		tasklet_schedule(&ve->base.execlists.tasklet);
1261 }
1262 
1263 static inline void
1264 __execlists_schedule_out(struct i915_request *rq,
1265 			 struct intel_engine_cs * const engine)
1266 {
1267 	struct intel_context * const ce = rq->context;
1268 
1269 	/*
1270 	 * NB process_csb() is not under the engine->active.lock and hence
1271 	 * schedule_out can race with schedule_in meaning that we should
1272 	 * refrain from doing non-trivial work here.
1273 	 */
1274 
1275 	/*
1276 	 * If we have just completed this context, the engine may now be
1277 	 * idle and we want to re-enter powersaving.
1278 	 */
1279 	if (list_is_last(&rq->link, &ce->timeline->requests) &&
1280 	    i915_request_completed(rq))
1281 		intel_engine_add_retire(engine, ce->timeline);
1282 
1283 	intel_engine_context_out(engine);
1284 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
1285 	intel_gt_pm_put_async(engine->gt);
1286 
1287 	/*
1288 	 * If this is part of a virtual engine, its next request may
1289 	 * have been blocked waiting for access to the active context.
1290 	 * We have to kick all the siblings again in case we need to
1291 	 * switch (e.g. the next request is not runnable on this
1292 	 * engine). Hopefully, we will already have submitted the next
1293 	 * request before the tasklet runs and do not need to rebuild
1294 	 * each virtual tree and kick everyone again.
1295 	 */
1296 	if (ce->engine != engine)
1297 		kick_siblings(rq, ce);
1298 
1299 	intel_context_put(ce);
1300 }
1301 
1302 static inline void
1303 execlists_schedule_out(struct i915_request *rq)
1304 {
1305 	struct intel_context * const ce = rq->context;
1306 	struct intel_engine_cs *cur, *old;
1307 
1308 	trace_i915_request_out(rq);
1309 
1310 	old = READ_ONCE(ce->inflight);
1311 	do
1312 		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
1313 	while (!try_cmpxchg(&ce->inflight, &old, cur));
1314 	if (!cur)
1315 		__execlists_schedule_out(rq, old);
1316 
1317 	i915_request_put(rq);
1318 }
1319 
1320 static u64 execlists_update_context(struct i915_request *rq)
1321 {
1322 	struct intel_context *ce = rq->context;
1323 	u64 desc = ce->lrc_desc;
1324 	u32 tail, prev;
1325 
1326 	/*
1327 	 * WaIdleLiteRestore:bdw,skl
1328 	 *
1329 	 * We should never submit the context with the same RING_TAIL twice
1330 	 * just in case we submit an empty ring, which confuses the HW.
1331 	 *
1332 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
1333 	 * the normal request to be able to always advance the RING_TAIL on
1334 	 * subsequent resubmissions (for lite restore). Should that fail us,
1335 	 * and we try and submit the same tail again, force the context
1336 	 * reload.
1337 	 *
1338 	 * If we need to return to a preempted context, we need to skip the
1339 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
1340 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
1341 	 * an earlier request.
1342 	 */
1343 	tail = intel_ring_set_tail(rq->ring, rq->tail);
1344 	prev = ce->lrc_reg_state[CTX_RING_TAIL];
1345 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
1346 		desc |= CTX_DESC_FORCE_RESTORE;
1347 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
1348 	rq->tail = rq->wa_tail;
1349 
1350 	/*
1351 	 * Make sure the context image is complete before we submit it to HW.
1352 	 *
1353 	 * Ostensibly, writes (including the WCB) should be flushed prior to
1354 	 * an uncached write such as our mmio register access, the empirical
1355 	 * evidence (esp. on Braswell) suggests that the WC write into memory
1356 	 * may not be visible to the HW prior to the completion of the UC
1357 	 * register write and that we may begin execution from the context
1358 	 * before its image is complete leading to invalid PD chasing.
1359 	 */
1360 	wmb();
1361 
1362 	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
1363 	return desc;
1364 }
1365 
1366 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
1367 {
1368 	if (execlists->ctrl_reg) {
1369 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
1370 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
1371 	} else {
1372 		writel(upper_32_bits(desc), execlists->submit_reg);
1373 		writel(lower_32_bits(desc), execlists->submit_reg);
1374 	}
1375 }
1376 
1377 static __maybe_unused void
1378 trace_ports(const struct intel_engine_execlists *execlists,
1379 	    const char *msg,
1380 	    struct i915_request * const *ports)
1381 {
1382 	const struct intel_engine_cs *engine =
1383 		container_of(execlists, typeof(*engine), execlists);
1384 
1385 	if (!ports[0])
1386 		return;
1387 
1388 	ENGINE_TRACE(engine, "%s { %llx:%lld%s, %llx:%lld }\n", msg,
1389 		     ports[0]->fence.context,
1390 		     ports[0]->fence.seqno,
1391 		     i915_request_completed(ports[0]) ? "!" :
1392 		     i915_request_started(ports[0]) ? "*" :
1393 		     "",
1394 		     ports[1] ? ports[1]->fence.context : 0,
1395 		     ports[1] ? ports[1]->fence.seqno : 0);
1396 }
1397 
1398 static __maybe_unused bool
1399 assert_pending_valid(const struct intel_engine_execlists *execlists,
1400 		     const char *msg)
1401 {
1402 	struct i915_request * const *port, *rq;
1403 	struct intel_context *ce = NULL;
1404 
1405 	trace_ports(execlists, msg, execlists->pending);
1406 
1407 	if (!execlists->pending[0]) {
1408 		GEM_TRACE_ERR("Nothing pending for promotion!\n");
1409 		return false;
1410 	}
1411 
1412 	if (execlists->pending[execlists_num_ports(execlists)]) {
1413 		GEM_TRACE_ERR("Excess pending[%d] for promotion!\n",
1414 			      execlists_num_ports(execlists));
1415 		return false;
1416 	}
1417 
1418 	for (port = execlists->pending; (rq = *port); port++) {
1419 		unsigned long flags;
1420 		bool ok = true;
1421 
1422 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
1423 		GEM_BUG_ON(!i915_request_is_active(rq));
1424 
1425 		if (ce == rq->context) {
1426 			GEM_TRACE_ERR("Dup context:%llx in pending[%zd]\n",
1427 				      ce->timeline->fence_context,
1428 				      port - execlists->pending);
1429 			return false;
1430 		}
1431 		ce = rq->context;
1432 
1433 		/* Hold tightly onto the lock to prevent concurrent retires! */
1434 		if (!spin_trylock_irqsave(&rq->lock, flags))
1435 			continue;
1436 
1437 		if (i915_request_completed(rq))
1438 			goto unlock;
1439 
1440 		if (i915_active_is_idle(&ce->active) &&
1441 		    !intel_context_is_barrier(ce)) {
1442 			GEM_TRACE_ERR("Inactive context:%llx in pending[%zd]\n",
1443 				      ce->timeline->fence_context,
1444 				      port - execlists->pending);
1445 			ok = false;
1446 			goto unlock;
1447 		}
1448 
1449 		if (!i915_vma_is_pinned(ce->state)) {
1450 			GEM_TRACE_ERR("Unpinned context:%llx in pending[%zd]\n",
1451 				      ce->timeline->fence_context,
1452 				      port - execlists->pending);
1453 			ok = false;
1454 			goto unlock;
1455 		}
1456 
1457 		if (!i915_vma_is_pinned(ce->ring->vma)) {
1458 			GEM_TRACE_ERR("Unpinned ring:%llx in pending[%zd]\n",
1459 				      ce->timeline->fence_context,
1460 				      port - execlists->pending);
1461 			ok = false;
1462 			goto unlock;
1463 		}
1464 
1465 unlock:
1466 		spin_unlock_irqrestore(&rq->lock, flags);
1467 		if (!ok)
1468 			return false;
1469 	}
1470 
1471 	return ce;
1472 }
1473 
1474 static void execlists_submit_ports(struct intel_engine_cs *engine)
1475 {
1476 	struct intel_engine_execlists *execlists = &engine->execlists;
1477 	unsigned int n;
1478 
1479 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
1480 
1481 	/*
1482 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
1483 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
1484 	 * not be relinquished until the device is idle (see
1485 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
1486 	 * that all ELSP are drained i.e. we have processed the CSB,
1487 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
1488 	 */
1489 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1490 
1491 	/*
1492 	 * ELSQ note: the submit queue is not cleared after being submitted
1493 	 * to the HW so we need to make sure we always clean it up. This is
1494 	 * currently ensured by the fact that we always write the same number
1495 	 * of elsq entries, keep this in mind before changing the loop below.
1496 	 */
1497 	for (n = execlists_num_ports(execlists); n--; ) {
1498 		struct i915_request *rq = execlists->pending[n];
1499 
1500 		write_desc(execlists,
1501 			   rq ? execlists_update_context(rq) : 0,
1502 			   n);
1503 	}
1504 
1505 	/* we need to manually load the submit queue */
1506 	if (execlists->ctrl_reg)
1507 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
1508 }
1509 
1510 static bool ctx_single_port_submission(const struct intel_context *ce)
1511 {
1512 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
1513 		intel_context_force_single_submission(ce));
1514 }
1515 
1516 static bool can_merge_ctx(const struct intel_context *prev,
1517 			  const struct intel_context *next)
1518 {
1519 	if (prev != next)
1520 		return false;
1521 
1522 	if (ctx_single_port_submission(prev))
1523 		return false;
1524 
1525 	return true;
1526 }
1527 
1528 static bool can_merge_rq(const struct i915_request *prev,
1529 			 const struct i915_request *next)
1530 {
1531 	GEM_BUG_ON(prev == next);
1532 	GEM_BUG_ON(!assert_priority_queue(prev, next));
1533 
1534 	/*
1535 	 * We do not submit known completed requests. Therefore if the next
1536 	 * request is already completed, we can pretend to merge it in
1537 	 * with the previous context (and we will skip updating the ELSP
1538 	 * and tracking). Thus hopefully keeping the ELSP full with active
1539 	 * contexts, despite the best efforts of preempt-to-busy to confuse
1540 	 * us.
1541 	 */
1542 	if (i915_request_completed(next))
1543 		return true;
1544 
1545 	if (unlikely((prev->fence.flags ^ next->fence.flags) &
1546 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
1547 		      BIT(I915_FENCE_FLAG_SENTINEL))))
1548 		return false;
1549 
1550 	if (!can_merge_ctx(prev->context, next->context))
1551 		return false;
1552 
1553 	return true;
1554 }
1555 
1556 static void virtual_update_register_offsets(u32 *regs,
1557 					    struct intel_engine_cs *engine)
1558 {
1559 	set_offsets(regs, reg_offsets(engine), engine, false);
1560 }
1561 
1562 static bool virtual_matches(const struct virtual_engine *ve,
1563 			    const struct i915_request *rq,
1564 			    const struct intel_engine_cs *engine)
1565 {
1566 	const struct intel_engine_cs *inflight;
1567 
1568 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1569 		return false;
1570 
1571 	/*
1572 	 * We track when the HW has completed saving the context image
1573 	 * (i.e. when we have seen the final CS event switching out of
1574 	 * the context) and must not overwrite the context image before
1575 	 * then. This restricts us to only using the active engine
1576 	 * while the previous virtualized request is inflight (so
1577 	 * we reuse the register offsets). This is a very small
1578 	 * hystersis on the greedy seelction algorithm.
1579 	 */
1580 	inflight = intel_context_inflight(&ve->context);
1581 	if (inflight && inflight != engine)
1582 		return false;
1583 
1584 	return true;
1585 }
1586 
1587 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
1588 				     struct intel_engine_cs *engine)
1589 {
1590 	struct intel_engine_cs *old = ve->siblings[0];
1591 
1592 	/* All unattached (rq->engine == old) must already be completed */
1593 
1594 	spin_lock(&old->breadcrumbs.irq_lock);
1595 	if (!list_empty(&ve->context.signal_link)) {
1596 		list_move_tail(&ve->context.signal_link,
1597 			       &engine->breadcrumbs.signalers);
1598 		intel_engine_signal_breadcrumbs(engine);
1599 	}
1600 	spin_unlock(&old->breadcrumbs.irq_lock);
1601 }
1602 
1603 static struct i915_request *
1604 last_active(const struct intel_engine_execlists *execlists)
1605 {
1606 	struct i915_request * const *last = READ_ONCE(execlists->active);
1607 
1608 	while (*last && i915_request_completed(*last))
1609 		last++;
1610 
1611 	return *last;
1612 }
1613 
1614 #define for_each_waiter(p__, rq__) \
1615 	list_for_each_entry_lockless(p__, \
1616 				     &(rq__)->sched.waiters_list, \
1617 				     wait_link)
1618 
1619 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1620 {
1621 	LIST_HEAD(list);
1622 
1623 	/*
1624 	 * We want to move the interrupted request to the back of
1625 	 * the round-robin list (i.e. its priority level), but
1626 	 * in doing so, we must then move all requests that were in
1627 	 * flight and were waiting for the interrupted request to
1628 	 * be run after it again.
1629 	 */
1630 	do {
1631 		struct i915_dependency *p;
1632 
1633 		GEM_BUG_ON(i915_request_is_active(rq));
1634 		list_move_tail(&rq->sched.link, pl);
1635 
1636 		for_each_waiter(p, rq) {
1637 			struct i915_request *w =
1638 				container_of(p->waiter, typeof(*w), sched);
1639 
1640 			/* Leave semaphores spinning on the other engines */
1641 			if (w->engine != rq->engine)
1642 				continue;
1643 
1644 			/* No waiter should start before its signaler */
1645 			GEM_BUG_ON(i915_request_started(w) &&
1646 				   !i915_request_completed(rq));
1647 
1648 			GEM_BUG_ON(i915_request_is_active(w));
1649 			if (!i915_request_is_ready(w))
1650 				continue;
1651 
1652 			if (rq_prio(w) < rq_prio(rq))
1653 				continue;
1654 
1655 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1656 			list_move_tail(&w->sched.link, &list);
1657 		}
1658 
1659 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1660 	} while (rq);
1661 }
1662 
1663 static void defer_active(struct intel_engine_cs *engine)
1664 {
1665 	struct i915_request *rq;
1666 
1667 	rq = __unwind_incomplete_requests(engine);
1668 	if (!rq)
1669 		return;
1670 
1671 	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1672 }
1673 
1674 static bool
1675 need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
1676 {
1677 	int hint;
1678 
1679 	if (!intel_engine_has_timeslices(engine))
1680 		return false;
1681 
1682 	if (list_is_last(&rq->sched.link, &engine->active.requests))
1683 		return false;
1684 
1685 	hint = max(rq_prio(list_next_entry(rq, sched.link)),
1686 		   engine->execlists.queue_priority_hint);
1687 
1688 	return hint >= effective_prio(rq);
1689 }
1690 
1691 static int
1692 switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
1693 {
1694 	if (list_is_last(&rq->sched.link, &engine->active.requests))
1695 		return INT_MIN;
1696 
1697 	return rq_prio(list_next_entry(rq, sched.link));
1698 }
1699 
1700 static inline unsigned long
1701 timeslice(const struct intel_engine_cs *engine)
1702 {
1703 	return READ_ONCE(engine->props.timeslice_duration_ms);
1704 }
1705 
1706 static unsigned long
1707 active_timeslice(const struct intel_engine_cs *engine)
1708 {
1709 	const struct i915_request *rq = *engine->execlists.active;
1710 
1711 	if (!rq || i915_request_completed(rq))
1712 		return 0;
1713 
1714 	if (engine->execlists.switch_priority_hint < effective_prio(rq))
1715 		return 0;
1716 
1717 	return timeslice(engine);
1718 }
1719 
1720 static void set_timeslice(struct intel_engine_cs *engine)
1721 {
1722 	if (!intel_engine_has_timeslices(engine))
1723 		return;
1724 
1725 	set_timer_ms(&engine->execlists.timer, active_timeslice(engine));
1726 }
1727 
1728 static void record_preemption(struct intel_engine_execlists *execlists)
1729 {
1730 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1731 }
1732 
1733 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine)
1734 {
1735 	struct i915_request *rq;
1736 
1737 	rq = last_active(&engine->execlists);
1738 	if (!rq)
1739 		return 0;
1740 
1741 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1742 	if (unlikely(intel_context_is_banned(rq->context)))
1743 		return 1;
1744 
1745 	return READ_ONCE(engine->props.preempt_timeout_ms);
1746 }
1747 
1748 static void set_preempt_timeout(struct intel_engine_cs *engine)
1749 {
1750 	if (!intel_engine_has_preempt_reset(engine))
1751 		return;
1752 
1753 	set_timer_ms(&engine->execlists.preempt,
1754 		     active_preempt_timeout(engine));
1755 }
1756 
1757 static inline void clear_ports(struct i915_request **ports, int count)
1758 {
1759 	memset_p((void **)ports, NULL, count);
1760 }
1761 
1762 static void execlists_dequeue(struct intel_engine_cs *engine)
1763 {
1764 	struct intel_engine_execlists * const execlists = &engine->execlists;
1765 	struct i915_request **port = execlists->pending;
1766 	struct i915_request ** const last_port = port + execlists->port_mask;
1767 	struct i915_request *last;
1768 	struct rb_node *rb;
1769 	bool submit = false;
1770 
1771 	/*
1772 	 * Hardware submission is through 2 ports. Conceptually each port
1773 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1774 	 * static for a context, and unique to each, so we only execute
1775 	 * requests belonging to a single context from each ring. RING_HEAD
1776 	 * is maintained by the CS in the context image, it marks the place
1777 	 * where it got up to last time, and through RING_TAIL we tell the CS
1778 	 * where we want to execute up to this time.
1779 	 *
1780 	 * In this list the requests are in order of execution. Consecutive
1781 	 * requests from the same context are adjacent in the ringbuffer. We
1782 	 * can combine these requests into a single RING_TAIL update:
1783 	 *
1784 	 *              RING_HEAD...req1...req2
1785 	 *                                    ^- RING_TAIL
1786 	 * since to execute req2 the CS must first execute req1.
1787 	 *
1788 	 * Our goal then is to point each port to the end of a consecutive
1789 	 * sequence of requests as being the most optimal (fewest wake ups
1790 	 * and context switches) submission.
1791 	 */
1792 
1793 	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
1794 		struct virtual_engine *ve =
1795 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1796 		struct i915_request *rq = READ_ONCE(ve->request);
1797 
1798 		if (!rq) { /* lazily cleanup after another engine handled rq */
1799 			rb_erase_cached(rb, &execlists->virtual);
1800 			RB_CLEAR_NODE(rb);
1801 			rb = rb_first_cached(&execlists->virtual);
1802 			continue;
1803 		}
1804 
1805 		if (!virtual_matches(ve, rq, engine)) {
1806 			rb = rb_next(rb);
1807 			continue;
1808 		}
1809 
1810 		break;
1811 	}
1812 
1813 	/*
1814 	 * If the queue is higher priority than the last
1815 	 * request in the currently active context, submit afresh.
1816 	 * We will resubmit again afterwards in case we need to split
1817 	 * the active context to interject the preemption request,
1818 	 * i.e. we will retrigger preemption following the ack in case
1819 	 * of trouble.
1820 	 */
1821 	last = last_active(execlists);
1822 	if (last) {
1823 		if (need_preempt(engine, last, rb)) {
1824 			ENGINE_TRACE(engine,
1825 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1826 				     last->fence.context,
1827 				     last->fence.seqno,
1828 				     last->sched.attr.priority,
1829 				     execlists->queue_priority_hint);
1830 			record_preemption(execlists);
1831 
1832 			/*
1833 			 * Don't let the RING_HEAD advance past the breadcrumb
1834 			 * as we unwind (and until we resubmit) so that we do
1835 			 * not accidentally tell it to go backwards.
1836 			 */
1837 			ring_set_paused(engine, 1);
1838 
1839 			/*
1840 			 * Note that we have not stopped the GPU at this point,
1841 			 * so we are unwinding the incomplete requests as they
1842 			 * remain inflight and so by the time we do complete
1843 			 * the preemption, some of the unwound requests may
1844 			 * complete!
1845 			 */
1846 			__unwind_incomplete_requests(engine);
1847 
1848 			last = NULL;
1849 		} else if (need_timeslice(engine, last) &&
1850 			   timer_expired(&engine->execlists.timer)) {
1851 			ENGINE_TRACE(engine,
1852 				     "expired last=%llx:%lld, prio=%d, hint=%d\n",
1853 				     last->fence.context,
1854 				     last->fence.seqno,
1855 				     last->sched.attr.priority,
1856 				     execlists->queue_priority_hint);
1857 
1858 			ring_set_paused(engine, 1);
1859 			defer_active(engine);
1860 
1861 			/*
1862 			 * Unlike for preemption, if we rewind and continue
1863 			 * executing the same context as previously active,
1864 			 * the order of execution will remain the same and
1865 			 * the tail will only advance. We do not need to
1866 			 * force a full context restore, as a lite-restore
1867 			 * is sufficient to resample the monotonic TAIL.
1868 			 *
1869 			 * If we switch to any other context, similarly we
1870 			 * will not rewind TAIL of current context, and
1871 			 * normal save/restore will preserve state and allow
1872 			 * us to later continue executing the same request.
1873 			 */
1874 			last = NULL;
1875 		} else {
1876 			/*
1877 			 * Otherwise if we already have a request pending
1878 			 * for execution after the current one, we can
1879 			 * just wait until the next CS event before
1880 			 * queuing more. In either case we will force a
1881 			 * lite-restore preemption event, but if we wait
1882 			 * we hopefully coalesce several updates into a single
1883 			 * submission.
1884 			 */
1885 			if (!list_is_last(&last->sched.link,
1886 					  &engine->active.requests)) {
1887 				/*
1888 				 * Even if ELSP[1] is occupied and not worthy
1889 				 * of timeslices, our queue might be.
1890 				 */
1891 				if (!execlists->timer.expires &&
1892 				    need_timeslice(engine, last))
1893 					set_timer_ms(&execlists->timer,
1894 						     timeslice(engine));
1895 
1896 				return;
1897 			}
1898 		}
1899 	}
1900 
1901 	while (rb) { /* XXX virtual is always taking precedence */
1902 		struct virtual_engine *ve =
1903 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1904 		struct i915_request *rq;
1905 
1906 		spin_lock(&ve->base.active.lock);
1907 
1908 		rq = ve->request;
1909 		if (unlikely(!rq)) { /* lost the race to a sibling */
1910 			spin_unlock(&ve->base.active.lock);
1911 			rb_erase_cached(rb, &execlists->virtual);
1912 			RB_CLEAR_NODE(rb);
1913 			rb = rb_first_cached(&execlists->virtual);
1914 			continue;
1915 		}
1916 
1917 		GEM_BUG_ON(rq != ve->request);
1918 		GEM_BUG_ON(rq->engine != &ve->base);
1919 		GEM_BUG_ON(rq->context != &ve->context);
1920 
1921 		if (rq_prio(rq) >= queue_prio(execlists)) {
1922 			if (!virtual_matches(ve, rq, engine)) {
1923 				spin_unlock(&ve->base.active.lock);
1924 				rb = rb_next(rb);
1925 				continue;
1926 			}
1927 
1928 			if (last && !can_merge_rq(last, rq)) {
1929 				spin_unlock(&ve->base.active.lock);
1930 				return; /* leave this for another */
1931 			}
1932 
1933 			ENGINE_TRACE(engine,
1934 				     "virtual rq=%llx:%lld%s, new engine? %s\n",
1935 				     rq->fence.context,
1936 				     rq->fence.seqno,
1937 				     i915_request_completed(rq) ? "!" :
1938 				     i915_request_started(rq) ? "*" :
1939 				     "",
1940 				     yesno(engine != ve->siblings[0]));
1941 
1942 			ve->request = NULL;
1943 			ve->base.execlists.queue_priority_hint = INT_MIN;
1944 			rb_erase_cached(rb, &execlists->virtual);
1945 			RB_CLEAR_NODE(rb);
1946 
1947 			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1948 			rq->engine = engine;
1949 
1950 			if (engine != ve->siblings[0]) {
1951 				u32 *regs = ve->context.lrc_reg_state;
1952 				unsigned int n;
1953 
1954 				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1955 
1956 				if (!intel_engine_has_relative_mmio(engine))
1957 					virtual_update_register_offsets(regs,
1958 									engine);
1959 
1960 				if (!list_empty(&ve->context.signals))
1961 					virtual_xfer_breadcrumbs(ve, engine);
1962 
1963 				/*
1964 				 * Move the bound engine to the top of the list
1965 				 * for future execution. We then kick this
1966 				 * tasklet first before checking others, so that
1967 				 * we preferentially reuse this set of bound
1968 				 * registers.
1969 				 */
1970 				for (n = 1; n < ve->num_siblings; n++) {
1971 					if (ve->siblings[n] == engine) {
1972 						swap(ve->siblings[n],
1973 						     ve->siblings[0]);
1974 						break;
1975 					}
1976 				}
1977 
1978 				GEM_BUG_ON(ve->siblings[0] != engine);
1979 			}
1980 
1981 			if (__i915_request_submit(rq)) {
1982 				submit = true;
1983 				last = rq;
1984 			}
1985 			i915_request_put(rq);
1986 
1987 			/*
1988 			 * Hmm, we have a bunch of virtual engine requests,
1989 			 * but the first one was already completed (thanks
1990 			 * preempt-to-busy!). Keep looking at the veng queue
1991 			 * until we have no more relevant requests (i.e.
1992 			 * the normal submit queue has higher priority).
1993 			 */
1994 			if (!submit) {
1995 				spin_unlock(&ve->base.active.lock);
1996 				rb = rb_first_cached(&execlists->virtual);
1997 				continue;
1998 			}
1999 		}
2000 
2001 		spin_unlock(&ve->base.active.lock);
2002 		break;
2003 	}
2004 
2005 	while ((rb = rb_first_cached(&execlists->queue))) {
2006 		struct i915_priolist *p = to_priolist(rb);
2007 		struct i915_request *rq, *rn;
2008 		int i;
2009 
2010 		priolist_for_each_request_consume(rq, rn, p, i) {
2011 			bool merge = true;
2012 
2013 			/*
2014 			 * Can we combine this request with the current port?
2015 			 * It has to be the same context/ringbuffer and not
2016 			 * have any exceptions (e.g. GVT saying never to
2017 			 * combine contexts).
2018 			 *
2019 			 * If we can combine the requests, we can execute both
2020 			 * by updating the RING_TAIL to point to the end of the
2021 			 * second request, and so we never need to tell the
2022 			 * hardware about the first.
2023 			 */
2024 			if (last && !can_merge_rq(last, rq)) {
2025 				/*
2026 				 * If we are on the second port and cannot
2027 				 * combine this request with the last, then we
2028 				 * are done.
2029 				 */
2030 				if (port == last_port)
2031 					goto done;
2032 
2033 				/*
2034 				 * We must not populate both ELSP[] with the
2035 				 * same LRCA, i.e. we must submit 2 different
2036 				 * contexts if we submit 2 ELSP.
2037 				 */
2038 				if (last->context == rq->context)
2039 					goto done;
2040 
2041 				if (i915_request_has_sentinel(last))
2042 					goto done;
2043 
2044 				/*
2045 				 * If GVT overrides us we only ever submit
2046 				 * port[0], leaving port[1] empty. Note that we
2047 				 * also have to be careful that we don't queue
2048 				 * the same context (even though a different
2049 				 * request) to the second port.
2050 				 */
2051 				if (ctx_single_port_submission(last->context) ||
2052 				    ctx_single_port_submission(rq->context))
2053 					goto done;
2054 
2055 				merge = false;
2056 			}
2057 
2058 			if (__i915_request_submit(rq)) {
2059 				if (!merge) {
2060 					*port = execlists_schedule_in(last, port - execlists->pending);
2061 					port++;
2062 					last = NULL;
2063 				}
2064 
2065 				GEM_BUG_ON(last &&
2066 					   !can_merge_ctx(last->context,
2067 							  rq->context));
2068 
2069 				submit = true;
2070 				last = rq;
2071 			}
2072 		}
2073 
2074 		rb_erase_cached(&p->node, &execlists->queue);
2075 		i915_priolist_free(p);
2076 	}
2077 
2078 done:
2079 	/*
2080 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
2081 	 *
2082 	 * We choose the priority hint such that if we add a request of greater
2083 	 * priority than this, we kick the submission tasklet to decide on
2084 	 * the right order of submitting the requests to hardware. We must
2085 	 * also be prepared to reorder requests as they are in-flight on the
2086 	 * HW. We derive the priority hint then as the first "hole" in
2087 	 * the HW submission ports and if there are no available slots,
2088 	 * the priority of the lowest executing request, i.e. last.
2089 	 *
2090 	 * When we do receive a higher priority request ready to run from the
2091 	 * user, see queue_request(), the priority hint is bumped to that
2092 	 * request triggering preemption on the next dequeue (or subsequent
2093 	 * interrupt for secondary ports).
2094 	 */
2095 	execlists->queue_priority_hint = queue_prio(execlists);
2096 
2097 	if (submit) {
2098 		*port = execlists_schedule_in(last, port - execlists->pending);
2099 		execlists->switch_priority_hint =
2100 			switch_prio(engine, *execlists->pending);
2101 
2102 		/*
2103 		 * Skip if we ended up with exactly the same set of requests,
2104 		 * e.g. trying to timeslice a pair of ordered contexts
2105 		 */
2106 		if (!memcmp(execlists->active, execlists->pending,
2107 			    (port - execlists->pending + 1) * sizeof(*port))) {
2108 			do
2109 				execlists_schedule_out(fetch_and_zero(port));
2110 			while (port-- != execlists->pending);
2111 
2112 			goto skip_submit;
2113 		}
2114 		clear_ports(port + 1, last_port - port);
2115 
2116 		execlists_submit_ports(engine);
2117 		set_preempt_timeout(engine);
2118 	} else {
2119 skip_submit:
2120 		ring_set_paused(engine, 0);
2121 	}
2122 }
2123 
2124 static void
2125 cancel_port_requests(struct intel_engine_execlists * const execlists)
2126 {
2127 	struct i915_request * const *port;
2128 
2129 	for (port = execlists->pending; *port; port++)
2130 		execlists_schedule_out(*port);
2131 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
2132 
2133 	/* Mark the end of active before we overwrite *active */
2134 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
2135 		execlists_schedule_out(*port);
2136 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
2137 
2138 	WRITE_ONCE(execlists->active, execlists->inflight);
2139 }
2140 
2141 static inline void
2142 invalidate_csb_entries(const u32 *first, const u32 *last)
2143 {
2144 	clflush((void *)first);
2145 	clflush((void *)last);
2146 }
2147 
2148 static inline bool
2149 reset_in_progress(const struct intel_engine_execlists *execlists)
2150 {
2151 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
2152 }
2153 
2154 /*
2155  * Starting with Gen12, the status has a new format:
2156  *
2157  *     bit  0:     switched to new queue
2158  *     bit  1:     reserved
2159  *     bit  2:     semaphore wait mode (poll or signal), only valid when
2160  *                 switch detail is set to "wait on semaphore"
2161  *     bits 3-5:   engine class
2162  *     bits 6-11:  engine instance
2163  *     bits 12-14: reserved
2164  *     bits 15-25: sw context id of the lrc the GT switched to
2165  *     bits 26-31: sw counter of the lrc the GT switched to
2166  *     bits 32-35: context switch detail
2167  *                  - 0: ctx complete
2168  *                  - 1: wait on sync flip
2169  *                  - 2: wait on vblank
2170  *                  - 3: wait on scanline
2171  *                  - 4: wait on semaphore
2172  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
2173  *                       WAIT_FOR_EVENT)
2174  *     bit  36:    reserved
2175  *     bits 37-43: wait detail (for switch detail 1 to 4)
2176  *     bits 44-46: reserved
2177  *     bits 47-57: sw context id of the lrc the GT switched away from
2178  *     bits 58-63: sw counter of the lrc the GT switched away from
2179  */
2180 static inline bool
2181 gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
2182 {
2183 	u32 lower_dw = csb[0];
2184 	u32 upper_dw = csb[1];
2185 	bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
2186 	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
2187 	bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
2188 
2189 	/*
2190 	 * The context switch detail is not guaranteed to be 5 when a preemption
2191 	 * occurs, so we can't just check for that. The check below works for
2192 	 * all the cases we care about, including preemptions of WAIT
2193 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
2194 	 * would require some extra handling, but we don't support that.
2195 	 */
2196 	if (!ctx_away_valid || new_queue) {
2197 		GEM_BUG_ON(!ctx_to_valid);
2198 		return true;
2199 	}
2200 
2201 	/*
2202 	 * switch detail = 5 is covered by the case above and we do not expect a
2203 	 * context switch on an unsuccessful wait instruction since we always
2204 	 * use polling mode.
2205 	 */
2206 	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
2207 	return false;
2208 }
2209 
2210 static inline bool
2211 gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
2212 {
2213 	return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
2214 }
2215 
2216 static void process_csb(struct intel_engine_cs *engine)
2217 {
2218 	struct intel_engine_execlists * const execlists = &engine->execlists;
2219 	const u32 * const buf = execlists->csb_status;
2220 	const u8 num_entries = execlists->csb_size;
2221 	u8 head, tail;
2222 
2223 	/*
2224 	 * As we modify our execlists state tracking we require exclusive
2225 	 * access. Either we are inside the tasklet, or the tasklet is disabled
2226 	 * and we assume that is only inside the reset paths and so serialised.
2227 	 */
2228 	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
2229 		   !reset_in_progress(execlists));
2230 	GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
2231 
2232 	/*
2233 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
2234 	 * When reading from the csb_write mmio register, we have to be
2235 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
2236 	 * the low 4bits. As it happens we know the next 4bits are always
2237 	 * zero and so we can simply masked off the low u8 of the register
2238 	 * and treat it identically to reading from the HWSP (without having
2239 	 * to use explicit shifting and masking, and probably bifurcating
2240 	 * the code to handle the legacy mmio read).
2241 	 */
2242 	head = execlists->csb_head;
2243 	tail = READ_ONCE(*execlists->csb_write);
2244 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
2245 	if (unlikely(head == tail))
2246 		return;
2247 
2248 	/*
2249 	 * Hopefully paired with a wmb() in HW!
2250 	 *
2251 	 * We must complete the read of the write pointer before any reads
2252 	 * from the CSB, so that we do not see stale values. Without an rmb
2253 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
2254 	 * we perform the READ_ONCE(*csb_write).
2255 	 */
2256 	rmb();
2257 
2258 	do {
2259 		bool promote;
2260 
2261 		if (++head == num_entries)
2262 			head = 0;
2263 
2264 		/*
2265 		 * We are flying near dragons again.
2266 		 *
2267 		 * We hold a reference to the request in execlist_port[]
2268 		 * but no more than that. We are operating in softirq
2269 		 * context and so cannot hold any mutex or sleep. That
2270 		 * prevents us stopping the requests we are processing
2271 		 * in port[] from being retired simultaneously (the
2272 		 * breadcrumb will be complete before we see the
2273 		 * context-switch). As we only hold the reference to the
2274 		 * request, any pointer chasing underneath the request
2275 		 * is subject to a potential use-after-free. Thus we
2276 		 * store all of the bookkeeping within port[] as
2277 		 * required, and avoid using unguarded pointers beneath
2278 		 * request itself. The same applies to the atomic
2279 		 * status notifier.
2280 		 */
2281 
2282 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
2283 			     head, buf[2 * head + 0], buf[2 * head + 1]);
2284 
2285 		if (INTEL_GEN(engine->i915) >= 12)
2286 			promote = gen12_csb_parse(execlists, buf + 2 * head);
2287 		else
2288 			promote = gen8_csb_parse(execlists, buf + 2 * head);
2289 		if (promote) {
2290 			struct i915_request * const *old = execlists->active;
2291 
2292 			/* Point active to the new ELSP; prevent overwriting */
2293 			WRITE_ONCE(execlists->active, execlists->pending);
2294 
2295 			if (!inject_preempt_hang(execlists))
2296 				ring_set_paused(engine, 0);
2297 
2298 			/* cancel old inflight, prepare for switch */
2299 			trace_ports(execlists, "preempted", old);
2300 			while (*old)
2301 				execlists_schedule_out(*old++);
2302 
2303 			/* switch pending to inflight */
2304 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
2305 			WRITE_ONCE(execlists->active,
2306 				   memcpy(execlists->inflight,
2307 					  execlists->pending,
2308 					  execlists_num_ports(execlists) *
2309 					  sizeof(*execlists->pending)));
2310 
2311 			WRITE_ONCE(execlists->pending[0], NULL);
2312 		} else {
2313 			GEM_BUG_ON(!*execlists->active);
2314 
2315 			/* port0 completed, advanced to port1 */
2316 			trace_ports(execlists, "completed", execlists->active);
2317 
2318 			/*
2319 			 * We rely on the hardware being strongly
2320 			 * ordered, that the breadcrumb write is
2321 			 * coherent (visible from the CPU) before the
2322 			 * user interrupt and CSB is processed.
2323 			 */
2324 			GEM_BUG_ON(!i915_request_completed(*execlists->active) &&
2325 				   !reset_in_progress(execlists));
2326 			execlists_schedule_out(*execlists->active++);
2327 
2328 			GEM_BUG_ON(execlists->active - execlists->inflight >
2329 				   execlists_num_ports(execlists));
2330 		}
2331 	} while (head != tail);
2332 
2333 	execlists->csb_head = head;
2334 	set_timeslice(engine);
2335 
2336 	/*
2337 	 * Gen11 has proven to fail wrt global observation point between
2338 	 * entry and tail update, failing on the ordering and thus
2339 	 * we see an old entry in the context status buffer.
2340 	 *
2341 	 * Forcibly evict out entries for the next gpu csb update,
2342 	 * to increase the odds that we get a fresh entries with non
2343 	 * working hardware. The cost for doing so comes out mostly with
2344 	 * the wash as hardware, working or not, will need to do the
2345 	 * invalidation before.
2346 	 */
2347 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2348 }
2349 
2350 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
2351 {
2352 	lockdep_assert_held(&engine->active.lock);
2353 	if (!engine->execlists.pending[0]) {
2354 		rcu_read_lock(); /* protect peeking at execlists->active */
2355 		execlists_dequeue(engine);
2356 		rcu_read_unlock();
2357 	}
2358 }
2359 
2360 static void __execlists_hold(struct i915_request *rq)
2361 {
2362 	LIST_HEAD(list);
2363 
2364 	do {
2365 		struct i915_dependency *p;
2366 
2367 		if (i915_request_is_active(rq))
2368 			__i915_request_unsubmit(rq);
2369 
2370 		RQ_TRACE(rq, "on hold\n");
2371 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2372 		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
2373 		i915_request_set_hold(rq);
2374 
2375 		list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
2376 			struct i915_request *w =
2377 				container_of(p->waiter, typeof(*w), sched);
2378 
2379 			/* Leave semaphores spinning on the other engines */
2380 			if (w->engine != rq->engine)
2381 				continue;
2382 
2383 			if (!i915_request_is_ready(w))
2384 				continue;
2385 
2386 			if (i915_request_completed(w))
2387 				continue;
2388 
2389 			if (i915_request_on_hold(rq))
2390 				continue;
2391 
2392 			list_move_tail(&w->sched.link, &list);
2393 		}
2394 
2395 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2396 	} while (rq);
2397 }
2398 
2399 static bool execlists_hold(struct intel_engine_cs *engine,
2400 			   struct i915_request *rq)
2401 {
2402 	spin_lock_irq(&engine->active.lock);
2403 
2404 	if (i915_request_completed(rq)) { /* too late! */
2405 		rq = NULL;
2406 		goto unlock;
2407 	}
2408 
2409 	if (rq->engine != engine) { /* preempted virtual engine */
2410 		struct virtual_engine *ve = to_virtual_engine(rq->engine);
2411 
2412 		/*
2413 		 * intel_context_inflight() is only protected by virtue
2414 		 * of process_csb() being called only by the tasklet (or
2415 		 * directly from inside reset while the tasklet is suspended).
2416 		 * Assert that neither of those are allowed to run while we
2417 		 * poke at the request queues.
2418 		 */
2419 		GEM_BUG_ON(!reset_in_progress(&engine->execlists));
2420 
2421 		/*
2422 		 * An unsubmitted request along a virtual engine will
2423 		 * remain on the active (this) engine until we are able
2424 		 * to process the context switch away (and so mark the
2425 		 * context as no longer in flight). That cannot have happened
2426 		 * yet, otherwise we would not be hanging!
2427 		 */
2428 		spin_lock(&ve->base.active.lock);
2429 		GEM_BUG_ON(intel_context_inflight(rq->context) != engine);
2430 		GEM_BUG_ON(ve->request != rq);
2431 		ve->request = NULL;
2432 		spin_unlock(&ve->base.active.lock);
2433 		i915_request_put(rq);
2434 
2435 		rq->engine = engine;
2436 	}
2437 
2438 	/*
2439 	 * Transfer this request onto the hold queue to prevent it
2440 	 * being resumbitted to HW (and potentially completed) before we have
2441 	 * released it. Since we may have already submitted following
2442 	 * requests, we need to remove those as well.
2443 	 */
2444 	GEM_BUG_ON(i915_request_on_hold(rq));
2445 	GEM_BUG_ON(rq->engine != engine);
2446 	__execlists_hold(rq);
2447 
2448 unlock:
2449 	spin_unlock_irq(&engine->active.lock);
2450 	return rq;
2451 }
2452 
2453 static bool hold_request(const struct i915_request *rq)
2454 {
2455 	struct i915_dependency *p;
2456 
2457 	/*
2458 	 * If one of our ancestors is on hold, we must also be on hold,
2459 	 * otherwise we will bypass it and execute before it.
2460 	 */
2461 	list_for_each_entry(p, &rq->sched.signalers_list, signal_link) {
2462 		const struct i915_request *s =
2463 			container_of(p->signaler, typeof(*s), sched);
2464 
2465 		if (s->engine != rq->engine)
2466 			continue;
2467 
2468 		if (i915_request_on_hold(s))
2469 			return true;
2470 	}
2471 
2472 	return false;
2473 }
2474 
2475 static void __execlists_unhold(struct i915_request *rq)
2476 {
2477 	LIST_HEAD(list);
2478 
2479 	do {
2480 		struct i915_dependency *p;
2481 
2482 		GEM_BUG_ON(!i915_request_on_hold(rq));
2483 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2484 
2485 		i915_request_clear_hold(rq);
2486 		list_move_tail(&rq->sched.link,
2487 			       i915_sched_lookup_priolist(rq->engine,
2488 							  rq_prio(rq)));
2489 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2490 		RQ_TRACE(rq, "hold release\n");
2491 
2492 		/* Also release any children on this engine that are ready */
2493 		list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
2494 			struct i915_request *w =
2495 				container_of(p->waiter, typeof(*w), sched);
2496 
2497 			if (w->engine != rq->engine)
2498 				continue;
2499 
2500 			if (!i915_request_on_hold(rq))
2501 				continue;
2502 
2503 			/* Check that no other parents are also on hold */
2504 			if (hold_request(rq))
2505 				continue;
2506 
2507 			list_move_tail(&w->sched.link, &list);
2508 		}
2509 
2510 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2511 	} while (rq);
2512 }
2513 
2514 static void execlists_unhold(struct intel_engine_cs *engine,
2515 			     struct i915_request *rq)
2516 {
2517 	spin_lock_irq(&engine->active.lock);
2518 
2519 	/*
2520 	 * Move this request back to the priority queue, and all of its
2521 	 * children and grandchildren that were suspended along with it.
2522 	 */
2523 	__execlists_unhold(rq);
2524 
2525 	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2526 		engine->execlists.queue_priority_hint = rq_prio(rq);
2527 		tasklet_hi_schedule(&engine->execlists.tasklet);
2528 	}
2529 
2530 	spin_unlock_irq(&engine->active.lock);
2531 }
2532 
2533 struct execlists_capture {
2534 	struct work_struct work;
2535 	struct i915_request *rq;
2536 	struct i915_gpu_coredump *error;
2537 };
2538 
2539 static void execlists_capture_work(struct work_struct *work)
2540 {
2541 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2542 	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2543 	struct intel_engine_cs *engine = cap->rq->engine;
2544 	struct intel_gt_coredump *gt = cap->error->gt;
2545 	struct intel_engine_capture_vma *vma;
2546 
2547 	/* Compress all the objects attached to the request, slow! */
2548 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2549 	if (vma) {
2550 		struct i915_vma_compress *compress =
2551 			i915_vma_capture_prepare(gt);
2552 
2553 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2554 		i915_vma_capture_finish(gt, compress);
2555 	}
2556 
2557 	gt->simulated = gt->engine->simulated;
2558 	cap->error->simulated = gt->simulated;
2559 
2560 	/* Publish the error state, and announce it to the world */
2561 	i915_error_state_store(cap->error);
2562 	i915_gpu_coredump_put(cap->error);
2563 
2564 	/* Return this request and all that depend upon it for signaling */
2565 	execlists_unhold(engine, cap->rq);
2566 	i915_request_put(cap->rq);
2567 
2568 	kfree(cap);
2569 }
2570 
2571 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2572 {
2573 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2574 	struct execlists_capture *cap;
2575 
2576 	cap = kmalloc(sizeof(*cap), gfp);
2577 	if (!cap)
2578 		return NULL;
2579 
2580 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2581 	if (!cap->error)
2582 		goto err_cap;
2583 
2584 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2585 	if (!cap->error->gt)
2586 		goto err_gpu;
2587 
2588 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2589 	if (!cap->error->gt->engine)
2590 		goto err_gt;
2591 
2592 	return cap;
2593 
2594 err_gt:
2595 	kfree(cap->error->gt);
2596 err_gpu:
2597 	kfree(cap->error);
2598 err_cap:
2599 	kfree(cap);
2600 	return NULL;
2601 }
2602 
2603 static bool execlists_capture(struct intel_engine_cs *engine)
2604 {
2605 	struct execlists_capture *cap;
2606 
2607 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2608 		return true;
2609 
2610 	/*
2611 	 * We need to _quickly_ capture the engine state before we reset.
2612 	 * We are inside an atomic section (softirq) here and we are delaying
2613 	 * the forced preemption event.
2614 	 */
2615 	cap = capture_regs(engine);
2616 	if (!cap)
2617 		return true;
2618 
2619 	cap->rq = execlists_active(&engine->execlists);
2620 	GEM_BUG_ON(!cap->rq);
2621 
2622 	rcu_read_lock();
2623 	cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2624 	cap->rq = i915_request_get_rcu(cap->rq);
2625 	rcu_read_unlock();
2626 	if (!cap->rq)
2627 		goto err_free;
2628 
2629 	/*
2630 	 * Remove the request from the execlists queue, and take ownership
2631 	 * of the request. We pass it to our worker who will _slowly_ compress
2632 	 * all the pages the _user_ requested for debugging their batch, after
2633 	 * which we return it to the queue for signaling.
2634 	 *
2635 	 * By removing them from the execlists queue, we also remove the
2636 	 * requests from being processed by __unwind_incomplete_requests()
2637 	 * during the intel_engine_reset(), and so they will *not* be replayed
2638 	 * afterwards.
2639 	 *
2640 	 * Note that because we have not yet reset the engine at this point,
2641 	 * it is possible for the request that we have identified as being
2642 	 * guilty, did in fact complete and we will then hit an arbitration
2643 	 * point allowing the outstanding preemption to succeed. The likelihood
2644 	 * of that is very low (as capturing of the engine registers should be
2645 	 * fast enough to run inside an irq-off atomic section!), so we will
2646 	 * simply hold that request accountable for being non-preemptible
2647 	 * long enough to force the reset.
2648 	 */
2649 	if (!execlists_hold(engine, cap->rq))
2650 		goto err_rq;
2651 
2652 	INIT_WORK(&cap->work, execlists_capture_work);
2653 	schedule_work(&cap->work);
2654 	return true;
2655 
2656 err_rq:
2657 	i915_request_put(cap->rq);
2658 err_free:
2659 	i915_gpu_coredump_put(cap->error);
2660 	kfree(cap);
2661 	return false;
2662 }
2663 
2664 static noinline void preempt_reset(struct intel_engine_cs *engine)
2665 {
2666 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2667 	unsigned long *lock = &engine->gt->reset.flags;
2668 
2669 	if (i915_modparams.reset < 3)
2670 		return;
2671 
2672 	if (test_and_set_bit(bit, lock))
2673 		return;
2674 
2675 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2676 	tasklet_disable_nosync(&engine->execlists.tasklet);
2677 
2678 	ENGINE_TRACE(engine, "preempt timeout %lu+%ums\n",
2679 		     READ_ONCE(engine->props.preempt_timeout_ms),
2680 		     jiffies_to_msecs(jiffies - engine->execlists.preempt.expires));
2681 
2682 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2683 	if (execlists_capture(engine))
2684 		intel_engine_reset(engine, "preemption time out");
2685 	else
2686 		ring_set_paused(engine, 0);
2687 
2688 	tasklet_enable(&engine->execlists.tasklet);
2689 	clear_and_wake_up_bit(bit, lock);
2690 }
2691 
2692 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2693 {
2694 	const struct timer_list *t = &engine->execlists.preempt;
2695 
2696 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2697 		return false;
2698 
2699 	if (!timer_expired(t))
2700 		return false;
2701 
2702 	return READ_ONCE(engine->execlists.pending[0]);
2703 }
2704 
2705 /*
2706  * Check the unread Context Status Buffers and manage the submission of new
2707  * contexts to the ELSP accordingly.
2708  */
2709 static void execlists_submission_tasklet(unsigned long data)
2710 {
2711 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
2712 	bool timeout = preempt_timeout(engine);
2713 
2714 	process_csb(engine);
2715 	if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
2716 		unsigned long flags;
2717 
2718 		spin_lock_irqsave(&engine->active.lock, flags);
2719 		__execlists_submission_tasklet(engine);
2720 		spin_unlock_irqrestore(&engine->active.lock, flags);
2721 
2722 		/* Recheck after serialising with direct-submission */
2723 		if (timeout && preempt_timeout(engine))
2724 			preempt_reset(engine);
2725 	}
2726 }
2727 
2728 static void __execlists_kick(struct intel_engine_execlists *execlists)
2729 {
2730 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2731 	tasklet_hi_schedule(&execlists->tasklet);
2732 }
2733 
2734 #define execlists_kick(t, member) \
2735 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2736 
2737 static void execlists_timeslice(struct timer_list *timer)
2738 {
2739 	execlists_kick(timer, timer);
2740 }
2741 
2742 static void execlists_preempt(struct timer_list *timer)
2743 {
2744 	execlists_kick(timer, preempt);
2745 }
2746 
2747 static void queue_request(struct intel_engine_cs *engine,
2748 			  struct i915_request *rq)
2749 {
2750 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2751 	list_add_tail(&rq->sched.link,
2752 		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
2753 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2754 }
2755 
2756 static void __submit_queue_imm(struct intel_engine_cs *engine)
2757 {
2758 	struct intel_engine_execlists * const execlists = &engine->execlists;
2759 
2760 	if (reset_in_progress(execlists))
2761 		return; /* defer until we restart the engine following reset */
2762 
2763 	if (execlists->tasklet.func == execlists_submission_tasklet)
2764 		__execlists_submission_tasklet(engine);
2765 	else
2766 		tasklet_hi_schedule(&execlists->tasklet);
2767 }
2768 
2769 static void submit_queue(struct intel_engine_cs *engine,
2770 			 const struct i915_request *rq)
2771 {
2772 	struct intel_engine_execlists *execlists = &engine->execlists;
2773 
2774 	if (rq_prio(rq) <= execlists->queue_priority_hint)
2775 		return;
2776 
2777 	execlists->queue_priority_hint = rq_prio(rq);
2778 	__submit_queue_imm(engine);
2779 }
2780 
2781 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2782 			     const struct i915_request *rq)
2783 {
2784 	GEM_BUG_ON(i915_request_on_hold(rq));
2785 	return !list_empty(&engine->active.hold) && hold_request(rq);
2786 }
2787 
2788 static void execlists_submit_request(struct i915_request *request)
2789 {
2790 	struct intel_engine_cs *engine = request->engine;
2791 	unsigned long flags;
2792 
2793 	/* Will be called from irq-context when using foreign fences. */
2794 	spin_lock_irqsave(&engine->active.lock, flags);
2795 
2796 	if (unlikely(ancestor_on_hold(engine, request))) {
2797 		list_add_tail(&request->sched.link, &engine->active.hold);
2798 		i915_request_set_hold(request);
2799 	} else {
2800 		queue_request(engine, request);
2801 
2802 		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
2803 		GEM_BUG_ON(list_empty(&request->sched.link));
2804 
2805 		submit_queue(engine, request);
2806 	}
2807 
2808 	spin_unlock_irqrestore(&engine->active.lock, flags);
2809 }
2810 
2811 static void __execlists_context_fini(struct intel_context *ce)
2812 {
2813 	intel_ring_put(ce->ring);
2814 	i915_vma_put(ce->state);
2815 }
2816 
2817 static void execlists_context_destroy(struct kref *kref)
2818 {
2819 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
2820 
2821 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
2822 	GEM_BUG_ON(intel_context_is_pinned(ce));
2823 
2824 	if (ce->state)
2825 		__execlists_context_fini(ce);
2826 
2827 	intel_context_fini(ce);
2828 	intel_context_free(ce);
2829 }
2830 
2831 static void
2832 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
2833 {
2834 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2835 		return;
2836 
2837 	vaddr += engine->context_size;
2838 
2839 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
2840 }
2841 
2842 static void
2843 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
2844 {
2845 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2846 		return;
2847 
2848 	vaddr += engine->context_size;
2849 
2850 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
2851 		dev_err_once(engine->i915->drm.dev,
2852 			     "%s context redzone overwritten!\n",
2853 			     engine->name);
2854 }
2855 
2856 static void execlists_context_unpin(struct intel_context *ce)
2857 {
2858 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
2859 		      ce->engine);
2860 
2861 	i915_gem_object_unpin_map(ce->state->obj);
2862 }
2863 
2864 static void
2865 __execlists_update_reg_state(const struct intel_context *ce,
2866 			     const struct intel_engine_cs *engine,
2867 			     u32 head)
2868 {
2869 	struct intel_ring *ring = ce->ring;
2870 	u32 *regs = ce->lrc_reg_state;
2871 
2872 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
2873 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
2874 
2875 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
2876 	regs[CTX_RING_HEAD] = head;
2877 	regs[CTX_RING_TAIL] = ring->tail;
2878 
2879 	/* RPCS */
2880 	if (engine->class == RENDER_CLASS) {
2881 		regs[CTX_R_PWR_CLK_STATE] =
2882 			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
2883 
2884 		i915_oa_init_reg_state(ce, engine);
2885 	}
2886 }
2887 
2888 static int
2889 __execlists_context_pin(struct intel_context *ce,
2890 			struct intel_engine_cs *engine)
2891 {
2892 	void *vaddr;
2893 
2894 	GEM_BUG_ON(!ce->state);
2895 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2896 
2897 	vaddr = i915_gem_object_pin_map(ce->state->obj,
2898 					i915_coherent_map_type(engine->i915) |
2899 					I915_MAP_OVERRIDE);
2900 	if (IS_ERR(vaddr))
2901 		return PTR_ERR(vaddr);
2902 
2903 	ce->lrc_desc = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE;
2904 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2905 	__execlists_update_reg_state(ce, engine, ce->ring->tail);
2906 
2907 	return 0;
2908 }
2909 
2910 static int execlists_context_pin(struct intel_context *ce)
2911 {
2912 	return __execlists_context_pin(ce, ce->engine);
2913 }
2914 
2915 static int execlists_context_alloc(struct intel_context *ce)
2916 {
2917 	return __execlists_context_alloc(ce, ce->engine);
2918 }
2919 
2920 static void execlists_context_reset(struct intel_context *ce)
2921 {
2922 	CE_TRACE(ce, "reset\n");
2923 	GEM_BUG_ON(!intel_context_is_pinned(ce));
2924 
2925 	/*
2926 	 * Because we emit WA_TAIL_DWORDS there may be a disparity
2927 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2928 	 * that stored in context. As we only write new commands from
2929 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2930 	 * starts reading from its RING_HEAD from the context, it may try to
2931 	 * execute that junk and die.
2932 	 *
2933 	 * The contexts that are stilled pinned on resume belong to the
2934 	 * kernel, and are local to each engine. All other contexts will
2935 	 * have their head/tail sanitized upon pinning before use, so they
2936 	 * will never see garbage,
2937 	 *
2938 	 * So to avoid that we reset the context images upon resume. For
2939 	 * simplicity, we just zero everything out.
2940 	 */
2941 	intel_ring_reset(ce->ring, ce->ring->emit);
2942 
2943 	/* Scrub away the garbage */
2944 	execlists_init_reg_state(ce->lrc_reg_state,
2945 				 ce, ce->engine, ce->ring, true);
2946 	__execlists_update_reg_state(ce, ce->engine, ce->ring->tail);
2947 
2948 	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
2949 }
2950 
2951 static const struct intel_context_ops execlists_context_ops = {
2952 	.alloc = execlists_context_alloc,
2953 
2954 	.pin = execlists_context_pin,
2955 	.unpin = execlists_context_unpin,
2956 
2957 	.enter = intel_context_enter_engine,
2958 	.exit = intel_context_exit_engine,
2959 
2960 	.reset = execlists_context_reset,
2961 	.destroy = execlists_context_destroy,
2962 };
2963 
2964 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
2965 {
2966 	u32 *cs;
2967 
2968 	GEM_BUG_ON(!i915_request_timeline(rq)->has_initial_breadcrumb);
2969 
2970 	cs = intel_ring_begin(rq, 6);
2971 	if (IS_ERR(cs))
2972 		return PTR_ERR(cs);
2973 
2974 	/*
2975 	 * Check if we have been preempted before we even get started.
2976 	 *
2977 	 * After this point i915_request_started() reports true, even if
2978 	 * we get preempted and so are no longer running.
2979 	 */
2980 	*cs++ = MI_ARB_CHECK;
2981 	*cs++ = MI_NOOP;
2982 
2983 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2984 	*cs++ = i915_request_timeline(rq)->hwsp_offset;
2985 	*cs++ = 0;
2986 	*cs++ = rq->fence.seqno - 1;
2987 
2988 	intel_ring_advance(rq, cs);
2989 
2990 	/* Record the updated position of the request's payload */
2991 	rq->infix = intel_ring_offset(rq, cs);
2992 
2993 	return 0;
2994 }
2995 
2996 static int execlists_request_alloc(struct i915_request *request)
2997 {
2998 	int ret;
2999 
3000 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
3001 
3002 	/*
3003 	 * Flush enough space to reduce the likelihood of waiting after
3004 	 * we start building the request - in which case we will just
3005 	 * have to repeat work.
3006 	 */
3007 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
3008 
3009 	/*
3010 	 * Note that after this point, we have committed to using
3011 	 * this request as it is being used to both track the
3012 	 * state of engine initialisation and liveness of the
3013 	 * golden renderstate above. Think twice before you try
3014 	 * to cancel/unwind this request now.
3015 	 */
3016 
3017 	/* Unconditionally invalidate GPU caches and TLBs. */
3018 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
3019 	if (ret)
3020 		return ret;
3021 
3022 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
3023 	return 0;
3024 }
3025 
3026 /*
3027  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
3028  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
3029  * but there is a slight complication as this is applied in WA batch where the
3030  * values are only initialized once so we cannot take register value at the
3031  * beginning and reuse it further; hence we save its value to memory, upload a
3032  * constant value with bit21 set and then we restore it back with the saved value.
3033  * To simplify the WA, a constant value is formed by using the default value
3034  * of this register. This shouldn't be a problem because we are only modifying
3035  * it for a short period and this batch in non-premptible. We can ofcourse
3036  * use additional instructions that read the actual value of the register
3037  * at that time and set our bit of interest but it makes the WA complicated.
3038  *
3039  * This WA is also required for Gen9 so extracting as a function avoids
3040  * code duplication.
3041  */
3042 static u32 *
3043 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
3044 {
3045 	/* NB no one else is allowed to scribble over scratch + 256! */
3046 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
3047 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3048 	*batch++ = intel_gt_scratch_offset(engine->gt,
3049 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3050 	*batch++ = 0;
3051 
3052 	*batch++ = MI_LOAD_REGISTER_IMM(1);
3053 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3054 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
3055 
3056 	batch = gen8_emit_pipe_control(batch,
3057 				       PIPE_CONTROL_CS_STALL |
3058 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
3059 				       0);
3060 
3061 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
3062 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3063 	*batch++ = intel_gt_scratch_offset(engine->gt,
3064 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3065 	*batch++ = 0;
3066 
3067 	return batch;
3068 }
3069 
3070 /*
3071  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
3072  * initialized at the beginning and shared across all contexts but this field
3073  * helps us to have multiple batches at different offsets and select them based
3074  * on a criteria. At the moment this batch always start at the beginning of the page
3075  * and at this point we don't have multiple wa_ctx batch buffers.
3076  *
3077  * The number of WA applied are not known at the beginning; we use this field
3078  * to return the no of DWORDS written.
3079  *
3080  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
3081  * so it adds NOOPs as padding to make it cacheline aligned.
3082  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
3083  * makes a complete batch buffer.
3084  */
3085 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3086 {
3087 	/* WaDisableCtxRestoreArbitration:bdw,chv */
3088 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3089 
3090 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
3091 	if (IS_BROADWELL(engine->i915))
3092 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3093 
3094 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
3095 	/* Actual scratch location is at 128 bytes offset */
3096 	batch = gen8_emit_pipe_control(batch,
3097 				       PIPE_CONTROL_FLUSH_L3 |
3098 				       PIPE_CONTROL_STORE_DATA_INDEX |
3099 				       PIPE_CONTROL_CS_STALL |
3100 				       PIPE_CONTROL_QW_WRITE,
3101 				       LRC_PPHWSP_SCRATCH_ADDR);
3102 
3103 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3104 
3105 	/* Pad to end of cacheline */
3106 	while ((unsigned long)batch % CACHELINE_BYTES)
3107 		*batch++ = MI_NOOP;
3108 
3109 	/*
3110 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
3111 	 * execution depends on the length specified in terms of cache lines
3112 	 * in the register CTX_RCS_INDIRECT_CTX
3113 	 */
3114 
3115 	return batch;
3116 }
3117 
3118 struct lri {
3119 	i915_reg_t reg;
3120 	u32 value;
3121 };
3122 
3123 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
3124 {
3125 	GEM_BUG_ON(!count || count > 63);
3126 
3127 	*batch++ = MI_LOAD_REGISTER_IMM(count);
3128 	do {
3129 		*batch++ = i915_mmio_reg_offset(lri->reg);
3130 		*batch++ = lri->value;
3131 	} while (lri++, --count);
3132 	*batch++ = MI_NOOP;
3133 
3134 	return batch;
3135 }
3136 
3137 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3138 {
3139 	static const struct lri lri[] = {
3140 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
3141 		{
3142 			COMMON_SLICE_CHICKEN2,
3143 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
3144 				       0),
3145 		},
3146 
3147 		/* BSpec: 11391 */
3148 		{
3149 			FF_SLICE_CHICKEN,
3150 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
3151 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
3152 		},
3153 
3154 		/* BSpec: 11299 */
3155 		{
3156 			_3D_CHICKEN3,
3157 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
3158 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
3159 		}
3160 	};
3161 
3162 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3163 
3164 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
3165 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3166 
3167 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
3168 	batch = gen8_emit_pipe_control(batch,
3169 				       PIPE_CONTROL_FLUSH_L3 |
3170 				       PIPE_CONTROL_STORE_DATA_INDEX |
3171 				       PIPE_CONTROL_CS_STALL |
3172 				       PIPE_CONTROL_QW_WRITE,
3173 				       LRC_PPHWSP_SCRATCH_ADDR);
3174 
3175 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
3176 
3177 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
3178 	if (HAS_POOLED_EU(engine->i915)) {
3179 		/*
3180 		 * EU pool configuration is setup along with golden context
3181 		 * during context initialization. This value depends on
3182 		 * device type (2x6 or 3x6) and needs to be updated based
3183 		 * on which subslice is disabled especially for 2x6
3184 		 * devices, however it is safe to load default
3185 		 * configuration of 3x6 device instead of masking off
3186 		 * corresponding bits because HW ignores bits of a disabled
3187 		 * subslice and drops down to appropriate config. Please
3188 		 * see render_state_setup() in i915_gem_render_state.c for
3189 		 * possible configurations, to avoid duplication they are
3190 		 * not shown here again.
3191 		 */
3192 		*batch++ = GEN9_MEDIA_POOL_STATE;
3193 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
3194 		*batch++ = 0x00777000;
3195 		*batch++ = 0;
3196 		*batch++ = 0;
3197 		*batch++ = 0;
3198 	}
3199 
3200 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3201 
3202 	/* Pad to end of cacheline */
3203 	while ((unsigned long)batch % CACHELINE_BYTES)
3204 		*batch++ = MI_NOOP;
3205 
3206 	return batch;
3207 }
3208 
3209 static u32 *
3210 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3211 {
3212 	int i;
3213 
3214 	/*
3215 	 * WaPipeControlBefore3DStateSamplePattern: cnl
3216 	 *
3217 	 * Ensure the engine is idle prior to programming a
3218 	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
3219 	 */
3220 	batch = gen8_emit_pipe_control(batch,
3221 				       PIPE_CONTROL_CS_STALL,
3222 				       0);
3223 	/*
3224 	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
3225 	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
3226 	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
3227 	 * confusing. Since gen8_emit_pipe_control() already advances the
3228 	 * batch by 6 dwords, we advance the other 10 here, completing a
3229 	 * cacheline. It's not clear if the workaround requires this padding
3230 	 * before other commands, or if it's just the regular padding we would
3231 	 * already have for the workaround bb, so leave it here for now.
3232 	 */
3233 	for (i = 0; i < 10; i++)
3234 		*batch++ = MI_NOOP;
3235 
3236 	/* Pad to end of cacheline */
3237 	while ((unsigned long)batch % CACHELINE_BYTES)
3238 		*batch++ = MI_NOOP;
3239 
3240 	return batch;
3241 }
3242 
3243 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
3244 
3245 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
3246 {
3247 	struct drm_i915_gem_object *obj;
3248 	struct i915_vma *vma;
3249 	int err;
3250 
3251 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
3252 	if (IS_ERR(obj))
3253 		return PTR_ERR(obj);
3254 
3255 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
3256 	if (IS_ERR(vma)) {
3257 		err = PTR_ERR(vma);
3258 		goto err;
3259 	}
3260 
3261 	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
3262 	if (err)
3263 		goto err;
3264 
3265 	engine->wa_ctx.vma = vma;
3266 	return 0;
3267 
3268 err:
3269 	i915_gem_object_put(obj);
3270 	return err;
3271 }
3272 
3273 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
3274 {
3275 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
3276 }
3277 
3278 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
3279 
3280 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
3281 {
3282 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3283 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
3284 					    &wa_ctx->per_ctx };
3285 	wa_bb_func_t wa_bb_fn[2];
3286 	struct page *page;
3287 	void *batch, *batch_ptr;
3288 	unsigned int i;
3289 	int ret;
3290 
3291 	if (engine->class != RENDER_CLASS)
3292 		return 0;
3293 
3294 	switch (INTEL_GEN(engine->i915)) {
3295 	case 12:
3296 	case 11:
3297 		return 0;
3298 	case 10:
3299 		wa_bb_fn[0] = gen10_init_indirectctx_bb;
3300 		wa_bb_fn[1] = NULL;
3301 		break;
3302 	case 9:
3303 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
3304 		wa_bb_fn[1] = NULL;
3305 		break;
3306 	case 8:
3307 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
3308 		wa_bb_fn[1] = NULL;
3309 		break;
3310 	default:
3311 		MISSING_CASE(INTEL_GEN(engine->i915));
3312 		return 0;
3313 	}
3314 
3315 	ret = lrc_setup_wa_ctx(engine);
3316 	if (ret) {
3317 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
3318 		return ret;
3319 	}
3320 
3321 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
3322 	batch = batch_ptr = kmap_atomic(page);
3323 
3324 	/*
3325 	 * Emit the two workaround batch buffers, recording the offset from the
3326 	 * start of the workaround batch buffer object for each and their
3327 	 * respective sizes.
3328 	 */
3329 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
3330 		wa_bb[i]->offset = batch_ptr - batch;
3331 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
3332 						  CACHELINE_BYTES))) {
3333 			ret = -EINVAL;
3334 			break;
3335 		}
3336 		if (wa_bb_fn[i])
3337 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
3338 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
3339 	}
3340 
3341 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
3342 
3343 	kunmap_atomic(batch);
3344 	if (ret)
3345 		lrc_destroy_wa_ctx(engine);
3346 
3347 	return ret;
3348 }
3349 
3350 static void enable_execlists(struct intel_engine_cs *engine)
3351 {
3352 	u32 mode;
3353 
3354 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
3355 
3356 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
3357 
3358 	if (INTEL_GEN(engine->i915) >= 11)
3359 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
3360 	else
3361 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
3362 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
3363 
3364 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
3365 
3366 	ENGINE_WRITE_FW(engine,
3367 			RING_HWS_PGA,
3368 			i915_ggtt_offset(engine->status_page.vma));
3369 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
3370 
3371 	engine->context_tag = 0;
3372 }
3373 
3374 static bool unexpected_starting_state(struct intel_engine_cs *engine)
3375 {
3376 	bool unexpected = false;
3377 
3378 	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
3379 		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
3380 		unexpected = true;
3381 	}
3382 
3383 	return unexpected;
3384 }
3385 
3386 static int execlists_resume(struct intel_engine_cs *engine)
3387 {
3388 	intel_engine_apply_workarounds(engine);
3389 	intel_engine_apply_whitelist(engine);
3390 
3391 	intel_mocs_init_engine(engine);
3392 
3393 	intel_engine_reset_breadcrumbs(engine);
3394 
3395 	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
3396 		struct drm_printer p = drm_debug_printer(__func__);
3397 
3398 		intel_engine_dump(engine, &p, NULL);
3399 	}
3400 
3401 	enable_execlists(engine);
3402 
3403 	return 0;
3404 }
3405 
3406 static void execlists_reset_prepare(struct intel_engine_cs *engine)
3407 {
3408 	struct intel_engine_execlists * const execlists = &engine->execlists;
3409 	unsigned long flags;
3410 
3411 	ENGINE_TRACE(engine, "depth<-%d\n",
3412 		     atomic_read(&execlists->tasklet.count));
3413 
3414 	/*
3415 	 * Prevent request submission to the hardware until we have
3416 	 * completed the reset in i915_gem_reset_finish(). If a request
3417 	 * is completed by one engine, it may then queue a request
3418 	 * to a second via its execlists->tasklet *just* as we are
3419 	 * calling engine->resume() and also writing the ELSP.
3420 	 * Turning off the execlists->tasklet until the reset is over
3421 	 * prevents the race.
3422 	 */
3423 	__tasklet_disable_sync_once(&execlists->tasklet);
3424 	GEM_BUG_ON(!reset_in_progress(execlists));
3425 
3426 	/* And flush any current direct submission. */
3427 	spin_lock_irqsave(&engine->active.lock, flags);
3428 	spin_unlock_irqrestore(&engine->active.lock, flags);
3429 
3430 	/*
3431 	 * We stop engines, otherwise we might get failed reset and a
3432 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
3433 	 * from system hang if batchbuffer is progressing when
3434 	 * the reset is issued, regardless of READY_TO_RESET ack.
3435 	 * Thus assume it is best to stop engines on all gens
3436 	 * where we have a gpu reset.
3437 	 *
3438 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
3439 	 *
3440 	 * FIXME: Wa for more modern gens needs to be validated
3441 	 */
3442 	intel_engine_stop_cs(engine);
3443 }
3444 
3445 static void reset_csb_pointers(struct intel_engine_cs *engine)
3446 {
3447 	struct intel_engine_execlists * const execlists = &engine->execlists;
3448 	const unsigned int reset_value = execlists->csb_size - 1;
3449 
3450 	ring_set_paused(engine, 0);
3451 
3452 	/*
3453 	 * After a reset, the HW starts writing into CSB entry [0]. We
3454 	 * therefore have to set our HEAD pointer back one entry so that
3455 	 * the *first* entry we check is entry 0. To complicate this further,
3456 	 * as we don't wait for the first interrupt after reset, we have to
3457 	 * fake the HW write to point back to the last entry so that our
3458 	 * inline comparison of our cached head position against the last HW
3459 	 * write works even before the first interrupt.
3460 	 */
3461 	execlists->csb_head = reset_value;
3462 	WRITE_ONCE(*execlists->csb_write, reset_value);
3463 	wmb(); /* Make sure this is visible to HW (paranoia?) */
3464 
3465 	/*
3466 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
3467 	 * Bludgeon them with a mmio update to be sure.
3468 	 */
3469 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
3470 		     reset_value << 8 | reset_value);
3471 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
3472 
3473 	invalidate_csb_entries(&execlists->csb_status[0],
3474 			       &execlists->csb_status[reset_value]);
3475 }
3476 
3477 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
3478 {
3479 	int x;
3480 
3481 	x = lrc_ring_mi_mode(engine);
3482 	if (x != -1) {
3483 		regs[x + 1] &= ~STOP_RING;
3484 		regs[x + 1] |= STOP_RING << 16;
3485 	}
3486 }
3487 
3488 static void __execlists_reset_reg_state(const struct intel_context *ce,
3489 					const struct intel_engine_cs *engine)
3490 {
3491 	u32 *regs = ce->lrc_reg_state;
3492 
3493 	__reset_stop_ring(regs, engine);
3494 }
3495 
3496 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
3497 {
3498 	struct intel_engine_execlists * const execlists = &engine->execlists;
3499 	struct intel_context *ce;
3500 	struct i915_request *rq;
3501 	u32 head;
3502 
3503 	mb(); /* paranoia: read the CSB pointers from after the reset */
3504 	clflush(execlists->csb_write);
3505 	mb();
3506 
3507 	process_csb(engine); /* drain preemption events */
3508 
3509 	/* Following the reset, we need to reload the CSB read/write pointers */
3510 	reset_csb_pointers(engine);
3511 
3512 	/*
3513 	 * Save the currently executing context, even if we completed
3514 	 * its request, it was still running at the time of the
3515 	 * reset and will have been clobbered.
3516 	 */
3517 	rq = execlists_active(execlists);
3518 	if (!rq)
3519 		goto unwind;
3520 
3521 	/* We still have requests in-flight; the engine should be active */
3522 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3523 
3524 	ce = rq->context;
3525 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3526 
3527 	if (i915_request_completed(rq)) {
3528 		/* Idle context; tidy up the ring so we can restart afresh */
3529 		head = intel_ring_wrap(ce->ring, rq->tail);
3530 		goto out_replay;
3531 	}
3532 
3533 	/* Context has requests still in-flight; it should not be idle! */
3534 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
3535 	rq = active_request(ce->timeline, rq);
3536 	head = intel_ring_wrap(ce->ring, rq->head);
3537 	GEM_BUG_ON(head == ce->ring->tail);
3538 
3539 	/*
3540 	 * If this request hasn't started yet, e.g. it is waiting on a
3541 	 * semaphore, we need to avoid skipping the request or else we
3542 	 * break the signaling chain. However, if the context is corrupt
3543 	 * the request will not restart and we will be stuck with a wedged
3544 	 * device. It is quite often the case that if we issue a reset
3545 	 * while the GPU is loading the context image, that the context
3546 	 * image becomes corrupt.
3547 	 *
3548 	 * Otherwise, if we have not started yet, the request should replay
3549 	 * perfectly and we do not need to flag the result as being erroneous.
3550 	 */
3551 	if (!i915_request_started(rq))
3552 		goto out_replay;
3553 
3554 	/*
3555 	 * If the request was innocent, we leave the request in the ELSP
3556 	 * and will try to replay it on restarting. The context image may
3557 	 * have been corrupted by the reset, in which case we may have
3558 	 * to service a new GPU hang, but more likely we can continue on
3559 	 * without impact.
3560 	 *
3561 	 * If the request was guilty, we presume the context is corrupt
3562 	 * and have to at least restore the RING register in the context
3563 	 * image back to the expected values to skip over the guilty request.
3564 	 */
3565 	__i915_request_reset(rq, stalled);
3566 	if (!stalled)
3567 		goto out_replay;
3568 
3569 	/*
3570 	 * We want a simple context + ring to execute the breadcrumb update.
3571 	 * We cannot rely on the context being intact across the GPU hang,
3572 	 * so clear it and rebuild just what we need for the breadcrumb.
3573 	 * All pending requests for this context will be zapped, and any
3574 	 * future request will be after userspace has had the opportunity
3575 	 * to recreate its own state.
3576 	 */
3577 	GEM_BUG_ON(!intel_context_is_pinned(ce));
3578 	restore_default_state(ce, engine);
3579 
3580 out_replay:
3581 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3582 		     head, ce->ring->tail);
3583 	__execlists_reset_reg_state(ce, engine);
3584 	__execlists_update_reg_state(ce, engine, head);
3585 	ce->lrc_desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
3586 
3587 unwind:
3588 	/* Push back any incomplete requests for replay after the reset. */
3589 	cancel_port_requests(execlists);
3590 	__unwind_incomplete_requests(engine);
3591 }
3592 
3593 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3594 {
3595 	unsigned long flags;
3596 
3597 	ENGINE_TRACE(engine, "\n");
3598 
3599 	spin_lock_irqsave(&engine->active.lock, flags);
3600 
3601 	__execlists_reset(engine, stalled);
3602 
3603 	spin_unlock_irqrestore(&engine->active.lock, flags);
3604 }
3605 
3606 static void nop_submission_tasklet(unsigned long data)
3607 {
3608 	/* The driver is wedged; don't process any more events. */
3609 }
3610 
3611 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3612 {
3613 	struct intel_engine_execlists * const execlists = &engine->execlists;
3614 	struct i915_request *rq, *rn;
3615 	struct rb_node *rb;
3616 	unsigned long flags;
3617 
3618 	ENGINE_TRACE(engine, "\n");
3619 
3620 	/*
3621 	 * Before we call engine->cancel_requests(), we should have exclusive
3622 	 * access to the submission state. This is arranged for us by the
3623 	 * caller disabling the interrupt generation, the tasklet and other
3624 	 * threads that may then access the same state, giving us a free hand
3625 	 * to reset state. However, we still need to let lockdep be aware that
3626 	 * we know this state may be accessed in hardirq context, so we
3627 	 * disable the irq around this manipulation and we want to keep
3628 	 * the spinlock focused on its duties and not accidentally conflate
3629 	 * coverage to the submission's irq state. (Similarly, although we
3630 	 * shouldn't need to disable irq around the manipulation of the
3631 	 * submission's irq state, we also wish to remind ourselves that
3632 	 * it is irq state.)
3633 	 */
3634 	spin_lock_irqsave(&engine->active.lock, flags);
3635 
3636 	__execlists_reset(engine, true);
3637 
3638 	/* Mark all executing requests as skipped. */
3639 	list_for_each_entry(rq, &engine->active.requests, sched.link)
3640 		mark_eio(rq);
3641 
3642 	/* Flush the queued requests to the timeline list (for retiring). */
3643 	while ((rb = rb_first_cached(&execlists->queue))) {
3644 		struct i915_priolist *p = to_priolist(rb);
3645 		int i;
3646 
3647 		priolist_for_each_request_consume(rq, rn, p, i) {
3648 			mark_eio(rq);
3649 			__i915_request_submit(rq);
3650 		}
3651 
3652 		rb_erase_cached(&p->node, &execlists->queue);
3653 		i915_priolist_free(p);
3654 	}
3655 
3656 	/* On-hold requests will be flushed to timeline upon their release */
3657 	list_for_each_entry(rq, &engine->active.hold, sched.link)
3658 		mark_eio(rq);
3659 
3660 	/* Cancel all attached virtual engines */
3661 	while ((rb = rb_first_cached(&execlists->virtual))) {
3662 		struct virtual_engine *ve =
3663 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3664 
3665 		rb_erase_cached(rb, &execlists->virtual);
3666 		RB_CLEAR_NODE(rb);
3667 
3668 		spin_lock(&ve->base.active.lock);
3669 		rq = fetch_and_zero(&ve->request);
3670 		if (rq) {
3671 			mark_eio(rq);
3672 
3673 			rq->engine = engine;
3674 			__i915_request_submit(rq);
3675 			i915_request_put(rq);
3676 
3677 			ve->base.execlists.queue_priority_hint = INT_MIN;
3678 		}
3679 		spin_unlock(&ve->base.active.lock);
3680 	}
3681 
3682 	/* Remaining _unready_ requests will be nop'ed when submitted */
3683 
3684 	execlists->queue_priority_hint = INT_MIN;
3685 	execlists->queue = RB_ROOT_CACHED;
3686 
3687 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
3688 	execlists->tasklet.func = nop_submission_tasklet;
3689 
3690 	spin_unlock_irqrestore(&engine->active.lock, flags);
3691 }
3692 
3693 static void execlists_reset_finish(struct intel_engine_cs *engine)
3694 {
3695 	struct intel_engine_execlists * const execlists = &engine->execlists;
3696 
3697 	/*
3698 	 * After a GPU reset, we may have requests to replay. Do so now while
3699 	 * we still have the forcewake to be sure that the GPU is not allowed
3700 	 * to sleep before we restart and reload a context.
3701 	 */
3702 	GEM_BUG_ON(!reset_in_progress(execlists));
3703 	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
3704 		execlists->tasklet.func(execlists->tasklet.data);
3705 
3706 	if (__tasklet_enable(&execlists->tasklet))
3707 		/* And kick in case we missed a new request submission. */
3708 		tasklet_hi_schedule(&execlists->tasklet);
3709 	ENGINE_TRACE(engine, "depth->%d\n",
3710 		     atomic_read(&execlists->tasklet.count));
3711 }
3712 
3713 static int gen8_emit_bb_start_noarb(struct i915_request *rq,
3714 				    u64 offset, u32 len,
3715 				    const unsigned int flags)
3716 {
3717 	u32 *cs;
3718 
3719 	cs = intel_ring_begin(rq, 4);
3720 	if (IS_ERR(cs))
3721 		return PTR_ERR(cs);
3722 
3723 	/*
3724 	 * WaDisableCtxRestoreArbitration:bdw,chv
3725 	 *
3726 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
3727 	 * particular all the gen that do not need the w/a at all!), if we
3728 	 * took care to make sure that on every switch into this context
3729 	 * (both ordinary and for preemption) that arbitrartion was enabled
3730 	 * we would be fine.  However, for gen8 there is another w/a that
3731 	 * requires us to not preempt inside GPGPU execution, so we keep
3732 	 * arbitration disabled for gen8 batches. Arbitration will be
3733 	 * re-enabled before we close the request
3734 	 * (engine->emit_fini_breadcrumb).
3735 	 */
3736 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3737 
3738 	/* FIXME(BDW+): Address space and security selectors. */
3739 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
3740 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
3741 	*cs++ = lower_32_bits(offset);
3742 	*cs++ = upper_32_bits(offset);
3743 
3744 	intel_ring_advance(rq, cs);
3745 
3746 	return 0;
3747 }
3748 
3749 static int gen8_emit_bb_start(struct i915_request *rq,
3750 			      u64 offset, u32 len,
3751 			      const unsigned int flags)
3752 {
3753 	u32 *cs;
3754 
3755 	cs = intel_ring_begin(rq, 6);
3756 	if (IS_ERR(cs))
3757 		return PTR_ERR(cs);
3758 
3759 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3760 
3761 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
3762 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
3763 	*cs++ = lower_32_bits(offset);
3764 	*cs++ = upper_32_bits(offset);
3765 
3766 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3767 	*cs++ = MI_NOOP;
3768 
3769 	intel_ring_advance(rq, cs);
3770 
3771 	return 0;
3772 }
3773 
3774 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3775 {
3776 	ENGINE_WRITE(engine, RING_IMR,
3777 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3778 	ENGINE_POSTING_READ(engine, RING_IMR);
3779 }
3780 
3781 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3782 {
3783 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3784 }
3785 
3786 static int gen8_emit_flush(struct i915_request *request, u32 mode)
3787 {
3788 	u32 cmd, *cs;
3789 
3790 	cs = intel_ring_begin(request, 4);
3791 	if (IS_ERR(cs))
3792 		return PTR_ERR(cs);
3793 
3794 	cmd = MI_FLUSH_DW + 1;
3795 
3796 	/* We always require a command barrier so that subsequent
3797 	 * commands, such as breadcrumb interrupts, are strictly ordered
3798 	 * wrt the contents of the write cache being flushed to memory
3799 	 * (and thus being coherent from the CPU).
3800 	 */
3801 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
3802 
3803 	if (mode & EMIT_INVALIDATE) {
3804 		cmd |= MI_INVALIDATE_TLB;
3805 		if (request->engine->class == VIDEO_DECODE_CLASS)
3806 			cmd |= MI_INVALIDATE_BSD;
3807 	}
3808 
3809 	*cs++ = cmd;
3810 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
3811 	*cs++ = 0; /* upper addr */
3812 	*cs++ = 0; /* value */
3813 	intel_ring_advance(request, cs);
3814 
3815 	return 0;
3816 }
3817 
3818 static int gen8_emit_flush_render(struct i915_request *request,
3819 				  u32 mode)
3820 {
3821 	bool vf_flush_wa = false, dc_flush_wa = false;
3822 	u32 *cs, flags = 0;
3823 	int len;
3824 
3825 	flags |= PIPE_CONTROL_CS_STALL;
3826 
3827 	if (mode & EMIT_FLUSH) {
3828 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3829 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
3830 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
3831 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
3832 	}
3833 
3834 	if (mode & EMIT_INVALIDATE) {
3835 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
3836 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
3837 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
3838 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
3839 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
3840 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3841 		flags |= PIPE_CONTROL_QW_WRITE;
3842 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
3843 
3844 		/*
3845 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
3846 		 * pipe control.
3847 		 */
3848 		if (IS_GEN(request->i915, 9))
3849 			vf_flush_wa = true;
3850 
3851 		/* WaForGAMHang:kbl */
3852 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
3853 			dc_flush_wa = true;
3854 	}
3855 
3856 	len = 6;
3857 
3858 	if (vf_flush_wa)
3859 		len += 6;
3860 
3861 	if (dc_flush_wa)
3862 		len += 12;
3863 
3864 	cs = intel_ring_begin(request, len);
3865 	if (IS_ERR(cs))
3866 		return PTR_ERR(cs);
3867 
3868 	if (vf_flush_wa)
3869 		cs = gen8_emit_pipe_control(cs, 0, 0);
3870 
3871 	if (dc_flush_wa)
3872 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
3873 					    0);
3874 
3875 	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
3876 
3877 	if (dc_flush_wa)
3878 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
3879 
3880 	intel_ring_advance(request, cs);
3881 
3882 	return 0;
3883 }
3884 
3885 static int gen11_emit_flush_render(struct i915_request *request,
3886 				   u32 mode)
3887 {
3888 	if (mode & EMIT_FLUSH) {
3889 		u32 *cs;
3890 		u32 flags = 0;
3891 
3892 		flags |= PIPE_CONTROL_CS_STALL;
3893 
3894 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
3895 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3896 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
3897 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
3898 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
3899 		flags |= PIPE_CONTROL_QW_WRITE;
3900 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
3901 
3902 		cs = intel_ring_begin(request, 6);
3903 		if (IS_ERR(cs))
3904 			return PTR_ERR(cs);
3905 
3906 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
3907 		intel_ring_advance(request, cs);
3908 	}
3909 
3910 	if (mode & EMIT_INVALIDATE) {
3911 		u32 *cs;
3912 		u32 flags = 0;
3913 
3914 		flags |= PIPE_CONTROL_CS_STALL;
3915 
3916 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
3917 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
3918 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
3919 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
3920 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
3921 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
3922 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3923 		flags |= PIPE_CONTROL_QW_WRITE;
3924 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
3925 
3926 		cs = intel_ring_begin(request, 6);
3927 		if (IS_ERR(cs))
3928 			return PTR_ERR(cs);
3929 
3930 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
3931 		intel_ring_advance(request, cs);
3932 	}
3933 
3934 	return 0;
3935 }
3936 
3937 static u32 preparser_disable(bool state)
3938 {
3939 	return MI_ARB_CHECK | 1 << 8 | state;
3940 }
3941 
3942 static int gen12_emit_flush_render(struct i915_request *request,
3943 				   u32 mode)
3944 {
3945 	if (mode & EMIT_FLUSH) {
3946 		u32 flags = 0;
3947 		u32 *cs;
3948 
3949 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
3950 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3951 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
3952 		/* Wa_1409600907:tgl */
3953 		flags |= PIPE_CONTROL_DEPTH_STALL;
3954 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
3955 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
3956 		flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;
3957 
3958 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
3959 		flags |= PIPE_CONTROL_QW_WRITE;
3960 
3961 		flags |= PIPE_CONTROL_CS_STALL;
3962 
3963 		cs = intel_ring_begin(request, 6);
3964 		if (IS_ERR(cs))
3965 			return PTR_ERR(cs);
3966 
3967 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
3968 		intel_ring_advance(request, cs);
3969 	}
3970 
3971 	if (mode & EMIT_INVALIDATE) {
3972 		u32 flags = 0;
3973 		u32 *cs;
3974 
3975 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
3976 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
3977 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
3978 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
3979 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
3980 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
3981 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3982 		flags |= PIPE_CONTROL_L3_RO_CACHE_INVALIDATE;
3983 
3984 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
3985 		flags |= PIPE_CONTROL_QW_WRITE;
3986 
3987 		flags |= PIPE_CONTROL_CS_STALL;
3988 
3989 		cs = intel_ring_begin(request, 8);
3990 		if (IS_ERR(cs))
3991 			return PTR_ERR(cs);
3992 
3993 		/*
3994 		 * Prevent the pre-parser from skipping past the TLB
3995 		 * invalidate and loading a stale page for the batch
3996 		 * buffer / request payload.
3997 		 */
3998 		*cs++ = preparser_disable(true);
3999 
4000 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4001 
4002 		*cs++ = preparser_disable(false);
4003 		intel_ring_advance(request, cs);
4004 
4005 		/*
4006 		 * Wa_1604544889:tgl
4007 		 */
4008 		if (IS_TGL_REVID(request->i915, TGL_REVID_A0, TGL_REVID_A0)) {
4009 			flags = 0;
4010 			flags |= PIPE_CONTROL_CS_STALL;
4011 			flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;
4012 
4013 			flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4014 			flags |= PIPE_CONTROL_QW_WRITE;
4015 
4016 			cs = intel_ring_begin(request, 6);
4017 			if (IS_ERR(cs))
4018 				return PTR_ERR(cs);
4019 
4020 			cs = gen8_emit_pipe_control(cs, flags,
4021 						    LRC_PPHWSP_SCRATCH_ADDR);
4022 			intel_ring_advance(request, cs);
4023 		}
4024 	}
4025 
4026 	return 0;
4027 }
4028 
4029 /*
4030  * Reserve space for 2 NOOPs at the end of each request to be
4031  * used as a workaround for not being allowed to do lite
4032  * restore with HEAD==TAIL (WaIdleLiteRestore).
4033  */
4034 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
4035 {
4036 	/* Ensure there's always at least one preemption point per-request. */
4037 	*cs++ = MI_ARB_CHECK;
4038 	*cs++ = MI_NOOP;
4039 	request->wa_tail = intel_ring_offset(request, cs);
4040 
4041 	return cs;
4042 }
4043 
4044 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
4045 {
4046 	*cs++ = MI_SEMAPHORE_WAIT |
4047 		MI_SEMAPHORE_GLOBAL_GTT |
4048 		MI_SEMAPHORE_POLL |
4049 		MI_SEMAPHORE_SAD_EQ_SDD;
4050 	*cs++ = 0;
4051 	*cs++ = intel_hws_preempt_address(request->engine);
4052 	*cs++ = 0;
4053 
4054 	return cs;
4055 }
4056 
4057 static __always_inline u32*
4058 gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
4059 				 u32 *cs)
4060 {
4061 	*cs++ = MI_USER_INTERRUPT;
4062 
4063 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4064 	if (intel_engine_has_semaphores(request->engine))
4065 		cs = emit_preempt_busywait(request, cs);
4066 
4067 	request->tail = intel_ring_offset(request, cs);
4068 	assert_ring_tail_valid(request->ring, request->tail);
4069 
4070 	return gen8_emit_wa_tail(request, cs);
4071 }
4072 
4073 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
4074 {
4075 	cs = gen8_emit_ggtt_write(cs,
4076 				  request->fence.seqno,
4077 				  i915_request_active_timeline(request)->hwsp_offset,
4078 				  0);
4079 
4080 	return gen8_emit_fini_breadcrumb_footer(request, cs);
4081 }
4082 
4083 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4084 {
4085 	cs = gen8_emit_pipe_control(cs,
4086 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4087 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4088 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
4089 				    0);
4090 
4091 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
4092 	cs = gen8_emit_ggtt_write_rcs(cs,
4093 				      request->fence.seqno,
4094 				      i915_request_active_timeline(request)->hwsp_offset,
4095 				      PIPE_CONTROL_FLUSH_ENABLE |
4096 				      PIPE_CONTROL_CS_STALL);
4097 
4098 	return gen8_emit_fini_breadcrumb_footer(request, cs);
4099 }
4100 
4101 static u32 *
4102 gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4103 {
4104 	cs = gen8_emit_ggtt_write_rcs(cs,
4105 				      request->fence.seqno,
4106 				      i915_request_active_timeline(request)->hwsp_offset,
4107 				      PIPE_CONTROL_CS_STALL |
4108 				      PIPE_CONTROL_TILE_CACHE_FLUSH |
4109 				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4110 				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4111 				      PIPE_CONTROL_DC_FLUSH_ENABLE |
4112 				      PIPE_CONTROL_FLUSH_ENABLE);
4113 
4114 	return gen8_emit_fini_breadcrumb_footer(request, cs);
4115 }
4116 
4117 /*
4118  * Note that the CS instruction pre-parser will not stall on the breadcrumb
4119  * flush and will continue pre-fetching the instructions after it before the
4120  * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
4121  * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
4122  * of the next request before the memory has been flushed, we're guaranteed that
4123  * we won't access the batch itself too early.
4124  * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
4125  * so, if the current request is modifying an instruction in the next request on
4126  * the same intel_context, we might pre-fetch and then execute the pre-update
4127  * instruction. To avoid this, the users of self-modifying code should either
4128  * disable the parser around the code emitting the memory writes, via a new flag
4129  * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
4130  * the in-kernel use-cases we've opted to use a separate context, see
4131  * reloc_gpu() as an example.
4132  * All the above applies only to the instructions themselves. Non-inline data
4133  * used by the instructions is not pre-fetched.
4134  */
4135 
4136 static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
4137 {
4138 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
4139 		MI_SEMAPHORE_GLOBAL_GTT |
4140 		MI_SEMAPHORE_POLL |
4141 		MI_SEMAPHORE_SAD_EQ_SDD;
4142 	*cs++ = 0;
4143 	*cs++ = intel_hws_preempt_address(request->engine);
4144 	*cs++ = 0;
4145 	*cs++ = 0;
4146 	*cs++ = MI_NOOP;
4147 
4148 	return cs;
4149 }
4150 
4151 static __always_inline u32*
4152 gen12_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs)
4153 {
4154 	*cs++ = MI_USER_INTERRUPT;
4155 
4156 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4157 	if (intel_engine_has_semaphores(request->engine))
4158 		cs = gen12_emit_preempt_busywait(request, cs);
4159 
4160 	request->tail = intel_ring_offset(request, cs);
4161 	assert_ring_tail_valid(request->ring, request->tail);
4162 
4163 	return gen8_emit_wa_tail(request, cs);
4164 }
4165 
4166 static u32 *gen12_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
4167 {
4168 	cs = gen8_emit_ggtt_write(cs,
4169 				  request->fence.seqno,
4170 				  i915_request_active_timeline(request)->hwsp_offset,
4171 				  0);
4172 
4173 	return gen12_emit_fini_breadcrumb_footer(request, cs);
4174 }
4175 
4176 static u32 *
4177 gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4178 {
4179 	cs = gen8_emit_ggtt_write_rcs(cs,
4180 				      request->fence.seqno,
4181 				      i915_request_active_timeline(request)->hwsp_offset,
4182 				      PIPE_CONTROL_CS_STALL |
4183 				      PIPE_CONTROL_TILE_CACHE_FLUSH |
4184 				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4185 				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4186 				      /* Wa_1409600907:tgl */
4187 				      PIPE_CONTROL_DEPTH_STALL |
4188 				      PIPE_CONTROL_DC_FLUSH_ENABLE |
4189 				      PIPE_CONTROL_FLUSH_ENABLE |
4190 				      PIPE_CONTROL_HDC_PIPELINE_FLUSH);
4191 
4192 	return gen12_emit_fini_breadcrumb_footer(request, cs);
4193 }
4194 
4195 static void execlists_park(struct intel_engine_cs *engine)
4196 {
4197 	cancel_timer(&engine->execlists.timer);
4198 	cancel_timer(&engine->execlists.preempt);
4199 }
4200 
4201 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
4202 {
4203 	engine->submit_request = execlists_submit_request;
4204 	engine->schedule = i915_schedule;
4205 	engine->execlists.tasklet.func = execlists_submission_tasklet;
4206 
4207 	engine->reset.prepare = execlists_reset_prepare;
4208 	engine->reset.rewind = execlists_reset_rewind;
4209 	engine->reset.cancel = execlists_reset_cancel;
4210 	engine->reset.finish = execlists_reset_finish;
4211 
4212 	engine->park = execlists_park;
4213 	engine->unpark = NULL;
4214 
4215 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4216 	if (!intel_vgpu_active(engine->i915)) {
4217 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4218 		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
4219 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4220 	}
4221 
4222 	if (INTEL_GEN(engine->i915) >= 12)
4223 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
4224 
4225 	if (intel_engine_has_preemption(engine))
4226 		engine->emit_bb_start = gen8_emit_bb_start;
4227 	else
4228 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
4229 }
4230 
4231 static void execlists_shutdown(struct intel_engine_cs *engine)
4232 {
4233 	/* Synchronise with residual timers and any softirq they raise */
4234 	del_timer_sync(&engine->execlists.timer);
4235 	del_timer_sync(&engine->execlists.preempt);
4236 	tasklet_kill(&engine->execlists.tasklet);
4237 }
4238 
4239 static void execlists_release(struct intel_engine_cs *engine)
4240 {
4241 	execlists_shutdown(engine);
4242 
4243 	intel_engine_cleanup_common(engine);
4244 	lrc_destroy_wa_ctx(engine);
4245 }
4246 
4247 static void
4248 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
4249 {
4250 	/* Default vfuncs which can be overriden by each engine. */
4251 
4252 	engine->resume = execlists_resume;
4253 
4254 	engine->cops = &execlists_context_ops;
4255 	engine->request_alloc = execlists_request_alloc;
4256 
4257 	engine->emit_flush = gen8_emit_flush;
4258 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4259 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
4260 	if (INTEL_GEN(engine->i915) >= 12)
4261 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
4262 
4263 	engine->set_default_submission = intel_execlists_set_default_submission;
4264 
4265 	if (INTEL_GEN(engine->i915) < 11) {
4266 		engine->irq_enable = gen8_logical_ring_enable_irq;
4267 		engine->irq_disable = gen8_logical_ring_disable_irq;
4268 	} else {
4269 		/*
4270 		 * TODO: On Gen11 interrupt masks need to be clear
4271 		 * to allow C6 entry. Keep interrupts enabled at
4272 		 * and take the hit of generating extra interrupts
4273 		 * until a more refined solution exists.
4274 		 */
4275 	}
4276 }
4277 
4278 static inline void
4279 logical_ring_default_irqs(struct intel_engine_cs *engine)
4280 {
4281 	unsigned int shift = 0;
4282 
4283 	if (INTEL_GEN(engine->i915) < 11) {
4284 		const u8 irq_shifts[] = {
4285 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
4286 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
4287 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
4288 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
4289 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
4290 		};
4291 
4292 		shift = irq_shifts[engine->id];
4293 	}
4294 
4295 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
4296 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
4297 }
4298 
4299 static void rcs_submission_override(struct intel_engine_cs *engine)
4300 {
4301 	switch (INTEL_GEN(engine->i915)) {
4302 	case 12:
4303 		engine->emit_flush = gen12_emit_flush_render;
4304 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4305 		break;
4306 	case 11:
4307 		engine->emit_flush = gen11_emit_flush_render;
4308 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4309 		break;
4310 	default:
4311 		engine->emit_flush = gen8_emit_flush_render;
4312 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4313 		break;
4314 	}
4315 }
4316 
4317 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
4318 {
4319 	struct intel_engine_execlists * const execlists = &engine->execlists;
4320 	struct drm_i915_private *i915 = engine->i915;
4321 	struct intel_uncore *uncore = engine->uncore;
4322 	u32 base = engine->mmio_base;
4323 
4324 	tasklet_init(&engine->execlists.tasklet,
4325 		     execlists_submission_tasklet, (unsigned long)engine);
4326 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
4327 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
4328 
4329 	logical_ring_default_vfuncs(engine);
4330 	logical_ring_default_irqs(engine);
4331 
4332 	if (engine->class == RENDER_CLASS)
4333 		rcs_submission_override(engine);
4334 
4335 	if (intel_init_workaround_bb(engine))
4336 		/*
4337 		 * We continue even if we fail to initialize WA batch
4338 		 * because we only expect rare glitches but nothing
4339 		 * critical to prevent us from using GPU
4340 		 */
4341 		DRM_ERROR("WA batch buffer initialization failed\n");
4342 
4343 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
4344 		execlists->submit_reg = uncore->regs +
4345 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
4346 		execlists->ctrl_reg = uncore->regs +
4347 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
4348 	} else {
4349 		execlists->submit_reg = uncore->regs +
4350 			i915_mmio_reg_offset(RING_ELSP(base));
4351 	}
4352 
4353 	execlists->csb_status =
4354 		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
4355 
4356 	execlists->csb_write =
4357 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
4358 
4359 	if (INTEL_GEN(i915) < 11)
4360 		execlists->csb_size = GEN8_CSB_ENTRIES;
4361 	else
4362 		execlists->csb_size = GEN11_CSB_ENTRIES;
4363 
4364 	reset_csb_pointers(engine);
4365 
4366 	/* Finally, take ownership and responsibility for cleanup! */
4367 	engine->release = execlists_release;
4368 
4369 	return 0;
4370 }
4371 
4372 static u32 intel_lr_indirect_ctx_offset(const struct intel_engine_cs *engine)
4373 {
4374 	u32 indirect_ctx_offset;
4375 
4376 	switch (INTEL_GEN(engine->i915)) {
4377 	default:
4378 		MISSING_CASE(INTEL_GEN(engine->i915));
4379 		/* fall through */
4380 	case 12:
4381 		indirect_ctx_offset =
4382 			GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
4383 		break;
4384 	case 11:
4385 		indirect_ctx_offset =
4386 			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
4387 		break;
4388 	case 10:
4389 		indirect_ctx_offset =
4390 			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
4391 		break;
4392 	case 9:
4393 		indirect_ctx_offset =
4394 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
4395 		break;
4396 	case 8:
4397 		indirect_ctx_offset =
4398 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
4399 		break;
4400 	}
4401 
4402 	return indirect_ctx_offset;
4403 }
4404 
4405 
4406 static void init_common_reg_state(u32 * const regs,
4407 				  const struct intel_engine_cs *engine,
4408 				  const struct intel_ring *ring,
4409 				  bool inhibit)
4410 {
4411 	u32 ctl;
4412 
4413 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
4414 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
4415 	if (inhibit)
4416 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
4417 	if (INTEL_GEN(engine->i915) < 11)
4418 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
4419 					   CTX_CTRL_RS_CTX_ENABLE);
4420 	regs[CTX_CONTEXT_CONTROL] = ctl;
4421 
4422 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
4423 }
4424 
4425 static void init_wa_bb_reg_state(u32 * const regs,
4426 				 const struct intel_engine_cs *engine,
4427 				 u32 pos_bb_per_ctx)
4428 {
4429 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
4430 
4431 	if (wa_ctx->per_ctx.size) {
4432 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
4433 
4434 		regs[pos_bb_per_ctx] =
4435 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
4436 	}
4437 
4438 	if (wa_ctx->indirect_ctx.size) {
4439 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
4440 
4441 		regs[pos_bb_per_ctx + 2] =
4442 			(ggtt_offset + wa_ctx->indirect_ctx.offset) |
4443 			(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
4444 
4445 		regs[pos_bb_per_ctx + 4] =
4446 			intel_lr_indirect_ctx_offset(engine) << 6;
4447 	}
4448 }
4449 
4450 static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
4451 {
4452 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
4453 		/* 64b PPGTT (48bit canonical)
4454 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
4455 		 * other PDP Descriptors are ignored.
4456 		 */
4457 		ASSIGN_CTX_PML4(ppgtt, regs);
4458 	} else {
4459 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
4460 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
4461 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
4462 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
4463 	}
4464 }
4465 
4466 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
4467 {
4468 	if (i915_is_ggtt(vm))
4469 		return i915_vm_to_ggtt(vm)->alias;
4470 	else
4471 		return i915_vm_to_ppgtt(vm);
4472 }
4473 
4474 static void execlists_init_reg_state(u32 *regs,
4475 				     const struct intel_context *ce,
4476 				     const struct intel_engine_cs *engine,
4477 				     const struct intel_ring *ring,
4478 				     bool inhibit)
4479 {
4480 	/*
4481 	 * A context is actually a big batch buffer with several
4482 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
4483 	 * values we are setting here are only for the first context restore:
4484 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
4485 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
4486 	 * we are not initializing here).
4487 	 *
4488 	 * Must keep consistent with virtual_update_register_offsets().
4489 	 */
4490 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
4491 
4492 	init_common_reg_state(regs, engine, ring, inhibit);
4493 	init_ppgtt_reg_state(regs, vm_alias(ce->vm));
4494 
4495 	init_wa_bb_reg_state(regs, engine,
4496 			     INTEL_GEN(engine->i915) >= 12 ?
4497 			     GEN12_CTX_BB_PER_CTX_PTR :
4498 			     CTX_BB_PER_CTX_PTR);
4499 
4500 	__reset_stop_ring(regs, engine);
4501 }
4502 
4503 static int
4504 populate_lr_context(struct intel_context *ce,
4505 		    struct drm_i915_gem_object *ctx_obj,
4506 		    struct intel_engine_cs *engine,
4507 		    struct intel_ring *ring)
4508 {
4509 	bool inhibit = true;
4510 	void *vaddr;
4511 	int ret;
4512 
4513 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
4514 	if (IS_ERR(vaddr)) {
4515 		ret = PTR_ERR(vaddr);
4516 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
4517 		return ret;
4518 	}
4519 
4520 	set_redzone(vaddr, engine);
4521 
4522 	if (engine->default_state) {
4523 		void *defaults;
4524 
4525 		defaults = i915_gem_object_pin_map(engine->default_state,
4526 						   I915_MAP_WB);
4527 		if (IS_ERR(defaults)) {
4528 			ret = PTR_ERR(defaults);
4529 			goto err_unpin_ctx;
4530 		}
4531 
4532 		memcpy(vaddr, defaults, engine->context_size);
4533 		i915_gem_object_unpin_map(engine->default_state);
4534 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
4535 		inhibit = false;
4536 	}
4537 
4538 	/* The second page of the context object contains some fields which must
4539 	 * be set up prior to the first execution. */
4540 	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
4541 				 ce, engine, ring, inhibit);
4542 
4543 	ret = 0;
4544 err_unpin_ctx:
4545 	__i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
4546 	i915_gem_object_unpin_map(ctx_obj);
4547 	return ret;
4548 }
4549 
4550 static int __execlists_context_alloc(struct intel_context *ce,
4551 				     struct intel_engine_cs *engine)
4552 {
4553 	struct drm_i915_gem_object *ctx_obj;
4554 	struct intel_ring *ring;
4555 	struct i915_vma *vma;
4556 	u32 context_size;
4557 	int ret;
4558 
4559 	GEM_BUG_ON(ce->state);
4560 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
4561 
4562 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4563 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
4564 
4565 	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
4566 	if (IS_ERR(ctx_obj))
4567 		return PTR_ERR(ctx_obj);
4568 
4569 	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
4570 	if (IS_ERR(vma)) {
4571 		ret = PTR_ERR(vma);
4572 		goto error_deref_obj;
4573 	}
4574 
4575 	if (!ce->timeline) {
4576 		struct intel_timeline *tl;
4577 
4578 		tl = intel_timeline_create(engine->gt, NULL);
4579 		if (IS_ERR(tl)) {
4580 			ret = PTR_ERR(tl);
4581 			goto error_deref_obj;
4582 		}
4583 
4584 		ce->timeline = tl;
4585 	}
4586 
4587 	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
4588 	if (IS_ERR(ring)) {
4589 		ret = PTR_ERR(ring);
4590 		goto error_deref_obj;
4591 	}
4592 
4593 	ret = populate_lr_context(ce, ctx_obj, engine, ring);
4594 	if (ret) {
4595 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
4596 		goto error_ring_free;
4597 	}
4598 
4599 	ce->ring = ring;
4600 	ce->state = vma;
4601 
4602 	return 0;
4603 
4604 error_ring_free:
4605 	intel_ring_put(ring);
4606 error_deref_obj:
4607 	i915_gem_object_put(ctx_obj);
4608 	return ret;
4609 }
4610 
4611 static struct list_head *virtual_queue(struct virtual_engine *ve)
4612 {
4613 	return &ve->base.execlists.default_priolist.requests[0];
4614 }
4615 
4616 static void virtual_context_destroy(struct kref *kref)
4617 {
4618 	struct virtual_engine *ve =
4619 		container_of(kref, typeof(*ve), context.ref);
4620 	unsigned int n;
4621 
4622 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
4623 	GEM_BUG_ON(ve->request);
4624 	GEM_BUG_ON(ve->context.inflight);
4625 
4626 	for (n = 0; n < ve->num_siblings; n++) {
4627 		struct intel_engine_cs *sibling = ve->siblings[n];
4628 		struct rb_node *node = &ve->nodes[sibling->id].rb;
4629 		unsigned long flags;
4630 
4631 		if (RB_EMPTY_NODE(node))
4632 			continue;
4633 
4634 		spin_lock_irqsave(&sibling->active.lock, flags);
4635 
4636 		/* Detachment is lazily performed in the execlists tasklet */
4637 		if (!RB_EMPTY_NODE(node))
4638 			rb_erase_cached(node, &sibling->execlists.virtual);
4639 
4640 		spin_unlock_irqrestore(&sibling->active.lock, flags);
4641 	}
4642 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
4643 
4644 	if (ve->context.state)
4645 		__execlists_context_fini(&ve->context);
4646 	intel_context_fini(&ve->context);
4647 
4648 	kfree(ve->bonds);
4649 	kfree(ve);
4650 }
4651 
4652 static void virtual_engine_initial_hint(struct virtual_engine *ve)
4653 {
4654 	int swp;
4655 
4656 	/*
4657 	 * Pick a random sibling on starting to help spread the load around.
4658 	 *
4659 	 * New contexts are typically created with exactly the same order
4660 	 * of siblings, and often started in batches. Due to the way we iterate
4661 	 * the array of sibling when submitting requests, sibling[0] is
4662 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
4663 	 * randomised across the system, we also help spread the load by the
4664 	 * first engine we inspect being different each time.
4665 	 *
4666 	 * NB This does not force us to execute on this engine, it will just
4667 	 * typically be the first we inspect for submission.
4668 	 */
4669 	swp = prandom_u32_max(ve->num_siblings);
4670 	if (!swp)
4671 		return;
4672 
4673 	swap(ve->siblings[swp], ve->siblings[0]);
4674 	if (!intel_engine_has_relative_mmio(ve->siblings[0]))
4675 		virtual_update_register_offsets(ve->context.lrc_reg_state,
4676 						ve->siblings[0]);
4677 }
4678 
4679 static int virtual_context_alloc(struct intel_context *ce)
4680 {
4681 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
4682 
4683 	return __execlists_context_alloc(ce, ve->siblings[0]);
4684 }
4685 
4686 static int virtual_context_pin(struct intel_context *ce)
4687 {
4688 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
4689 	int err;
4690 
4691 	/* Note: we must use a real engine class for setting up reg state */
4692 	err = __execlists_context_pin(ce, ve->siblings[0]);
4693 	if (err)
4694 		return err;
4695 
4696 	virtual_engine_initial_hint(ve);
4697 	return 0;
4698 }
4699 
4700 static void virtual_context_enter(struct intel_context *ce)
4701 {
4702 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
4703 	unsigned int n;
4704 
4705 	for (n = 0; n < ve->num_siblings; n++)
4706 		intel_engine_pm_get(ve->siblings[n]);
4707 
4708 	intel_timeline_enter(ce->timeline);
4709 }
4710 
4711 static void virtual_context_exit(struct intel_context *ce)
4712 {
4713 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
4714 	unsigned int n;
4715 
4716 	intel_timeline_exit(ce->timeline);
4717 
4718 	for (n = 0; n < ve->num_siblings; n++)
4719 		intel_engine_pm_put(ve->siblings[n]);
4720 }
4721 
4722 static const struct intel_context_ops virtual_context_ops = {
4723 	.alloc = virtual_context_alloc,
4724 
4725 	.pin = virtual_context_pin,
4726 	.unpin = execlists_context_unpin,
4727 
4728 	.enter = virtual_context_enter,
4729 	.exit = virtual_context_exit,
4730 
4731 	.destroy = virtual_context_destroy,
4732 };
4733 
4734 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
4735 {
4736 	struct i915_request *rq;
4737 	intel_engine_mask_t mask;
4738 
4739 	rq = READ_ONCE(ve->request);
4740 	if (!rq)
4741 		return 0;
4742 
4743 	/* The rq is ready for submission; rq->execution_mask is now stable. */
4744 	mask = rq->execution_mask;
4745 	if (unlikely(!mask)) {
4746 		/* Invalid selection, submit to a random engine in error */
4747 		i915_request_skip(rq, -ENODEV);
4748 		mask = ve->siblings[0]->mask;
4749 	}
4750 
4751 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
4752 		     rq->fence.context, rq->fence.seqno,
4753 		     mask, ve->base.execlists.queue_priority_hint);
4754 
4755 	return mask;
4756 }
4757 
4758 static void virtual_submission_tasklet(unsigned long data)
4759 {
4760 	struct virtual_engine * const ve = (struct virtual_engine *)data;
4761 	const int prio = ve->base.execlists.queue_priority_hint;
4762 	intel_engine_mask_t mask;
4763 	unsigned int n;
4764 
4765 	rcu_read_lock();
4766 	mask = virtual_submission_mask(ve);
4767 	rcu_read_unlock();
4768 	if (unlikely(!mask))
4769 		return;
4770 
4771 	local_irq_disable();
4772 	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
4773 		struct intel_engine_cs *sibling = ve->siblings[n];
4774 		struct ve_node * const node = &ve->nodes[sibling->id];
4775 		struct rb_node **parent, *rb;
4776 		bool first;
4777 
4778 		if (unlikely(!(mask & sibling->mask))) {
4779 			if (!RB_EMPTY_NODE(&node->rb)) {
4780 				spin_lock(&sibling->active.lock);
4781 				rb_erase_cached(&node->rb,
4782 						&sibling->execlists.virtual);
4783 				RB_CLEAR_NODE(&node->rb);
4784 				spin_unlock(&sibling->active.lock);
4785 			}
4786 			continue;
4787 		}
4788 
4789 		spin_lock(&sibling->active.lock);
4790 
4791 		if (!RB_EMPTY_NODE(&node->rb)) {
4792 			/*
4793 			 * Cheat and avoid rebalancing the tree if we can
4794 			 * reuse this node in situ.
4795 			 */
4796 			first = rb_first_cached(&sibling->execlists.virtual) ==
4797 				&node->rb;
4798 			if (prio == node->prio || (prio > node->prio && first))
4799 				goto submit_engine;
4800 
4801 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
4802 		}
4803 
4804 		rb = NULL;
4805 		first = true;
4806 		parent = &sibling->execlists.virtual.rb_root.rb_node;
4807 		while (*parent) {
4808 			struct ve_node *other;
4809 
4810 			rb = *parent;
4811 			other = rb_entry(rb, typeof(*other), rb);
4812 			if (prio > other->prio) {
4813 				parent = &rb->rb_left;
4814 			} else {
4815 				parent = &rb->rb_right;
4816 				first = false;
4817 			}
4818 		}
4819 
4820 		rb_link_node(&node->rb, rb, parent);
4821 		rb_insert_color_cached(&node->rb,
4822 				       &sibling->execlists.virtual,
4823 				       first);
4824 
4825 submit_engine:
4826 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
4827 		node->prio = prio;
4828 		if (first && prio > sibling->execlists.queue_priority_hint) {
4829 			sibling->execlists.queue_priority_hint = prio;
4830 			tasklet_hi_schedule(&sibling->execlists.tasklet);
4831 		}
4832 
4833 		spin_unlock(&sibling->active.lock);
4834 	}
4835 	local_irq_enable();
4836 }
4837 
4838 static void virtual_submit_request(struct i915_request *rq)
4839 {
4840 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
4841 	struct i915_request *old;
4842 	unsigned long flags;
4843 
4844 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
4845 		     rq->fence.context,
4846 		     rq->fence.seqno);
4847 
4848 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
4849 
4850 	spin_lock_irqsave(&ve->base.active.lock, flags);
4851 
4852 	old = ve->request;
4853 	if (old) { /* background completion event from preempt-to-busy */
4854 		GEM_BUG_ON(!i915_request_completed(old));
4855 		__i915_request_submit(old);
4856 		i915_request_put(old);
4857 	}
4858 
4859 	if (i915_request_completed(rq)) {
4860 		__i915_request_submit(rq);
4861 
4862 		ve->base.execlists.queue_priority_hint = INT_MIN;
4863 		ve->request = NULL;
4864 	} else {
4865 		ve->base.execlists.queue_priority_hint = rq_prio(rq);
4866 		ve->request = i915_request_get(rq);
4867 
4868 		GEM_BUG_ON(!list_empty(virtual_queue(ve)));
4869 		list_move_tail(&rq->sched.link, virtual_queue(ve));
4870 
4871 		tasklet_schedule(&ve->base.execlists.tasklet);
4872 	}
4873 
4874 	spin_unlock_irqrestore(&ve->base.active.lock, flags);
4875 }
4876 
4877 static struct ve_bond *
4878 virtual_find_bond(struct virtual_engine *ve,
4879 		  const struct intel_engine_cs *master)
4880 {
4881 	int i;
4882 
4883 	for (i = 0; i < ve->num_bonds; i++) {
4884 		if (ve->bonds[i].master == master)
4885 			return &ve->bonds[i];
4886 	}
4887 
4888 	return NULL;
4889 }
4890 
4891 static void
4892 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
4893 {
4894 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
4895 	intel_engine_mask_t allowed, exec;
4896 	struct ve_bond *bond;
4897 
4898 	allowed = ~to_request(signal)->engine->mask;
4899 
4900 	bond = virtual_find_bond(ve, to_request(signal)->engine);
4901 	if (bond)
4902 		allowed &= bond->sibling_mask;
4903 
4904 	/* Restrict the bonded request to run on only the available engines */
4905 	exec = READ_ONCE(rq->execution_mask);
4906 	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
4907 		;
4908 
4909 	/* Prevent the master from being re-run on the bonded engines */
4910 	to_request(signal)->execution_mask &= ~allowed;
4911 }
4912 
4913 struct intel_context *
4914 intel_execlists_create_virtual(struct intel_engine_cs **siblings,
4915 			       unsigned int count)
4916 {
4917 	struct virtual_engine *ve;
4918 	unsigned int n;
4919 	int err;
4920 
4921 	if (count == 0)
4922 		return ERR_PTR(-EINVAL);
4923 
4924 	if (count == 1)
4925 		return intel_context_create(siblings[0]);
4926 
4927 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
4928 	if (!ve)
4929 		return ERR_PTR(-ENOMEM);
4930 
4931 	ve->base.i915 = siblings[0]->i915;
4932 	ve->base.gt = siblings[0]->gt;
4933 	ve->base.uncore = siblings[0]->uncore;
4934 	ve->base.id = -1;
4935 
4936 	ve->base.class = OTHER_CLASS;
4937 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
4938 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
4939 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
4940 
4941 	/*
4942 	 * The decision on whether to submit a request using semaphores
4943 	 * depends on the saturated state of the engine. We only compute
4944 	 * this during HW submission of the request, and we need for this
4945 	 * state to be globally applied to all requests being submitted
4946 	 * to this engine. Virtual engines encompass more than one physical
4947 	 * engine and so we cannot accurately tell in advance if one of those
4948 	 * engines is already saturated and so cannot afford to use a semaphore
4949 	 * and be pessimized in priority for doing so -- if we are the only
4950 	 * context using semaphores after all other clients have stopped, we
4951 	 * will be starved on the saturated system. Such a global switch for
4952 	 * semaphores is less than ideal, but alas is the current compromise.
4953 	 */
4954 	ve->base.saturated = ALL_ENGINES;
4955 
4956 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
4957 
4958 	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
4959 	intel_engine_init_breadcrumbs(&ve->base);
4960 	intel_engine_init_execlists(&ve->base);
4961 
4962 	ve->base.cops = &virtual_context_ops;
4963 	ve->base.request_alloc = execlists_request_alloc;
4964 
4965 	ve->base.schedule = i915_schedule;
4966 	ve->base.submit_request = virtual_submit_request;
4967 	ve->base.bond_execute = virtual_bond_execute;
4968 
4969 	INIT_LIST_HEAD(virtual_queue(ve));
4970 	ve->base.execlists.queue_priority_hint = INT_MIN;
4971 	tasklet_init(&ve->base.execlists.tasklet,
4972 		     virtual_submission_tasklet,
4973 		     (unsigned long)ve);
4974 
4975 	intel_context_init(&ve->context, &ve->base);
4976 
4977 	for (n = 0; n < count; n++) {
4978 		struct intel_engine_cs *sibling = siblings[n];
4979 
4980 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
4981 		if (sibling->mask & ve->base.mask) {
4982 			DRM_DEBUG("duplicate %s entry in load balancer\n",
4983 				  sibling->name);
4984 			err = -EINVAL;
4985 			goto err_put;
4986 		}
4987 
4988 		/*
4989 		 * The virtual engine implementation is tightly coupled to
4990 		 * the execlists backend -- we push out request directly
4991 		 * into a tree inside each physical engine. We could support
4992 		 * layering if we handle cloning of the requests and
4993 		 * submitting a copy into each backend.
4994 		 */
4995 		if (sibling->execlists.tasklet.func !=
4996 		    execlists_submission_tasklet) {
4997 			err = -ENODEV;
4998 			goto err_put;
4999 		}
5000 
5001 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
5002 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
5003 
5004 		ve->siblings[ve->num_siblings++] = sibling;
5005 		ve->base.mask |= sibling->mask;
5006 
5007 		/*
5008 		 * All physical engines must be compatible for their emission
5009 		 * functions (as we build the instructions during request
5010 		 * construction and do not alter them before submission
5011 		 * on the physical engine). We use the engine class as a guide
5012 		 * here, although that could be refined.
5013 		 */
5014 		if (ve->base.class != OTHER_CLASS) {
5015 			if (ve->base.class != sibling->class) {
5016 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5017 					  sibling->class, ve->base.class);
5018 				err = -EINVAL;
5019 				goto err_put;
5020 			}
5021 			continue;
5022 		}
5023 
5024 		ve->base.class = sibling->class;
5025 		ve->base.uabi_class = sibling->uabi_class;
5026 		snprintf(ve->base.name, sizeof(ve->base.name),
5027 			 "v%dx%d", ve->base.class, count);
5028 		ve->base.context_size = sibling->context_size;
5029 
5030 		ve->base.emit_bb_start = sibling->emit_bb_start;
5031 		ve->base.emit_flush = sibling->emit_flush;
5032 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
5033 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
5034 		ve->base.emit_fini_breadcrumb_dw =
5035 			sibling->emit_fini_breadcrumb_dw;
5036 
5037 		ve->base.flags = sibling->flags;
5038 	}
5039 
5040 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
5041 
5042 	return &ve->context;
5043 
5044 err_put:
5045 	intel_context_put(&ve->context);
5046 	return ERR_PTR(err);
5047 }
5048 
5049 struct intel_context *
5050 intel_execlists_clone_virtual(struct intel_engine_cs *src)
5051 {
5052 	struct virtual_engine *se = to_virtual_engine(src);
5053 	struct intel_context *dst;
5054 
5055 	dst = intel_execlists_create_virtual(se->siblings,
5056 					     se->num_siblings);
5057 	if (IS_ERR(dst))
5058 		return dst;
5059 
5060 	if (se->num_bonds) {
5061 		struct virtual_engine *de = to_virtual_engine(dst->engine);
5062 
5063 		de->bonds = kmemdup(se->bonds,
5064 				    sizeof(*se->bonds) * se->num_bonds,
5065 				    GFP_KERNEL);
5066 		if (!de->bonds) {
5067 			intel_context_put(dst);
5068 			return ERR_PTR(-ENOMEM);
5069 		}
5070 
5071 		de->num_bonds = se->num_bonds;
5072 	}
5073 
5074 	return dst;
5075 }
5076 
5077 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
5078 				     const struct intel_engine_cs *master,
5079 				     const struct intel_engine_cs *sibling)
5080 {
5081 	struct virtual_engine *ve = to_virtual_engine(engine);
5082 	struct ve_bond *bond;
5083 	int n;
5084 
5085 	/* Sanity check the sibling is part of the virtual engine */
5086 	for (n = 0; n < ve->num_siblings; n++)
5087 		if (sibling == ve->siblings[n])
5088 			break;
5089 	if (n == ve->num_siblings)
5090 		return -EINVAL;
5091 
5092 	bond = virtual_find_bond(ve, master);
5093 	if (bond) {
5094 		bond->sibling_mask |= sibling->mask;
5095 		return 0;
5096 	}
5097 
5098 	bond = krealloc(ve->bonds,
5099 			sizeof(*bond) * (ve->num_bonds + 1),
5100 			GFP_KERNEL);
5101 	if (!bond)
5102 		return -ENOMEM;
5103 
5104 	bond[ve->num_bonds].master = master;
5105 	bond[ve->num_bonds].sibling_mask = sibling->mask;
5106 
5107 	ve->bonds = bond;
5108 	ve->num_bonds++;
5109 
5110 	return 0;
5111 }
5112 
5113 struct intel_engine_cs *
5114 intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
5115 				 unsigned int sibling)
5116 {
5117 	struct virtual_engine *ve = to_virtual_engine(engine);
5118 
5119 	if (sibling >= ve->num_siblings)
5120 		return NULL;
5121 
5122 	return ve->siblings[sibling];
5123 }
5124 
5125 void intel_execlists_show_requests(struct intel_engine_cs *engine,
5126 				   struct drm_printer *m,
5127 				   void (*show_request)(struct drm_printer *m,
5128 							struct i915_request *rq,
5129 							const char *prefix),
5130 				   unsigned int max)
5131 {
5132 	const struct intel_engine_execlists *execlists = &engine->execlists;
5133 	struct i915_request *rq, *last;
5134 	unsigned long flags;
5135 	unsigned int count;
5136 	struct rb_node *rb;
5137 
5138 	spin_lock_irqsave(&engine->active.lock, flags);
5139 
5140 	last = NULL;
5141 	count = 0;
5142 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
5143 		if (count++ < max - 1)
5144 			show_request(m, rq, "\t\tE ");
5145 		else
5146 			last = rq;
5147 	}
5148 	if (last) {
5149 		if (count > max) {
5150 			drm_printf(m,
5151 				   "\t\t...skipping %d executing requests...\n",
5152 				   count - max);
5153 		}
5154 		show_request(m, last, "\t\tE ");
5155 	}
5156 
5157 	last = NULL;
5158 	count = 0;
5159 	if (execlists->queue_priority_hint != INT_MIN)
5160 		drm_printf(m, "\t\tQueue priority hint: %d\n",
5161 			   execlists->queue_priority_hint);
5162 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
5163 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
5164 		int i;
5165 
5166 		priolist_for_each_request(rq, p, i) {
5167 			if (count++ < max - 1)
5168 				show_request(m, rq, "\t\tQ ");
5169 			else
5170 				last = rq;
5171 		}
5172 	}
5173 	if (last) {
5174 		if (count > max) {
5175 			drm_printf(m,
5176 				   "\t\t...skipping %d queued requests...\n",
5177 				   count - max);
5178 		}
5179 		show_request(m, last, "\t\tQ ");
5180 	}
5181 
5182 	last = NULL;
5183 	count = 0;
5184 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
5185 		struct virtual_engine *ve =
5186 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
5187 		struct i915_request *rq = READ_ONCE(ve->request);
5188 
5189 		if (rq) {
5190 			if (count++ < max - 1)
5191 				show_request(m, rq, "\t\tV ");
5192 			else
5193 				last = rq;
5194 		}
5195 	}
5196 	if (last) {
5197 		if (count > max) {
5198 			drm_printf(m,
5199 				   "\t\t...skipping %d virtual requests...\n",
5200 				   count - max);
5201 		}
5202 		show_request(m, last, "\t\tV ");
5203 	}
5204 
5205 	spin_unlock_irqrestore(&engine->active.lock, flags);
5206 }
5207 
5208 void intel_lr_context_reset(struct intel_engine_cs *engine,
5209 			    struct intel_context *ce,
5210 			    u32 head,
5211 			    bool scrub)
5212 {
5213 	GEM_BUG_ON(!intel_context_is_pinned(ce));
5214 
5215 	/*
5216 	 * We want a simple context + ring to execute the breadcrumb update.
5217 	 * We cannot rely on the context being intact across the GPU hang,
5218 	 * so clear it and rebuild just what we need for the breadcrumb.
5219 	 * All pending requests for this context will be zapped, and any
5220 	 * future request will be after userspace has had the opportunity
5221 	 * to recreate its own state.
5222 	 */
5223 	if (scrub)
5224 		restore_default_state(ce, engine);
5225 
5226 	/* Rerun the request; its payload has been neutered (if guilty). */
5227 	__execlists_update_reg_state(ce, engine, head);
5228 }
5229 
5230 bool
5231 intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
5232 {
5233 	return engine->set_default_submission ==
5234 	       intel_execlists_set_default_submission;
5235 }
5236 
5237 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5238 #include "selftest_lrc.c"
5239 #endif
5240