xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision b830f94f)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include "gem/i915_gem_context.h"
137 
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_engine_pm.h"
142 #include "intel_lrc_reg.h"
143 #include "intel_mocs.h"
144 #include "intel_reset.h"
145 #include "intel_workarounds.h"
146 
147 #define RING_EXECLIST_QFULL		(1 << 0x2)
148 #define RING_EXECLIST1_VALID		(1 << 0x3)
149 #define RING_EXECLIST0_VALID		(1 << 0x4)
150 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
151 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
152 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
153 
154 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
155 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
156 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
157 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
158 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
159 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
160 
161 #define GEN8_CTX_STATUS_COMPLETED_MASK \
162 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
163 
164 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
165 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
166 #define WA_TAIL_DWORDS 2
167 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
168 
169 struct virtual_engine {
170 	struct intel_engine_cs base;
171 	struct intel_context context;
172 
173 	/*
174 	 * We allow only a single request through the virtual engine at a time
175 	 * (each request in the timeline waits for the completion fence of
176 	 * the previous before being submitted). By restricting ourselves to
177 	 * only submitting a single request, each request is placed on to a
178 	 * physical to maximise load spreading (by virtue of the late greedy
179 	 * scheduling -- each real engine takes the next available request
180 	 * upon idling).
181 	 */
182 	struct i915_request *request;
183 
184 	/*
185 	 * We keep a rbtree of available virtual engines inside each physical
186 	 * engine, sorted by priority. Here we preallocate the nodes we need
187 	 * for the virtual engine, indexed by physical_engine->id.
188 	 */
189 	struct ve_node {
190 		struct rb_node rb;
191 		int prio;
192 	} nodes[I915_NUM_ENGINES];
193 
194 	/*
195 	 * Keep track of bonded pairs -- restrictions upon on our selection
196 	 * of physical engines any particular request may be submitted to.
197 	 * If we receive a submit-fence from a master engine, we will only
198 	 * use one of sibling_mask physical engines.
199 	 */
200 	struct ve_bond {
201 		const struct intel_engine_cs *master;
202 		intel_engine_mask_t sibling_mask;
203 	} *bonds;
204 	unsigned int num_bonds;
205 
206 	/* And finally, which physical engines this virtual engine maps onto. */
207 	unsigned int num_siblings;
208 	struct intel_engine_cs *siblings[0];
209 };
210 
211 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
212 {
213 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
214 	return container_of(engine, struct virtual_engine, base);
215 }
216 
217 static int execlists_context_deferred_alloc(struct intel_context *ce,
218 					    struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220 				     struct intel_context *ce,
221 				     struct intel_engine_cs *engine,
222 				     struct intel_ring *ring);
223 
224 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
225 {
226 	return rb_entry(rb, struct i915_priolist, node);
227 }
228 
229 static inline int rq_prio(const struct i915_request *rq)
230 {
231 	return rq->sched.attr.priority;
232 }
233 
234 static int effective_prio(const struct i915_request *rq)
235 {
236 	int prio = rq_prio(rq);
237 
238 	/*
239 	 * On unwinding the active request, we give it a priority bump
240 	 * if it has completed waiting on any semaphore. If we know that
241 	 * the request has already started, we can prevent an unwanted
242 	 * preempt-to-idle cycle by taking that into account now.
243 	 */
244 	if (__i915_request_has_started(rq))
245 		prio |= I915_PRIORITY_NOSEMAPHORE;
246 
247 	/* Restrict mere WAIT boosts from triggering preemption */
248 	return prio | __NO_PREEMPTION;
249 }
250 
251 static int queue_prio(const struct intel_engine_execlists *execlists)
252 {
253 	struct i915_priolist *p;
254 	struct rb_node *rb;
255 
256 	rb = rb_first_cached(&execlists->queue);
257 	if (!rb)
258 		return INT_MIN;
259 
260 	/*
261 	 * As the priolist[] are inverted, with the highest priority in [0],
262 	 * we have to flip the index value to become priority.
263 	 */
264 	p = to_priolist(rb);
265 	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
266 }
267 
268 static inline bool need_preempt(const struct intel_engine_cs *engine,
269 				const struct i915_request *rq,
270 				struct rb_node *rb)
271 {
272 	int last_prio;
273 
274 	if (!engine->preempt_context)
275 		return false;
276 
277 	if (i915_request_completed(rq))
278 		return false;
279 
280 	/*
281 	 * Check if the current priority hint merits a preemption attempt.
282 	 *
283 	 * We record the highest value priority we saw during rescheduling
284 	 * prior to this dequeue, therefore we know that if it is strictly
285 	 * less than the current tail of ESLP[0], we do not need to force
286 	 * a preempt-to-idle cycle.
287 	 *
288 	 * However, the priority hint is a mere hint that we may need to
289 	 * preempt. If that hint is stale or we may be trying to preempt
290 	 * ourselves, ignore the request.
291 	 */
292 	last_prio = effective_prio(rq);
293 	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
294 					 last_prio))
295 		return false;
296 
297 	/*
298 	 * Check against the first request in ELSP[1], it will, thanks to the
299 	 * power of PI, be the highest priority of that context.
300 	 */
301 	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
302 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
303 		return true;
304 
305 	if (rb) {
306 		struct virtual_engine *ve =
307 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
308 		bool preempt = false;
309 
310 		if (engine == ve->siblings[0]) { /* only preempt one sibling */
311 			struct i915_request *next;
312 
313 			rcu_read_lock();
314 			next = READ_ONCE(ve->request);
315 			if (next)
316 				preempt = rq_prio(next) > last_prio;
317 			rcu_read_unlock();
318 		}
319 
320 		if (preempt)
321 			return preempt;
322 	}
323 
324 	/*
325 	 * If the inflight context did not trigger the preemption, then maybe
326 	 * it was the set of queued requests? Pick the highest priority in
327 	 * the queue (the first active priolist) and see if it deserves to be
328 	 * running instead of ELSP[0].
329 	 *
330 	 * The highest priority request in the queue can not be either
331 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
332 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
333 	 */
334 	return queue_prio(&engine->execlists) > last_prio;
335 }
336 
337 __maybe_unused static inline bool
338 assert_priority_queue(const struct i915_request *prev,
339 		      const struct i915_request *next)
340 {
341 	const struct intel_engine_execlists *execlists =
342 		&prev->engine->execlists;
343 
344 	/*
345 	 * Without preemption, the prev may refer to the still active element
346 	 * which we refuse to let go.
347 	 *
348 	 * Even with preemption, there are times when we think it is better not
349 	 * to preempt and leave an ostensibly lower priority request in flight.
350 	 */
351 	if (port_request(execlists->port) == prev)
352 		return true;
353 
354 	return rq_prio(prev) >= rq_prio(next);
355 }
356 
357 /*
358  * The context descriptor encodes various attributes of a context,
359  * including its GTT address and some flags. Because it's fairly
360  * expensive to calculate, we'll just do it once and cache the result,
361  * which remains valid until the context is unpinned.
362  *
363  * This is what a descriptor looks like, from LSB to MSB::
364  *
365  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
366  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
367  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
368  *      bits 53-54:    mbz, reserved for use by hardware
369  *      bits 55-63:    group ID, currently unused and set to 0
370  *
371  * Starting from Gen11, the upper dword of the descriptor has a new format:
372  *
373  *      bits 32-36:    reserved
374  *      bits 37-47:    SW context ID
375  *      bits 48:53:    engine instance
376  *      bit 54:        mbz, reserved for use by hardware
377  *      bits 55-60:    SW counter
378  *      bits 61-63:    engine class
379  *
380  * engine info, SW context ID and SW counter need to form a unique number
381  * (Context ID) per lrc.
382  */
383 static u64
384 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
385 {
386 	struct i915_gem_context *ctx = ce->gem_context;
387 	u64 desc;
388 
389 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
390 	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
391 
392 	desc = ctx->desc_template;				/* bits  0-11 */
393 	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
394 
395 	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
396 								/* bits 12-31 */
397 	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
398 
399 	/*
400 	 * The following 32bits are copied into the OA reports (dword 2).
401 	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
402 	 * anything below.
403 	 */
404 	if (INTEL_GEN(engine->i915) >= 11) {
405 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
406 		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
407 								/* bits 37-47 */
408 
409 		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
410 								/* bits 48-53 */
411 
412 		/* TODO: decide what to do with SW counter (bits 55-60) */
413 
414 		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
415 								/* bits 61-63 */
416 	} else {
417 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
418 		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
419 	}
420 
421 	return desc;
422 }
423 
424 static void unwind_wa_tail(struct i915_request *rq)
425 {
426 	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
427 	assert_ring_tail_valid(rq->ring, rq->tail);
428 }
429 
430 static struct i915_request *
431 __unwind_incomplete_requests(struct intel_engine_cs *engine)
432 {
433 	struct i915_request *rq, *rn, *active = NULL;
434 	struct list_head *uninitialized_var(pl);
435 	int prio = I915_PRIORITY_INVALID;
436 
437 	lockdep_assert_held(&engine->active.lock);
438 
439 	list_for_each_entry_safe_reverse(rq, rn,
440 					 &engine->active.requests,
441 					 sched.link) {
442 		struct intel_engine_cs *owner;
443 
444 		if (i915_request_completed(rq))
445 			break;
446 
447 		__i915_request_unsubmit(rq);
448 		unwind_wa_tail(rq);
449 
450 		GEM_BUG_ON(rq->hw_context->inflight);
451 
452 		/*
453 		 * Push the request back into the queue for later resubmission.
454 		 * If this request is not native to this physical engine (i.e.
455 		 * it came from a virtual source), push it back onto the virtual
456 		 * engine so that it can be moved across onto another physical
457 		 * engine as load dictates.
458 		 */
459 		owner = rq->hw_context->engine;
460 		if (likely(owner == engine)) {
461 			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
462 			if (rq_prio(rq) != prio) {
463 				prio = rq_prio(rq);
464 				pl = i915_sched_lookup_priolist(engine, prio);
465 			}
466 			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
467 
468 			list_move(&rq->sched.link, pl);
469 			active = rq;
470 		} else {
471 			rq->engine = owner;
472 			owner->submit_request(rq);
473 			active = NULL;
474 		}
475 	}
476 
477 	return active;
478 }
479 
480 struct i915_request *
481 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
482 {
483 	struct intel_engine_cs *engine =
484 		container_of(execlists, typeof(*engine), execlists);
485 
486 	return __unwind_incomplete_requests(engine);
487 }
488 
489 static inline void
490 execlists_context_status_change(struct i915_request *rq, unsigned long status)
491 {
492 	/*
493 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
494 	 * The compiler should eliminate this function as dead-code.
495 	 */
496 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
497 		return;
498 
499 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
500 				   status, rq);
501 }
502 
503 inline void
504 execlists_user_begin(struct intel_engine_execlists *execlists,
505 		     const struct execlist_port *port)
506 {
507 	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
508 }
509 
510 inline void
511 execlists_user_end(struct intel_engine_execlists *execlists)
512 {
513 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
514 }
515 
516 static inline void
517 execlists_context_schedule_in(struct i915_request *rq)
518 {
519 	GEM_BUG_ON(rq->hw_context->inflight);
520 
521 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522 	intel_engine_context_in(rq->engine);
523 	rq->hw_context->inflight = rq->engine;
524 }
525 
526 static void kick_siblings(struct i915_request *rq)
527 {
528 	struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
529 	struct i915_request *next = READ_ONCE(ve->request);
530 
531 	if (next && next->execution_mask & ~rq->execution_mask)
532 		tasklet_schedule(&ve->base.execlists.tasklet);
533 }
534 
535 static inline void
536 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
537 {
538 	rq->hw_context->inflight = NULL;
539 	intel_engine_context_out(rq->engine);
540 	execlists_context_status_change(rq, status);
541 	trace_i915_request_out(rq);
542 
543 	/*
544 	 * If this is part of a virtual engine, its next request may have
545 	 * been blocked waiting for access to the active context. We have
546 	 * to kick all the siblings again in case we need to switch (e.g.
547 	 * the next request is not runnable on this engine). Hopefully,
548 	 * we will already have submitted the next request before the
549 	 * tasklet runs and do not need to rebuild each virtual tree
550 	 * and kick everyone again.
551 	 */
552 	if (rq->engine != rq->hw_context->engine)
553 		kick_siblings(rq);
554 }
555 
556 static u64 execlists_update_context(struct i915_request *rq)
557 {
558 	struct intel_context *ce = rq->hw_context;
559 
560 	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
561 		intel_ring_set_tail(rq->ring, rq->tail);
562 
563 	/*
564 	 * Make sure the context image is complete before we submit it to HW.
565 	 *
566 	 * Ostensibly, writes (including the WCB) should be flushed prior to
567 	 * an uncached write such as our mmio register access, the empirical
568 	 * evidence (esp. on Braswell) suggests that the WC write into memory
569 	 * may not be visible to the HW prior to the completion of the UC
570 	 * register write and that we may begin execution from the context
571 	 * before its image is complete leading to invalid PD chasing.
572 	 *
573 	 * Furthermore, Braswell, at least, wants a full mb to be sure that
574 	 * the writes are coherent in memory (visible to the GPU) prior to
575 	 * execution, and not just visible to other CPUs (as is the result of
576 	 * wmb).
577 	 */
578 	mb();
579 	return ce->lrc_desc;
580 }
581 
582 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
583 {
584 	if (execlists->ctrl_reg) {
585 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
586 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
587 	} else {
588 		writel(upper_32_bits(desc), execlists->submit_reg);
589 		writel(lower_32_bits(desc), execlists->submit_reg);
590 	}
591 }
592 
593 static void execlists_submit_ports(struct intel_engine_cs *engine)
594 {
595 	struct intel_engine_execlists *execlists = &engine->execlists;
596 	struct execlist_port *port = execlists->port;
597 	unsigned int n;
598 
599 	/*
600 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
601 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
602 	 * not be relinquished until the device is idle (see
603 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
604 	 * that all ELSP are drained i.e. we have processed the CSB,
605 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
606 	 */
607 	GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
608 
609 	/*
610 	 * ELSQ note: the submit queue is not cleared after being submitted
611 	 * to the HW so we need to make sure we always clean it up. This is
612 	 * currently ensured by the fact that we always write the same number
613 	 * of elsq entries, keep this in mind before changing the loop below.
614 	 */
615 	for (n = execlists_num_ports(execlists); n--; ) {
616 		struct i915_request *rq;
617 		unsigned int count;
618 		u64 desc;
619 
620 		rq = port_unpack(&port[n], &count);
621 		if (rq) {
622 			GEM_BUG_ON(count > !n);
623 			if (!count++)
624 				execlists_context_schedule_in(rq);
625 			port_set(&port[n], port_pack(rq, count));
626 			desc = execlists_update_context(rq);
627 			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
628 
629 			GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
630 				  engine->name, n,
631 				  port[n].context_id, count,
632 				  rq->fence.context, rq->fence.seqno,
633 				  hwsp_seqno(rq),
634 				  rq_prio(rq));
635 		} else {
636 			GEM_BUG_ON(!n);
637 			desc = 0;
638 		}
639 
640 		write_desc(execlists, desc, n);
641 	}
642 
643 	/* we need to manually load the submit queue */
644 	if (execlists->ctrl_reg)
645 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
646 
647 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
648 }
649 
650 static bool ctx_single_port_submission(const struct intel_context *ce)
651 {
652 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
653 		i915_gem_context_force_single_submission(ce->gem_context));
654 }
655 
656 static bool can_merge_ctx(const struct intel_context *prev,
657 			  const struct intel_context *next)
658 {
659 	if (prev != next)
660 		return false;
661 
662 	if (ctx_single_port_submission(prev))
663 		return false;
664 
665 	return true;
666 }
667 
668 static bool can_merge_rq(const struct i915_request *prev,
669 			 const struct i915_request *next)
670 {
671 	GEM_BUG_ON(!assert_priority_queue(prev, next));
672 
673 	if (!can_merge_ctx(prev->hw_context, next->hw_context))
674 		return false;
675 
676 	return true;
677 }
678 
679 static void port_assign(struct execlist_port *port, struct i915_request *rq)
680 {
681 	GEM_BUG_ON(rq == port_request(port));
682 
683 	if (port_isset(port))
684 		i915_request_put(port_request(port));
685 
686 	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
687 }
688 
689 static void inject_preempt_context(struct intel_engine_cs *engine)
690 {
691 	struct intel_engine_execlists *execlists = &engine->execlists;
692 	struct intel_context *ce = engine->preempt_context;
693 	unsigned int n;
694 
695 	GEM_BUG_ON(execlists->preempt_complete_status !=
696 		   upper_32_bits(ce->lrc_desc));
697 
698 	/*
699 	 * Switch to our empty preempt context so
700 	 * the state of the GPU is known (idle).
701 	 */
702 	GEM_TRACE("%s\n", engine->name);
703 	for (n = execlists_num_ports(execlists); --n; )
704 		write_desc(execlists, 0, n);
705 
706 	write_desc(execlists, ce->lrc_desc, n);
707 
708 	/* we need to manually load the submit queue */
709 	if (execlists->ctrl_reg)
710 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
711 
712 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
713 	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
714 
715 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
716 }
717 
718 static void complete_preempt_context(struct intel_engine_execlists *execlists)
719 {
720 	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
721 
722 	if (inject_preempt_hang(execlists))
723 		return;
724 
725 	execlists_cancel_port_requests(execlists);
726 	__unwind_incomplete_requests(container_of(execlists,
727 						  struct intel_engine_cs,
728 						  execlists));
729 }
730 
731 static void virtual_update_register_offsets(u32 *regs,
732 					    struct intel_engine_cs *engine)
733 {
734 	u32 base = engine->mmio_base;
735 
736 	/* Must match execlists_init_reg_state()! */
737 
738 	regs[CTX_CONTEXT_CONTROL] =
739 		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
740 	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
741 	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
742 	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
743 	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
744 
745 	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
746 	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
747 	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
748 	regs[CTX_SECOND_BB_HEAD_U] =
749 		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
750 	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
751 	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
752 
753 	regs[CTX_CTX_TIMESTAMP] =
754 		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
755 	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
756 	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
757 	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
758 	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
759 	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
760 	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
761 	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
762 	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
763 
764 	if (engine->class == RENDER_CLASS) {
765 		regs[CTX_RCS_INDIRECT_CTX] =
766 			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
767 		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
768 			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
769 		regs[CTX_BB_PER_CTX_PTR] =
770 			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
771 
772 		regs[CTX_R_PWR_CLK_STATE] =
773 			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
774 	}
775 }
776 
777 static bool virtual_matches(const struct virtual_engine *ve,
778 			    const struct i915_request *rq,
779 			    const struct intel_engine_cs *engine)
780 {
781 	const struct intel_engine_cs *inflight;
782 
783 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
784 		return false;
785 
786 	/*
787 	 * We track when the HW has completed saving the context image
788 	 * (i.e. when we have seen the final CS event switching out of
789 	 * the context) and must not overwrite the context image before
790 	 * then. This restricts us to only using the active engine
791 	 * while the previous virtualized request is inflight (so
792 	 * we reuse the register offsets). This is a very small
793 	 * hystersis on the greedy seelction algorithm.
794 	 */
795 	inflight = READ_ONCE(ve->context.inflight);
796 	if (inflight && inflight != engine)
797 		return false;
798 
799 	return true;
800 }
801 
802 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
803 				     struct intel_engine_cs *engine)
804 {
805 	struct intel_engine_cs *old = ve->siblings[0];
806 
807 	/* All unattached (rq->engine == old) must already be completed */
808 
809 	spin_lock(&old->breadcrumbs.irq_lock);
810 	if (!list_empty(&ve->context.signal_link)) {
811 		list_move_tail(&ve->context.signal_link,
812 			       &engine->breadcrumbs.signalers);
813 		intel_engine_queue_breadcrumbs(engine);
814 	}
815 	spin_unlock(&old->breadcrumbs.irq_lock);
816 }
817 
818 static void execlists_dequeue(struct intel_engine_cs *engine)
819 {
820 	struct intel_engine_execlists * const execlists = &engine->execlists;
821 	struct execlist_port *port = execlists->port;
822 	const struct execlist_port * const last_port =
823 		&execlists->port[execlists->port_mask];
824 	struct i915_request *last = port_request(port);
825 	struct rb_node *rb;
826 	bool submit = false;
827 
828 	/*
829 	 * Hardware submission is through 2 ports. Conceptually each port
830 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
831 	 * static for a context, and unique to each, so we only execute
832 	 * requests belonging to a single context from each ring. RING_HEAD
833 	 * is maintained by the CS in the context image, it marks the place
834 	 * where it got up to last time, and through RING_TAIL we tell the CS
835 	 * where we want to execute up to this time.
836 	 *
837 	 * In this list the requests are in order of execution. Consecutive
838 	 * requests from the same context are adjacent in the ringbuffer. We
839 	 * can combine these requests into a single RING_TAIL update:
840 	 *
841 	 *              RING_HEAD...req1...req2
842 	 *                                    ^- RING_TAIL
843 	 * since to execute req2 the CS must first execute req1.
844 	 *
845 	 * Our goal then is to point each port to the end of a consecutive
846 	 * sequence of requests as being the most optimal (fewest wake ups
847 	 * and context switches) submission.
848 	 */
849 
850 	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
851 		struct virtual_engine *ve =
852 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
853 		struct i915_request *rq = READ_ONCE(ve->request);
854 
855 		if (!rq) { /* lazily cleanup after another engine handled rq */
856 			rb_erase_cached(rb, &execlists->virtual);
857 			RB_CLEAR_NODE(rb);
858 			rb = rb_first_cached(&execlists->virtual);
859 			continue;
860 		}
861 
862 		if (!virtual_matches(ve, rq, engine)) {
863 			rb = rb_next(rb);
864 			continue;
865 		}
866 
867 		break;
868 	}
869 
870 	if (last) {
871 		/*
872 		 * Don't resubmit or switch until all outstanding
873 		 * preemptions (lite-restore) are seen. Then we
874 		 * know the next preemption status we see corresponds
875 		 * to this ELSP update.
876 		 */
877 		GEM_BUG_ON(!execlists_is_active(execlists,
878 						EXECLISTS_ACTIVE_USER));
879 		GEM_BUG_ON(!port_count(&port[0]));
880 
881 		/*
882 		 * If we write to ELSP a second time before the HW has had
883 		 * a chance to respond to the previous write, we can confuse
884 		 * the HW and hit "undefined behaviour". After writing to ELSP,
885 		 * we must then wait until we see a context-switch event from
886 		 * the HW to indicate that it has had a chance to respond.
887 		 */
888 		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
889 			return;
890 
891 		if (need_preempt(engine, last, rb)) {
892 			inject_preempt_context(engine);
893 			return;
894 		}
895 
896 		/*
897 		 * In theory, we could coalesce more requests onto
898 		 * the second port (the first port is active, with
899 		 * no preemptions pending). However, that means we
900 		 * then have to deal with the possible lite-restore
901 		 * of the second port (as we submit the ELSP, there
902 		 * may be a context-switch) but also we may complete
903 		 * the resubmission before the context-switch. Ergo,
904 		 * coalescing onto the second port will cause a
905 		 * preemption event, but we cannot predict whether
906 		 * that will affect port[0] or port[1].
907 		 *
908 		 * If the second port is already active, we can wait
909 		 * until the next context-switch before contemplating
910 		 * new requests. The GPU will be busy and we should be
911 		 * able to resubmit the new ELSP before it idles,
912 		 * avoiding pipeline bubbles (momentary pauses where
913 		 * the driver is unable to keep up the supply of new
914 		 * work). However, we have to double check that the
915 		 * priorities of the ports haven't been switch.
916 		 */
917 		if (port_count(&port[1]))
918 			return;
919 
920 		/*
921 		 * WaIdleLiteRestore:bdw,skl
922 		 * Apply the wa NOOPs to prevent
923 		 * ring:HEAD == rq:TAIL as we resubmit the
924 		 * request. See gen8_emit_fini_breadcrumb() for
925 		 * where we prepare the padding after the
926 		 * end of the request.
927 		 */
928 		last->tail = last->wa_tail;
929 	}
930 
931 	while (rb) { /* XXX virtual is always taking precedence */
932 		struct virtual_engine *ve =
933 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
934 		struct i915_request *rq;
935 
936 		spin_lock(&ve->base.active.lock);
937 
938 		rq = ve->request;
939 		if (unlikely(!rq)) { /* lost the race to a sibling */
940 			spin_unlock(&ve->base.active.lock);
941 			rb_erase_cached(rb, &execlists->virtual);
942 			RB_CLEAR_NODE(rb);
943 			rb = rb_first_cached(&execlists->virtual);
944 			continue;
945 		}
946 
947 		GEM_BUG_ON(rq != ve->request);
948 		GEM_BUG_ON(rq->engine != &ve->base);
949 		GEM_BUG_ON(rq->hw_context != &ve->context);
950 
951 		if (rq_prio(rq) >= queue_prio(execlists)) {
952 			if (!virtual_matches(ve, rq, engine)) {
953 				spin_unlock(&ve->base.active.lock);
954 				rb = rb_next(rb);
955 				continue;
956 			}
957 
958 			if (last && !can_merge_rq(last, rq)) {
959 				spin_unlock(&ve->base.active.lock);
960 				return; /* leave this rq for another engine */
961 			}
962 
963 			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
964 				  engine->name,
965 				  rq->fence.context,
966 				  rq->fence.seqno,
967 				  i915_request_completed(rq) ? "!" :
968 				  i915_request_started(rq) ? "*" :
969 				  "",
970 				  yesno(engine != ve->siblings[0]));
971 
972 			ve->request = NULL;
973 			ve->base.execlists.queue_priority_hint = INT_MIN;
974 			rb_erase_cached(rb, &execlists->virtual);
975 			RB_CLEAR_NODE(rb);
976 
977 			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
978 			rq->engine = engine;
979 
980 			if (engine != ve->siblings[0]) {
981 				u32 *regs = ve->context.lrc_reg_state;
982 				unsigned int n;
983 
984 				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
985 				virtual_update_register_offsets(regs, engine);
986 
987 				if (!list_empty(&ve->context.signals))
988 					virtual_xfer_breadcrumbs(ve, engine);
989 
990 				/*
991 				 * Move the bound engine to the top of the list
992 				 * for future execution. We then kick this
993 				 * tasklet first before checking others, so that
994 				 * we preferentially reuse this set of bound
995 				 * registers.
996 				 */
997 				for (n = 1; n < ve->num_siblings; n++) {
998 					if (ve->siblings[n] == engine) {
999 						swap(ve->siblings[n],
1000 						     ve->siblings[0]);
1001 						break;
1002 					}
1003 				}
1004 
1005 				GEM_BUG_ON(ve->siblings[0] != engine);
1006 			}
1007 
1008 			__i915_request_submit(rq);
1009 			trace_i915_request_in(rq, port_index(port, execlists));
1010 			submit = true;
1011 			last = rq;
1012 		}
1013 
1014 		spin_unlock(&ve->base.active.lock);
1015 		break;
1016 	}
1017 
1018 	while ((rb = rb_first_cached(&execlists->queue))) {
1019 		struct i915_priolist *p = to_priolist(rb);
1020 		struct i915_request *rq, *rn;
1021 		int i;
1022 
1023 		priolist_for_each_request_consume(rq, rn, p, i) {
1024 			/*
1025 			 * Can we combine this request with the current port?
1026 			 * It has to be the same context/ringbuffer and not
1027 			 * have any exceptions (e.g. GVT saying never to
1028 			 * combine contexts).
1029 			 *
1030 			 * If we can combine the requests, we can execute both
1031 			 * by updating the RING_TAIL to point to the end of the
1032 			 * second request, and so we never need to tell the
1033 			 * hardware about the first.
1034 			 */
1035 			if (last && !can_merge_rq(last, rq)) {
1036 				/*
1037 				 * If we are on the second port and cannot
1038 				 * combine this request with the last, then we
1039 				 * are done.
1040 				 */
1041 				if (port == last_port)
1042 					goto done;
1043 
1044 				/*
1045 				 * We must not populate both ELSP[] with the
1046 				 * same LRCA, i.e. we must submit 2 different
1047 				 * contexts if we submit 2 ELSP.
1048 				 */
1049 				if (last->hw_context == rq->hw_context)
1050 					goto done;
1051 
1052 				/*
1053 				 * If GVT overrides us we only ever submit
1054 				 * port[0], leaving port[1] empty. Note that we
1055 				 * also have to be careful that we don't queue
1056 				 * the same context (even though a different
1057 				 * request) to the second port.
1058 				 */
1059 				if (ctx_single_port_submission(last->hw_context) ||
1060 				    ctx_single_port_submission(rq->hw_context))
1061 					goto done;
1062 
1063 
1064 				if (submit)
1065 					port_assign(port, last);
1066 				port++;
1067 
1068 				GEM_BUG_ON(port_isset(port));
1069 			}
1070 
1071 			__i915_request_submit(rq);
1072 			trace_i915_request_in(rq, port_index(port, execlists));
1073 
1074 			last = rq;
1075 			submit = true;
1076 		}
1077 
1078 		rb_erase_cached(&p->node, &execlists->queue);
1079 		i915_priolist_free(p);
1080 	}
1081 
1082 done:
1083 	/*
1084 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1085 	 *
1086 	 * We choose the priority hint such that if we add a request of greater
1087 	 * priority than this, we kick the submission tasklet to decide on
1088 	 * the right order of submitting the requests to hardware. We must
1089 	 * also be prepared to reorder requests as they are in-flight on the
1090 	 * HW. We derive the priority hint then as the first "hole" in
1091 	 * the HW submission ports and if there are no available slots,
1092 	 * the priority of the lowest executing request, i.e. last.
1093 	 *
1094 	 * When we do receive a higher priority request ready to run from the
1095 	 * user, see queue_request(), the priority hint is bumped to that
1096 	 * request triggering preemption on the next dequeue (or subsequent
1097 	 * interrupt for secondary ports).
1098 	 */
1099 	execlists->queue_priority_hint = queue_prio(execlists);
1100 
1101 	if (submit) {
1102 		port_assign(port, last);
1103 		execlists_submit_ports(engine);
1104 	}
1105 
1106 	/* We must always keep the beast fed if we have work piled up */
1107 	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
1108 		   !port_isset(execlists->port));
1109 
1110 	/* Re-evaluate the executing context setup after each preemptive kick */
1111 	if (last)
1112 		execlists_user_begin(execlists, execlists->port);
1113 
1114 	/* If the engine is now idle, so should be the flag; and vice versa. */
1115 	GEM_BUG_ON(execlists_is_active(&engine->execlists,
1116 				       EXECLISTS_ACTIVE_USER) ==
1117 		   !port_isset(engine->execlists.port));
1118 }
1119 
1120 void
1121 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1122 {
1123 	struct execlist_port *port = execlists->port;
1124 	unsigned int num_ports = execlists_num_ports(execlists);
1125 
1126 	while (num_ports-- && port_isset(port)) {
1127 		struct i915_request *rq = port_request(port);
1128 
1129 		GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1130 			  rq->engine->name,
1131 			  (unsigned int)(port - execlists->port),
1132 			  rq->fence.context, rq->fence.seqno,
1133 			  hwsp_seqno(rq));
1134 
1135 		GEM_BUG_ON(!execlists->active);
1136 		execlists_context_schedule_out(rq,
1137 					       i915_request_completed(rq) ?
1138 					       INTEL_CONTEXT_SCHEDULE_OUT :
1139 					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1140 
1141 		i915_request_put(rq);
1142 
1143 		memset(port, 0, sizeof(*port));
1144 		port++;
1145 	}
1146 
1147 	execlists_clear_all_active(execlists);
1148 }
1149 
1150 static inline void
1151 invalidate_csb_entries(const u32 *first, const u32 *last)
1152 {
1153 	clflush((void *)first);
1154 	clflush((void *)last);
1155 }
1156 
1157 static inline bool
1158 reset_in_progress(const struct intel_engine_execlists *execlists)
1159 {
1160 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1161 }
1162 
1163 static void process_csb(struct intel_engine_cs *engine)
1164 {
1165 	struct intel_engine_execlists * const execlists = &engine->execlists;
1166 	struct execlist_port *port = execlists->port;
1167 	const u32 * const buf = execlists->csb_status;
1168 	const u8 num_entries = execlists->csb_size;
1169 	u8 head, tail;
1170 
1171 	lockdep_assert_held(&engine->active.lock);
1172 	GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1173 
1174 	/*
1175 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1176 	 * When reading from the csb_write mmio register, we have to be
1177 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1178 	 * the low 4bits. As it happens we know the next 4bits are always
1179 	 * zero and so we can simply masked off the low u8 of the register
1180 	 * and treat it identically to reading from the HWSP (without having
1181 	 * to use explicit shifting and masking, and probably bifurcating
1182 	 * the code to handle the legacy mmio read).
1183 	 */
1184 	head = execlists->csb_head;
1185 	tail = READ_ONCE(*execlists->csb_write);
1186 	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1187 	if (unlikely(head == tail))
1188 		return;
1189 
1190 	/*
1191 	 * Hopefully paired with a wmb() in HW!
1192 	 *
1193 	 * We must complete the read of the write pointer before any reads
1194 	 * from the CSB, so that we do not see stale values. Without an rmb
1195 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1196 	 * we perform the READ_ONCE(*csb_write).
1197 	 */
1198 	rmb();
1199 
1200 	do {
1201 		struct i915_request *rq;
1202 		unsigned int status;
1203 		unsigned int count;
1204 
1205 		if (++head == num_entries)
1206 			head = 0;
1207 
1208 		/*
1209 		 * We are flying near dragons again.
1210 		 *
1211 		 * We hold a reference to the request in execlist_port[]
1212 		 * but no more than that. We are operating in softirq
1213 		 * context and so cannot hold any mutex or sleep. That
1214 		 * prevents us stopping the requests we are processing
1215 		 * in port[] from being retired simultaneously (the
1216 		 * breadcrumb will be complete before we see the
1217 		 * context-switch). As we only hold the reference to the
1218 		 * request, any pointer chasing underneath the request
1219 		 * is subject to a potential use-after-free. Thus we
1220 		 * store all of the bookkeeping within port[] as
1221 		 * required, and avoid using unguarded pointers beneath
1222 		 * request itself. The same applies to the atomic
1223 		 * status notifier.
1224 		 */
1225 
1226 		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1227 			  engine->name, head,
1228 			  buf[2 * head + 0], buf[2 * head + 1],
1229 			  execlists->active);
1230 
1231 		status = buf[2 * head];
1232 		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1233 			      GEN8_CTX_STATUS_PREEMPTED))
1234 			execlists_set_active(execlists,
1235 					     EXECLISTS_ACTIVE_HWACK);
1236 		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1237 			execlists_clear_active(execlists,
1238 					       EXECLISTS_ACTIVE_HWACK);
1239 
1240 		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1241 			continue;
1242 
1243 		/* We should never get a COMPLETED | IDLE_ACTIVE! */
1244 		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1245 
1246 		if (status & GEN8_CTX_STATUS_COMPLETE &&
1247 		    buf[2*head + 1] == execlists->preempt_complete_status) {
1248 			GEM_TRACE("%s preempt-idle\n", engine->name);
1249 			complete_preempt_context(execlists);
1250 			continue;
1251 		}
1252 
1253 		if (status & GEN8_CTX_STATUS_PREEMPTED &&
1254 		    execlists_is_active(execlists,
1255 					EXECLISTS_ACTIVE_PREEMPT))
1256 			continue;
1257 
1258 		GEM_BUG_ON(!execlists_is_active(execlists,
1259 						EXECLISTS_ACTIVE_USER));
1260 
1261 		rq = port_unpack(port, &count);
1262 		GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1263 			  engine->name,
1264 			  port->context_id, count,
1265 			  rq ? rq->fence.context : 0,
1266 			  rq ? rq->fence.seqno : 0,
1267 			  rq ? hwsp_seqno(rq) : 0,
1268 			  rq ? rq_prio(rq) : 0);
1269 
1270 		/* Check the context/desc id for this event matches */
1271 		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1272 
1273 		GEM_BUG_ON(count == 0);
1274 		if (--count == 0) {
1275 			/*
1276 			 * On the final event corresponding to the
1277 			 * submission of this context, we expect either
1278 			 * an element-switch event or a completion
1279 			 * event (and on completion, the active-idle
1280 			 * marker). No more preemptions, lite-restore
1281 			 * or otherwise.
1282 			 */
1283 			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1284 			GEM_BUG_ON(port_isset(&port[1]) &&
1285 				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1286 			GEM_BUG_ON(!port_isset(&port[1]) &&
1287 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1288 
1289 			/*
1290 			 * We rely on the hardware being strongly
1291 			 * ordered, that the breadcrumb write is
1292 			 * coherent (visible from the CPU) before the
1293 			 * user interrupt and CSB is processed.
1294 			 */
1295 			GEM_BUG_ON(!i915_request_completed(rq));
1296 
1297 			execlists_context_schedule_out(rq,
1298 						       INTEL_CONTEXT_SCHEDULE_OUT);
1299 			i915_request_put(rq);
1300 
1301 			GEM_TRACE("%s completed ctx=%d\n",
1302 				  engine->name, port->context_id);
1303 
1304 			port = execlists_port_complete(execlists, port);
1305 			if (port_isset(port))
1306 				execlists_user_begin(execlists, port);
1307 			else
1308 				execlists_user_end(execlists);
1309 		} else {
1310 			port_set(port, port_pack(rq, count));
1311 		}
1312 	} while (head != tail);
1313 
1314 	execlists->csb_head = head;
1315 
1316 	/*
1317 	 * Gen11 has proven to fail wrt global observation point between
1318 	 * entry and tail update, failing on the ordering and thus
1319 	 * we see an old entry in the context status buffer.
1320 	 *
1321 	 * Forcibly evict out entries for the next gpu csb update,
1322 	 * to increase the odds that we get a fresh entries with non
1323 	 * working hardware. The cost for doing so comes out mostly with
1324 	 * the wash as hardware, working or not, will need to do the
1325 	 * invalidation before.
1326 	 */
1327 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1328 }
1329 
1330 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1331 {
1332 	lockdep_assert_held(&engine->active.lock);
1333 
1334 	process_csb(engine);
1335 	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1336 		execlists_dequeue(engine);
1337 }
1338 
1339 /*
1340  * Check the unread Context Status Buffers and manage the submission of new
1341  * contexts to the ELSP accordingly.
1342  */
1343 static void execlists_submission_tasklet(unsigned long data)
1344 {
1345 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1346 	unsigned long flags;
1347 
1348 	GEM_TRACE("%s awake?=%d, active=%x\n",
1349 		  engine->name,
1350 		  !!intel_wakeref_active(&engine->wakeref),
1351 		  engine->execlists.active);
1352 
1353 	spin_lock_irqsave(&engine->active.lock, flags);
1354 	__execlists_submission_tasklet(engine);
1355 	spin_unlock_irqrestore(&engine->active.lock, flags);
1356 }
1357 
1358 static void queue_request(struct intel_engine_cs *engine,
1359 			  struct i915_sched_node *node,
1360 			  int prio)
1361 {
1362 	GEM_BUG_ON(!list_empty(&node->link));
1363 	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1364 }
1365 
1366 static void __submit_queue_imm(struct intel_engine_cs *engine)
1367 {
1368 	struct intel_engine_execlists * const execlists = &engine->execlists;
1369 
1370 	if (reset_in_progress(execlists))
1371 		return; /* defer until we restart the engine following reset */
1372 
1373 	if (execlists->tasklet.func == execlists_submission_tasklet)
1374 		__execlists_submission_tasklet(engine);
1375 	else
1376 		tasklet_hi_schedule(&execlists->tasklet);
1377 }
1378 
1379 static void submit_queue(struct intel_engine_cs *engine, int prio)
1380 {
1381 	if (prio > engine->execlists.queue_priority_hint) {
1382 		engine->execlists.queue_priority_hint = prio;
1383 		__submit_queue_imm(engine);
1384 	}
1385 }
1386 
1387 static void execlists_submit_request(struct i915_request *request)
1388 {
1389 	struct intel_engine_cs *engine = request->engine;
1390 	unsigned long flags;
1391 
1392 	/* Will be called from irq-context when using foreign fences. */
1393 	spin_lock_irqsave(&engine->active.lock, flags);
1394 
1395 	queue_request(engine, &request->sched, rq_prio(request));
1396 
1397 	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1398 	GEM_BUG_ON(list_empty(&request->sched.link));
1399 
1400 	submit_queue(engine, rq_prio(request));
1401 
1402 	spin_unlock_irqrestore(&engine->active.lock, flags);
1403 }
1404 
1405 static void __execlists_context_fini(struct intel_context *ce)
1406 {
1407 	intel_ring_put(ce->ring);
1408 
1409 	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1410 	i915_gem_object_put(ce->state->obj);
1411 }
1412 
1413 static void execlists_context_destroy(struct kref *kref)
1414 {
1415 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1416 
1417 	GEM_BUG_ON(intel_context_is_pinned(ce));
1418 
1419 	if (ce->state)
1420 		__execlists_context_fini(ce);
1421 
1422 	intel_context_free(ce);
1423 }
1424 
1425 static void execlists_context_unpin(struct intel_context *ce)
1426 {
1427 	i915_gem_context_unpin_hw_id(ce->gem_context);
1428 	i915_gem_object_unpin_map(ce->state->obj);
1429 	intel_ring_unpin(ce->ring);
1430 }
1431 
1432 static void
1433 __execlists_update_reg_state(struct intel_context *ce,
1434 			     struct intel_engine_cs *engine)
1435 {
1436 	struct intel_ring *ring = ce->ring;
1437 	u32 *regs = ce->lrc_reg_state;
1438 
1439 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1440 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1441 
1442 	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1443 	regs[CTX_RING_HEAD + 1] = ring->head;
1444 	regs[CTX_RING_TAIL + 1] = ring->tail;
1445 
1446 	/* RPCS */
1447 	if (engine->class == RENDER_CLASS)
1448 		regs[CTX_R_PWR_CLK_STATE + 1] =
1449 			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1450 }
1451 
1452 static int
1453 __execlists_context_pin(struct intel_context *ce,
1454 			struct intel_engine_cs *engine)
1455 {
1456 	void *vaddr;
1457 	int ret;
1458 
1459 	GEM_BUG_ON(!ce->gem_context->vm);
1460 
1461 	ret = execlists_context_deferred_alloc(ce, engine);
1462 	if (ret)
1463 		goto err;
1464 	GEM_BUG_ON(!ce->state);
1465 
1466 	ret = intel_context_active_acquire(ce,
1467 					   engine->i915->ggtt.pin_bias |
1468 					   PIN_OFFSET_BIAS |
1469 					   PIN_HIGH);
1470 	if (ret)
1471 		goto err;
1472 
1473 	vaddr = i915_gem_object_pin_map(ce->state->obj,
1474 					i915_coherent_map_type(engine->i915) |
1475 					I915_MAP_OVERRIDE);
1476 	if (IS_ERR(vaddr)) {
1477 		ret = PTR_ERR(vaddr);
1478 		goto unpin_active;
1479 	}
1480 
1481 	ret = intel_ring_pin(ce->ring);
1482 	if (ret)
1483 		goto unpin_map;
1484 
1485 	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1486 	if (ret)
1487 		goto unpin_ring;
1488 
1489 	ce->lrc_desc = lrc_descriptor(ce, engine);
1490 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1491 	__execlists_update_reg_state(ce, engine);
1492 
1493 	return 0;
1494 
1495 unpin_ring:
1496 	intel_ring_unpin(ce->ring);
1497 unpin_map:
1498 	i915_gem_object_unpin_map(ce->state->obj);
1499 unpin_active:
1500 	intel_context_active_release(ce);
1501 err:
1502 	return ret;
1503 }
1504 
1505 static int execlists_context_pin(struct intel_context *ce)
1506 {
1507 	return __execlists_context_pin(ce, ce->engine);
1508 }
1509 
1510 static void execlists_context_reset(struct intel_context *ce)
1511 {
1512 	/*
1513 	 * Because we emit WA_TAIL_DWORDS there may be a disparity
1514 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
1515 	 * that stored in context. As we only write new commands from
1516 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
1517 	 * starts reading from its RING_HEAD from the context, it may try to
1518 	 * execute that junk and die.
1519 	 *
1520 	 * The contexts that are stilled pinned on resume belong to the
1521 	 * kernel, and are local to each engine. All other contexts will
1522 	 * have their head/tail sanitized upon pinning before use, so they
1523 	 * will never see garbage,
1524 	 *
1525 	 * So to avoid that we reset the context images upon resume. For
1526 	 * simplicity, we just zero everything out.
1527 	 */
1528 	intel_ring_reset(ce->ring, 0);
1529 	__execlists_update_reg_state(ce, ce->engine);
1530 }
1531 
1532 static const struct intel_context_ops execlists_context_ops = {
1533 	.pin = execlists_context_pin,
1534 	.unpin = execlists_context_unpin,
1535 
1536 	.enter = intel_context_enter_engine,
1537 	.exit = intel_context_exit_engine,
1538 
1539 	.reset = execlists_context_reset,
1540 	.destroy = execlists_context_destroy,
1541 };
1542 
1543 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1544 {
1545 	u32 *cs;
1546 
1547 	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1548 
1549 	cs = intel_ring_begin(rq, 6);
1550 	if (IS_ERR(cs))
1551 		return PTR_ERR(cs);
1552 
1553 	/*
1554 	 * Check if we have been preempted before we even get started.
1555 	 *
1556 	 * After this point i915_request_started() reports true, even if
1557 	 * we get preempted and so are no longer running.
1558 	 */
1559 	*cs++ = MI_ARB_CHECK;
1560 	*cs++ = MI_NOOP;
1561 
1562 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1563 	*cs++ = rq->timeline->hwsp_offset;
1564 	*cs++ = 0;
1565 	*cs++ = rq->fence.seqno - 1;
1566 
1567 	intel_ring_advance(rq, cs);
1568 
1569 	/* Record the updated position of the request's payload */
1570 	rq->infix = intel_ring_offset(rq, cs);
1571 
1572 	return 0;
1573 }
1574 
1575 static int emit_pdps(struct i915_request *rq)
1576 {
1577 	const struct intel_engine_cs * const engine = rq->engine;
1578 	struct i915_ppgtt * const ppgtt =
1579 		i915_vm_to_ppgtt(rq->gem_context->vm);
1580 	int err, i;
1581 	u32 *cs;
1582 
1583 	GEM_BUG_ON(intel_vgpu_active(rq->i915));
1584 
1585 	/*
1586 	 * Beware ye of the dragons, this sequence is magic!
1587 	 *
1588 	 * Small changes to this sequence can cause anything from
1589 	 * GPU hangs to forcewake errors and machine lockups!
1590 	 */
1591 
1592 	/* Flush any residual operations from the context load */
1593 	err = engine->emit_flush(rq, EMIT_FLUSH);
1594 	if (err)
1595 		return err;
1596 
1597 	/* Magic required to prevent forcewake errors! */
1598 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
1599 	if (err)
1600 		return err;
1601 
1602 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1603 	if (IS_ERR(cs))
1604 		return PTR_ERR(cs);
1605 
1606 	/* Ensure the LRI have landed before we invalidate & continue */
1607 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1608 	for (i = GEN8_3LVL_PDPES; i--; ) {
1609 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1610 		u32 base = engine->mmio_base;
1611 
1612 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1613 		*cs++ = upper_32_bits(pd_daddr);
1614 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1615 		*cs++ = lower_32_bits(pd_daddr);
1616 	}
1617 	*cs++ = MI_NOOP;
1618 
1619 	intel_ring_advance(rq, cs);
1620 
1621 	/* Be doubly sure the LRI have landed before proceeding */
1622 	err = engine->emit_flush(rq, EMIT_FLUSH);
1623 	if (err)
1624 		return err;
1625 
1626 	/* Re-invalidate the TLB for luck */
1627 	return engine->emit_flush(rq, EMIT_INVALIDATE);
1628 }
1629 
1630 static int execlists_request_alloc(struct i915_request *request)
1631 {
1632 	int ret;
1633 
1634 	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1635 
1636 	/*
1637 	 * Flush enough space to reduce the likelihood of waiting after
1638 	 * we start building the request - in which case we will just
1639 	 * have to repeat work.
1640 	 */
1641 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1642 
1643 	/*
1644 	 * Note that after this point, we have committed to using
1645 	 * this request as it is being used to both track the
1646 	 * state of engine initialisation and liveness of the
1647 	 * golden renderstate above. Think twice before you try
1648 	 * to cancel/unwind this request now.
1649 	 */
1650 
1651 	/* Unconditionally invalidate GPU caches and TLBs. */
1652 	if (i915_vm_is_4lvl(request->gem_context->vm))
1653 		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1654 	else
1655 		ret = emit_pdps(request);
1656 	if (ret)
1657 		return ret;
1658 
1659 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1660 	return 0;
1661 }
1662 
1663 /*
1664  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1665  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1666  * but there is a slight complication as this is applied in WA batch where the
1667  * values are only initialized once so we cannot take register value at the
1668  * beginning and reuse it further; hence we save its value to memory, upload a
1669  * constant value with bit21 set and then we restore it back with the saved value.
1670  * To simplify the WA, a constant value is formed by using the default value
1671  * of this register. This shouldn't be a problem because we are only modifying
1672  * it for a short period and this batch in non-premptible. We can ofcourse
1673  * use additional instructions that read the actual value of the register
1674  * at that time and set our bit of interest but it makes the WA complicated.
1675  *
1676  * This WA is also required for Gen9 so extracting as a function avoids
1677  * code duplication.
1678  */
1679 static u32 *
1680 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1681 {
1682 	/* NB no one else is allowed to scribble over scratch + 256! */
1683 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1684 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1685 	*batch++ = i915_scratch_offset(engine->i915) + 256;
1686 	*batch++ = 0;
1687 
1688 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1689 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1690 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1691 
1692 	batch = gen8_emit_pipe_control(batch,
1693 				       PIPE_CONTROL_CS_STALL |
1694 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1695 				       0);
1696 
1697 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1698 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1699 	*batch++ = i915_scratch_offset(engine->i915) + 256;
1700 	*batch++ = 0;
1701 
1702 	return batch;
1703 }
1704 
1705 /*
1706  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1707  * initialized at the beginning and shared across all contexts but this field
1708  * helps us to have multiple batches at different offsets and select them based
1709  * on a criteria. At the moment this batch always start at the beginning of the page
1710  * and at this point we don't have multiple wa_ctx batch buffers.
1711  *
1712  * The number of WA applied are not known at the beginning; we use this field
1713  * to return the no of DWORDS written.
1714  *
1715  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1716  * so it adds NOOPs as padding to make it cacheline aligned.
1717  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1718  * makes a complete batch buffer.
1719  */
1720 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1721 {
1722 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1723 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1724 
1725 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1726 	if (IS_BROADWELL(engine->i915))
1727 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1728 
1729 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1730 	/* Actual scratch location is at 128 bytes offset */
1731 	batch = gen8_emit_pipe_control(batch,
1732 				       PIPE_CONTROL_FLUSH_L3 |
1733 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1734 				       PIPE_CONTROL_CS_STALL |
1735 				       PIPE_CONTROL_QW_WRITE,
1736 				       i915_scratch_offset(engine->i915) +
1737 				       2 * CACHELINE_BYTES);
1738 
1739 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1740 
1741 	/* Pad to end of cacheline */
1742 	while ((unsigned long)batch % CACHELINE_BYTES)
1743 		*batch++ = MI_NOOP;
1744 
1745 	/*
1746 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1747 	 * execution depends on the length specified in terms of cache lines
1748 	 * in the register CTX_RCS_INDIRECT_CTX
1749 	 */
1750 
1751 	return batch;
1752 }
1753 
1754 struct lri {
1755 	i915_reg_t reg;
1756 	u32 value;
1757 };
1758 
1759 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1760 {
1761 	GEM_BUG_ON(!count || count > 63);
1762 
1763 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1764 	do {
1765 		*batch++ = i915_mmio_reg_offset(lri->reg);
1766 		*batch++ = lri->value;
1767 	} while (lri++, --count);
1768 	*batch++ = MI_NOOP;
1769 
1770 	return batch;
1771 }
1772 
1773 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1774 {
1775 	static const struct lri lri[] = {
1776 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1777 		{
1778 			COMMON_SLICE_CHICKEN2,
1779 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1780 				       0),
1781 		},
1782 
1783 		/* BSpec: 11391 */
1784 		{
1785 			FF_SLICE_CHICKEN,
1786 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1787 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1788 		},
1789 
1790 		/* BSpec: 11299 */
1791 		{
1792 			_3D_CHICKEN3,
1793 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1794 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1795 		}
1796 	};
1797 
1798 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1799 
1800 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1801 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1802 
1803 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1804 
1805 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1806 	if (HAS_POOLED_EU(engine->i915)) {
1807 		/*
1808 		 * EU pool configuration is setup along with golden context
1809 		 * during context initialization. This value depends on
1810 		 * device type (2x6 or 3x6) and needs to be updated based
1811 		 * on which subslice is disabled especially for 2x6
1812 		 * devices, however it is safe to load default
1813 		 * configuration of 3x6 device instead of masking off
1814 		 * corresponding bits because HW ignores bits of a disabled
1815 		 * subslice and drops down to appropriate config. Please
1816 		 * see render_state_setup() in i915_gem_render_state.c for
1817 		 * possible configurations, to avoid duplication they are
1818 		 * not shown here again.
1819 		 */
1820 		*batch++ = GEN9_MEDIA_POOL_STATE;
1821 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1822 		*batch++ = 0x00777000;
1823 		*batch++ = 0;
1824 		*batch++ = 0;
1825 		*batch++ = 0;
1826 	}
1827 
1828 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1829 
1830 	/* Pad to end of cacheline */
1831 	while ((unsigned long)batch % CACHELINE_BYTES)
1832 		*batch++ = MI_NOOP;
1833 
1834 	return batch;
1835 }
1836 
1837 static u32 *
1838 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1839 {
1840 	int i;
1841 
1842 	/*
1843 	 * WaPipeControlBefore3DStateSamplePattern: cnl
1844 	 *
1845 	 * Ensure the engine is idle prior to programming a
1846 	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1847 	 */
1848 	batch = gen8_emit_pipe_control(batch,
1849 				       PIPE_CONTROL_CS_STALL,
1850 				       0);
1851 	/*
1852 	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1853 	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1854 	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1855 	 * confusing. Since gen8_emit_pipe_control() already advances the
1856 	 * batch by 6 dwords, we advance the other 10 here, completing a
1857 	 * cacheline. It's not clear if the workaround requires this padding
1858 	 * before other commands, or if it's just the regular padding we would
1859 	 * already have for the workaround bb, so leave it here for now.
1860 	 */
1861 	for (i = 0; i < 10; i++)
1862 		*batch++ = MI_NOOP;
1863 
1864 	/* Pad to end of cacheline */
1865 	while ((unsigned long)batch % CACHELINE_BYTES)
1866 		*batch++ = MI_NOOP;
1867 
1868 	return batch;
1869 }
1870 
1871 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1872 
1873 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1874 {
1875 	struct drm_i915_gem_object *obj;
1876 	struct i915_vma *vma;
1877 	int err;
1878 
1879 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1880 	if (IS_ERR(obj))
1881 		return PTR_ERR(obj);
1882 
1883 	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1884 	if (IS_ERR(vma)) {
1885 		err = PTR_ERR(vma);
1886 		goto err;
1887 	}
1888 
1889 	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1890 	if (err)
1891 		goto err;
1892 
1893 	engine->wa_ctx.vma = vma;
1894 	return 0;
1895 
1896 err:
1897 	i915_gem_object_put(obj);
1898 	return err;
1899 }
1900 
1901 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1902 {
1903 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1904 }
1905 
1906 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1907 
1908 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1909 {
1910 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1911 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1912 					    &wa_ctx->per_ctx };
1913 	wa_bb_func_t wa_bb_fn[2];
1914 	struct page *page;
1915 	void *batch, *batch_ptr;
1916 	unsigned int i;
1917 	int ret;
1918 
1919 	if (engine->class != RENDER_CLASS)
1920 		return 0;
1921 
1922 	switch (INTEL_GEN(engine->i915)) {
1923 	case 11:
1924 		return 0;
1925 	case 10:
1926 		wa_bb_fn[0] = gen10_init_indirectctx_bb;
1927 		wa_bb_fn[1] = NULL;
1928 		break;
1929 	case 9:
1930 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1931 		wa_bb_fn[1] = NULL;
1932 		break;
1933 	case 8:
1934 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1935 		wa_bb_fn[1] = NULL;
1936 		break;
1937 	default:
1938 		MISSING_CASE(INTEL_GEN(engine->i915));
1939 		return 0;
1940 	}
1941 
1942 	ret = lrc_setup_wa_ctx(engine);
1943 	if (ret) {
1944 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1945 		return ret;
1946 	}
1947 
1948 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1949 	batch = batch_ptr = kmap_atomic(page);
1950 
1951 	/*
1952 	 * Emit the two workaround batch buffers, recording the offset from the
1953 	 * start of the workaround batch buffer object for each and their
1954 	 * respective sizes.
1955 	 */
1956 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1957 		wa_bb[i]->offset = batch_ptr - batch;
1958 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1959 						  CACHELINE_BYTES))) {
1960 			ret = -EINVAL;
1961 			break;
1962 		}
1963 		if (wa_bb_fn[i])
1964 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1965 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1966 	}
1967 
1968 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1969 
1970 	kunmap_atomic(batch);
1971 	if (ret)
1972 		lrc_destroy_wa_ctx(engine);
1973 
1974 	return ret;
1975 }
1976 
1977 static void enable_execlists(struct intel_engine_cs *engine)
1978 {
1979 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1980 
1981 	if (INTEL_GEN(engine->i915) >= 11)
1982 		ENGINE_WRITE(engine,
1983 			     RING_MODE_GEN7,
1984 			     _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1985 	else
1986 		ENGINE_WRITE(engine,
1987 			     RING_MODE_GEN7,
1988 			     _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1989 
1990 	ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1991 
1992 	ENGINE_WRITE(engine,
1993 		     RING_HWS_PGA,
1994 		     i915_ggtt_offset(engine->status_page.vma));
1995 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
1996 }
1997 
1998 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1999 {
2000 	bool unexpected = false;
2001 
2002 	if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
2003 		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2004 		unexpected = true;
2005 	}
2006 
2007 	return unexpected;
2008 }
2009 
2010 static int execlists_resume(struct intel_engine_cs *engine)
2011 {
2012 	intel_engine_apply_workarounds(engine);
2013 	intel_engine_apply_whitelist(engine);
2014 
2015 	intel_mocs_init_engine(engine);
2016 
2017 	intel_engine_reset_breadcrumbs(engine);
2018 
2019 	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2020 		struct drm_printer p = drm_debug_printer(__func__);
2021 
2022 		intel_engine_dump(engine, &p, NULL);
2023 	}
2024 
2025 	enable_execlists(engine);
2026 
2027 	return 0;
2028 }
2029 
2030 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2031 {
2032 	struct intel_engine_execlists * const execlists = &engine->execlists;
2033 	unsigned long flags;
2034 
2035 	GEM_TRACE("%s: depth<-%d\n", engine->name,
2036 		  atomic_read(&execlists->tasklet.count));
2037 
2038 	/*
2039 	 * Prevent request submission to the hardware until we have
2040 	 * completed the reset in i915_gem_reset_finish(). If a request
2041 	 * is completed by one engine, it may then queue a request
2042 	 * to a second via its execlists->tasklet *just* as we are
2043 	 * calling engine->resume() and also writing the ELSP.
2044 	 * Turning off the execlists->tasklet until the reset is over
2045 	 * prevents the race.
2046 	 */
2047 	__tasklet_disable_sync_once(&execlists->tasklet);
2048 	GEM_BUG_ON(!reset_in_progress(execlists));
2049 
2050 	intel_engine_stop_cs(engine);
2051 
2052 	/* And flush any current direct submission. */
2053 	spin_lock_irqsave(&engine->active.lock, flags);
2054 	spin_unlock_irqrestore(&engine->active.lock, flags);
2055 }
2056 
2057 static bool lrc_regs_ok(const struct i915_request *rq)
2058 {
2059 	const struct intel_ring *ring = rq->ring;
2060 	const u32 *regs = rq->hw_context->lrc_reg_state;
2061 
2062 	/* Quick spot check for the common signs of context corruption */
2063 
2064 	if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
2065 	    (RING_CTL_SIZE(ring->size) | RING_VALID))
2066 		return false;
2067 
2068 	if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
2069 		return false;
2070 
2071 	return true;
2072 }
2073 
2074 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
2075 {
2076 	const unsigned int reset_value = execlists->csb_size - 1;
2077 
2078 	/*
2079 	 * After a reset, the HW starts writing into CSB entry [0]. We
2080 	 * therefore have to set our HEAD pointer back one entry so that
2081 	 * the *first* entry we check is entry 0. To complicate this further,
2082 	 * as we don't wait for the first interrupt after reset, we have to
2083 	 * fake the HW write to point back to the last entry so that our
2084 	 * inline comparison of our cached head position against the last HW
2085 	 * write works even before the first interrupt.
2086 	 */
2087 	execlists->csb_head = reset_value;
2088 	WRITE_ONCE(*execlists->csb_write, reset_value);
2089 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2090 
2091 	invalidate_csb_entries(&execlists->csb_status[0],
2092 			       &execlists->csb_status[reset_value]);
2093 }
2094 
2095 static struct i915_request *active_request(struct i915_request *rq)
2096 {
2097 	const struct list_head * const list = &rq->engine->active.requests;
2098 	const struct intel_context * const context = rq->hw_context;
2099 	struct i915_request *active = NULL;
2100 
2101 	list_for_each_entry_from_reverse(rq, list, sched.link) {
2102 		if (i915_request_completed(rq))
2103 			break;
2104 
2105 		if (rq->hw_context != context)
2106 			break;
2107 
2108 		active = rq;
2109 	}
2110 
2111 	return active;
2112 }
2113 
2114 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2115 {
2116 	struct intel_engine_execlists * const execlists = &engine->execlists;
2117 	struct intel_context *ce;
2118 	struct i915_request *rq;
2119 	u32 *regs;
2120 
2121 	process_csb(engine); /* drain preemption events */
2122 
2123 	/* Following the reset, we need to reload the CSB read/write pointers */
2124 	reset_csb_pointers(&engine->execlists);
2125 
2126 	/*
2127 	 * Save the currently executing context, even if we completed
2128 	 * its request, it was still running at the time of the
2129 	 * reset and will have been clobbered.
2130 	 */
2131 	if (!port_isset(execlists->port))
2132 		goto out_clear;
2133 
2134 	rq = port_request(execlists->port);
2135 	ce = rq->hw_context;
2136 
2137 	/*
2138 	 * Catch up with any missed context-switch interrupts.
2139 	 *
2140 	 * Ideally we would just read the remaining CSB entries now that we
2141 	 * know the gpu is idle. However, the CSB registers are sometimes^W
2142 	 * often trashed across a GPU reset! Instead we have to rely on
2143 	 * guessing the missed context-switch events by looking at what
2144 	 * requests were completed.
2145 	 */
2146 	execlists_cancel_port_requests(execlists);
2147 
2148 	rq = active_request(rq);
2149 	if (!rq)
2150 		goto out_replay;
2151 
2152 	/*
2153 	 * If this request hasn't started yet, e.g. it is waiting on a
2154 	 * semaphore, we need to avoid skipping the request or else we
2155 	 * break the signaling chain. However, if the context is corrupt
2156 	 * the request will not restart and we will be stuck with a wedged
2157 	 * device. It is quite often the case that if we issue a reset
2158 	 * while the GPU is loading the context image, that the context
2159 	 * image becomes corrupt.
2160 	 *
2161 	 * Otherwise, if we have not started yet, the request should replay
2162 	 * perfectly and we do not need to flag the result as being erroneous.
2163 	 */
2164 	if (!i915_request_started(rq) && lrc_regs_ok(rq))
2165 		goto out_replay;
2166 
2167 	/*
2168 	 * If the request was innocent, we leave the request in the ELSP
2169 	 * and will try to replay it on restarting. The context image may
2170 	 * have been corrupted by the reset, in which case we may have
2171 	 * to service a new GPU hang, but more likely we can continue on
2172 	 * without impact.
2173 	 *
2174 	 * If the request was guilty, we presume the context is corrupt
2175 	 * and have to at least restore the RING register in the context
2176 	 * image back to the expected values to skip over the guilty request.
2177 	 */
2178 	i915_reset_request(rq, stalled);
2179 	if (!stalled && lrc_regs_ok(rq))
2180 		goto out_replay;
2181 
2182 	/*
2183 	 * We want a simple context + ring to execute the breadcrumb update.
2184 	 * We cannot rely on the context being intact across the GPU hang,
2185 	 * so clear it and rebuild just what we need for the breadcrumb.
2186 	 * All pending requests for this context will be zapped, and any
2187 	 * future request will be after userspace has had the opportunity
2188 	 * to recreate its own state.
2189 	 */
2190 	regs = ce->lrc_reg_state;
2191 	if (engine->pinned_default_state) {
2192 		memcpy(regs, /* skip restoring the vanilla PPHWSP */
2193 		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2194 		       engine->context_size - PAGE_SIZE);
2195 	}
2196 	execlists_init_reg_state(regs, ce, engine, ce->ring);
2197 
2198 out_replay:
2199 	/* Rerun the request; its payload has been neutered (if guilty). */
2200 	ce->ring->head =
2201 		rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
2202 	intel_ring_update_space(ce->ring);
2203 	__execlists_update_reg_state(ce, engine);
2204 
2205 	/* Push back any incomplete requests for replay after the reset. */
2206 	__unwind_incomplete_requests(engine);
2207 
2208 out_clear:
2209 	execlists_clear_all_active(execlists);
2210 }
2211 
2212 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2213 {
2214 	unsigned long flags;
2215 
2216 	GEM_TRACE("%s\n", engine->name);
2217 
2218 	spin_lock_irqsave(&engine->active.lock, flags);
2219 
2220 	__execlists_reset(engine, stalled);
2221 
2222 	spin_unlock_irqrestore(&engine->active.lock, flags);
2223 }
2224 
2225 static void nop_submission_tasklet(unsigned long data)
2226 {
2227 	/* The driver is wedged; don't process any more events. */
2228 }
2229 
2230 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2231 {
2232 	struct intel_engine_execlists * const execlists = &engine->execlists;
2233 	struct i915_request *rq, *rn;
2234 	struct rb_node *rb;
2235 	unsigned long flags;
2236 
2237 	GEM_TRACE("%s\n", engine->name);
2238 
2239 	/*
2240 	 * Before we call engine->cancel_requests(), we should have exclusive
2241 	 * access to the submission state. This is arranged for us by the
2242 	 * caller disabling the interrupt generation, the tasklet and other
2243 	 * threads that may then access the same state, giving us a free hand
2244 	 * to reset state. However, we still need to let lockdep be aware that
2245 	 * we know this state may be accessed in hardirq context, so we
2246 	 * disable the irq around this manipulation and we want to keep
2247 	 * the spinlock focused on its duties and not accidentally conflate
2248 	 * coverage to the submission's irq state. (Similarly, although we
2249 	 * shouldn't need to disable irq around the manipulation of the
2250 	 * submission's irq state, we also wish to remind ourselves that
2251 	 * it is irq state.)
2252 	 */
2253 	spin_lock_irqsave(&engine->active.lock, flags);
2254 
2255 	__execlists_reset(engine, true);
2256 
2257 	/* Mark all executing requests as skipped. */
2258 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
2259 		if (!i915_request_signaled(rq))
2260 			dma_fence_set_error(&rq->fence, -EIO);
2261 
2262 		i915_request_mark_complete(rq);
2263 	}
2264 
2265 	/* Flush the queued requests to the timeline list (for retiring). */
2266 	while ((rb = rb_first_cached(&execlists->queue))) {
2267 		struct i915_priolist *p = to_priolist(rb);
2268 		int i;
2269 
2270 		priolist_for_each_request_consume(rq, rn, p, i) {
2271 			list_del_init(&rq->sched.link);
2272 			__i915_request_submit(rq);
2273 			dma_fence_set_error(&rq->fence, -EIO);
2274 			i915_request_mark_complete(rq);
2275 		}
2276 
2277 		rb_erase_cached(&p->node, &execlists->queue);
2278 		i915_priolist_free(p);
2279 	}
2280 
2281 	/* Cancel all attached virtual engines */
2282 	while ((rb = rb_first_cached(&execlists->virtual))) {
2283 		struct virtual_engine *ve =
2284 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2285 
2286 		rb_erase_cached(rb, &execlists->virtual);
2287 		RB_CLEAR_NODE(rb);
2288 
2289 		spin_lock(&ve->base.active.lock);
2290 		if (ve->request) {
2291 			ve->request->engine = engine;
2292 			__i915_request_submit(ve->request);
2293 			dma_fence_set_error(&ve->request->fence, -EIO);
2294 			i915_request_mark_complete(ve->request);
2295 			ve->base.execlists.queue_priority_hint = INT_MIN;
2296 			ve->request = NULL;
2297 		}
2298 		spin_unlock(&ve->base.active.lock);
2299 	}
2300 
2301 	/* Remaining _unready_ requests will be nop'ed when submitted */
2302 
2303 	execlists->queue_priority_hint = INT_MIN;
2304 	execlists->queue = RB_ROOT_CACHED;
2305 	GEM_BUG_ON(port_isset(execlists->port));
2306 
2307 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2308 	execlists->tasklet.func = nop_submission_tasklet;
2309 
2310 	spin_unlock_irqrestore(&engine->active.lock, flags);
2311 }
2312 
2313 static void execlists_reset_finish(struct intel_engine_cs *engine)
2314 {
2315 	struct intel_engine_execlists * const execlists = &engine->execlists;
2316 
2317 	/*
2318 	 * After a GPU reset, we may have requests to replay. Do so now while
2319 	 * we still have the forcewake to be sure that the GPU is not allowed
2320 	 * to sleep before we restart and reload a context.
2321 	 */
2322 	GEM_BUG_ON(!reset_in_progress(execlists));
2323 	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2324 		execlists->tasklet.func(execlists->tasklet.data);
2325 
2326 	if (__tasklet_enable(&execlists->tasklet))
2327 		/* And kick in case we missed a new request submission. */
2328 		tasklet_hi_schedule(&execlists->tasklet);
2329 	GEM_TRACE("%s: depth->%d\n", engine->name,
2330 		  atomic_read(&execlists->tasklet.count));
2331 }
2332 
2333 static int gen8_emit_bb_start(struct i915_request *rq,
2334 			      u64 offset, u32 len,
2335 			      const unsigned int flags)
2336 {
2337 	u32 *cs;
2338 
2339 	cs = intel_ring_begin(rq, 4);
2340 	if (IS_ERR(cs))
2341 		return PTR_ERR(cs);
2342 
2343 	/*
2344 	 * WaDisableCtxRestoreArbitration:bdw,chv
2345 	 *
2346 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
2347 	 * particular all the gen that do not need the w/a at all!), if we
2348 	 * took care to make sure that on every switch into this context
2349 	 * (both ordinary and for preemption) that arbitrartion was enabled
2350 	 * we would be fine.  However, for gen8 there is another w/a that
2351 	 * requires us to not preempt inside GPGPU execution, so we keep
2352 	 * arbitration disabled for gen8 batches. Arbitration will be
2353 	 * re-enabled before we close the request
2354 	 * (engine->emit_fini_breadcrumb).
2355 	 */
2356 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2357 
2358 	/* FIXME(BDW+): Address space and security selectors. */
2359 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2360 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2361 	*cs++ = lower_32_bits(offset);
2362 	*cs++ = upper_32_bits(offset);
2363 
2364 	intel_ring_advance(rq, cs);
2365 
2366 	return 0;
2367 }
2368 
2369 static int gen9_emit_bb_start(struct i915_request *rq,
2370 			      u64 offset, u32 len,
2371 			      const unsigned int flags)
2372 {
2373 	u32 *cs;
2374 
2375 	cs = intel_ring_begin(rq, 6);
2376 	if (IS_ERR(cs))
2377 		return PTR_ERR(cs);
2378 
2379 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2380 
2381 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2382 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2383 	*cs++ = lower_32_bits(offset);
2384 	*cs++ = upper_32_bits(offset);
2385 
2386 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2387 	*cs++ = MI_NOOP;
2388 
2389 	intel_ring_advance(rq, cs);
2390 
2391 	return 0;
2392 }
2393 
2394 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2395 {
2396 	ENGINE_WRITE(engine, RING_IMR,
2397 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
2398 	ENGINE_POSTING_READ(engine, RING_IMR);
2399 }
2400 
2401 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2402 {
2403 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2404 }
2405 
2406 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2407 {
2408 	u32 cmd, *cs;
2409 
2410 	cs = intel_ring_begin(request, 4);
2411 	if (IS_ERR(cs))
2412 		return PTR_ERR(cs);
2413 
2414 	cmd = MI_FLUSH_DW + 1;
2415 
2416 	/* We always require a command barrier so that subsequent
2417 	 * commands, such as breadcrumb interrupts, are strictly ordered
2418 	 * wrt the contents of the write cache being flushed to memory
2419 	 * (and thus being coherent from the CPU).
2420 	 */
2421 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2422 
2423 	if (mode & EMIT_INVALIDATE) {
2424 		cmd |= MI_INVALIDATE_TLB;
2425 		if (request->engine->class == VIDEO_DECODE_CLASS)
2426 			cmd |= MI_INVALIDATE_BSD;
2427 	}
2428 
2429 	*cs++ = cmd;
2430 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2431 	*cs++ = 0; /* upper addr */
2432 	*cs++ = 0; /* value */
2433 	intel_ring_advance(request, cs);
2434 
2435 	return 0;
2436 }
2437 
2438 static int gen8_emit_flush_render(struct i915_request *request,
2439 				  u32 mode)
2440 {
2441 	struct intel_engine_cs *engine = request->engine;
2442 	u32 scratch_addr =
2443 		i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2444 	bool vf_flush_wa = false, dc_flush_wa = false;
2445 	u32 *cs, flags = 0;
2446 	int len;
2447 
2448 	flags |= PIPE_CONTROL_CS_STALL;
2449 
2450 	if (mode & EMIT_FLUSH) {
2451 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2452 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2453 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2454 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2455 	}
2456 
2457 	if (mode & EMIT_INVALIDATE) {
2458 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2459 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2460 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2461 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2462 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2463 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2464 		flags |= PIPE_CONTROL_QW_WRITE;
2465 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2466 
2467 		/*
2468 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2469 		 * pipe control.
2470 		 */
2471 		if (IS_GEN(request->i915, 9))
2472 			vf_flush_wa = true;
2473 
2474 		/* WaForGAMHang:kbl */
2475 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2476 			dc_flush_wa = true;
2477 	}
2478 
2479 	len = 6;
2480 
2481 	if (vf_flush_wa)
2482 		len += 6;
2483 
2484 	if (dc_flush_wa)
2485 		len += 12;
2486 
2487 	cs = intel_ring_begin(request, len);
2488 	if (IS_ERR(cs))
2489 		return PTR_ERR(cs);
2490 
2491 	if (vf_flush_wa)
2492 		cs = gen8_emit_pipe_control(cs, 0, 0);
2493 
2494 	if (dc_flush_wa)
2495 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2496 					    0);
2497 
2498 	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2499 
2500 	if (dc_flush_wa)
2501 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2502 
2503 	intel_ring_advance(request, cs);
2504 
2505 	return 0;
2506 }
2507 
2508 /*
2509  * Reserve space for 2 NOOPs at the end of each request to be
2510  * used as a workaround for not being allowed to do lite
2511  * restore with HEAD==TAIL (WaIdleLiteRestore).
2512  */
2513 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2514 {
2515 	/* Ensure there's always at least one preemption point per-request. */
2516 	*cs++ = MI_ARB_CHECK;
2517 	*cs++ = MI_NOOP;
2518 	request->wa_tail = intel_ring_offset(request, cs);
2519 
2520 	return cs;
2521 }
2522 
2523 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2524 {
2525 	cs = gen8_emit_ggtt_write(cs,
2526 				  request->fence.seqno,
2527 				  request->timeline->hwsp_offset,
2528 				  0);
2529 
2530 	*cs++ = MI_USER_INTERRUPT;
2531 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2532 
2533 	request->tail = intel_ring_offset(request, cs);
2534 	assert_ring_tail_valid(request->ring, request->tail);
2535 
2536 	return gen8_emit_wa_tail(request, cs);
2537 }
2538 
2539 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2540 {
2541 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2542 	cs = gen8_emit_ggtt_write_rcs(cs,
2543 				      request->fence.seqno,
2544 				      request->timeline->hwsp_offset,
2545 				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2546 				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2547 				      PIPE_CONTROL_DC_FLUSH_ENABLE);
2548 	cs = gen8_emit_pipe_control(cs,
2549 				    PIPE_CONTROL_FLUSH_ENABLE |
2550 				    PIPE_CONTROL_CS_STALL,
2551 				    0);
2552 
2553 	*cs++ = MI_USER_INTERRUPT;
2554 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2555 
2556 	request->tail = intel_ring_offset(request, cs);
2557 	assert_ring_tail_valid(request->ring, request->tail);
2558 
2559 	return gen8_emit_wa_tail(request, cs);
2560 }
2561 
2562 static int gen8_init_rcs_context(struct i915_request *rq)
2563 {
2564 	int ret;
2565 
2566 	ret = intel_engine_emit_ctx_wa(rq);
2567 	if (ret)
2568 		return ret;
2569 
2570 	ret = intel_rcs_context_init_mocs(rq);
2571 	/*
2572 	 * Failing to program the MOCS is non-fatal.The system will not
2573 	 * run at peak performance. So generate an error and carry on.
2574 	 */
2575 	if (ret)
2576 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2577 
2578 	return i915_gem_render_state_emit(rq);
2579 }
2580 
2581 static void execlists_park(struct intel_engine_cs *engine)
2582 {
2583 	intel_engine_park(engine);
2584 }
2585 
2586 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2587 {
2588 	engine->submit_request = execlists_submit_request;
2589 	engine->cancel_requests = execlists_cancel_requests;
2590 	engine->schedule = i915_schedule;
2591 	engine->execlists.tasklet.func = execlists_submission_tasklet;
2592 
2593 	engine->reset.prepare = execlists_reset_prepare;
2594 	engine->reset.reset = execlists_reset;
2595 	engine->reset.finish = execlists_reset_finish;
2596 
2597 	engine->park = execlists_park;
2598 	engine->unpark = NULL;
2599 
2600 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2601 	if (!intel_vgpu_active(engine->i915))
2602 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2603 	if (engine->preempt_context &&
2604 	    HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2605 		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2606 }
2607 
2608 static void execlists_destroy(struct intel_engine_cs *engine)
2609 {
2610 	intel_engine_cleanup_common(engine);
2611 	lrc_destroy_wa_ctx(engine);
2612 	kfree(engine);
2613 }
2614 
2615 static void
2616 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2617 {
2618 	/* Default vfuncs which can be overriden by each engine. */
2619 
2620 	engine->destroy = execlists_destroy;
2621 	engine->resume = execlists_resume;
2622 
2623 	engine->reset.prepare = execlists_reset_prepare;
2624 	engine->reset.reset = execlists_reset;
2625 	engine->reset.finish = execlists_reset_finish;
2626 
2627 	engine->cops = &execlists_context_ops;
2628 	engine->request_alloc = execlists_request_alloc;
2629 
2630 	engine->emit_flush = gen8_emit_flush;
2631 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2632 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2633 
2634 	engine->set_default_submission = intel_execlists_set_default_submission;
2635 
2636 	if (INTEL_GEN(engine->i915) < 11) {
2637 		engine->irq_enable = gen8_logical_ring_enable_irq;
2638 		engine->irq_disable = gen8_logical_ring_disable_irq;
2639 	} else {
2640 		/*
2641 		 * TODO: On Gen11 interrupt masks need to be clear
2642 		 * to allow C6 entry. Keep interrupts enabled at
2643 		 * and take the hit of generating extra interrupts
2644 		 * until a more refined solution exists.
2645 		 */
2646 	}
2647 	if (IS_GEN(engine->i915, 8))
2648 		engine->emit_bb_start = gen8_emit_bb_start;
2649 	else
2650 		engine->emit_bb_start = gen9_emit_bb_start;
2651 }
2652 
2653 static inline void
2654 logical_ring_default_irqs(struct intel_engine_cs *engine)
2655 {
2656 	unsigned int shift = 0;
2657 
2658 	if (INTEL_GEN(engine->i915) < 11) {
2659 		const u8 irq_shifts[] = {
2660 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
2661 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
2662 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2663 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2664 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2665 		};
2666 
2667 		shift = irq_shifts[engine->id];
2668 	}
2669 
2670 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2671 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2672 }
2673 
2674 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2675 {
2676 	/* Intentionally left blank. */
2677 	engine->buffer = NULL;
2678 
2679 	tasklet_init(&engine->execlists.tasklet,
2680 		     execlists_submission_tasklet, (unsigned long)engine);
2681 
2682 	logical_ring_default_vfuncs(engine);
2683 	logical_ring_default_irqs(engine);
2684 
2685 	if (engine->class == RENDER_CLASS) {
2686 		engine->init_context = gen8_init_rcs_context;
2687 		engine->emit_flush = gen8_emit_flush_render;
2688 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2689 	}
2690 
2691 	return 0;
2692 }
2693 
2694 int intel_execlists_submission_init(struct intel_engine_cs *engine)
2695 {
2696 	struct intel_engine_execlists * const execlists = &engine->execlists;
2697 	struct drm_i915_private *i915 = engine->i915;
2698 	struct intel_uncore *uncore = engine->uncore;
2699 	u32 base = engine->mmio_base;
2700 	int ret;
2701 
2702 	ret = intel_engine_init_common(engine);
2703 	if (ret)
2704 		return ret;
2705 
2706 	intel_engine_init_workarounds(engine);
2707 	intel_engine_init_whitelist(engine);
2708 
2709 	if (intel_init_workaround_bb(engine))
2710 		/*
2711 		 * We continue even if we fail to initialize WA batch
2712 		 * because we only expect rare glitches but nothing
2713 		 * critical to prevent us from using GPU
2714 		 */
2715 		DRM_ERROR("WA batch buffer initialization failed\n");
2716 
2717 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2718 		execlists->submit_reg = uncore->regs +
2719 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2720 		execlists->ctrl_reg = uncore->regs +
2721 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2722 	} else {
2723 		execlists->submit_reg = uncore->regs +
2724 			i915_mmio_reg_offset(RING_ELSP(base));
2725 	}
2726 
2727 	execlists->preempt_complete_status = ~0u;
2728 	if (engine->preempt_context)
2729 		execlists->preempt_complete_status =
2730 			upper_32_bits(engine->preempt_context->lrc_desc);
2731 
2732 	execlists->csb_status =
2733 		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2734 
2735 	execlists->csb_write =
2736 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2737 
2738 	if (INTEL_GEN(i915) < 11)
2739 		execlists->csb_size = GEN8_CSB_ENTRIES;
2740 	else
2741 		execlists->csb_size = GEN11_CSB_ENTRIES;
2742 
2743 	reset_csb_pointers(execlists);
2744 
2745 	return 0;
2746 }
2747 
2748 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2749 {
2750 	u32 indirect_ctx_offset;
2751 
2752 	switch (INTEL_GEN(engine->i915)) {
2753 	default:
2754 		MISSING_CASE(INTEL_GEN(engine->i915));
2755 		/* fall through */
2756 	case 11:
2757 		indirect_ctx_offset =
2758 			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2759 		break;
2760 	case 10:
2761 		indirect_ctx_offset =
2762 			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2763 		break;
2764 	case 9:
2765 		indirect_ctx_offset =
2766 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2767 		break;
2768 	case 8:
2769 		indirect_ctx_offset =
2770 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2771 		break;
2772 	}
2773 
2774 	return indirect_ctx_offset;
2775 }
2776 
2777 static void execlists_init_reg_state(u32 *regs,
2778 				     struct intel_context *ce,
2779 				     struct intel_engine_cs *engine,
2780 				     struct intel_ring *ring)
2781 {
2782 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2783 	bool rcs = engine->class == RENDER_CLASS;
2784 	u32 base = engine->mmio_base;
2785 
2786 	/*
2787 	 * A context is actually a big batch buffer with several
2788 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2789 	 * values we are setting here are only for the first context restore:
2790 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
2791 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2792 	 * we are not initializing here).
2793 	 *
2794 	 * Must keep consistent with virtual_update_register_offsets().
2795 	 */
2796 	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2797 				 MI_LRI_FORCE_POSTED;
2798 
2799 	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2800 		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2801 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2802 	if (INTEL_GEN(engine->i915) < 11) {
2803 		regs[CTX_CONTEXT_CONTROL + 1] |=
2804 			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2805 					    CTX_CTRL_RS_CTX_ENABLE);
2806 	}
2807 	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2808 	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2809 	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2810 	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2811 		RING_CTL_SIZE(ring->size) | RING_VALID);
2812 	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2813 	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2814 	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2815 	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2816 	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2817 	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2818 	if (rcs) {
2819 		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2820 
2821 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2822 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2823 			RING_INDIRECT_CTX_OFFSET(base), 0);
2824 		if (wa_ctx->indirect_ctx.size) {
2825 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2826 
2827 			regs[CTX_RCS_INDIRECT_CTX + 1] =
2828 				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
2829 				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2830 
2831 			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2832 				intel_lr_indirect_ctx_offset(engine) << 6;
2833 		}
2834 
2835 		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2836 		if (wa_ctx->per_ctx.size) {
2837 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2838 
2839 			regs[CTX_BB_PER_CTX_PTR + 1] =
2840 				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2841 		}
2842 	}
2843 
2844 	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2845 
2846 	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2847 	/* PDP values well be assigned later if needed */
2848 	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2849 	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2850 	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2851 	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2852 	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2853 	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2854 	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2855 	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2856 
2857 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2858 		/* 64b PPGTT (48bit canonical)
2859 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2860 		 * other PDP Descriptors are ignored.
2861 		 */
2862 		ASSIGN_CTX_PML4(ppgtt, regs);
2863 	} else {
2864 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
2865 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
2866 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
2867 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2868 	}
2869 
2870 	if (rcs) {
2871 		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2872 		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2873 
2874 		i915_oa_init_reg_state(engine, ce, regs);
2875 	}
2876 
2877 	regs[CTX_END] = MI_BATCH_BUFFER_END;
2878 	if (INTEL_GEN(engine->i915) >= 10)
2879 		regs[CTX_END] |= BIT(0);
2880 }
2881 
2882 static int
2883 populate_lr_context(struct intel_context *ce,
2884 		    struct drm_i915_gem_object *ctx_obj,
2885 		    struct intel_engine_cs *engine,
2886 		    struct intel_ring *ring)
2887 {
2888 	void *vaddr;
2889 	u32 *regs;
2890 	int ret;
2891 
2892 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2893 	if (IS_ERR(vaddr)) {
2894 		ret = PTR_ERR(vaddr);
2895 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2896 		return ret;
2897 	}
2898 
2899 	if (engine->default_state) {
2900 		/*
2901 		 * We only want to copy over the template context state;
2902 		 * skipping over the headers reserved for GuC communication,
2903 		 * leaving those as zero.
2904 		 */
2905 		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2906 		void *defaults;
2907 
2908 		defaults = i915_gem_object_pin_map(engine->default_state,
2909 						   I915_MAP_WB);
2910 		if (IS_ERR(defaults)) {
2911 			ret = PTR_ERR(defaults);
2912 			goto err_unpin_ctx;
2913 		}
2914 
2915 		memcpy(vaddr + start, defaults + start, engine->context_size);
2916 		i915_gem_object_unpin_map(engine->default_state);
2917 	}
2918 
2919 	/* The second page of the context object contains some fields which must
2920 	 * be set up prior to the first execution. */
2921 	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2922 	execlists_init_reg_state(regs, ce, engine, ring);
2923 	if (!engine->default_state)
2924 		regs[CTX_CONTEXT_CONTROL + 1] |=
2925 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2926 	if (ce->gem_context == engine->i915->preempt_context &&
2927 	    INTEL_GEN(engine->i915) < 11)
2928 		regs[CTX_CONTEXT_CONTROL + 1] |=
2929 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2930 					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2931 
2932 	ret = 0;
2933 err_unpin_ctx:
2934 	__i915_gem_object_flush_map(ctx_obj,
2935 				    LRC_HEADER_PAGES * PAGE_SIZE,
2936 				    engine->context_size);
2937 	i915_gem_object_unpin_map(ctx_obj);
2938 	return ret;
2939 }
2940 
2941 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
2942 {
2943 	if (ctx->timeline)
2944 		return i915_timeline_get(ctx->timeline);
2945 	else
2946 		return i915_timeline_create(ctx->i915, NULL);
2947 }
2948 
2949 static int execlists_context_deferred_alloc(struct intel_context *ce,
2950 					    struct intel_engine_cs *engine)
2951 {
2952 	struct drm_i915_gem_object *ctx_obj;
2953 	struct i915_vma *vma;
2954 	u32 context_size;
2955 	struct intel_ring *ring;
2956 	struct i915_timeline *timeline;
2957 	int ret;
2958 
2959 	if (ce->state)
2960 		return 0;
2961 
2962 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2963 
2964 	/*
2965 	 * Before the actual start of the context image, we insert a few pages
2966 	 * for our own use and for sharing with the GuC.
2967 	 */
2968 	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2969 
2970 	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
2971 	if (IS_ERR(ctx_obj))
2972 		return PTR_ERR(ctx_obj);
2973 
2974 	vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2975 	if (IS_ERR(vma)) {
2976 		ret = PTR_ERR(vma);
2977 		goto error_deref_obj;
2978 	}
2979 
2980 	timeline = get_timeline(ce->gem_context);
2981 	if (IS_ERR(timeline)) {
2982 		ret = PTR_ERR(timeline);
2983 		goto error_deref_obj;
2984 	}
2985 
2986 	ring = intel_engine_create_ring(engine,
2987 					timeline,
2988 					ce->gem_context->ring_size);
2989 	i915_timeline_put(timeline);
2990 	if (IS_ERR(ring)) {
2991 		ret = PTR_ERR(ring);
2992 		goto error_deref_obj;
2993 	}
2994 
2995 	ret = populate_lr_context(ce, ctx_obj, engine, ring);
2996 	if (ret) {
2997 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2998 		goto error_ring_free;
2999 	}
3000 
3001 	ce->ring = ring;
3002 	ce->state = vma;
3003 
3004 	return 0;
3005 
3006 error_ring_free:
3007 	intel_ring_put(ring);
3008 error_deref_obj:
3009 	i915_gem_object_put(ctx_obj);
3010 	return ret;
3011 }
3012 
3013 static struct list_head *virtual_queue(struct virtual_engine *ve)
3014 {
3015 	return &ve->base.execlists.default_priolist.requests[0];
3016 }
3017 
3018 static void virtual_context_destroy(struct kref *kref)
3019 {
3020 	struct virtual_engine *ve =
3021 		container_of(kref, typeof(*ve), context.ref);
3022 	unsigned int n;
3023 
3024 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3025 	GEM_BUG_ON(ve->request);
3026 	GEM_BUG_ON(ve->context.inflight);
3027 
3028 	for (n = 0; n < ve->num_siblings; n++) {
3029 		struct intel_engine_cs *sibling = ve->siblings[n];
3030 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3031 
3032 		if (RB_EMPTY_NODE(node))
3033 			continue;
3034 
3035 		spin_lock_irq(&sibling->active.lock);
3036 
3037 		/* Detachment is lazily performed in the execlists tasklet */
3038 		if (!RB_EMPTY_NODE(node))
3039 			rb_erase_cached(node, &sibling->execlists.virtual);
3040 
3041 		spin_unlock_irq(&sibling->active.lock);
3042 	}
3043 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3044 
3045 	if (ve->context.state)
3046 		__execlists_context_fini(&ve->context);
3047 
3048 	kfree(ve->bonds);
3049 	kfree(ve);
3050 }
3051 
3052 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3053 {
3054 	int swp;
3055 
3056 	/*
3057 	 * Pick a random sibling on starting to help spread the load around.
3058 	 *
3059 	 * New contexts are typically created with exactly the same order
3060 	 * of siblings, and often started in batches. Due to the way we iterate
3061 	 * the array of sibling when submitting requests, sibling[0] is
3062 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3063 	 * randomised across the system, we also help spread the load by the
3064 	 * first engine we inspect being different each time.
3065 	 *
3066 	 * NB This does not force us to execute on this engine, it will just
3067 	 * typically be the first we inspect for submission.
3068 	 */
3069 	swp = prandom_u32_max(ve->num_siblings);
3070 	if (!swp)
3071 		return;
3072 
3073 	swap(ve->siblings[swp], ve->siblings[0]);
3074 	virtual_update_register_offsets(ve->context.lrc_reg_state,
3075 					ve->siblings[0]);
3076 }
3077 
3078 static int virtual_context_pin(struct intel_context *ce)
3079 {
3080 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3081 	int err;
3082 
3083 	/* Note: we must use a real engine class for setting up reg state */
3084 	err = __execlists_context_pin(ce, ve->siblings[0]);
3085 	if (err)
3086 		return err;
3087 
3088 	virtual_engine_initial_hint(ve);
3089 	return 0;
3090 }
3091 
3092 static void virtual_context_enter(struct intel_context *ce)
3093 {
3094 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3095 	unsigned int n;
3096 
3097 	for (n = 0; n < ve->num_siblings; n++)
3098 		intel_engine_pm_get(ve->siblings[n]);
3099 }
3100 
3101 static void virtual_context_exit(struct intel_context *ce)
3102 {
3103 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3104 	unsigned int n;
3105 
3106 	for (n = 0; n < ve->num_siblings; n++)
3107 		intel_engine_pm_put(ve->siblings[n]);
3108 }
3109 
3110 static const struct intel_context_ops virtual_context_ops = {
3111 	.pin = virtual_context_pin,
3112 	.unpin = execlists_context_unpin,
3113 
3114 	.enter = virtual_context_enter,
3115 	.exit = virtual_context_exit,
3116 
3117 	.destroy = virtual_context_destroy,
3118 };
3119 
3120 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3121 {
3122 	struct i915_request *rq;
3123 	intel_engine_mask_t mask;
3124 
3125 	rq = READ_ONCE(ve->request);
3126 	if (!rq)
3127 		return 0;
3128 
3129 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3130 	mask = rq->execution_mask;
3131 	if (unlikely(!mask)) {
3132 		/* Invalid selection, submit to a random engine in error */
3133 		i915_request_skip(rq, -ENODEV);
3134 		mask = ve->siblings[0]->mask;
3135 	}
3136 
3137 	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3138 		  ve->base.name,
3139 		  rq->fence.context, rq->fence.seqno,
3140 		  mask, ve->base.execlists.queue_priority_hint);
3141 
3142 	return mask;
3143 }
3144 
3145 static void virtual_submission_tasklet(unsigned long data)
3146 {
3147 	struct virtual_engine * const ve = (struct virtual_engine *)data;
3148 	const int prio = ve->base.execlists.queue_priority_hint;
3149 	intel_engine_mask_t mask;
3150 	unsigned int n;
3151 
3152 	rcu_read_lock();
3153 	mask = virtual_submission_mask(ve);
3154 	rcu_read_unlock();
3155 	if (unlikely(!mask))
3156 		return;
3157 
3158 	local_irq_disable();
3159 	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3160 		struct intel_engine_cs *sibling = ve->siblings[n];
3161 		struct ve_node * const node = &ve->nodes[sibling->id];
3162 		struct rb_node **parent, *rb;
3163 		bool first;
3164 
3165 		if (unlikely(!(mask & sibling->mask))) {
3166 			if (!RB_EMPTY_NODE(&node->rb)) {
3167 				spin_lock(&sibling->active.lock);
3168 				rb_erase_cached(&node->rb,
3169 						&sibling->execlists.virtual);
3170 				RB_CLEAR_NODE(&node->rb);
3171 				spin_unlock(&sibling->active.lock);
3172 			}
3173 			continue;
3174 		}
3175 
3176 		spin_lock(&sibling->active.lock);
3177 
3178 		if (!RB_EMPTY_NODE(&node->rb)) {
3179 			/*
3180 			 * Cheat and avoid rebalancing the tree if we can
3181 			 * reuse this node in situ.
3182 			 */
3183 			first = rb_first_cached(&sibling->execlists.virtual) ==
3184 				&node->rb;
3185 			if (prio == node->prio || (prio > node->prio && first))
3186 				goto submit_engine;
3187 
3188 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3189 		}
3190 
3191 		rb = NULL;
3192 		first = true;
3193 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3194 		while (*parent) {
3195 			struct ve_node *other;
3196 
3197 			rb = *parent;
3198 			other = rb_entry(rb, typeof(*other), rb);
3199 			if (prio > other->prio) {
3200 				parent = &rb->rb_left;
3201 			} else {
3202 				parent = &rb->rb_right;
3203 				first = false;
3204 			}
3205 		}
3206 
3207 		rb_link_node(&node->rb, rb, parent);
3208 		rb_insert_color_cached(&node->rb,
3209 				       &sibling->execlists.virtual,
3210 				       first);
3211 
3212 submit_engine:
3213 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3214 		node->prio = prio;
3215 		if (first && prio > sibling->execlists.queue_priority_hint) {
3216 			sibling->execlists.queue_priority_hint = prio;
3217 			tasklet_hi_schedule(&sibling->execlists.tasklet);
3218 		}
3219 
3220 		spin_unlock(&sibling->active.lock);
3221 	}
3222 	local_irq_enable();
3223 }
3224 
3225 static void virtual_submit_request(struct i915_request *rq)
3226 {
3227 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3228 
3229 	GEM_TRACE("%s: rq=%llx:%lld\n",
3230 		  ve->base.name,
3231 		  rq->fence.context,
3232 		  rq->fence.seqno);
3233 
3234 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3235 
3236 	GEM_BUG_ON(ve->request);
3237 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3238 
3239 	ve->base.execlists.queue_priority_hint = rq_prio(rq);
3240 	WRITE_ONCE(ve->request, rq);
3241 
3242 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3243 
3244 	tasklet_schedule(&ve->base.execlists.tasklet);
3245 }
3246 
3247 static struct ve_bond *
3248 virtual_find_bond(struct virtual_engine *ve,
3249 		  const struct intel_engine_cs *master)
3250 {
3251 	int i;
3252 
3253 	for (i = 0; i < ve->num_bonds; i++) {
3254 		if (ve->bonds[i].master == master)
3255 			return &ve->bonds[i];
3256 	}
3257 
3258 	return NULL;
3259 }
3260 
3261 static void
3262 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3263 {
3264 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3265 	struct ve_bond *bond;
3266 
3267 	bond = virtual_find_bond(ve, to_request(signal)->engine);
3268 	if (bond) {
3269 		intel_engine_mask_t old, new, cmp;
3270 
3271 		cmp = READ_ONCE(rq->execution_mask);
3272 		do {
3273 			old = cmp;
3274 			new = cmp & bond->sibling_mask;
3275 		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3276 	}
3277 }
3278 
3279 struct intel_context *
3280 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3281 			       struct intel_engine_cs **siblings,
3282 			       unsigned int count)
3283 {
3284 	struct virtual_engine *ve;
3285 	unsigned int n;
3286 	int err;
3287 
3288 	if (count == 0)
3289 		return ERR_PTR(-EINVAL);
3290 
3291 	if (count == 1)
3292 		return intel_context_create(ctx, siblings[0]);
3293 
3294 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3295 	if (!ve)
3296 		return ERR_PTR(-ENOMEM);
3297 
3298 	ve->base.i915 = ctx->i915;
3299 	ve->base.id = -1;
3300 	ve->base.class = OTHER_CLASS;
3301 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3302 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3303 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
3304 
3305 	/*
3306 	 * The decision on whether to submit a request using semaphores
3307 	 * depends on the saturated state of the engine. We only compute
3308 	 * this during HW submission of the request, and we need for this
3309 	 * state to be globally applied to all requests being submitted
3310 	 * to this engine. Virtual engines encompass more than one physical
3311 	 * engine and so we cannot accurately tell in advance if one of those
3312 	 * engines is already saturated and so cannot afford to use a semaphore
3313 	 * and be pessimized in priority for doing so -- if we are the only
3314 	 * context using semaphores after all other clients have stopped, we
3315 	 * will be starved on the saturated system. Such a global switch for
3316 	 * semaphores is less than ideal, but alas is the current compromise.
3317 	 */
3318 	ve->base.saturated = ALL_ENGINES;
3319 
3320 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3321 
3322 	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3323 
3324 	intel_engine_init_execlists(&ve->base);
3325 
3326 	ve->base.cops = &virtual_context_ops;
3327 	ve->base.request_alloc = execlists_request_alloc;
3328 
3329 	ve->base.schedule = i915_schedule;
3330 	ve->base.submit_request = virtual_submit_request;
3331 	ve->base.bond_execute = virtual_bond_execute;
3332 
3333 	INIT_LIST_HEAD(virtual_queue(ve));
3334 	ve->base.execlists.queue_priority_hint = INT_MIN;
3335 	tasklet_init(&ve->base.execlists.tasklet,
3336 		     virtual_submission_tasklet,
3337 		     (unsigned long)ve);
3338 
3339 	intel_context_init(&ve->context, ctx, &ve->base);
3340 
3341 	for (n = 0; n < count; n++) {
3342 		struct intel_engine_cs *sibling = siblings[n];
3343 
3344 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3345 		if (sibling->mask & ve->base.mask) {
3346 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3347 				  sibling->name);
3348 			err = -EINVAL;
3349 			goto err_put;
3350 		}
3351 
3352 		/*
3353 		 * The virtual engine implementation is tightly coupled to
3354 		 * the execlists backend -- we push out request directly
3355 		 * into a tree inside each physical engine. We could support
3356 		 * layering if we handle cloning of the requests and
3357 		 * submitting a copy into each backend.
3358 		 */
3359 		if (sibling->execlists.tasklet.func !=
3360 		    execlists_submission_tasklet) {
3361 			err = -ENODEV;
3362 			goto err_put;
3363 		}
3364 
3365 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3366 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3367 
3368 		ve->siblings[ve->num_siblings++] = sibling;
3369 		ve->base.mask |= sibling->mask;
3370 
3371 		/*
3372 		 * All physical engines must be compatible for their emission
3373 		 * functions (as we build the instructions during request
3374 		 * construction and do not alter them before submission
3375 		 * on the physical engine). We use the engine class as a guide
3376 		 * here, although that could be refined.
3377 		 */
3378 		if (ve->base.class != OTHER_CLASS) {
3379 			if (ve->base.class != sibling->class) {
3380 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3381 					  sibling->class, ve->base.class);
3382 				err = -EINVAL;
3383 				goto err_put;
3384 			}
3385 			continue;
3386 		}
3387 
3388 		ve->base.class = sibling->class;
3389 		ve->base.uabi_class = sibling->uabi_class;
3390 		snprintf(ve->base.name, sizeof(ve->base.name),
3391 			 "v%dx%d", ve->base.class, count);
3392 		ve->base.context_size = sibling->context_size;
3393 
3394 		ve->base.emit_bb_start = sibling->emit_bb_start;
3395 		ve->base.emit_flush = sibling->emit_flush;
3396 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3397 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3398 		ve->base.emit_fini_breadcrumb_dw =
3399 			sibling->emit_fini_breadcrumb_dw;
3400 	}
3401 
3402 	return &ve->context;
3403 
3404 err_put:
3405 	intel_context_put(&ve->context);
3406 	return ERR_PTR(err);
3407 }
3408 
3409 struct intel_context *
3410 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3411 			      struct intel_engine_cs *src)
3412 {
3413 	struct virtual_engine *se = to_virtual_engine(src);
3414 	struct intel_context *dst;
3415 
3416 	dst = intel_execlists_create_virtual(ctx,
3417 					     se->siblings,
3418 					     se->num_siblings);
3419 	if (IS_ERR(dst))
3420 		return dst;
3421 
3422 	if (se->num_bonds) {
3423 		struct virtual_engine *de = to_virtual_engine(dst->engine);
3424 
3425 		de->bonds = kmemdup(se->bonds,
3426 				    sizeof(*se->bonds) * se->num_bonds,
3427 				    GFP_KERNEL);
3428 		if (!de->bonds) {
3429 			intel_context_put(dst);
3430 			return ERR_PTR(-ENOMEM);
3431 		}
3432 
3433 		de->num_bonds = se->num_bonds;
3434 	}
3435 
3436 	return dst;
3437 }
3438 
3439 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3440 				     const struct intel_engine_cs *master,
3441 				     const struct intel_engine_cs *sibling)
3442 {
3443 	struct virtual_engine *ve = to_virtual_engine(engine);
3444 	struct ve_bond *bond;
3445 	int n;
3446 
3447 	/* Sanity check the sibling is part of the virtual engine */
3448 	for (n = 0; n < ve->num_siblings; n++)
3449 		if (sibling == ve->siblings[n])
3450 			break;
3451 	if (n == ve->num_siblings)
3452 		return -EINVAL;
3453 
3454 	bond = virtual_find_bond(ve, master);
3455 	if (bond) {
3456 		bond->sibling_mask |= sibling->mask;
3457 		return 0;
3458 	}
3459 
3460 	bond = krealloc(ve->bonds,
3461 			sizeof(*bond) * (ve->num_bonds + 1),
3462 			GFP_KERNEL);
3463 	if (!bond)
3464 		return -ENOMEM;
3465 
3466 	bond[ve->num_bonds].master = master;
3467 	bond[ve->num_bonds].sibling_mask = sibling->mask;
3468 
3469 	ve->bonds = bond;
3470 	ve->num_bonds++;
3471 
3472 	return 0;
3473 }
3474 
3475 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3476 				   struct drm_printer *m,
3477 				   void (*show_request)(struct drm_printer *m,
3478 							struct i915_request *rq,
3479 							const char *prefix),
3480 				   unsigned int max)
3481 {
3482 	const struct intel_engine_execlists *execlists = &engine->execlists;
3483 	struct i915_request *rq, *last;
3484 	unsigned long flags;
3485 	unsigned int count;
3486 	struct rb_node *rb;
3487 
3488 	spin_lock_irqsave(&engine->active.lock, flags);
3489 
3490 	last = NULL;
3491 	count = 0;
3492 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3493 		if (count++ < max - 1)
3494 			show_request(m, rq, "\t\tE ");
3495 		else
3496 			last = rq;
3497 	}
3498 	if (last) {
3499 		if (count > max) {
3500 			drm_printf(m,
3501 				   "\t\t...skipping %d executing requests...\n",
3502 				   count - max);
3503 		}
3504 		show_request(m, last, "\t\tE ");
3505 	}
3506 
3507 	last = NULL;
3508 	count = 0;
3509 	if (execlists->queue_priority_hint != INT_MIN)
3510 		drm_printf(m, "\t\tQueue priority hint: %d\n",
3511 			   execlists->queue_priority_hint);
3512 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3513 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3514 		int i;
3515 
3516 		priolist_for_each_request(rq, p, i) {
3517 			if (count++ < max - 1)
3518 				show_request(m, rq, "\t\tQ ");
3519 			else
3520 				last = rq;
3521 		}
3522 	}
3523 	if (last) {
3524 		if (count > max) {
3525 			drm_printf(m,
3526 				   "\t\t...skipping %d queued requests...\n",
3527 				   count - max);
3528 		}
3529 		show_request(m, last, "\t\tQ ");
3530 	}
3531 
3532 	last = NULL;
3533 	count = 0;
3534 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3535 		struct virtual_engine *ve =
3536 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3537 		struct i915_request *rq = READ_ONCE(ve->request);
3538 
3539 		if (rq) {
3540 			if (count++ < max - 1)
3541 				show_request(m, rq, "\t\tV ");
3542 			else
3543 				last = rq;
3544 		}
3545 	}
3546 	if (last) {
3547 		if (count > max) {
3548 			drm_printf(m,
3549 				   "\t\t...skipping %d virtual requests...\n",
3550 				   count - max);
3551 		}
3552 		show_request(m, last, "\t\tV ");
3553 	}
3554 
3555 	spin_unlock_irqrestore(&engine->active.lock, flags);
3556 }
3557 
3558 void intel_lr_context_reset(struct intel_engine_cs *engine,
3559 			    struct intel_context *ce,
3560 			    u32 head,
3561 			    bool scrub)
3562 {
3563 	/*
3564 	 * We want a simple context + ring to execute the breadcrumb update.
3565 	 * We cannot rely on the context being intact across the GPU hang,
3566 	 * so clear it and rebuild just what we need for the breadcrumb.
3567 	 * All pending requests for this context will be zapped, and any
3568 	 * future request will be after userspace has had the opportunity
3569 	 * to recreate its own state.
3570 	 */
3571 	if (scrub) {
3572 		u32 *regs = ce->lrc_reg_state;
3573 
3574 		if (engine->pinned_default_state) {
3575 			memcpy(regs, /* skip restoring the vanilla PPHWSP */
3576 			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3577 			       engine->context_size - PAGE_SIZE);
3578 		}
3579 		execlists_init_reg_state(regs, ce, engine, ce->ring);
3580 	}
3581 
3582 	/* Rerun the request; its payload has been neutered (if guilty). */
3583 	ce->ring->head = head;
3584 	intel_ring_update_space(ce->ring);
3585 
3586 	__execlists_update_reg_state(ce, engine);
3587 }
3588 
3589 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3590 #include "selftest_lrc.c"
3591 #endif
3592