1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * Michel Thierry <michel.thierry@intel.com> 26 * Thomas Daniel <thomas.daniel@intel.com> 27 * Oscar Mateo <oscar.mateo@intel.com> 28 * 29 */ 30 31 /** 32 * DOC: Logical Rings, Logical Ring Contexts and Execlists 33 * 34 * Motivation: 35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". 36 * These expanded contexts enable a number of new abilities, especially 37 * "Execlists" (also implemented in this file). 38 * 39 * One of the main differences with the legacy HW contexts is that logical 40 * ring contexts incorporate many more things to the context's state, like 41 * PDPs or ringbuffer control registers: 42 * 43 * The reason why PDPs are included in the context is straightforward: as 44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs 45 * contained there mean you don't need to do a ppgtt->switch_mm yourself, 46 * instead, the GPU will do it for you on the context switch. 47 * 48 * But, what about the ringbuffer control registers (head, tail, etc..)? 49 * shouldn't we just need a set of those per engine command streamer? This is 50 * where the name "Logical Rings" starts to make sense: by virtualizing the 51 * rings, the engine cs shifts to a new "ring buffer" with every context 52 * switch. When you want to submit a workload to the GPU you: A) choose your 53 * context, B) find its appropriate virtualized ring, C) write commands to it 54 * and then, finally, D) tell the GPU to switch to that context. 55 * 56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch 57 * to a contexts is via a context execution list, ergo "Execlists". 58 * 59 * LRC implementation: 60 * Regarding the creation of contexts, we have: 61 * 62 * - One global default context. 63 * - One local default context for each opened fd. 64 * - One local extra context for each context create ioctl call. 65 * 66 * Now that ringbuffers belong per-context (and not per-engine, like before) 67 * and that contexts are uniquely tied to a given engine (and not reusable, 68 * like before) we need: 69 * 70 * - One ringbuffer per-engine inside each context. 71 * - One backing object per-engine inside each context. 72 * 73 * The global default context starts its life with these new objects fully 74 * allocated and populated. The local default context for each opened fd is 75 * more complex, because we don't know at creation time which engine is going 76 * to use them. To handle this, we have implemented a deferred creation of LR 77 * contexts: 78 * 79 * The local context starts its life as a hollow or blank holder, that only 80 * gets populated for a given engine once we receive an execbuffer. If later 81 * on we receive another execbuffer ioctl for the same context but a different 82 * engine, we allocate/populate a new ringbuffer and context backing object and 83 * so on. 84 * 85 * Finally, regarding local contexts created using the ioctl call: as they are 86 * only allowed with the render ring, we can allocate & populate them right 87 * away (no need to defer anything, at least for now). 88 * 89 * Execlists implementation: 90 * Execlists are the new method by which, on gen8+ hardware, workloads are 91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method). 92 * This method works as follows: 93 * 94 * When a request is committed, its commands (the BB start and any leading or 95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer 96 * for the appropriate context. The tail pointer in the hardware context is not 97 * updated at this time, but instead, kept by the driver in the ringbuffer 98 * structure. A structure representing this request is added to a request queue 99 * for the appropriate engine: this structure contains a copy of the context's 100 * tail after the request was written to the ring buffer and a pointer to the 101 * context itself. 102 * 103 * If the engine's request queue was empty before the request was added, the 104 * queue is processed immediately. Otherwise the queue will be processed during 105 * a context switch interrupt. In any case, elements on the queue will get sent 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a 107 * globally unique 20-bits submission ID. 108 * 109 * When execution of a request completes, the GPU updates the context status 110 * buffer with a context complete event and generates a context switch interrupt. 111 * During the interrupt handling, the driver examines the events in the buffer: 112 * for each context complete event, if the announced ID matches that on the head 113 * of the request queue, then that request is retired and removed from the queue. 114 * 115 * After processing, if any requests were retired and the queue is not empty 116 * then a new execution list can be submitted. The two requests at the front of 117 * the queue are next to be submitted but since a context may not occur twice in 118 * an execution list, if subsequent requests have the same ID as the first then 119 * the two requests must be combined. This is done simply by discarding requests 120 * at the head of the queue until either only one requests is left (in which case 121 * we use a NULL second context) or the first two requests have unique IDs. 122 * 123 * By always executing the first two requests in the queue the driver ensures 124 * that the GPU is kept as busy as possible. In the case where a single context 125 * completes but a second context is still executing, the request for this second 126 * context will be at the head of the queue when we remove the first one. This 127 * request will then be resubmitted along with a new request for a different context, 128 * which will cause the hardware to continue executing the second request and queue 129 * the new request (the GPU detects the condition of a context getting preempted 130 * with the same context and optimizes the context switch flow by not doing 131 * preemption, but just sampling the new tail pointer). 132 * 133 */ 134 #include <linux/interrupt.h> 135 136 #include "gem/i915_gem_context.h" 137 138 #include "i915_drv.h" 139 #include "i915_gem_render_state.h" 140 #include "i915_vgpu.h" 141 #include "intel_engine_pm.h" 142 #include "intel_lrc_reg.h" 143 #include "intel_mocs.h" 144 #include "intel_reset.h" 145 #include "intel_workarounds.h" 146 147 #define RING_EXECLIST_QFULL (1 << 0x2) 148 #define RING_EXECLIST1_VALID (1 << 0x3) 149 #define RING_EXECLIST0_VALID (1 << 0x4) 150 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) 151 #define RING_EXECLIST1_ACTIVE (1 << 0x11) 152 #define RING_EXECLIST0_ACTIVE (1 << 0x12) 153 154 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) 155 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) 156 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) 157 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) 158 #define GEN8_CTX_STATUS_COMPLETE (1 << 4) 159 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) 160 161 #define GEN8_CTX_STATUS_COMPLETED_MASK \ 162 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) 163 164 /* Typical size of the average request (2 pipecontrols and a MI_BB) */ 165 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ 166 #define WA_TAIL_DWORDS 2 167 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS) 168 169 struct virtual_engine { 170 struct intel_engine_cs base; 171 struct intel_context context; 172 173 /* 174 * We allow only a single request through the virtual engine at a time 175 * (each request in the timeline waits for the completion fence of 176 * the previous before being submitted). By restricting ourselves to 177 * only submitting a single request, each request is placed on to a 178 * physical to maximise load spreading (by virtue of the late greedy 179 * scheduling -- each real engine takes the next available request 180 * upon idling). 181 */ 182 struct i915_request *request; 183 184 /* 185 * We keep a rbtree of available virtual engines inside each physical 186 * engine, sorted by priority. Here we preallocate the nodes we need 187 * for the virtual engine, indexed by physical_engine->id. 188 */ 189 struct ve_node { 190 struct rb_node rb; 191 int prio; 192 } nodes[I915_NUM_ENGINES]; 193 194 /* 195 * Keep track of bonded pairs -- restrictions upon on our selection 196 * of physical engines any particular request may be submitted to. 197 * If we receive a submit-fence from a master engine, we will only 198 * use one of sibling_mask physical engines. 199 */ 200 struct ve_bond { 201 const struct intel_engine_cs *master; 202 intel_engine_mask_t sibling_mask; 203 } *bonds; 204 unsigned int num_bonds; 205 206 /* And finally, which physical engines this virtual engine maps onto. */ 207 unsigned int num_siblings; 208 struct intel_engine_cs *siblings[0]; 209 }; 210 211 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) 212 { 213 GEM_BUG_ON(!intel_engine_is_virtual(engine)); 214 return container_of(engine, struct virtual_engine, base); 215 } 216 217 static int execlists_context_deferred_alloc(struct intel_context *ce, 218 struct intel_engine_cs *engine); 219 static void execlists_init_reg_state(u32 *reg_state, 220 struct intel_context *ce, 221 struct intel_engine_cs *engine, 222 struct intel_ring *ring); 223 224 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 225 { 226 return rb_entry(rb, struct i915_priolist, node); 227 } 228 229 static inline int rq_prio(const struct i915_request *rq) 230 { 231 return rq->sched.attr.priority; 232 } 233 234 static int effective_prio(const struct i915_request *rq) 235 { 236 int prio = rq_prio(rq); 237 238 /* 239 * On unwinding the active request, we give it a priority bump 240 * if it has completed waiting on any semaphore. If we know that 241 * the request has already started, we can prevent an unwanted 242 * preempt-to-idle cycle by taking that into account now. 243 */ 244 if (__i915_request_has_started(rq)) 245 prio |= I915_PRIORITY_NOSEMAPHORE; 246 247 /* Restrict mere WAIT boosts from triggering preemption */ 248 return prio | __NO_PREEMPTION; 249 } 250 251 static int queue_prio(const struct intel_engine_execlists *execlists) 252 { 253 struct i915_priolist *p; 254 struct rb_node *rb; 255 256 rb = rb_first_cached(&execlists->queue); 257 if (!rb) 258 return INT_MIN; 259 260 /* 261 * As the priolist[] are inverted, with the highest priority in [0], 262 * we have to flip the index value to become priority. 263 */ 264 p = to_priolist(rb); 265 return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used); 266 } 267 268 static inline bool need_preempt(const struct intel_engine_cs *engine, 269 const struct i915_request *rq, 270 struct rb_node *rb) 271 { 272 int last_prio; 273 274 if (!engine->preempt_context) 275 return false; 276 277 if (i915_request_completed(rq)) 278 return false; 279 280 /* 281 * Check if the current priority hint merits a preemption attempt. 282 * 283 * We record the highest value priority we saw during rescheduling 284 * prior to this dequeue, therefore we know that if it is strictly 285 * less than the current tail of ESLP[0], we do not need to force 286 * a preempt-to-idle cycle. 287 * 288 * However, the priority hint is a mere hint that we may need to 289 * preempt. If that hint is stale or we may be trying to preempt 290 * ourselves, ignore the request. 291 */ 292 last_prio = effective_prio(rq); 293 if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint, 294 last_prio)) 295 return false; 296 297 /* 298 * Check against the first request in ELSP[1], it will, thanks to the 299 * power of PI, be the highest priority of that context. 300 */ 301 if (!list_is_last(&rq->sched.link, &engine->active.requests) && 302 rq_prio(list_next_entry(rq, sched.link)) > last_prio) 303 return true; 304 305 if (rb) { 306 struct virtual_engine *ve = 307 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 308 bool preempt = false; 309 310 if (engine == ve->siblings[0]) { /* only preempt one sibling */ 311 struct i915_request *next; 312 313 rcu_read_lock(); 314 next = READ_ONCE(ve->request); 315 if (next) 316 preempt = rq_prio(next) > last_prio; 317 rcu_read_unlock(); 318 } 319 320 if (preempt) 321 return preempt; 322 } 323 324 /* 325 * If the inflight context did not trigger the preemption, then maybe 326 * it was the set of queued requests? Pick the highest priority in 327 * the queue (the first active priolist) and see if it deserves to be 328 * running instead of ELSP[0]. 329 * 330 * The highest priority request in the queue can not be either 331 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same 332 * context, it's priority would not exceed ELSP[0] aka last_prio. 333 */ 334 return queue_prio(&engine->execlists) > last_prio; 335 } 336 337 __maybe_unused static inline bool 338 assert_priority_queue(const struct i915_request *prev, 339 const struct i915_request *next) 340 { 341 const struct intel_engine_execlists *execlists = 342 &prev->engine->execlists; 343 344 /* 345 * Without preemption, the prev may refer to the still active element 346 * which we refuse to let go. 347 * 348 * Even with preemption, there are times when we think it is better not 349 * to preempt and leave an ostensibly lower priority request in flight. 350 */ 351 if (port_request(execlists->port) == prev) 352 return true; 353 354 return rq_prio(prev) >= rq_prio(next); 355 } 356 357 /* 358 * The context descriptor encodes various attributes of a context, 359 * including its GTT address and some flags. Because it's fairly 360 * expensive to calculate, we'll just do it once and cache the result, 361 * which remains valid until the context is unpinned. 362 * 363 * This is what a descriptor looks like, from LSB to MSB:: 364 * 365 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) 366 * bits 12-31: LRCA, GTT address of (the HWSP of) this context 367 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) 368 * bits 53-54: mbz, reserved for use by hardware 369 * bits 55-63: group ID, currently unused and set to 0 370 * 371 * Starting from Gen11, the upper dword of the descriptor has a new format: 372 * 373 * bits 32-36: reserved 374 * bits 37-47: SW context ID 375 * bits 48:53: engine instance 376 * bit 54: mbz, reserved for use by hardware 377 * bits 55-60: SW counter 378 * bits 61-63: engine class 379 * 380 * engine info, SW context ID and SW counter need to form a unique number 381 * (Context ID) per lrc. 382 */ 383 static u64 384 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine) 385 { 386 struct i915_gem_context *ctx = ce->gem_context; 387 u64 desc; 388 389 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH))); 390 BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH))); 391 392 desc = ctx->desc_template; /* bits 0-11 */ 393 GEM_BUG_ON(desc & GENMASK_ULL(63, 12)); 394 395 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE; 396 /* bits 12-31 */ 397 GEM_BUG_ON(desc & GENMASK_ULL(63, 32)); 398 399 /* 400 * The following 32bits are copied into the OA reports (dword 2). 401 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing 402 * anything below. 403 */ 404 if (INTEL_GEN(engine->i915) >= 11) { 405 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH)); 406 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT; 407 /* bits 37-47 */ 408 409 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT; 410 /* bits 48-53 */ 411 412 /* TODO: decide what to do with SW counter (bits 55-60) */ 413 414 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT; 415 /* bits 61-63 */ 416 } else { 417 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH)); 418 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */ 419 } 420 421 return desc; 422 } 423 424 static void unwind_wa_tail(struct i915_request *rq) 425 { 426 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES); 427 assert_ring_tail_valid(rq->ring, rq->tail); 428 } 429 430 static struct i915_request * 431 __unwind_incomplete_requests(struct intel_engine_cs *engine) 432 { 433 struct i915_request *rq, *rn, *active = NULL; 434 struct list_head *uninitialized_var(pl); 435 int prio = I915_PRIORITY_INVALID; 436 437 lockdep_assert_held(&engine->active.lock); 438 439 list_for_each_entry_safe_reverse(rq, rn, 440 &engine->active.requests, 441 sched.link) { 442 struct intel_engine_cs *owner; 443 444 if (i915_request_completed(rq)) 445 break; 446 447 __i915_request_unsubmit(rq); 448 unwind_wa_tail(rq); 449 450 GEM_BUG_ON(rq->hw_context->inflight); 451 452 /* 453 * Push the request back into the queue for later resubmission. 454 * If this request is not native to this physical engine (i.e. 455 * it came from a virtual source), push it back onto the virtual 456 * engine so that it can be moved across onto another physical 457 * engine as load dictates. 458 */ 459 owner = rq->hw_context->engine; 460 if (likely(owner == engine)) { 461 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 462 if (rq_prio(rq) != prio) { 463 prio = rq_prio(rq); 464 pl = i915_sched_lookup_priolist(engine, prio); 465 } 466 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); 467 468 list_move(&rq->sched.link, pl); 469 active = rq; 470 } else { 471 rq->engine = owner; 472 owner->submit_request(rq); 473 active = NULL; 474 } 475 } 476 477 return active; 478 } 479 480 struct i915_request * 481 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) 482 { 483 struct intel_engine_cs *engine = 484 container_of(execlists, typeof(*engine), execlists); 485 486 return __unwind_incomplete_requests(engine); 487 } 488 489 static inline void 490 execlists_context_status_change(struct i915_request *rq, unsigned long status) 491 { 492 /* 493 * Only used when GVT-g is enabled now. When GVT-g is disabled, 494 * The compiler should eliminate this function as dead-code. 495 */ 496 if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) 497 return; 498 499 atomic_notifier_call_chain(&rq->engine->context_status_notifier, 500 status, rq); 501 } 502 503 inline void 504 execlists_user_begin(struct intel_engine_execlists *execlists, 505 const struct execlist_port *port) 506 { 507 execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER); 508 } 509 510 inline void 511 execlists_user_end(struct intel_engine_execlists *execlists) 512 { 513 execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER); 514 } 515 516 static inline void 517 execlists_context_schedule_in(struct i915_request *rq) 518 { 519 GEM_BUG_ON(rq->hw_context->inflight); 520 521 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); 522 intel_engine_context_in(rq->engine); 523 rq->hw_context->inflight = rq->engine; 524 } 525 526 static void kick_siblings(struct i915_request *rq) 527 { 528 struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine); 529 struct i915_request *next = READ_ONCE(ve->request); 530 531 if (next && next->execution_mask & ~rq->execution_mask) 532 tasklet_schedule(&ve->base.execlists.tasklet); 533 } 534 535 static inline void 536 execlists_context_schedule_out(struct i915_request *rq, unsigned long status) 537 { 538 rq->hw_context->inflight = NULL; 539 intel_engine_context_out(rq->engine); 540 execlists_context_status_change(rq, status); 541 trace_i915_request_out(rq); 542 543 /* 544 * If this is part of a virtual engine, its next request may have 545 * been blocked waiting for access to the active context. We have 546 * to kick all the siblings again in case we need to switch (e.g. 547 * the next request is not runnable on this engine). Hopefully, 548 * we will already have submitted the next request before the 549 * tasklet runs and do not need to rebuild each virtual tree 550 * and kick everyone again. 551 */ 552 if (rq->engine != rq->hw_context->engine) 553 kick_siblings(rq); 554 } 555 556 static u64 execlists_update_context(struct i915_request *rq) 557 { 558 struct intel_context *ce = rq->hw_context; 559 560 ce->lrc_reg_state[CTX_RING_TAIL + 1] = 561 intel_ring_set_tail(rq->ring, rq->tail); 562 563 /* 564 * Make sure the context image is complete before we submit it to HW. 565 * 566 * Ostensibly, writes (including the WCB) should be flushed prior to 567 * an uncached write such as our mmio register access, the empirical 568 * evidence (esp. on Braswell) suggests that the WC write into memory 569 * may not be visible to the HW prior to the completion of the UC 570 * register write and that we may begin execution from the context 571 * before its image is complete leading to invalid PD chasing. 572 * 573 * Furthermore, Braswell, at least, wants a full mb to be sure that 574 * the writes are coherent in memory (visible to the GPU) prior to 575 * execution, and not just visible to other CPUs (as is the result of 576 * wmb). 577 */ 578 mb(); 579 return ce->lrc_desc; 580 } 581 582 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) 583 { 584 if (execlists->ctrl_reg) { 585 writel(lower_32_bits(desc), execlists->submit_reg + port * 2); 586 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); 587 } else { 588 writel(upper_32_bits(desc), execlists->submit_reg); 589 writel(lower_32_bits(desc), execlists->submit_reg); 590 } 591 } 592 593 static void execlists_submit_ports(struct intel_engine_cs *engine) 594 { 595 struct intel_engine_execlists *execlists = &engine->execlists; 596 struct execlist_port *port = execlists->port; 597 unsigned int n; 598 599 /* 600 * We can skip acquiring intel_runtime_pm_get() here as it was taken 601 * on our behalf by the request (see i915_gem_mark_busy()) and it will 602 * not be relinquished until the device is idle (see 603 * i915_gem_idle_work_handler()). As a precaution, we make sure 604 * that all ELSP are drained i.e. we have processed the CSB, 605 * before allowing ourselves to idle and calling intel_runtime_pm_put(). 606 */ 607 GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref)); 608 609 /* 610 * ELSQ note: the submit queue is not cleared after being submitted 611 * to the HW so we need to make sure we always clean it up. This is 612 * currently ensured by the fact that we always write the same number 613 * of elsq entries, keep this in mind before changing the loop below. 614 */ 615 for (n = execlists_num_ports(execlists); n--; ) { 616 struct i915_request *rq; 617 unsigned int count; 618 u64 desc; 619 620 rq = port_unpack(&port[n], &count); 621 if (rq) { 622 GEM_BUG_ON(count > !n); 623 if (!count++) 624 execlists_context_schedule_in(rq); 625 port_set(&port[n], port_pack(rq, count)); 626 desc = execlists_update_context(rq); 627 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc)); 628 629 GEM_TRACE("%s in[%d]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n", 630 engine->name, n, 631 port[n].context_id, count, 632 rq->fence.context, rq->fence.seqno, 633 hwsp_seqno(rq), 634 rq_prio(rq)); 635 } else { 636 GEM_BUG_ON(!n); 637 desc = 0; 638 } 639 640 write_desc(execlists, desc, n); 641 } 642 643 /* we need to manually load the submit queue */ 644 if (execlists->ctrl_reg) 645 writel(EL_CTRL_LOAD, execlists->ctrl_reg); 646 647 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK); 648 } 649 650 static bool ctx_single_port_submission(const struct intel_context *ce) 651 { 652 return (IS_ENABLED(CONFIG_DRM_I915_GVT) && 653 i915_gem_context_force_single_submission(ce->gem_context)); 654 } 655 656 static bool can_merge_ctx(const struct intel_context *prev, 657 const struct intel_context *next) 658 { 659 if (prev != next) 660 return false; 661 662 if (ctx_single_port_submission(prev)) 663 return false; 664 665 return true; 666 } 667 668 static bool can_merge_rq(const struct i915_request *prev, 669 const struct i915_request *next) 670 { 671 GEM_BUG_ON(!assert_priority_queue(prev, next)); 672 673 if (!can_merge_ctx(prev->hw_context, next->hw_context)) 674 return false; 675 676 return true; 677 } 678 679 static void port_assign(struct execlist_port *port, struct i915_request *rq) 680 { 681 GEM_BUG_ON(rq == port_request(port)); 682 683 if (port_isset(port)) 684 i915_request_put(port_request(port)); 685 686 port_set(port, port_pack(i915_request_get(rq), port_count(port))); 687 } 688 689 static void inject_preempt_context(struct intel_engine_cs *engine) 690 { 691 struct intel_engine_execlists *execlists = &engine->execlists; 692 struct intel_context *ce = engine->preempt_context; 693 unsigned int n; 694 695 GEM_BUG_ON(execlists->preempt_complete_status != 696 upper_32_bits(ce->lrc_desc)); 697 698 /* 699 * Switch to our empty preempt context so 700 * the state of the GPU is known (idle). 701 */ 702 GEM_TRACE("%s\n", engine->name); 703 for (n = execlists_num_ports(execlists); --n; ) 704 write_desc(execlists, 0, n); 705 706 write_desc(execlists, ce->lrc_desc, n); 707 708 /* we need to manually load the submit queue */ 709 if (execlists->ctrl_reg) 710 writel(EL_CTRL_LOAD, execlists->ctrl_reg); 711 712 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK); 713 execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT); 714 715 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); 716 } 717 718 static void complete_preempt_context(struct intel_engine_execlists *execlists) 719 { 720 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT)); 721 722 if (inject_preempt_hang(execlists)) 723 return; 724 725 execlists_cancel_port_requests(execlists); 726 __unwind_incomplete_requests(container_of(execlists, 727 struct intel_engine_cs, 728 execlists)); 729 } 730 731 static void virtual_update_register_offsets(u32 *regs, 732 struct intel_engine_cs *engine) 733 { 734 u32 base = engine->mmio_base; 735 736 /* Must match execlists_init_reg_state()! */ 737 738 regs[CTX_CONTEXT_CONTROL] = 739 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base)); 740 regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base)); 741 regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base)); 742 regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base)); 743 regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base)); 744 745 regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base)); 746 regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base)); 747 regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base)); 748 regs[CTX_SECOND_BB_HEAD_U] = 749 i915_mmio_reg_offset(RING_SBBADDR_UDW(base)); 750 regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base)); 751 regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base)); 752 753 regs[CTX_CTX_TIMESTAMP] = 754 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base)); 755 regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3)); 756 regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3)); 757 regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2)); 758 regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2)); 759 regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1)); 760 regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1)); 761 regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0)); 762 regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0)); 763 764 if (engine->class == RENDER_CLASS) { 765 regs[CTX_RCS_INDIRECT_CTX] = 766 i915_mmio_reg_offset(RING_INDIRECT_CTX(base)); 767 regs[CTX_RCS_INDIRECT_CTX_OFFSET] = 768 i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base)); 769 regs[CTX_BB_PER_CTX_PTR] = 770 i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base)); 771 772 regs[CTX_R_PWR_CLK_STATE] = 773 i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE); 774 } 775 } 776 777 static bool virtual_matches(const struct virtual_engine *ve, 778 const struct i915_request *rq, 779 const struct intel_engine_cs *engine) 780 { 781 const struct intel_engine_cs *inflight; 782 783 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ 784 return false; 785 786 /* 787 * We track when the HW has completed saving the context image 788 * (i.e. when we have seen the final CS event switching out of 789 * the context) and must not overwrite the context image before 790 * then. This restricts us to only using the active engine 791 * while the previous virtualized request is inflight (so 792 * we reuse the register offsets). This is a very small 793 * hystersis on the greedy seelction algorithm. 794 */ 795 inflight = READ_ONCE(ve->context.inflight); 796 if (inflight && inflight != engine) 797 return false; 798 799 return true; 800 } 801 802 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve, 803 struct intel_engine_cs *engine) 804 { 805 struct intel_engine_cs *old = ve->siblings[0]; 806 807 /* All unattached (rq->engine == old) must already be completed */ 808 809 spin_lock(&old->breadcrumbs.irq_lock); 810 if (!list_empty(&ve->context.signal_link)) { 811 list_move_tail(&ve->context.signal_link, 812 &engine->breadcrumbs.signalers); 813 intel_engine_queue_breadcrumbs(engine); 814 } 815 spin_unlock(&old->breadcrumbs.irq_lock); 816 } 817 818 static void execlists_dequeue(struct intel_engine_cs *engine) 819 { 820 struct intel_engine_execlists * const execlists = &engine->execlists; 821 struct execlist_port *port = execlists->port; 822 const struct execlist_port * const last_port = 823 &execlists->port[execlists->port_mask]; 824 struct i915_request *last = port_request(port); 825 struct rb_node *rb; 826 bool submit = false; 827 828 /* 829 * Hardware submission is through 2 ports. Conceptually each port 830 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is 831 * static for a context, and unique to each, so we only execute 832 * requests belonging to a single context from each ring. RING_HEAD 833 * is maintained by the CS in the context image, it marks the place 834 * where it got up to last time, and through RING_TAIL we tell the CS 835 * where we want to execute up to this time. 836 * 837 * In this list the requests are in order of execution. Consecutive 838 * requests from the same context are adjacent in the ringbuffer. We 839 * can combine these requests into a single RING_TAIL update: 840 * 841 * RING_HEAD...req1...req2 842 * ^- RING_TAIL 843 * since to execute req2 the CS must first execute req1. 844 * 845 * Our goal then is to point each port to the end of a consecutive 846 * sequence of requests as being the most optimal (fewest wake ups 847 * and context switches) submission. 848 */ 849 850 for (rb = rb_first_cached(&execlists->virtual); rb; ) { 851 struct virtual_engine *ve = 852 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 853 struct i915_request *rq = READ_ONCE(ve->request); 854 855 if (!rq) { /* lazily cleanup after another engine handled rq */ 856 rb_erase_cached(rb, &execlists->virtual); 857 RB_CLEAR_NODE(rb); 858 rb = rb_first_cached(&execlists->virtual); 859 continue; 860 } 861 862 if (!virtual_matches(ve, rq, engine)) { 863 rb = rb_next(rb); 864 continue; 865 } 866 867 break; 868 } 869 870 if (last) { 871 /* 872 * Don't resubmit or switch until all outstanding 873 * preemptions (lite-restore) are seen. Then we 874 * know the next preemption status we see corresponds 875 * to this ELSP update. 876 */ 877 GEM_BUG_ON(!execlists_is_active(execlists, 878 EXECLISTS_ACTIVE_USER)); 879 GEM_BUG_ON(!port_count(&port[0])); 880 881 /* 882 * If we write to ELSP a second time before the HW has had 883 * a chance to respond to the previous write, we can confuse 884 * the HW and hit "undefined behaviour". After writing to ELSP, 885 * we must then wait until we see a context-switch event from 886 * the HW to indicate that it has had a chance to respond. 887 */ 888 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK)) 889 return; 890 891 if (need_preempt(engine, last, rb)) { 892 inject_preempt_context(engine); 893 return; 894 } 895 896 /* 897 * In theory, we could coalesce more requests onto 898 * the second port (the first port is active, with 899 * no preemptions pending). However, that means we 900 * then have to deal with the possible lite-restore 901 * of the second port (as we submit the ELSP, there 902 * may be a context-switch) but also we may complete 903 * the resubmission before the context-switch. Ergo, 904 * coalescing onto the second port will cause a 905 * preemption event, but we cannot predict whether 906 * that will affect port[0] or port[1]. 907 * 908 * If the second port is already active, we can wait 909 * until the next context-switch before contemplating 910 * new requests. The GPU will be busy and we should be 911 * able to resubmit the new ELSP before it idles, 912 * avoiding pipeline bubbles (momentary pauses where 913 * the driver is unable to keep up the supply of new 914 * work). However, we have to double check that the 915 * priorities of the ports haven't been switch. 916 */ 917 if (port_count(&port[1])) 918 return; 919 920 /* 921 * WaIdleLiteRestore:bdw,skl 922 * Apply the wa NOOPs to prevent 923 * ring:HEAD == rq:TAIL as we resubmit the 924 * request. See gen8_emit_fini_breadcrumb() for 925 * where we prepare the padding after the 926 * end of the request. 927 */ 928 last->tail = last->wa_tail; 929 } 930 931 while (rb) { /* XXX virtual is always taking precedence */ 932 struct virtual_engine *ve = 933 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 934 struct i915_request *rq; 935 936 spin_lock(&ve->base.active.lock); 937 938 rq = ve->request; 939 if (unlikely(!rq)) { /* lost the race to a sibling */ 940 spin_unlock(&ve->base.active.lock); 941 rb_erase_cached(rb, &execlists->virtual); 942 RB_CLEAR_NODE(rb); 943 rb = rb_first_cached(&execlists->virtual); 944 continue; 945 } 946 947 GEM_BUG_ON(rq != ve->request); 948 GEM_BUG_ON(rq->engine != &ve->base); 949 GEM_BUG_ON(rq->hw_context != &ve->context); 950 951 if (rq_prio(rq) >= queue_prio(execlists)) { 952 if (!virtual_matches(ve, rq, engine)) { 953 spin_unlock(&ve->base.active.lock); 954 rb = rb_next(rb); 955 continue; 956 } 957 958 if (last && !can_merge_rq(last, rq)) { 959 spin_unlock(&ve->base.active.lock); 960 return; /* leave this rq for another engine */ 961 } 962 963 GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n", 964 engine->name, 965 rq->fence.context, 966 rq->fence.seqno, 967 i915_request_completed(rq) ? "!" : 968 i915_request_started(rq) ? "*" : 969 "", 970 yesno(engine != ve->siblings[0])); 971 972 ve->request = NULL; 973 ve->base.execlists.queue_priority_hint = INT_MIN; 974 rb_erase_cached(rb, &execlists->virtual); 975 RB_CLEAR_NODE(rb); 976 977 GEM_BUG_ON(!(rq->execution_mask & engine->mask)); 978 rq->engine = engine; 979 980 if (engine != ve->siblings[0]) { 981 u32 *regs = ve->context.lrc_reg_state; 982 unsigned int n; 983 984 GEM_BUG_ON(READ_ONCE(ve->context.inflight)); 985 virtual_update_register_offsets(regs, engine); 986 987 if (!list_empty(&ve->context.signals)) 988 virtual_xfer_breadcrumbs(ve, engine); 989 990 /* 991 * Move the bound engine to the top of the list 992 * for future execution. We then kick this 993 * tasklet first before checking others, so that 994 * we preferentially reuse this set of bound 995 * registers. 996 */ 997 for (n = 1; n < ve->num_siblings; n++) { 998 if (ve->siblings[n] == engine) { 999 swap(ve->siblings[n], 1000 ve->siblings[0]); 1001 break; 1002 } 1003 } 1004 1005 GEM_BUG_ON(ve->siblings[0] != engine); 1006 } 1007 1008 __i915_request_submit(rq); 1009 trace_i915_request_in(rq, port_index(port, execlists)); 1010 submit = true; 1011 last = rq; 1012 } 1013 1014 spin_unlock(&ve->base.active.lock); 1015 break; 1016 } 1017 1018 while ((rb = rb_first_cached(&execlists->queue))) { 1019 struct i915_priolist *p = to_priolist(rb); 1020 struct i915_request *rq, *rn; 1021 int i; 1022 1023 priolist_for_each_request_consume(rq, rn, p, i) { 1024 /* 1025 * Can we combine this request with the current port? 1026 * It has to be the same context/ringbuffer and not 1027 * have any exceptions (e.g. GVT saying never to 1028 * combine contexts). 1029 * 1030 * If we can combine the requests, we can execute both 1031 * by updating the RING_TAIL to point to the end of the 1032 * second request, and so we never need to tell the 1033 * hardware about the first. 1034 */ 1035 if (last && !can_merge_rq(last, rq)) { 1036 /* 1037 * If we are on the second port and cannot 1038 * combine this request with the last, then we 1039 * are done. 1040 */ 1041 if (port == last_port) 1042 goto done; 1043 1044 /* 1045 * We must not populate both ELSP[] with the 1046 * same LRCA, i.e. we must submit 2 different 1047 * contexts if we submit 2 ELSP. 1048 */ 1049 if (last->hw_context == rq->hw_context) 1050 goto done; 1051 1052 /* 1053 * If GVT overrides us we only ever submit 1054 * port[0], leaving port[1] empty. Note that we 1055 * also have to be careful that we don't queue 1056 * the same context (even though a different 1057 * request) to the second port. 1058 */ 1059 if (ctx_single_port_submission(last->hw_context) || 1060 ctx_single_port_submission(rq->hw_context)) 1061 goto done; 1062 1063 1064 if (submit) 1065 port_assign(port, last); 1066 port++; 1067 1068 GEM_BUG_ON(port_isset(port)); 1069 } 1070 1071 __i915_request_submit(rq); 1072 trace_i915_request_in(rq, port_index(port, execlists)); 1073 1074 last = rq; 1075 submit = true; 1076 } 1077 1078 rb_erase_cached(&p->node, &execlists->queue); 1079 i915_priolist_free(p); 1080 } 1081 1082 done: 1083 /* 1084 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. 1085 * 1086 * We choose the priority hint such that if we add a request of greater 1087 * priority than this, we kick the submission tasklet to decide on 1088 * the right order of submitting the requests to hardware. We must 1089 * also be prepared to reorder requests as they are in-flight on the 1090 * HW. We derive the priority hint then as the first "hole" in 1091 * the HW submission ports and if there are no available slots, 1092 * the priority of the lowest executing request, i.e. last. 1093 * 1094 * When we do receive a higher priority request ready to run from the 1095 * user, see queue_request(), the priority hint is bumped to that 1096 * request triggering preemption on the next dequeue (or subsequent 1097 * interrupt for secondary ports). 1098 */ 1099 execlists->queue_priority_hint = queue_prio(execlists); 1100 1101 if (submit) { 1102 port_assign(port, last); 1103 execlists_submit_ports(engine); 1104 } 1105 1106 /* We must always keep the beast fed if we have work piled up */ 1107 GEM_BUG_ON(rb_first_cached(&execlists->queue) && 1108 !port_isset(execlists->port)); 1109 1110 /* Re-evaluate the executing context setup after each preemptive kick */ 1111 if (last) 1112 execlists_user_begin(execlists, execlists->port); 1113 1114 /* If the engine is now idle, so should be the flag; and vice versa. */ 1115 GEM_BUG_ON(execlists_is_active(&engine->execlists, 1116 EXECLISTS_ACTIVE_USER) == 1117 !port_isset(engine->execlists.port)); 1118 } 1119 1120 void 1121 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists) 1122 { 1123 struct execlist_port *port = execlists->port; 1124 unsigned int num_ports = execlists_num_ports(execlists); 1125 1126 while (num_ports-- && port_isset(port)) { 1127 struct i915_request *rq = port_request(port); 1128 1129 GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n", 1130 rq->engine->name, 1131 (unsigned int)(port - execlists->port), 1132 rq->fence.context, rq->fence.seqno, 1133 hwsp_seqno(rq)); 1134 1135 GEM_BUG_ON(!execlists->active); 1136 execlists_context_schedule_out(rq, 1137 i915_request_completed(rq) ? 1138 INTEL_CONTEXT_SCHEDULE_OUT : 1139 INTEL_CONTEXT_SCHEDULE_PREEMPTED); 1140 1141 i915_request_put(rq); 1142 1143 memset(port, 0, sizeof(*port)); 1144 port++; 1145 } 1146 1147 execlists_clear_all_active(execlists); 1148 } 1149 1150 static inline void 1151 invalidate_csb_entries(const u32 *first, const u32 *last) 1152 { 1153 clflush((void *)first); 1154 clflush((void *)last); 1155 } 1156 1157 static inline bool 1158 reset_in_progress(const struct intel_engine_execlists *execlists) 1159 { 1160 return unlikely(!__tasklet_is_enabled(&execlists->tasklet)); 1161 } 1162 1163 static void process_csb(struct intel_engine_cs *engine) 1164 { 1165 struct intel_engine_execlists * const execlists = &engine->execlists; 1166 struct execlist_port *port = execlists->port; 1167 const u32 * const buf = execlists->csb_status; 1168 const u8 num_entries = execlists->csb_size; 1169 u8 head, tail; 1170 1171 lockdep_assert_held(&engine->active.lock); 1172 GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915)); 1173 1174 /* 1175 * Note that csb_write, csb_status may be either in HWSP or mmio. 1176 * When reading from the csb_write mmio register, we have to be 1177 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is 1178 * the low 4bits. As it happens we know the next 4bits are always 1179 * zero and so we can simply masked off the low u8 of the register 1180 * and treat it identically to reading from the HWSP (without having 1181 * to use explicit shifting and masking, and probably bifurcating 1182 * the code to handle the legacy mmio read). 1183 */ 1184 head = execlists->csb_head; 1185 tail = READ_ONCE(*execlists->csb_write); 1186 GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail); 1187 if (unlikely(head == tail)) 1188 return; 1189 1190 /* 1191 * Hopefully paired with a wmb() in HW! 1192 * 1193 * We must complete the read of the write pointer before any reads 1194 * from the CSB, so that we do not see stale values. Without an rmb 1195 * (lfence) the HW may speculatively perform the CSB[] reads *before* 1196 * we perform the READ_ONCE(*csb_write). 1197 */ 1198 rmb(); 1199 1200 do { 1201 struct i915_request *rq; 1202 unsigned int status; 1203 unsigned int count; 1204 1205 if (++head == num_entries) 1206 head = 0; 1207 1208 /* 1209 * We are flying near dragons again. 1210 * 1211 * We hold a reference to the request in execlist_port[] 1212 * but no more than that. We are operating in softirq 1213 * context and so cannot hold any mutex or sleep. That 1214 * prevents us stopping the requests we are processing 1215 * in port[] from being retired simultaneously (the 1216 * breadcrumb will be complete before we see the 1217 * context-switch). As we only hold the reference to the 1218 * request, any pointer chasing underneath the request 1219 * is subject to a potential use-after-free. Thus we 1220 * store all of the bookkeeping within port[] as 1221 * required, and avoid using unguarded pointers beneath 1222 * request itself. The same applies to the atomic 1223 * status notifier. 1224 */ 1225 1226 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n", 1227 engine->name, head, 1228 buf[2 * head + 0], buf[2 * head + 1], 1229 execlists->active); 1230 1231 status = buf[2 * head]; 1232 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE | 1233 GEN8_CTX_STATUS_PREEMPTED)) 1234 execlists_set_active(execlists, 1235 EXECLISTS_ACTIVE_HWACK); 1236 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE) 1237 execlists_clear_active(execlists, 1238 EXECLISTS_ACTIVE_HWACK); 1239 1240 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK)) 1241 continue; 1242 1243 /* We should never get a COMPLETED | IDLE_ACTIVE! */ 1244 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE); 1245 1246 if (status & GEN8_CTX_STATUS_COMPLETE && 1247 buf[2*head + 1] == execlists->preempt_complete_status) { 1248 GEM_TRACE("%s preempt-idle\n", engine->name); 1249 complete_preempt_context(execlists); 1250 continue; 1251 } 1252 1253 if (status & GEN8_CTX_STATUS_PREEMPTED && 1254 execlists_is_active(execlists, 1255 EXECLISTS_ACTIVE_PREEMPT)) 1256 continue; 1257 1258 GEM_BUG_ON(!execlists_is_active(execlists, 1259 EXECLISTS_ACTIVE_USER)); 1260 1261 rq = port_unpack(port, &count); 1262 GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n", 1263 engine->name, 1264 port->context_id, count, 1265 rq ? rq->fence.context : 0, 1266 rq ? rq->fence.seqno : 0, 1267 rq ? hwsp_seqno(rq) : 0, 1268 rq ? rq_prio(rq) : 0); 1269 1270 /* Check the context/desc id for this event matches */ 1271 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id); 1272 1273 GEM_BUG_ON(count == 0); 1274 if (--count == 0) { 1275 /* 1276 * On the final event corresponding to the 1277 * submission of this context, we expect either 1278 * an element-switch event or a completion 1279 * event (and on completion, the active-idle 1280 * marker). No more preemptions, lite-restore 1281 * or otherwise. 1282 */ 1283 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED); 1284 GEM_BUG_ON(port_isset(&port[1]) && 1285 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH)); 1286 GEM_BUG_ON(!port_isset(&port[1]) && 1287 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE)); 1288 1289 /* 1290 * We rely on the hardware being strongly 1291 * ordered, that the breadcrumb write is 1292 * coherent (visible from the CPU) before the 1293 * user interrupt and CSB is processed. 1294 */ 1295 GEM_BUG_ON(!i915_request_completed(rq)); 1296 1297 execlists_context_schedule_out(rq, 1298 INTEL_CONTEXT_SCHEDULE_OUT); 1299 i915_request_put(rq); 1300 1301 GEM_TRACE("%s completed ctx=%d\n", 1302 engine->name, port->context_id); 1303 1304 port = execlists_port_complete(execlists, port); 1305 if (port_isset(port)) 1306 execlists_user_begin(execlists, port); 1307 else 1308 execlists_user_end(execlists); 1309 } else { 1310 port_set(port, port_pack(rq, count)); 1311 } 1312 } while (head != tail); 1313 1314 execlists->csb_head = head; 1315 1316 /* 1317 * Gen11 has proven to fail wrt global observation point between 1318 * entry and tail update, failing on the ordering and thus 1319 * we see an old entry in the context status buffer. 1320 * 1321 * Forcibly evict out entries for the next gpu csb update, 1322 * to increase the odds that we get a fresh entries with non 1323 * working hardware. The cost for doing so comes out mostly with 1324 * the wash as hardware, working or not, will need to do the 1325 * invalidation before. 1326 */ 1327 invalidate_csb_entries(&buf[0], &buf[num_entries - 1]); 1328 } 1329 1330 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine) 1331 { 1332 lockdep_assert_held(&engine->active.lock); 1333 1334 process_csb(engine); 1335 if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT)) 1336 execlists_dequeue(engine); 1337 } 1338 1339 /* 1340 * Check the unread Context Status Buffers and manage the submission of new 1341 * contexts to the ELSP accordingly. 1342 */ 1343 static void execlists_submission_tasklet(unsigned long data) 1344 { 1345 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; 1346 unsigned long flags; 1347 1348 GEM_TRACE("%s awake?=%d, active=%x\n", 1349 engine->name, 1350 !!intel_wakeref_active(&engine->wakeref), 1351 engine->execlists.active); 1352 1353 spin_lock_irqsave(&engine->active.lock, flags); 1354 __execlists_submission_tasklet(engine); 1355 spin_unlock_irqrestore(&engine->active.lock, flags); 1356 } 1357 1358 static void queue_request(struct intel_engine_cs *engine, 1359 struct i915_sched_node *node, 1360 int prio) 1361 { 1362 GEM_BUG_ON(!list_empty(&node->link)); 1363 list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio)); 1364 } 1365 1366 static void __submit_queue_imm(struct intel_engine_cs *engine) 1367 { 1368 struct intel_engine_execlists * const execlists = &engine->execlists; 1369 1370 if (reset_in_progress(execlists)) 1371 return; /* defer until we restart the engine following reset */ 1372 1373 if (execlists->tasklet.func == execlists_submission_tasklet) 1374 __execlists_submission_tasklet(engine); 1375 else 1376 tasklet_hi_schedule(&execlists->tasklet); 1377 } 1378 1379 static void submit_queue(struct intel_engine_cs *engine, int prio) 1380 { 1381 if (prio > engine->execlists.queue_priority_hint) { 1382 engine->execlists.queue_priority_hint = prio; 1383 __submit_queue_imm(engine); 1384 } 1385 } 1386 1387 static void execlists_submit_request(struct i915_request *request) 1388 { 1389 struct intel_engine_cs *engine = request->engine; 1390 unsigned long flags; 1391 1392 /* Will be called from irq-context when using foreign fences. */ 1393 spin_lock_irqsave(&engine->active.lock, flags); 1394 1395 queue_request(engine, &request->sched, rq_prio(request)); 1396 1397 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); 1398 GEM_BUG_ON(list_empty(&request->sched.link)); 1399 1400 submit_queue(engine, rq_prio(request)); 1401 1402 spin_unlock_irqrestore(&engine->active.lock, flags); 1403 } 1404 1405 static void __execlists_context_fini(struct intel_context *ce) 1406 { 1407 intel_ring_put(ce->ring); 1408 1409 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj)); 1410 i915_gem_object_put(ce->state->obj); 1411 } 1412 1413 static void execlists_context_destroy(struct kref *kref) 1414 { 1415 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 1416 1417 GEM_BUG_ON(intel_context_is_pinned(ce)); 1418 1419 if (ce->state) 1420 __execlists_context_fini(ce); 1421 1422 intel_context_free(ce); 1423 } 1424 1425 static void execlists_context_unpin(struct intel_context *ce) 1426 { 1427 i915_gem_context_unpin_hw_id(ce->gem_context); 1428 i915_gem_object_unpin_map(ce->state->obj); 1429 intel_ring_unpin(ce->ring); 1430 } 1431 1432 static void 1433 __execlists_update_reg_state(struct intel_context *ce, 1434 struct intel_engine_cs *engine) 1435 { 1436 struct intel_ring *ring = ce->ring; 1437 u32 *regs = ce->lrc_reg_state; 1438 1439 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head)); 1440 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); 1441 1442 regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma); 1443 regs[CTX_RING_HEAD + 1] = ring->head; 1444 regs[CTX_RING_TAIL + 1] = ring->tail; 1445 1446 /* RPCS */ 1447 if (engine->class == RENDER_CLASS) 1448 regs[CTX_R_PWR_CLK_STATE + 1] = 1449 intel_sseu_make_rpcs(engine->i915, &ce->sseu); 1450 } 1451 1452 static int 1453 __execlists_context_pin(struct intel_context *ce, 1454 struct intel_engine_cs *engine) 1455 { 1456 void *vaddr; 1457 int ret; 1458 1459 GEM_BUG_ON(!ce->gem_context->vm); 1460 1461 ret = execlists_context_deferred_alloc(ce, engine); 1462 if (ret) 1463 goto err; 1464 GEM_BUG_ON(!ce->state); 1465 1466 ret = intel_context_active_acquire(ce, 1467 engine->i915->ggtt.pin_bias | 1468 PIN_OFFSET_BIAS | 1469 PIN_HIGH); 1470 if (ret) 1471 goto err; 1472 1473 vaddr = i915_gem_object_pin_map(ce->state->obj, 1474 i915_coherent_map_type(engine->i915) | 1475 I915_MAP_OVERRIDE); 1476 if (IS_ERR(vaddr)) { 1477 ret = PTR_ERR(vaddr); 1478 goto unpin_active; 1479 } 1480 1481 ret = intel_ring_pin(ce->ring); 1482 if (ret) 1483 goto unpin_map; 1484 1485 ret = i915_gem_context_pin_hw_id(ce->gem_context); 1486 if (ret) 1487 goto unpin_ring; 1488 1489 ce->lrc_desc = lrc_descriptor(ce, engine); 1490 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; 1491 __execlists_update_reg_state(ce, engine); 1492 1493 return 0; 1494 1495 unpin_ring: 1496 intel_ring_unpin(ce->ring); 1497 unpin_map: 1498 i915_gem_object_unpin_map(ce->state->obj); 1499 unpin_active: 1500 intel_context_active_release(ce); 1501 err: 1502 return ret; 1503 } 1504 1505 static int execlists_context_pin(struct intel_context *ce) 1506 { 1507 return __execlists_context_pin(ce, ce->engine); 1508 } 1509 1510 static void execlists_context_reset(struct intel_context *ce) 1511 { 1512 /* 1513 * Because we emit WA_TAIL_DWORDS there may be a disparity 1514 * between our bookkeeping in ce->ring->head and ce->ring->tail and 1515 * that stored in context. As we only write new commands from 1516 * ce->ring->tail onwards, everything before that is junk. If the GPU 1517 * starts reading from its RING_HEAD from the context, it may try to 1518 * execute that junk and die. 1519 * 1520 * The contexts that are stilled pinned on resume belong to the 1521 * kernel, and are local to each engine. All other contexts will 1522 * have their head/tail sanitized upon pinning before use, so they 1523 * will never see garbage, 1524 * 1525 * So to avoid that we reset the context images upon resume. For 1526 * simplicity, we just zero everything out. 1527 */ 1528 intel_ring_reset(ce->ring, 0); 1529 __execlists_update_reg_state(ce, ce->engine); 1530 } 1531 1532 static const struct intel_context_ops execlists_context_ops = { 1533 .pin = execlists_context_pin, 1534 .unpin = execlists_context_unpin, 1535 1536 .enter = intel_context_enter_engine, 1537 .exit = intel_context_exit_engine, 1538 1539 .reset = execlists_context_reset, 1540 .destroy = execlists_context_destroy, 1541 }; 1542 1543 static int gen8_emit_init_breadcrumb(struct i915_request *rq) 1544 { 1545 u32 *cs; 1546 1547 GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb); 1548 1549 cs = intel_ring_begin(rq, 6); 1550 if (IS_ERR(cs)) 1551 return PTR_ERR(cs); 1552 1553 /* 1554 * Check if we have been preempted before we even get started. 1555 * 1556 * After this point i915_request_started() reports true, even if 1557 * we get preempted and so are no longer running. 1558 */ 1559 *cs++ = MI_ARB_CHECK; 1560 *cs++ = MI_NOOP; 1561 1562 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1563 *cs++ = rq->timeline->hwsp_offset; 1564 *cs++ = 0; 1565 *cs++ = rq->fence.seqno - 1; 1566 1567 intel_ring_advance(rq, cs); 1568 1569 /* Record the updated position of the request's payload */ 1570 rq->infix = intel_ring_offset(rq, cs); 1571 1572 return 0; 1573 } 1574 1575 static int emit_pdps(struct i915_request *rq) 1576 { 1577 const struct intel_engine_cs * const engine = rq->engine; 1578 struct i915_ppgtt * const ppgtt = 1579 i915_vm_to_ppgtt(rq->gem_context->vm); 1580 int err, i; 1581 u32 *cs; 1582 1583 GEM_BUG_ON(intel_vgpu_active(rq->i915)); 1584 1585 /* 1586 * Beware ye of the dragons, this sequence is magic! 1587 * 1588 * Small changes to this sequence can cause anything from 1589 * GPU hangs to forcewake errors and machine lockups! 1590 */ 1591 1592 /* Flush any residual operations from the context load */ 1593 err = engine->emit_flush(rq, EMIT_FLUSH); 1594 if (err) 1595 return err; 1596 1597 /* Magic required to prevent forcewake errors! */ 1598 err = engine->emit_flush(rq, EMIT_INVALIDATE); 1599 if (err) 1600 return err; 1601 1602 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); 1603 if (IS_ERR(cs)) 1604 return PTR_ERR(cs); 1605 1606 /* Ensure the LRI have landed before we invalidate & continue */ 1607 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; 1608 for (i = GEN8_3LVL_PDPES; i--; ) { 1609 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 1610 u32 base = engine->mmio_base; 1611 1612 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); 1613 *cs++ = upper_32_bits(pd_daddr); 1614 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); 1615 *cs++ = lower_32_bits(pd_daddr); 1616 } 1617 *cs++ = MI_NOOP; 1618 1619 intel_ring_advance(rq, cs); 1620 1621 /* Be doubly sure the LRI have landed before proceeding */ 1622 err = engine->emit_flush(rq, EMIT_FLUSH); 1623 if (err) 1624 return err; 1625 1626 /* Re-invalidate the TLB for luck */ 1627 return engine->emit_flush(rq, EMIT_INVALIDATE); 1628 } 1629 1630 static int execlists_request_alloc(struct i915_request *request) 1631 { 1632 int ret; 1633 1634 GEM_BUG_ON(!intel_context_is_pinned(request->hw_context)); 1635 1636 /* 1637 * Flush enough space to reduce the likelihood of waiting after 1638 * we start building the request - in which case we will just 1639 * have to repeat work. 1640 */ 1641 request->reserved_space += EXECLISTS_REQUEST_SIZE; 1642 1643 /* 1644 * Note that after this point, we have committed to using 1645 * this request as it is being used to both track the 1646 * state of engine initialisation and liveness of the 1647 * golden renderstate above. Think twice before you try 1648 * to cancel/unwind this request now. 1649 */ 1650 1651 /* Unconditionally invalidate GPU caches and TLBs. */ 1652 if (i915_vm_is_4lvl(request->gem_context->vm)) 1653 ret = request->engine->emit_flush(request, EMIT_INVALIDATE); 1654 else 1655 ret = emit_pdps(request); 1656 if (ret) 1657 return ret; 1658 1659 request->reserved_space -= EXECLISTS_REQUEST_SIZE; 1660 return 0; 1661 } 1662 1663 /* 1664 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after 1665 * PIPE_CONTROL instruction. This is required for the flush to happen correctly 1666 * but there is a slight complication as this is applied in WA batch where the 1667 * values are only initialized once so we cannot take register value at the 1668 * beginning and reuse it further; hence we save its value to memory, upload a 1669 * constant value with bit21 set and then we restore it back with the saved value. 1670 * To simplify the WA, a constant value is formed by using the default value 1671 * of this register. This shouldn't be a problem because we are only modifying 1672 * it for a short period and this batch in non-premptible. We can ofcourse 1673 * use additional instructions that read the actual value of the register 1674 * at that time and set our bit of interest but it makes the WA complicated. 1675 * 1676 * This WA is also required for Gen9 so extracting as a function avoids 1677 * code duplication. 1678 */ 1679 static u32 * 1680 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) 1681 { 1682 /* NB no one else is allowed to scribble over scratch + 256! */ 1683 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1684 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1685 *batch++ = i915_scratch_offset(engine->i915) + 256; 1686 *batch++ = 0; 1687 1688 *batch++ = MI_LOAD_REGISTER_IMM(1); 1689 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1690 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; 1691 1692 batch = gen8_emit_pipe_control(batch, 1693 PIPE_CONTROL_CS_STALL | 1694 PIPE_CONTROL_DC_FLUSH_ENABLE, 1695 0); 1696 1697 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1698 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1699 *batch++ = i915_scratch_offset(engine->i915) + 256; 1700 *batch++ = 0; 1701 1702 return batch; 1703 } 1704 1705 /* 1706 * Typically we only have one indirect_ctx and per_ctx batch buffer which are 1707 * initialized at the beginning and shared across all contexts but this field 1708 * helps us to have multiple batches at different offsets and select them based 1709 * on a criteria. At the moment this batch always start at the beginning of the page 1710 * and at this point we don't have multiple wa_ctx batch buffers. 1711 * 1712 * The number of WA applied are not known at the beginning; we use this field 1713 * to return the no of DWORDS written. 1714 * 1715 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END 1716 * so it adds NOOPs as padding to make it cacheline aligned. 1717 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together 1718 * makes a complete batch buffer. 1719 */ 1720 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1721 { 1722 /* WaDisableCtxRestoreArbitration:bdw,chv */ 1723 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1724 1725 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ 1726 if (IS_BROADWELL(engine->i915)) 1727 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1728 1729 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ 1730 /* Actual scratch location is at 128 bytes offset */ 1731 batch = gen8_emit_pipe_control(batch, 1732 PIPE_CONTROL_FLUSH_L3 | 1733 PIPE_CONTROL_GLOBAL_GTT_IVB | 1734 PIPE_CONTROL_CS_STALL | 1735 PIPE_CONTROL_QW_WRITE, 1736 i915_scratch_offset(engine->i915) + 1737 2 * CACHELINE_BYTES); 1738 1739 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1740 1741 /* Pad to end of cacheline */ 1742 while ((unsigned long)batch % CACHELINE_BYTES) 1743 *batch++ = MI_NOOP; 1744 1745 /* 1746 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because 1747 * execution depends on the length specified in terms of cache lines 1748 * in the register CTX_RCS_INDIRECT_CTX 1749 */ 1750 1751 return batch; 1752 } 1753 1754 struct lri { 1755 i915_reg_t reg; 1756 u32 value; 1757 }; 1758 1759 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) 1760 { 1761 GEM_BUG_ON(!count || count > 63); 1762 1763 *batch++ = MI_LOAD_REGISTER_IMM(count); 1764 do { 1765 *batch++ = i915_mmio_reg_offset(lri->reg); 1766 *batch++ = lri->value; 1767 } while (lri++, --count); 1768 *batch++ = MI_NOOP; 1769 1770 return batch; 1771 } 1772 1773 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1774 { 1775 static const struct lri lri[] = { 1776 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ 1777 { 1778 COMMON_SLICE_CHICKEN2, 1779 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 1780 0), 1781 }, 1782 1783 /* BSpec: 11391 */ 1784 { 1785 FF_SLICE_CHICKEN, 1786 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, 1787 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), 1788 }, 1789 1790 /* BSpec: 11299 */ 1791 { 1792 _3D_CHICKEN3, 1793 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, 1794 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), 1795 } 1796 }; 1797 1798 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1799 1800 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ 1801 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1802 1803 batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); 1804 1805 /* WaMediaPoolStateCmdInWABB:bxt,glk */ 1806 if (HAS_POOLED_EU(engine->i915)) { 1807 /* 1808 * EU pool configuration is setup along with golden context 1809 * during context initialization. This value depends on 1810 * device type (2x6 or 3x6) and needs to be updated based 1811 * on which subslice is disabled especially for 2x6 1812 * devices, however it is safe to load default 1813 * configuration of 3x6 device instead of masking off 1814 * corresponding bits because HW ignores bits of a disabled 1815 * subslice and drops down to appropriate config. Please 1816 * see render_state_setup() in i915_gem_render_state.c for 1817 * possible configurations, to avoid duplication they are 1818 * not shown here again. 1819 */ 1820 *batch++ = GEN9_MEDIA_POOL_STATE; 1821 *batch++ = GEN9_MEDIA_POOL_ENABLE; 1822 *batch++ = 0x00777000; 1823 *batch++ = 0; 1824 *batch++ = 0; 1825 *batch++ = 0; 1826 } 1827 1828 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1829 1830 /* Pad to end of cacheline */ 1831 while ((unsigned long)batch % CACHELINE_BYTES) 1832 *batch++ = MI_NOOP; 1833 1834 return batch; 1835 } 1836 1837 static u32 * 1838 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1839 { 1840 int i; 1841 1842 /* 1843 * WaPipeControlBefore3DStateSamplePattern: cnl 1844 * 1845 * Ensure the engine is idle prior to programming a 1846 * 3DSTATE_SAMPLE_PATTERN during a context restore. 1847 */ 1848 batch = gen8_emit_pipe_control(batch, 1849 PIPE_CONTROL_CS_STALL, 1850 0); 1851 /* 1852 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for 1853 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in 1854 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is 1855 * confusing. Since gen8_emit_pipe_control() already advances the 1856 * batch by 6 dwords, we advance the other 10 here, completing a 1857 * cacheline. It's not clear if the workaround requires this padding 1858 * before other commands, or if it's just the regular padding we would 1859 * already have for the workaround bb, so leave it here for now. 1860 */ 1861 for (i = 0; i < 10; i++) 1862 *batch++ = MI_NOOP; 1863 1864 /* Pad to end of cacheline */ 1865 while ((unsigned long)batch % CACHELINE_BYTES) 1866 *batch++ = MI_NOOP; 1867 1868 return batch; 1869 } 1870 1871 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE) 1872 1873 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine) 1874 { 1875 struct drm_i915_gem_object *obj; 1876 struct i915_vma *vma; 1877 int err; 1878 1879 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE); 1880 if (IS_ERR(obj)) 1881 return PTR_ERR(obj); 1882 1883 vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL); 1884 if (IS_ERR(vma)) { 1885 err = PTR_ERR(vma); 1886 goto err; 1887 } 1888 1889 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1890 if (err) 1891 goto err; 1892 1893 engine->wa_ctx.vma = vma; 1894 return 0; 1895 1896 err: 1897 i915_gem_object_put(obj); 1898 return err; 1899 } 1900 1901 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine) 1902 { 1903 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); 1904 } 1905 1906 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); 1907 1908 static int intel_init_workaround_bb(struct intel_engine_cs *engine) 1909 { 1910 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 1911 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx, 1912 &wa_ctx->per_ctx }; 1913 wa_bb_func_t wa_bb_fn[2]; 1914 struct page *page; 1915 void *batch, *batch_ptr; 1916 unsigned int i; 1917 int ret; 1918 1919 if (engine->class != RENDER_CLASS) 1920 return 0; 1921 1922 switch (INTEL_GEN(engine->i915)) { 1923 case 11: 1924 return 0; 1925 case 10: 1926 wa_bb_fn[0] = gen10_init_indirectctx_bb; 1927 wa_bb_fn[1] = NULL; 1928 break; 1929 case 9: 1930 wa_bb_fn[0] = gen9_init_indirectctx_bb; 1931 wa_bb_fn[1] = NULL; 1932 break; 1933 case 8: 1934 wa_bb_fn[0] = gen8_init_indirectctx_bb; 1935 wa_bb_fn[1] = NULL; 1936 break; 1937 default: 1938 MISSING_CASE(INTEL_GEN(engine->i915)); 1939 return 0; 1940 } 1941 1942 ret = lrc_setup_wa_ctx(engine); 1943 if (ret) { 1944 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); 1945 return ret; 1946 } 1947 1948 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0); 1949 batch = batch_ptr = kmap_atomic(page); 1950 1951 /* 1952 * Emit the two workaround batch buffers, recording the offset from the 1953 * start of the workaround batch buffer object for each and their 1954 * respective sizes. 1955 */ 1956 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { 1957 wa_bb[i]->offset = batch_ptr - batch; 1958 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, 1959 CACHELINE_BYTES))) { 1960 ret = -EINVAL; 1961 break; 1962 } 1963 if (wa_bb_fn[i]) 1964 batch_ptr = wa_bb_fn[i](engine, batch_ptr); 1965 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); 1966 } 1967 1968 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE); 1969 1970 kunmap_atomic(batch); 1971 if (ret) 1972 lrc_destroy_wa_ctx(engine); 1973 1974 return ret; 1975 } 1976 1977 static void enable_execlists(struct intel_engine_cs *engine) 1978 { 1979 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 1980 1981 if (INTEL_GEN(engine->i915) >= 11) 1982 ENGINE_WRITE(engine, 1983 RING_MODE_GEN7, 1984 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 1985 else 1986 ENGINE_WRITE(engine, 1987 RING_MODE_GEN7, 1988 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)); 1989 1990 ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1991 1992 ENGINE_WRITE(engine, 1993 RING_HWS_PGA, 1994 i915_ggtt_offset(engine->status_page.vma)); 1995 ENGINE_POSTING_READ(engine, RING_HWS_PGA); 1996 } 1997 1998 static bool unexpected_starting_state(struct intel_engine_cs *engine) 1999 { 2000 bool unexpected = false; 2001 2002 if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) { 2003 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n"); 2004 unexpected = true; 2005 } 2006 2007 return unexpected; 2008 } 2009 2010 static int execlists_resume(struct intel_engine_cs *engine) 2011 { 2012 intel_engine_apply_workarounds(engine); 2013 intel_engine_apply_whitelist(engine); 2014 2015 intel_mocs_init_engine(engine); 2016 2017 intel_engine_reset_breadcrumbs(engine); 2018 2019 if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) { 2020 struct drm_printer p = drm_debug_printer(__func__); 2021 2022 intel_engine_dump(engine, &p, NULL); 2023 } 2024 2025 enable_execlists(engine); 2026 2027 return 0; 2028 } 2029 2030 static void execlists_reset_prepare(struct intel_engine_cs *engine) 2031 { 2032 struct intel_engine_execlists * const execlists = &engine->execlists; 2033 unsigned long flags; 2034 2035 GEM_TRACE("%s: depth<-%d\n", engine->name, 2036 atomic_read(&execlists->tasklet.count)); 2037 2038 /* 2039 * Prevent request submission to the hardware until we have 2040 * completed the reset in i915_gem_reset_finish(). If a request 2041 * is completed by one engine, it may then queue a request 2042 * to a second via its execlists->tasklet *just* as we are 2043 * calling engine->resume() and also writing the ELSP. 2044 * Turning off the execlists->tasklet until the reset is over 2045 * prevents the race. 2046 */ 2047 __tasklet_disable_sync_once(&execlists->tasklet); 2048 GEM_BUG_ON(!reset_in_progress(execlists)); 2049 2050 intel_engine_stop_cs(engine); 2051 2052 /* And flush any current direct submission. */ 2053 spin_lock_irqsave(&engine->active.lock, flags); 2054 spin_unlock_irqrestore(&engine->active.lock, flags); 2055 } 2056 2057 static bool lrc_regs_ok(const struct i915_request *rq) 2058 { 2059 const struct intel_ring *ring = rq->ring; 2060 const u32 *regs = rq->hw_context->lrc_reg_state; 2061 2062 /* Quick spot check for the common signs of context corruption */ 2063 2064 if (regs[CTX_RING_BUFFER_CONTROL + 1] != 2065 (RING_CTL_SIZE(ring->size) | RING_VALID)) 2066 return false; 2067 2068 if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma)) 2069 return false; 2070 2071 return true; 2072 } 2073 2074 static void reset_csb_pointers(struct intel_engine_execlists *execlists) 2075 { 2076 const unsigned int reset_value = execlists->csb_size - 1; 2077 2078 /* 2079 * After a reset, the HW starts writing into CSB entry [0]. We 2080 * therefore have to set our HEAD pointer back one entry so that 2081 * the *first* entry we check is entry 0. To complicate this further, 2082 * as we don't wait for the first interrupt after reset, we have to 2083 * fake the HW write to point back to the last entry so that our 2084 * inline comparison of our cached head position against the last HW 2085 * write works even before the first interrupt. 2086 */ 2087 execlists->csb_head = reset_value; 2088 WRITE_ONCE(*execlists->csb_write, reset_value); 2089 wmb(); /* Make sure this is visible to HW (paranoia?) */ 2090 2091 invalidate_csb_entries(&execlists->csb_status[0], 2092 &execlists->csb_status[reset_value]); 2093 } 2094 2095 static struct i915_request *active_request(struct i915_request *rq) 2096 { 2097 const struct list_head * const list = &rq->engine->active.requests; 2098 const struct intel_context * const context = rq->hw_context; 2099 struct i915_request *active = NULL; 2100 2101 list_for_each_entry_from_reverse(rq, list, sched.link) { 2102 if (i915_request_completed(rq)) 2103 break; 2104 2105 if (rq->hw_context != context) 2106 break; 2107 2108 active = rq; 2109 } 2110 2111 return active; 2112 } 2113 2114 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled) 2115 { 2116 struct intel_engine_execlists * const execlists = &engine->execlists; 2117 struct intel_context *ce; 2118 struct i915_request *rq; 2119 u32 *regs; 2120 2121 process_csb(engine); /* drain preemption events */ 2122 2123 /* Following the reset, we need to reload the CSB read/write pointers */ 2124 reset_csb_pointers(&engine->execlists); 2125 2126 /* 2127 * Save the currently executing context, even if we completed 2128 * its request, it was still running at the time of the 2129 * reset and will have been clobbered. 2130 */ 2131 if (!port_isset(execlists->port)) 2132 goto out_clear; 2133 2134 rq = port_request(execlists->port); 2135 ce = rq->hw_context; 2136 2137 /* 2138 * Catch up with any missed context-switch interrupts. 2139 * 2140 * Ideally we would just read the remaining CSB entries now that we 2141 * know the gpu is idle. However, the CSB registers are sometimes^W 2142 * often trashed across a GPU reset! Instead we have to rely on 2143 * guessing the missed context-switch events by looking at what 2144 * requests were completed. 2145 */ 2146 execlists_cancel_port_requests(execlists); 2147 2148 rq = active_request(rq); 2149 if (!rq) 2150 goto out_replay; 2151 2152 /* 2153 * If this request hasn't started yet, e.g. it is waiting on a 2154 * semaphore, we need to avoid skipping the request or else we 2155 * break the signaling chain. However, if the context is corrupt 2156 * the request will not restart and we will be stuck with a wedged 2157 * device. It is quite often the case that if we issue a reset 2158 * while the GPU is loading the context image, that the context 2159 * image becomes corrupt. 2160 * 2161 * Otherwise, if we have not started yet, the request should replay 2162 * perfectly and we do not need to flag the result as being erroneous. 2163 */ 2164 if (!i915_request_started(rq) && lrc_regs_ok(rq)) 2165 goto out_replay; 2166 2167 /* 2168 * If the request was innocent, we leave the request in the ELSP 2169 * and will try to replay it on restarting. The context image may 2170 * have been corrupted by the reset, in which case we may have 2171 * to service a new GPU hang, but more likely we can continue on 2172 * without impact. 2173 * 2174 * If the request was guilty, we presume the context is corrupt 2175 * and have to at least restore the RING register in the context 2176 * image back to the expected values to skip over the guilty request. 2177 */ 2178 i915_reset_request(rq, stalled); 2179 if (!stalled && lrc_regs_ok(rq)) 2180 goto out_replay; 2181 2182 /* 2183 * We want a simple context + ring to execute the breadcrumb update. 2184 * We cannot rely on the context being intact across the GPU hang, 2185 * so clear it and rebuild just what we need for the breadcrumb. 2186 * All pending requests for this context will be zapped, and any 2187 * future request will be after userspace has had the opportunity 2188 * to recreate its own state. 2189 */ 2190 regs = ce->lrc_reg_state; 2191 if (engine->pinned_default_state) { 2192 memcpy(regs, /* skip restoring the vanilla PPHWSP */ 2193 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, 2194 engine->context_size - PAGE_SIZE); 2195 } 2196 execlists_init_reg_state(regs, ce, engine, ce->ring); 2197 2198 out_replay: 2199 /* Rerun the request; its payload has been neutered (if guilty). */ 2200 ce->ring->head = 2201 rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail; 2202 intel_ring_update_space(ce->ring); 2203 __execlists_update_reg_state(ce, engine); 2204 2205 /* Push back any incomplete requests for replay after the reset. */ 2206 __unwind_incomplete_requests(engine); 2207 2208 out_clear: 2209 execlists_clear_all_active(execlists); 2210 } 2211 2212 static void execlists_reset(struct intel_engine_cs *engine, bool stalled) 2213 { 2214 unsigned long flags; 2215 2216 GEM_TRACE("%s\n", engine->name); 2217 2218 spin_lock_irqsave(&engine->active.lock, flags); 2219 2220 __execlists_reset(engine, stalled); 2221 2222 spin_unlock_irqrestore(&engine->active.lock, flags); 2223 } 2224 2225 static void nop_submission_tasklet(unsigned long data) 2226 { 2227 /* The driver is wedged; don't process any more events. */ 2228 } 2229 2230 static void execlists_cancel_requests(struct intel_engine_cs *engine) 2231 { 2232 struct intel_engine_execlists * const execlists = &engine->execlists; 2233 struct i915_request *rq, *rn; 2234 struct rb_node *rb; 2235 unsigned long flags; 2236 2237 GEM_TRACE("%s\n", engine->name); 2238 2239 /* 2240 * Before we call engine->cancel_requests(), we should have exclusive 2241 * access to the submission state. This is arranged for us by the 2242 * caller disabling the interrupt generation, the tasklet and other 2243 * threads that may then access the same state, giving us a free hand 2244 * to reset state. However, we still need to let lockdep be aware that 2245 * we know this state may be accessed in hardirq context, so we 2246 * disable the irq around this manipulation and we want to keep 2247 * the spinlock focused on its duties and not accidentally conflate 2248 * coverage to the submission's irq state. (Similarly, although we 2249 * shouldn't need to disable irq around the manipulation of the 2250 * submission's irq state, we also wish to remind ourselves that 2251 * it is irq state.) 2252 */ 2253 spin_lock_irqsave(&engine->active.lock, flags); 2254 2255 __execlists_reset(engine, true); 2256 2257 /* Mark all executing requests as skipped. */ 2258 list_for_each_entry(rq, &engine->active.requests, sched.link) { 2259 if (!i915_request_signaled(rq)) 2260 dma_fence_set_error(&rq->fence, -EIO); 2261 2262 i915_request_mark_complete(rq); 2263 } 2264 2265 /* Flush the queued requests to the timeline list (for retiring). */ 2266 while ((rb = rb_first_cached(&execlists->queue))) { 2267 struct i915_priolist *p = to_priolist(rb); 2268 int i; 2269 2270 priolist_for_each_request_consume(rq, rn, p, i) { 2271 list_del_init(&rq->sched.link); 2272 __i915_request_submit(rq); 2273 dma_fence_set_error(&rq->fence, -EIO); 2274 i915_request_mark_complete(rq); 2275 } 2276 2277 rb_erase_cached(&p->node, &execlists->queue); 2278 i915_priolist_free(p); 2279 } 2280 2281 /* Cancel all attached virtual engines */ 2282 while ((rb = rb_first_cached(&execlists->virtual))) { 2283 struct virtual_engine *ve = 2284 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 2285 2286 rb_erase_cached(rb, &execlists->virtual); 2287 RB_CLEAR_NODE(rb); 2288 2289 spin_lock(&ve->base.active.lock); 2290 if (ve->request) { 2291 ve->request->engine = engine; 2292 __i915_request_submit(ve->request); 2293 dma_fence_set_error(&ve->request->fence, -EIO); 2294 i915_request_mark_complete(ve->request); 2295 ve->base.execlists.queue_priority_hint = INT_MIN; 2296 ve->request = NULL; 2297 } 2298 spin_unlock(&ve->base.active.lock); 2299 } 2300 2301 /* Remaining _unready_ requests will be nop'ed when submitted */ 2302 2303 execlists->queue_priority_hint = INT_MIN; 2304 execlists->queue = RB_ROOT_CACHED; 2305 GEM_BUG_ON(port_isset(execlists->port)); 2306 2307 GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet)); 2308 execlists->tasklet.func = nop_submission_tasklet; 2309 2310 spin_unlock_irqrestore(&engine->active.lock, flags); 2311 } 2312 2313 static void execlists_reset_finish(struct intel_engine_cs *engine) 2314 { 2315 struct intel_engine_execlists * const execlists = &engine->execlists; 2316 2317 /* 2318 * After a GPU reset, we may have requests to replay. Do so now while 2319 * we still have the forcewake to be sure that the GPU is not allowed 2320 * to sleep before we restart and reload a context. 2321 */ 2322 GEM_BUG_ON(!reset_in_progress(execlists)); 2323 if (!RB_EMPTY_ROOT(&execlists->queue.rb_root)) 2324 execlists->tasklet.func(execlists->tasklet.data); 2325 2326 if (__tasklet_enable(&execlists->tasklet)) 2327 /* And kick in case we missed a new request submission. */ 2328 tasklet_hi_schedule(&execlists->tasklet); 2329 GEM_TRACE("%s: depth->%d\n", engine->name, 2330 atomic_read(&execlists->tasklet.count)); 2331 } 2332 2333 static int gen8_emit_bb_start(struct i915_request *rq, 2334 u64 offset, u32 len, 2335 const unsigned int flags) 2336 { 2337 u32 *cs; 2338 2339 cs = intel_ring_begin(rq, 4); 2340 if (IS_ERR(cs)) 2341 return PTR_ERR(cs); 2342 2343 /* 2344 * WaDisableCtxRestoreArbitration:bdw,chv 2345 * 2346 * We don't need to perform MI_ARB_ENABLE as often as we do (in 2347 * particular all the gen that do not need the w/a at all!), if we 2348 * took care to make sure that on every switch into this context 2349 * (both ordinary and for preemption) that arbitrartion was enabled 2350 * we would be fine. However, for gen8 there is another w/a that 2351 * requires us to not preempt inside GPGPU execution, so we keep 2352 * arbitration disabled for gen8 batches. Arbitration will be 2353 * re-enabled before we close the request 2354 * (engine->emit_fini_breadcrumb). 2355 */ 2356 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 2357 2358 /* FIXME(BDW+): Address space and security selectors. */ 2359 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 2360 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 2361 *cs++ = lower_32_bits(offset); 2362 *cs++ = upper_32_bits(offset); 2363 2364 intel_ring_advance(rq, cs); 2365 2366 return 0; 2367 } 2368 2369 static int gen9_emit_bb_start(struct i915_request *rq, 2370 u64 offset, u32 len, 2371 const unsigned int flags) 2372 { 2373 u32 *cs; 2374 2375 cs = intel_ring_begin(rq, 6); 2376 if (IS_ERR(cs)) 2377 return PTR_ERR(cs); 2378 2379 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2380 2381 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 2382 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 2383 *cs++ = lower_32_bits(offset); 2384 *cs++ = upper_32_bits(offset); 2385 2386 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 2387 *cs++ = MI_NOOP; 2388 2389 intel_ring_advance(rq, cs); 2390 2391 return 0; 2392 } 2393 2394 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) 2395 { 2396 ENGINE_WRITE(engine, RING_IMR, 2397 ~(engine->irq_enable_mask | engine->irq_keep_mask)); 2398 ENGINE_POSTING_READ(engine, RING_IMR); 2399 } 2400 2401 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) 2402 { 2403 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); 2404 } 2405 2406 static int gen8_emit_flush(struct i915_request *request, u32 mode) 2407 { 2408 u32 cmd, *cs; 2409 2410 cs = intel_ring_begin(request, 4); 2411 if (IS_ERR(cs)) 2412 return PTR_ERR(cs); 2413 2414 cmd = MI_FLUSH_DW + 1; 2415 2416 /* We always require a command barrier so that subsequent 2417 * commands, such as breadcrumb interrupts, are strictly ordered 2418 * wrt the contents of the write cache being flushed to memory 2419 * (and thus being coherent from the CPU). 2420 */ 2421 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 2422 2423 if (mode & EMIT_INVALIDATE) { 2424 cmd |= MI_INVALIDATE_TLB; 2425 if (request->engine->class == VIDEO_DECODE_CLASS) 2426 cmd |= MI_INVALIDATE_BSD; 2427 } 2428 2429 *cs++ = cmd; 2430 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT; 2431 *cs++ = 0; /* upper addr */ 2432 *cs++ = 0; /* value */ 2433 intel_ring_advance(request, cs); 2434 2435 return 0; 2436 } 2437 2438 static int gen8_emit_flush_render(struct i915_request *request, 2439 u32 mode) 2440 { 2441 struct intel_engine_cs *engine = request->engine; 2442 u32 scratch_addr = 2443 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES; 2444 bool vf_flush_wa = false, dc_flush_wa = false; 2445 u32 *cs, flags = 0; 2446 int len; 2447 2448 flags |= PIPE_CONTROL_CS_STALL; 2449 2450 if (mode & EMIT_FLUSH) { 2451 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 2452 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 2453 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 2454 flags |= PIPE_CONTROL_FLUSH_ENABLE; 2455 } 2456 2457 if (mode & EMIT_INVALIDATE) { 2458 flags |= PIPE_CONTROL_TLB_INVALIDATE; 2459 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 2460 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 2461 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 2462 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 2463 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 2464 flags |= PIPE_CONTROL_QW_WRITE; 2465 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; 2466 2467 /* 2468 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL 2469 * pipe control. 2470 */ 2471 if (IS_GEN(request->i915, 9)) 2472 vf_flush_wa = true; 2473 2474 /* WaForGAMHang:kbl */ 2475 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0)) 2476 dc_flush_wa = true; 2477 } 2478 2479 len = 6; 2480 2481 if (vf_flush_wa) 2482 len += 6; 2483 2484 if (dc_flush_wa) 2485 len += 12; 2486 2487 cs = intel_ring_begin(request, len); 2488 if (IS_ERR(cs)) 2489 return PTR_ERR(cs); 2490 2491 if (vf_flush_wa) 2492 cs = gen8_emit_pipe_control(cs, 0, 0); 2493 2494 if (dc_flush_wa) 2495 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 2496 0); 2497 2498 cs = gen8_emit_pipe_control(cs, flags, scratch_addr); 2499 2500 if (dc_flush_wa) 2501 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); 2502 2503 intel_ring_advance(request, cs); 2504 2505 return 0; 2506 } 2507 2508 /* 2509 * Reserve space for 2 NOOPs at the end of each request to be 2510 * used as a workaround for not being allowed to do lite 2511 * restore with HEAD==TAIL (WaIdleLiteRestore). 2512 */ 2513 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs) 2514 { 2515 /* Ensure there's always at least one preemption point per-request. */ 2516 *cs++ = MI_ARB_CHECK; 2517 *cs++ = MI_NOOP; 2518 request->wa_tail = intel_ring_offset(request, cs); 2519 2520 return cs; 2521 } 2522 2523 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) 2524 { 2525 cs = gen8_emit_ggtt_write(cs, 2526 request->fence.seqno, 2527 request->timeline->hwsp_offset, 2528 0); 2529 2530 *cs++ = MI_USER_INTERRUPT; 2531 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2532 2533 request->tail = intel_ring_offset(request, cs); 2534 assert_ring_tail_valid(request->ring, request->tail); 2535 2536 return gen8_emit_wa_tail(request, cs); 2537 } 2538 2539 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) 2540 { 2541 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ 2542 cs = gen8_emit_ggtt_write_rcs(cs, 2543 request->fence.seqno, 2544 request->timeline->hwsp_offset, 2545 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 2546 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 2547 PIPE_CONTROL_DC_FLUSH_ENABLE); 2548 cs = gen8_emit_pipe_control(cs, 2549 PIPE_CONTROL_FLUSH_ENABLE | 2550 PIPE_CONTROL_CS_STALL, 2551 0); 2552 2553 *cs++ = MI_USER_INTERRUPT; 2554 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2555 2556 request->tail = intel_ring_offset(request, cs); 2557 assert_ring_tail_valid(request->ring, request->tail); 2558 2559 return gen8_emit_wa_tail(request, cs); 2560 } 2561 2562 static int gen8_init_rcs_context(struct i915_request *rq) 2563 { 2564 int ret; 2565 2566 ret = intel_engine_emit_ctx_wa(rq); 2567 if (ret) 2568 return ret; 2569 2570 ret = intel_rcs_context_init_mocs(rq); 2571 /* 2572 * Failing to program the MOCS is non-fatal.The system will not 2573 * run at peak performance. So generate an error and carry on. 2574 */ 2575 if (ret) 2576 DRM_ERROR("MOCS failed to program: expect performance issues.\n"); 2577 2578 return i915_gem_render_state_emit(rq); 2579 } 2580 2581 static void execlists_park(struct intel_engine_cs *engine) 2582 { 2583 intel_engine_park(engine); 2584 } 2585 2586 void intel_execlists_set_default_submission(struct intel_engine_cs *engine) 2587 { 2588 engine->submit_request = execlists_submit_request; 2589 engine->cancel_requests = execlists_cancel_requests; 2590 engine->schedule = i915_schedule; 2591 engine->execlists.tasklet.func = execlists_submission_tasklet; 2592 2593 engine->reset.prepare = execlists_reset_prepare; 2594 engine->reset.reset = execlists_reset; 2595 engine->reset.finish = execlists_reset_finish; 2596 2597 engine->park = execlists_park; 2598 engine->unpark = NULL; 2599 2600 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 2601 if (!intel_vgpu_active(engine->i915)) 2602 engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 2603 if (engine->preempt_context && 2604 HAS_LOGICAL_RING_PREEMPTION(engine->i915)) 2605 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 2606 } 2607 2608 static void execlists_destroy(struct intel_engine_cs *engine) 2609 { 2610 intel_engine_cleanup_common(engine); 2611 lrc_destroy_wa_ctx(engine); 2612 kfree(engine); 2613 } 2614 2615 static void 2616 logical_ring_default_vfuncs(struct intel_engine_cs *engine) 2617 { 2618 /* Default vfuncs which can be overriden by each engine. */ 2619 2620 engine->destroy = execlists_destroy; 2621 engine->resume = execlists_resume; 2622 2623 engine->reset.prepare = execlists_reset_prepare; 2624 engine->reset.reset = execlists_reset; 2625 engine->reset.finish = execlists_reset_finish; 2626 2627 engine->cops = &execlists_context_ops; 2628 engine->request_alloc = execlists_request_alloc; 2629 2630 engine->emit_flush = gen8_emit_flush; 2631 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 2632 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb; 2633 2634 engine->set_default_submission = intel_execlists_set_default_submission; 2635 2636 if (INTEL_GEN(engine->i915) < 11) { 2637 engine->irq_enable = gen8_logical_ring_enable_irq; 2638 engine->irq_disable = gen8_logical_ring_disable_irq; 2639 } else { 2640 /* 2641 * TODO: On Gen11 interrupt masks need to be clear 2642 * to allow C6 entry. Keep interrupts enabled at 2643 * and take the hit of generating extra interrupts 2644 * until a more refined solution exists. 2645 */ 2646 } 2647 if (IS_GEN(engine->i915, 8)) 2648 engine->emit_bb_start = gen8_emit_bb_start; 2649 else 2650 engine->emit_bb_start = gen9_emit_bb_start; 2651 } 2652 2653 static inline void 2654 logical_ring_default_irqs(struct intel_engine_cs *engine) 2655 { 2656 unsigned int shift = 0; 2657 2658 if (INTEL_GEN(engine->i915) < 11) { 2659 const u8 irq_shifts[] = { 2660 [RCS0] = GEN8_RCS_IRQ_SHIFT, 2661 [BCS0] = GEN8_BCS_IRQ_SHIFT, 2662 [VCS0] = GEN8_VCS0_IRQ_SHIFT, 2663 [VCS1] = GEN8_VCS1_IRQ_SHIFT, 2664 [VECS0] = GEN8_VECS_IRQ_SHIFT, 2665 }; 2666 2667 shift = irq_shifts[engine->id]; 2668 } 2669 2670 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; 2671 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; 2672 } 2673 2674 int intel_execlists_submission_setup(struct intel_engine_cs *engine) 2675 { 2676 /* Intentionally left blank. */ 2677 engine->buffer = NULL; 2678 2679 tasklet_init(&engine->execlists.tasklet, 2680 execlists_submission_tasklet, (unsigned long)engine); 2681 2682 logical_ring_default_vfuncs(engine); 2683 logical_ring_default_irqs(engine); 2684 2685 if (engine->class == RENDER_CLASS) { 2686 engine->init_context = gen8_init_rcs_context; 2687 engine->emit_flush = gen8_emit_flush_render; 2688 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 2689 } 2690 2691 return 0; 2692 } 2693 2694 int intel_execlists_submission_init(struct intel_engine_cs *engine) 2695 { 2696 struct intel_engine_execlists * const execlists = &engine->execlists; 2697 struct drm_i915_private *i915 = engine->i915; 2698 struct intel_uncore *uncore = engine->uncore; 2699 u32 base = engine->mmio_base; 2700 int ret; 2701 2702 ret = intel_engine_init_common(engine); 2703 if (ret) 2704 return ret; 2705 2706 intel_engine_init_workarounds(engine); 2707 intel_engine_init_whitelist(engine); 2708 2709 if (intel_init_workaround_bb(engine)) 2710 /* 2711 * We continue even if we fail to initialize WA batch 2712 * because we only expect rare glitches but nothing 2713 * critical to prevent us from using GPU 2714 */ 2715 DRM_ERROR("WA batch buffer initialization failed\n"); 2716 2717 if (HAS_LOGICAL_RING_ELSQ(i915)) { 2718 execlists->submit_reg = uncore->regs + 2719 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); 2720 execlists->ctrl_reg = uncore->regs + 2721 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); 2722 } else { 2723 execlists->submit_reg = uncore->regs + 2724 i915_mmio_reg_offset(RING_ELSP(base)); 2725 } 2726 2727 execlists->preempt_complete_status = ~0u; 2728 if (engine->preempt_context) 2729 execlists->preempt_complete_status = 2730 upper_32_bits(engine->preempt_context->lrc_desc); 2731 2732 execlists->csb_status = 2733 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2734 2735 execlists->csb_write = 2736 &engine->status_page.addr[intel_hws_csb_write_index(i915)]; 2737 2738 if (INTEL_GEN(i915) < 11) 2739 execlists->csb_size = GEN8_CSB_ENTRIES; 2740 else 2741 execlists->csb_size = GEN11_CSB_ENTRIES; 2742 2743 reset_csb_pointers(execlists); 2744 2745 return 0; 2746 } 2747 2748 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine) 2749 { 2750 u32 indirect_ctx_offset; 2751 2752 switch (INTEL_GEN(engine->i915)) { 2753 default: 2754 MISSING_CASE(INTEL_GEN(engine->i915)); 2755 /* fall through */ 2756 case 11: 2757 indirect_ctx_offset = 2758 GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2759 break; 2760 case 10: 2761 indirect_ctx_offset = 2762 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2763 break; 2764 case 9: 2765 indirect_ctx_offset = 2766 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2767 break; 2768 case 8: 2769 indirect_ctx_offset = 2770 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2771 break; 2772 } 2773 2774 return indirect_ctx_offset; 2775 } 2776 2777 static void execlists_init_reg_state(u32 *regs, 2778 struct intel_context *ce, 2779 struct intel_engine_cs *engine, 2780 struct intel_ring *ring) 2781 { 2782 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm); 2783 bool rcs = engine->class == RENDER_CLASS; 2784 u32 base = engine->mmio_base; 2785 2786 /* 2787 * A context is actually a big batch buffer with several 2788 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The 2789 * values we are setting here are only for the first context restore: 2790 * on a subsequent save, the GPU will recreate this batchbuffer with new 2791 * values (including all the missing MI_LOAD_REGISTER_IMM commands that 2792 * we are not initializing here). 2793 * 2794 * Must keep consistent with virtual_update_register_offsets(). 2795 */ 2796 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) | 2797 MI_LRI_FORCE_POSTED; 2798 2799 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base), 2800 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) | 2801 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH)); 2802 if (INTEL_GEN(engine->i915) < 11) { 2803 regs[CTX_CONTEXT_CONTROL + 1] |= 2804 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | 2805 CTX_CTRL_RS_CTX_ENABLE); 2806 } 2807 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0); 2808 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0); 2809 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0); 2810 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base), 2811 RING_CTL_SIZE(ring->size) | RING_VALID); 2812 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0); 2813 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0); 2814 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT); 2815 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0); 2816 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0); 2817 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0); 2818 if (rcs) { 2819 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 2820 2821 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0); 2822 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET, 2823 RING_INDIRECT_CTX_OFFSET(base), 0); 2824 if (wa_ctx->indirect_ctx.size) { 2825 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 2826 2827 regs[CTX_RCS_INDIRECT_CTX + 1] = 2828 (ggtt_offset + wa_ctx->indirect_ctx.offset) | 2829 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES); 2830 2831 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] = 2832 intel_lr_indirect_ctx_offset(engine) << 6; 2833 } 2834 2835 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0); 2836 if (wa_ctx->per_ctx.size) { 2837 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 2838 2839 regs[CTX_BB_PER_CTX_PTR + 1] = 2840 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; 2841 } 2842 } 2843 2844 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED; 2845 2846 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0); 2847 /* PDP values well be assigned later if needed */ 2848 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0); 2849 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0); 2850 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0); 2851 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0); 2852 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0); 2853 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0); 2854 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0); 2855 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0); 2856 2857 if (i915_vm_is_4lvl(&ppgtt->vm)) { 2858 /* 64b PPGTT (48bit canonical) 2859 * PDP0_DESCRIPTOR contains the base address to PML4 and 2860 * other PDP Descriptors are ignored. 2861 */ 2862 ASSIGN_CTX_PML4(ppgtt, regs); 2863 } else { 2864 ASSIGN_CTX_PDP(ppgtt, regs, 3); 2865 ASSIGN_CTX_PDP(ppgtt, regs, 2); 2866 ASSIGN_CTX_PDP(ppgtt, regs, 1); 2867 ASSIGN_CTX_PDP(ppgtt, regs, 0); 2868 } 2869 2870 if (rcs) { 2871 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1); 2872 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0); 2873 2874 i915_oa_init_reg_state(engine, ce, regs); 2875 } 2876 2877 regs[CTX_END] = MI_BATCH_BUFFER_END; 2878 if (INTEL_GEN(engine->i915) >= 10) 2879 regs[CTX_END] |= BIT(0); 2880 } 2881 2882 static int 2883 populate_lr_context(struct intel_context *ce, 2884 struct drm_i915_gem_object *ctx_obj, 2885 struct intel_engine_cs *engine, 2886 struct intel_ring *ring) 2887 { 2888 void *vaddr; 2889 u32 *regs; 2890 int ret; 2891 2892 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB); 2893 if (IS_ERR(vaddr)) { 2894 ret = PTR_ERR(vaddr); 2895 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret); 2896 return ret; 2897 } 2898 2899 if (engine->default_state) { 2900 /* 2901 * We only want to copy over the template context state; 2902 * skipping over the headers reserved for GuC communication, 2903 * leaving those as zero. 2904 */ 2905 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE; 2906 void *defaults; 2907 2908 defaults = i915_gem_object_pin_map(engine->default_state, 2909 I915_MAP_WB); 2910 if (IS_ERR(defaults)) { 2911 ret = PTR_ERR(defaults); 2912 goto err_unpin_ctx; 2913 } 2914 2915 memcpy(vaddr + start, defaults + start, engine->context_size); 2916 i915_gem_object_unpin_map(engine->default_state); 2917 } 2918 2919 /* The second page of the context object contains some fields which must 2920 * be set up prior to the first execution. */ 2921 regs = vaddr + LRC_STATE_PN * PAGE_SIZE; 2922 execlists_init_reg_state(regs, ce, engine, ring); 2923 if (!engine->default_state) 2924 regs[CTX_CONTEXT_CONTROL + 1] |= 2925 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); 2926 if (ce->gem_context == engine->i915->preempt_context && 2927 INTEL_GEN(engine->i915) < 11) 2928 regs[CTX_CONTEXT_CONTROL + 1] |= 2929 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | 2930 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT); 2931 2932 ret = 0; 2933 err_unpin_ctx: 2934 __i915_gem_object_flush_map(ctx_obj, 2935 LRC_HEADER_PAGES * PAGE_SIZE, 2936 engine->context_size); 2937 i915_gem_object_unpin_map(ctx_obj); 2938 return ret; 2939 } 2940 2941 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx) 2942 { 2943 if (ctx->timeline) 2944 return i915_timeline_get(ctx->timeline); 2945 else 2946 return i915_timeline_create(ctx->i915, NULL); 2947 } 2948 2949 static int execlists_context_deferred_alloc(struct intel_context *ce, 2950 struct intel_engine_cs *engine) 2951 { 2952 struct drm_i915_gem_object *ctx_obj; 2953 struct i915_vma *vma; 2954 u32 context_size; 2955 struct intel_ring *ring; 2956 struct i915_timeline *timeline; 2957 int ret; 2958 2959 if (ce->state) 2960 return 0; 2961 2962 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); 2963 2964 /* 2965 * Before the actual start of the context image, we insert a few pages 2966 * for our own use and for sharing with the GuC. 2967 */ 2968 context_size += LRC_HEADER_PAGES * PAGE_SIZE; 2969 2970 ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size); 2971 if (IS_ERR(ctx_obj)) 2972 return PTR_ERR(ctx_obj); 2973 2974 vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL); 2975 if (IS_ERR(vma)) { 2976 ret = PTR_ERR(vma); 2977 goto error_deref_obj; 2978 } 2979 2980 timeline = get_timeline(ce->gem_context); 2981 if (IS_ERR(timeline)) { 2982 ret = PTR_ERR(timeline); 2983 goto error_deref_obj; 2984 } 2985 2986 ring = intel_engine_create_ring(engine, 2987 timeline, 2988 ce->gem_context->ring_size); 2989 i915_timeline_put(timeline); 2990 if (IS_ERR(ring)) { 2991 ret = PTR_ERR(ring); 2992 goto error_deref_obj; 2993 } 2994 2995 ret = populate_lr_context(ce, ctx_obj, engine, ring); 2996 if (ret) { 2997 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); 2998 goto error_ring_free; 2999 } 3000 3001 ce->ring = ring; 3002 ce->state = vma; 3003 3004 return 0; 3005 3006 error_ring_free: 3007 intel_ring_put(ring); 3008 error_deref_obj: 3009 i915_gem_object_put(ctx_obj); 3010 return ret; 3011 } 3012 3013 static struct list_head *virtual_queue(struct virtual_engine *ve) 3014 { 3015 return &ve->base.execlists.default_priolist.requests[0]; 3016 } 3017 3018 static void virtual_context_destroy(struct kref *kref) 3019 { 3020 struct virtual_engine *ve = 3021 container_of(kref, typeof(*ve), context.ref); 3022 unsigned int n; 3023 3024 GEM_BUG_ON(!list_empty(virtual_queue(ve))); 3025 GEM_BUG_ON(ve->request); 3026 GEM_BUG_ON(ve->context.inflight); 3027 3028 for (n = 0; n < ve->num_siblings; n++) { 3029 struct intel_engine_cs *sibling = ve->siblings[n]; 3030 struct rb_node *node = &ve->nodes[sibling->id].rb; 3031 3032 if (RB_EMPTY_NODE(node)) 3033 continue; 3034 3035 spin_lock_irq(&sibling->active.lock); 3036 3037 /* Detachment is lazily performed in the execlists tasklet */ 3038 if (!RB_EMPTY_NODE(node)) 3039 rb_erase_cached(node, &sibling->execlists.virtual); 3040 3041 spin_unlock_irq(&sibling->active.lock); 3042 } 3043 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet)); 3044 3045 if (ve->context.state) 3046 __execlists_context_fini(&ve->context); 3047 3048 kfree(ve->bonds); 3049 kfree(ve); 3050 } 3051 3052 static void virtual_engine_initial_hint(struct virtual_engine *ve) 3053 { 3054 int swp; 3055 3056 /* 3057 * Pick a random sibling on starting to help spread the load around. 3058 * 3059 * New contexts are typically created with exactly the same order 3060 * of siblings, and often started in batches. Due to the way we iterate 3061 * the array of sibling when submitting requests, sibling[0] is 3062 * prioritised for dequeuing. If we make sure that sibling[0] is fairly 3063 * randomised across the system, we also help spread the load by the 3064 * first engine we inspect being different each time. 3065 * 3066 * NB This does not force us to execute on this engine, it will just 3067 * typically be the first we inspect for submission. 3068 */ 3069 swp = prandom_u32_max(ve->num_siblings); 3070 if (!swp) 3071 return; 3072 3073 swap(ve->siblings[swp], ve->siblings[0]); 3074 virtual_update_register_offsets(ve->context.lrc_reg_state, 3075 ve->siblings[0]); 3076 } 3077 3078 static int virtual_context_pin(struct intel_context *ce) 3079 { 3080 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3081 int err; 3082 3083 /* Note: we must use a real engine class for setting up reg state */ 3084 err = __execlists_context_pin(ce, ve->siblings[0]); 3085 if (err) 3086 return err; 3087 3088 virtual_engine_initial_hint(ve); 3089 return 0; 3090 } 3091 3092 static void virtual_context_enter(struct intel_context *ce) 3093 { 3094 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3095 unsigned int n; 3096 3097 for (n = 0; n < ve->num_siblings; n++) 3098 intel_engine_pm_get(ve->siblings[n]); 3099 } 3100 3101 static void virtual_context_exit(struct intel_context *ce) 3102 { 3103 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3104 unsigned int n; 3105 3106 for (n = 0; n < ve->num_siblings; n++) 3107 intel_engine_pm_put(ve->siblings[n]); 3108 } 3109 3110 static const struct intel_context_ops virtual_context_ops = { 3111 .pin = virtual_context_pin, 3112 .unpin = execlists_context_unpin, 3113 3114 .enter = virtual_context_enter, 3115 .exit = virtual_context_exit, 3116 3117 .destroy = virtual_context_destroy, 3118 }; 3119 3120 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) 3121 { 3122 struct i915_request *rq; 3123 intel_engine_mask_t mask; 3124 3125 rq = READ_ONCE(ve->request); 3126 if (!rq) 3127 return 0; 3128 3129 /* The rq is ready for submission; rq->execution_mask is now stable. */ 3130 mask = rq->execution_mask; 3131 if (unlikely(!mask)) { 3132 /* Invalid selection, submit to a random engine in error */ 3133 i915_request_skip(rq, -ENODEV); 3134 mask = ve->siblings[0]->mask; 3135 } 3136 3137 GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n", 3138 ve->base.name, 3139 rq->fence.context, rq->fence.seqno, 3140 mask, ve->base.execlists.queue_priority_hint); 3141 3142 return mask; 3143 } 3144 3145 static void virtual_submission_tasklet(unsigned long data) 3146 { 3147 struct virtual_engine * const ve = (struct virtual_engine *)data; 3148 const int prio = ve->base.execlists.queue_priority_hint; 3149 intel_engine_mask_t mask; 3150 unsigned int n; 3151 3152 rcu_read_lock(); 3153 mask = virtual_submission_mask(ve); 3154 rcu_read_unlock(); 3155 if (unlikely(!mask)) 3156 return; 3157 3158 local_irq_disable(); 3159 for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) { 3160 struct intel_engine_cs *sibling = ve->siblings[n]; 3161 struct ve_node * const node = &ve->nodes[sibling->id]; 3162 struct rb_node **parent, *rb; 3163 bool first; 3164 3165 if (unlikely(!(mask & sibling->mask))) { 3166 if (!RB_EMPTY_NODE(&node->rb)) { 3167 spin_lock(&sibling->active.lock); 3168 rb_erase_cached(&node->rb, 3169 &sibling->execlists.virtual); 3170 RB_CLEAR_NODE(&node->rb); 3171 spin_unlock(&sibling->active.lock); 3172 } 3173 continue; 3174 } 3175 3176 spin_lock(&sibling->active.lock); 3177 3178 if (!RB_EMPTY_NODE(&node->rb)) { 3179 /* 3180 * Cheat and avoid rebalancing the tree if we can 3181 * reuse this node in situ. 3182 */ 3183 first = rb_first_cached(&sibling->execlists.virtual) == 3184 &node->rb; 3185 if (prio == node->prio || (prio > node->prio && first)) 3186 goto submit_engine; 3187 3188 rb_erase_cached(&node->rb, &sibling->execlists.virtual); 3189 } 3190 3191 rb = NULL; 3192 first = true; 3193 parent = &sibling->execlists.virtual.rb_root.rb_node; 3194 while (*parent) { 3195 struct ve_node *other; 3196 3197 rb = *parent; 3198 other = rb_entry(rb, typeof(*other), rb); 3199 if (prio > other->prio) { 3200 parent = &rb->rb_left; 3201 } else { 3202 parent = &rb->rb_right; 3203 first = false; 3204 } 3205 } 3206 3207 rb_link_node(&node->rb, rb, parent); 3208 rb_insert_color_cached(&node->rb, 3209 &sibling->execlists.virtual, 3210 first); 3211 3212 submit_engine: 3213 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); 3214 node->prio = prio; 3215 if (first && prio > sibling->execlists.queue_priority_hint) { 3216 sibling->execlists.queue_priority_hint = prio; 3217 tasklet_hi_schedule(&sibling->execlists.tasklet); 3218 } 3219 3220 spin_unlock(&sibling->active.lock); 3221 } 3222 local_irq_enable(); 3223 } 3224 3225 static void virtual_submit_request(struct i915_request *rq) 3226 { 3227 struct virtual_engine *ve = to_virtual_engine(rq->engine); 3228 3229 GEM_TRACE("%s: rq=%llx:%lld\n", 3230 ve->base.name, 3231 rq->fence.context, 3232 rq->fence.seqno); 3233 3234 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); 3235 3236 GEM_BUG_ON(ve->request); 3237 GEM_BUG_ON(!list_empty(virtual_queue(ve))); 3238 3239 ve->base.execlists.queue_priority_hint = rq_prio(rq); 3240 WRITE_ONCE(ve->request, rq); 3241 3242 list_move_tail(&rq->sched.link, virtual_queue(ve)); 3243 3244 tasklet_schedule(&ve->base.execlists.tasklet); 3245 } 3246 3247 static struct ve_bond * 3248 virtual_find_bond(struct virtual_engine *ve, 3249 const struct intel_engine_cs *master) 3250 { 3251 int i; 3252 3253 for (i = 0; i < ve->num_bonds; i++) { 3254 if (ve->bonds[i].master == master) 3255 return &ve->bonds[i]; 3256 } 3257 3258 return NULL; 3259 } 3260 3261 static void 3262 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal) 3263 { 3264 struct virtual_engine *ve = to_virtual_engine(rq->engine); 3265 struct ve_bond *bond; 3266 3267 bond = virtual_find_bond(ve, to_request(signal)->engine); 3268 if (bond) { 3269 intel_engine_mask_t old, new, cmp; 3270 3271 cmp = READ_ONCE(rq->execution_mask); 3272 do { 3273 old = cmp; 3274 new = cmp & bond->sibling_mask; 3275 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old); 3276 } 3277 } 3278 3279 struct intel_context * 3280 intel_execlists_create_virtual(struct i915_gem_context *ctx, 3281 struct intel_engine_cs **siblings, 3282 unsigned int count) 3283 { 3284 struct virtual_engine *ve; 3285 unsigned int n; 3286 int err; 3287 3288 if (count == 0) 3289 return ERR_PTR(-EINVAL); 3290 3291 if (count == 1) 3292 return intel_context_create(ctx, siblings[0]); 3293 3294 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); 3295 if (!ve) 3296 return ERR_PTR(-ENOMEM); 3297 3298 ve->base.i915 = ctx->i915; 3299 ve->base.id = -1; 3300 ve->base.class = OTHER_CLASS; 3301 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 3302 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 3303 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 3304 3305 /* 3306 * The decision on whether to submit a request using semaphores 3307 * depends on the saturated state of the engine. We only compute 3308 * this during HW submission of the request, and we need for this 3309 * state to be globally applied to all requests being submitted 3310 * to this engine. Virtual engines encompass more than one physical 3311 * engine and so we cannot accurately tell in advance if one of those 3312 * engines is already saturated and so cannot afford to use a semaphore 3313 * and be pessimized in priority for doing so -- if we are the only 3314 * context using semaphores after all other clients have stopped, we 3315 * will be starved on the saturated system. Such a global switch for 3316 * semaphores is less than ideal, but alas is the current compromise. 3317 */ 3318 ve->base.saturated = ALL_ENGINES; 3319 3320 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 3321 3322 intel_engine_init_active(&ve->base, ENGINE_VIRTUAL); 3323 3324 intel_engine_init_execlists(&ve->base); 3325 3326 ve->base.cops = &virtual_context_ops; 3327 ve->base.request_alloc = execlists_request_alloc; 3328 3329 ve->base.schedule = i915_schedule; 3330 ve->base.submit_request = virtual_submit_request; 3331 ve->base.bond_execute = virtual_bond_execute; 3332 3333 INIT_LIST_HEAD(virtual_queue(ve)); 3334 ve->base.execlists.queue_priority_hint = INT_MIN; 3335 tasklet_init(&ve->base.execlists.tasklet, 3336 virtual_submission_tasklet, 3337 (unsigned long)ve); 3338 3339 intel_context_init(&ve->context, ctx, &ve->base); 3340 3341 for (n = 0; n < count; n++) { 3342 struct intel_engine_cs *sibling = siblings[n]; 3343 3344 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 3345 if (sibling->mask & ve->base.mask) { 3346 DRM_DEBUG("duplicate %s entry in load balancer\n", 3347 sibling->name); 3348 err = -EINVAL; 3349 goto err_put; 3350 } 3351 3352 /* 3353 * The virtual engine implementation is tightly coupled to 3354 * the execlists backend -- we push out request directly 3355 * into a tree inside each physical engine. We could support 3356 * layering if we handle cloning of the requests and 3357 * submitting a copy into each backend. 3358 */ 3359 if (sibling->execlists.tasklet.func != 3360 execlists_submission_tasklet) { 3361 err = -ENODEV; 3362 goto err_put; 3363 } 3364 3365 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); 3366 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); 3367 3368 ve->siblings[ve->num_siblings++] = sibling; 3369 ve->base.mask |= sibling->mask; 3370 3371 /* 3372 * All physical engines must be compatible for their emission 3373 * functions (as we build the instructions during request 3374 * construction and do not alter them before submission 3375 * on the physical engine). We use the engine class as a guide 3376 * here, although that could be refined. 3377 */ 3378 if (ve->base.class != OTHER_CLASS) { 3379 if (ve->base.class != sibling->class) { 3380 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 3381 sibling->class, ve->base.class); 3382 err = -EINVAL; 3383 goto err_put; 3384 } 3385 continue; 3386 } 3387 3388 ve->base.class = sibling->class; 3389 ve->base.uabi_class = sibling->uabi_class; 3390 snprintf(ve->base.name, sizeof(ve->base.name), 3391 "v%dx%d", ve->base.class, count); 3392 ve->base.context_size = sibling->context_size; 3393 3394 ve->base.emit_bb_start = sibling->emit_bb_start; 3395 ve->base.emit_flush = sibling->emit_flush; 3396 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; 3397 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; 3398 ve->base.emit_fini_breadcrumb_dw = 3399 sibling->emit_fini_breadcrumb_dw; 3400 } 3401 3402 return &ve->context; 3403 3404 err_put: 3405 intel_context_put(&ve->context); 3406 return ERR_PTR(err); 3407 } 3408 3409 struct intel_context * 3410 intel_execlists_clone_virtual(struct i915_gem_context *ctx, 3411 struct intel_engine_cs *src) 3412 { 3413 struct virtual_engine *se = to_virtual_engine(src); 3414 struct intel_context *dst; 3415 3416 dst = intel_execlists_create_virtual(ctx, 3417 se->siblings, 3418 se->num_siblings); 3419 if (IS_ERR(dst)) 3420 return dst; 3421 3422 if (se->num_bonds) { 3423 struct virtual_engine *de = to_virtual_engine(dst->engine); 3424 3425 de->bonds = kmemdup(se->bonds, 3426 sizeof(*se->bonds) * se->num_bonds, 3427 GFP_KERNEL); 3428 if (!de->bonds) { 3429 intel_context_put(dst); 3430 return ERR_PTR(-ENOMEM); 3431 } 3432 3433 de->num_bonds = se->num_bonds; 3434 } 3435 3436 return dst; 3437 } 3438 3439 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine, 3440 const struct intel_engine_cs *master, 3441 const struct intel_engine_cs *sibling) 3442 { 3443 struct virtual_engine *ve = to_virtual_engine(engine); 3444 struct ve_bond *bond; 3445 int n; 3446 3447 /* Sanity check the sibling is part of the virtual engine */ 3448 for (n = 0; n < ve->num_siblings; n++) 3449 if (sibling == ve->siblings[n]) 3450 break; 3451 if (n == ve->num_siblings) 3452 return -EINVAL; 3453 3454 bond = virtual_find_bond(ve, master); 3455 if (bond) { 3456 bond->sibling_mask |= sibling->mask; 3457 return 0; 3458 } 3459 3460 bond = krealloc(ve->bonds, 3461 sizeof(*bond) * (ve->num_bonds + 1), 3462 GFP_KERNEL); 3463 if (!bond) 3464 return -ENOMEM; 3465 3466 bond[ve->num_bonds].master = master; 3467 bond[ve->num_bonds].sibling_mask = sibling->mask; 3468 3469 ve->bonds = bond; 3470 ve->num_bonds++; 3471 3472 return 0; 3473 } 3474 3475 void intel_execlists_show_requests(struct intel_engine_cs *engine, 3476 struct drm_printer *m, 3477 void (*show_request)(struct drm_printer *m, 3478 struct i915_request *rq, 3479 const char *prefix), 3480 unsigned int max) 3481 { 3482 const struct intel_engine_execlists *execlists = &engine->execlists; 3483 struct i915_request *rq, *last; 3484 unsigned long flags; 3485 unsigned int count; 3486 struct rb_node *rb; 3487 3488 spin_lock_irqsave(&engine->active.lock, flags); 3489 3490 last = NULL; 3491 count = 0; 3492 list_for_each_entry(rq, &engine->active.requests, sched.link) { 3493 if (count++ < max - 1) 3494 show_request(m, rq, "\t\tE "); 3495 else 3496 last = rq; 3497 } 3498 if (last) { 3499 if (count > max) { 3500 drm_printf(m, 3501 "\t\t...skipping %d executing requests...\n", 3502 count - max); 3503 } 3504 show_request(m, last, "\t\tE "); 3505 } 3506 3507 last = NULL; 3508 count = 0; 3509 if (execlists->queue_priority_hint != INT_MIN) 3510 drm_printf(m, "\t\tQueue priority hint: %d\n", 3511 execlists->queue_priority_hint); 3512 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 3513 struct i915_priolist *p = rb_entry(rb, typeof(*p), node); 3514 int i; 3515 3516 priolist_for_each_request(rq, p, i) { 3517 if (count++ < max - 1) 3518 show_request(m, rq, "\t\tQ "); 3519 else 3520 last = rq; 3521 } 3522 } 3523 if (last) { 3524 if (count > max) { 3525 drm_printf(m, 3526 "\t\t...skipping %d queued requests...\n", 3527 count - max); 3528 } 3529 show_request(m, last, "\t\tQ "); 3530 } 3531 3532 last = NULL; 3533 count = 0; 3534 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { 3535 struct virtual_engine *ve = 3536 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 3537 struct i915_request *rq = READ_ONCE(ve->request); 3538 3539 if (rq) { 3540 if (count++ < max - 1) 3541 show_request(m, rq, "\t\tV "); 3542 else 3543 last = rq; 3544 } 3545 } 3546 if (last) { 3547 if (count > max) { 3548 drm_printf(m, 3549 "\t\t...skipping %d virtual requests...\n", 3550 count - max); 3551 } 3552 show_request(m, last, "\t\tV "); 3553 } 3554 3555 spin_unlock_irqrestore(&engine->active.lock, flags); 3556 } 3557 3558 void intel_lr_context_reset(struct intel_engine_cs *engine, 3559 struct intel_context *ce, 3560 u32 head, 3561 bool scrub) 3562 { 3563 /* 3564 * We want a simple context + ring to execute the breadcrumb update. 3565 * We cannot rely on the context being intact across the GPU hang, 3566 * so clear it and rebuild just what we need for the breadcrumb. 3567 * All pending requests for this context will be zapped, and any 3568 * future request will be after userspace has had the opportunity 3569 * to recreate its own state. 3570 */ 3571 if (scrub) { 3572 u32 *regs = ce->lrc_reg_state; 3573 3574 if (engine->pinned_default_state) { 3575 memcpy(regs, /* skip restoring the vanilla PPHWSP */ 3576 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, 3577 engine->context_size - PAGE_SIZE); 3578 } 3579 execlists_init_reg_state(regs, ce, engine, ce->ring); 3580 } 3581 3582 /* Rerun the request; its payload has been neutered (if guilty). */ 3583 ce->ring->head = head; 3584 intel_ring_update_space(ce->ring); 3585 3586 __execlists_update_reg_state(ce, engine); 3587 } 3588 3589 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3590 #include "selftest_lrc.c" 3591 #endif 3592