1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * Michel Thierry <michel.thierry@intel.com> 26 * Thomas Daniel <thomas.daniel@intel.com> 27 * Oscar Mateo <oscar.mateo@intel.com> 28 * 29 */ 30 31 /** 32 * DOC: Logical Rings, Logical Ring Contexts and Execlists 33 * 34 * Motivation: 35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". 36 * These expanded contexts enable a number of new abilities, especially 37 * "Execlists" (also implemented in this file). 38 * 39 * One of the main differences with the legacy HW contexts is that logical 40 * ring contexts incorporate many more things to the context's state, like 41 * PDPs or ringbuffer control registers: 42 * 43 * The reason why PDPs are included in the context is straightforward: as 44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs 45 * contained there mean you don't need to do a ppgtt->switch_mm yourself, 46 * instead, the GPU will do it for you on the context switch. 47 * 48 * But, what about the ringbuffer control registers (head, tail, etc..)? 49 * shouldn't we just need a set of those per engine command streamer? This is 50 * where the name "Logical Rings" starts to make sense: by virtualizing the 51 * rings, the engine cs shifts to a new "ring buffer" with every context 52 * switch. When you want to submit a workload to the GPU you: A) choose your 53 * context, B) find its appropriate virtualized ring, C) write commands to it 54 * and then, finally, D) tell the GPU to switch to that context. 55 * 56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch 57 * to a contexts is via a context execution list, ergo "Execlists". 58 * 59 * LRC implementation: 60 * Regarding the creation of contexts, we have: 61 * 62 * - One global default context. 63 * - One local default context for each opened fd. 64 * - One local extra context for each context create ioctl call. 65 * 66 * Now that ringbuffers belong per-context (and not per-engine, like before) 67 * and that contexts are uniquely tied to a given engine (and not reusable, 68 * like before) we need: 69 * 70 * - One ringbuffer per-engine inside each context. 71 * - One backing object per-engine inside each context. 72 * 73 * The global default context starts its life with these new objects fully 74 * allocated and populated. The local default context for each opened fd is 75 * more complex, because we don't know at creation time which engine is going 76 * to use them. To handle this, we have implemented a deferred creation of LR 77 * contexts: 78 * 79 * The local context starts its life as a hollow or blank holder, that only 80 * gets populated for a given engine once we receive an execbuffer. If later 81 * on we receive another execbuffer ioctl for the same context but a different 82 * engine, we allocate/populate a new ringbuffer and context backing object and 83 * so on. 84 * 85 * Finally, regarding local contexts created using the ioctl call: as they are 86 * only allowed with the render ring, we can allocate & populate them right 87 * away (no need to defer anything, at least for now). 88 * 89 * Execlists implementation: 90 * Execlists are the new method by which, on gen8+ hardware, workloads are 91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method). 92 * This method works as follows: 93 * 94 * When a request is committed, its commands (the BB start and any leading or 95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer 96 * for the appropriate context. The tail pointer in the hardware context is not 97 * updated at this time, but instead, kept by the driver in the ringbuffer 98 * structure. A structure representing this request is added to a request queue 99 * for the appropriate engine: this structure contains a copy of the context's 100 * tail after the request was written to the ring buffer and a pointer to the 101 * context itself. 102 * 103 * If the engine's request queue was empty before the request was added, the 104 * queue is processed immediately. Otherwise the queue will be processed during 105 * a context switch interrupt. In any case, elements on the queue will get sent 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a 107 * globally unique 20-bits submission ID. 108 * 109 * When execution of a request completes, the GPU updates the context status 110 * buffer with a context complete event and generates a context switch interrupt. 111 * During the interrupt handling, the driver examines the events in the buffer: 112 * for each context complete event, if the announced ID matches that on the head 113 * of the request queue, then that request is retired and removed from the queue. 114 * 115 * After processing, if any requests were retired and the queue is not empty 116 * then a new execution list can be submitted. The two requests at the front of 117 * the queue are next to be submitted but since a context may not occur twice in 118 * an execution list, if subsequent requests have the same ID as the first then 119 * the two requests must be combined. This is done simply by discarding requests 120 * at the head of the queue until either only one requests is left (in which case 121 * we use a NULL second context) or the first two requests have unique IDs. 122 * 123 * By always executing the first two requests in the queue the driver ensures 124 * that the GPU is kept as busy as possible. In the case where a single context 125 * completes but a second context is still executing, the request for this second 126 * context will be at the head of the queue when we remove the first one. This 127 * request will then be resubmitted along with a new request for a different context, 128 * which will cause the hardware to continue executing the second request and queue 129 * the new request (the GPU detects the condition of a context getting preempted 130 * with the same context and optimizes the context switch flow by not doing 131 * preemption, but just sampling the new tail pointer). 132 * 133 */ 134 #include <linux/interrupt.h> 135 136 #include "i915_drv.h" 137 #include "i915_perf.h" 138 #include "i915_trace.h" 139 #include "i915_vgpu.h" 140 #include "intel_context.h" 141 #include "intel_engine_pm.h" 142 #include "intel_gt.h" 143 #include "intel_gt_pm.h" 144 #include "intel_gt_requests.h" 145 #include "intel_lrc_reg.h" 146 #include "intel_mocs.h" 147 #include "intel_reset.h" 148 #include "intel_ring.h" 149 #include "intel_workarounds.h" 150 151 #define RING_EXECLIST_QFULL (1 << 0x2) 152 #define RING_EXECLIST1_VALID (1 << 0x3) 153 #define RING_EXECLIST0_VALID (1 << 0x4) 154 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) 155 #define RING_EXECLIST1_ACTIVE (1 << 0x11) 156 #define RING_EXECLIST0_ACTIVE (1 << 0x12) 157 158 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) 159 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) 160 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) 161 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) 162 #define GEN8_CTX_STATUS_COMPLETE (1 << 4) 163 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) 164 165 #define GEN8_CTX_STATUS_COMPLETED_MASK \ 166 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) 167 168 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2) 169 170 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */ 171 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */ 172 #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15) 173 #define GEN12_IDLE_CTX_ID 0x7FF 174 #define GEN12_CSB_CTX_VALID(csb_dw) \ 175 (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID) 176 177 /* Typical size of the average request (2 pipecontrols and a MI_BB) */ 178 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ 179 180 struct virtual_engine { 181 struct intel_engine_cs base; 182 struct intel_context context; 183 184 /* 185 * We allow only a single request through the virtual engine at a time 186 * (each request in the timeline waits for the completion fence of 187 * the previous before being submitted). By restricting ourselves to 188 * only submitting a single request, each request is placed on to a 189 * physical to maximise load spreading (by virtue of the late greedy 190 * scheduling -- each real engine takes the next available request 191 * upon idling). 192 */ 193 struct i915_request *request; 194 195 /* 196 * We keep a rbtree of available virtual engines inside each physical 197 * engine, sorted by priority. Here we preallocate the nodes we need 198 * for the virtual engine, indexed by physical_engine->id. 199 */ 200 struct ve_node { 201 struct rb_node rb; 202 int prio; 203 } nodes[I915_NUM_ENGINES]; 204 205 /* 206 * Keep track of bonded pairs -- restrictions upon on our selection 207 * of physical engines any particular request may be submitted to. 208 * If we receive a submit-fence from a master engine, we will only 209 * use one of sibling_mask physical engines. 210 */ 211 struct ve_bond { 212 const struct intel_engine_cs *master; 213 intel_engine_mask_t sibling_mask; 214 } *bonds; 215 unsigned int num_bonds; 216 217 /* And finally, which physical engines this virtual engine maps onto. */ 218 unsigned int num_siblings; 219 struct intel_engine_cs *siblings[0]; 220 }; 221 222 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) 223 { 224 GEM_BUG_ON(!intel_engine_is_virtual(engine)); 225 return container_of(engine, struct virtual_engine, base); 226 } 227 228 static int __execlists_context_alloc(struct intel_context *ce, 229 struct intel_engine_cs *engine); 230 231 static void execlists_init_reg_state(u32 *reg_state, 232 const struct intel_context *ce, 233 const struct intel_engine_cs *engine, 234 const struct intel_ring *ring, 235 bool close); 236 static void 237 __execlists_update_reg_state(const struct intel_context *ce, 238 const struct intel_engine_cs *engine, 239 u32 head); 240 241 static void mark_eio(struct i915_request *rq) 242 { 243 if (i915_request_completed(rq)) 244 return; 245 246 GEM_BUG_ON(i915_request_signaled(rq)); 247 248 i915_request_set_error_once(rq, -EIO); 249 i915_request_mark_complete(rq); 250 } 251 252 static struct i915_request * 253 active_request(const struct intel_timeline * const tl, struct i915_request *rq) 254 { 255 struct i915_request *active = rq; 256 257 rcu_read_lock(); 258 list_for_each_entry_continue_reverse(rq, &tl->requests, link) { 259 if (i915_request_completed(rq)) 260 break; 261 262 active = rq; 263 } 264 rcu_read_unlock(); 265 266 return active; 267 } 268 269 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine) 270 { 271 return (i915_ggtt_offset(engine->status_page.vma) + 272 I915_GEM_HWS_PREEMPT_ADDR); 273 } 274 275 static inline void 276 ring_set_paused(const struct intel_engine_cs *engine, int state) 277 { 278 /* 279 * We inspect HWS_PREEMPT with a semaphore inside 280 * engine->emit_fini_breadcrumb. If the dword is true, 281 * the ring is paused as the semaphore will busywait 282 * until the dword is false. 283 */ 284 engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state; 285 if (state) 286 wmb(); 287 } 288 289 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 290 { 291 return rb_entry(rb, struct i915_priolist, node); 292 } 293 294 static inline int rq_prio(const struct i915_request *rq) 295 { 296 return READ_ONCE(rq->sched.attr.priority); 297 } 298 299 static int effective_prio(const struct i915_request *rq) 300 { 301 int prio = rq_prio(rq); 302 303 /* 304 * If this request is special and must not be interrupted at any 305 * cost, so be it. Note we are only checking the most recent request 306 * in the context and so may be masking an earlier vip request. It 307 * is hoped that under the conditions where nopreempt is used, this 308 * will not matter (i.e. all requests to that context will be 309 * nopreempt for as long as desired). 310 */ 311 if (i915_request_has_nopreempt(rq)) 312 prio = I915_PRIORITY_UNPREEMPTABLE; 313 314 /* 315 * On unwinding the active request, we give it a priority bump 316 * if it has completed waiting on any semaphore. If we know that 317 * the request has already started, we can prevent an unwanted 318 * preempt-to-idle cycle by taking that into account now. 319 */ 320 if (__i915_request_has_started(rq)) 321 prio |= I915_PRIORITY_NOSEMAPHORE; 322 323 /* Restrict mere WAIT boosts from triggering preemption */ 324 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */ 325 return prio | __NO_PREEMPTION; 326 } 327 328 static int queue_prio(const struct intel_engine_execlists *execlists) 329 { 330 struct i915_priolist *p; 331 struct rb_node *rb; 332 333 rb = rb_first_cached(&execlists->queue); 334 if (!rb) 335 return INT_MIN; 336 337 /* 338 * As the priolist[] are inverted, with the highest priority in [0], 339 * we have to flip the index value to become priority. 340 */ 341 p = to_priolist(rb); 342 return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used); 343 } 344 345 static inline bool need_preempt(const struct intel_engine_cs *engine, 346 const struct i915_request *rq, 347 struct rb_node *rb) 348 { 349 int last_prio; 350 351 if (!intel_engine_has_semaphores(engine)) 352 return false; 353 354 /* 355 * Check if the current priority hint merits a preemption attempt. 356 * 357 * We record the highest value priority we saw during rescheduling 358 * prior to this dequeue, therefore we know that if it is strictly 359 * less than the current tail of ESLP[0], we do not need to force 360 * a preempt-to-idle cycle. 361 * 362 * However, the priority hint is a mere hint that we may need to 363 * preempt. If that hint is stale or we may be trying to preempt 364 * ourselves, ignore the request. 365 * 366 * More naturally we would write 367 * prio >= max(0, last); 368 * except that we wish to prevent triggering preemption at the same 369 * priority level: the task that is running should remain running 370 * to preserve FIFO ordering of dependencies. 371 */ 372 last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1); 373 if (engine->execlists.queue_priority_hint <= last_prio) 374 return false; 375 376 /* 377 * Check against the first request in ELSP[1], it will, thanks to the 378 * power of PI, be the highest priority of that context. 379 */ 380 if (!list_is_last(&rq->sched.link, &engine->active.requests) && 381 rq_prio(list_next_entry(rq, sched.link)) > last_prio) 382 return true; 383 384 if (rb) { 385 struct virtual_engine *ve = 386 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 387 bool preempt = false; 388 389 if (engine == ve->siblings[0]) { /* only preempt one sibling */ 390 struct i915_request *next; 391 392 rcu_read_lock(); 393 next = READ_ONCE(ve->request); 394 if (next) 395 preempt = rq_prio(next) > last_prio; 396 rcu_read_unlock(); 397 } 398 399 if (preempt) 400 return preempt; 401 } 402 403 /* 404 * If the inflight context did not trigger the preemption, then maybe 405 * it was the set of queued requests? Pick the highest priority in 406 * the queue (the first active priolist) and see if it deserves to be 407 * running instead of ELSP[0]. 408 * 409 * The highest priority request in the queue can not be either 410 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same 411 * context, it's priority would not exceed ELSP[0] aka last_prio. 412 */ 413 return queue_prio(&engine->execlists) > last_prio; 414 } 415 416 __maybe_unused static inline bool 417 assert_priority_queue(const struct i915_request *prev, 418 const struct i915_request *next) 419 { 420 /* 421 * Without preemption, the prev may refer to the still active element 422 * which we refuse to let go. 423 * 424 * Even with preemption, there are times when we think it is better not 425 * to preempt and leave an ostensibly lower priority request in flight. 426 */ 427 if (i915_request_is_active(prev)) 428 return true; 429 430 return rq_prio(prev) >= rq_prio(next); 431 } 432 433 /* 434 * The context descriptor encodes various attributes of a context, 435 * including its GTT address and some flags. Because it's fairly 436 * expensive to calculate, we'll just do it once and cache the result, 437 * which remains valid until the context is unpinned. 438 * 439 * This is what a descriptor looks like, from LSB to MSB:: 440 * 441 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) 442 * bits 12-31: LRCA, GTT address of (the HWSP of) this context 443 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) 444 * bits 53-54: mbz, reserved for use by hardware 445 * bits 55-63: group ID, currently unused and set to 0 446 * 447 * Starting from Gen11, the upper dword of the descriptor has a new format: 448 * 449 * bits 32-36: reserved 450 * bits 37-47: SW context ID 451 * bits 48:53: engine instance 452 * bit 54: mbz, reserved for use by hardware 453 * bits 55-60: SW counter 454 * bits 61-63: engine class 455 * 456 * engine info, SW context ID and SW counter need to form a unique number 457 * (Context ID) per lrc. 458 */ 459 static u32 460 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine) 461 { 462 u32 desc; 463 464 desc = INTEL_LEGACY_32B_CONTEXT; 465 if (i915_vm_is_4lvl(ce->vm)) 466 desc = INTEL_LEGACY_64B_CONTEXT; 467 desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT; 468 469 desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE; 470 if (IS_GEN(engine->i915, 8)) 471 desc |= GEN8_CTX_L3LLC_COHERENT; 472 473 return i915_ggtt_offset(ce->state) | desc; 474 } 475 476 static inline unsigned int dword_in_page(void *addr) 477 { 478 return offset_in_page(addr) / sizeof(u32); 479 } 480 481 static void set_offsets(u32 *regs, 482 const u8 *data, 483 const struct intel_engine_cs *engine, 484 bool clear) 485 #define NOP(x) (BIT(7) | (x)) 486 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6))) 487 #define POSTED BIT(0) 488 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200)) 489 #define REG16(x) \ 490 (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \ 491 (((x) >> 2) & 0x7f) 492 #define END(x) 0, (x) 493 { 494 const u32 base = engine->mmio_base; 495 496 while (*data) { 497 u8 count, flags; 498 499 if (*data & BIT(7)) { /* skip */ 500 count = *data++ & ~BIT(7); 501 if (clear) 502 memset32(regs, MI_NOOP, count); 503 regs += count; 504 continue; 505 } 506 507 count = *data & 0x3f; 508 flags = *data >> 6; 509 data++; 510 511 *regs = MI_LOAD_REGISTER_IMM(count); 512 if (flags & POSTED) 513 *regs |= MI_LRI_FORCE_POSTED; 514 if (INTEL_GEN(engine->i915) >= 11) 515 *regs |= MI_LRI_CS_MMIO; 516 regs++; 517 518 GEM_BUG_ON(!count); 519 do { 520 u32 offset = 0; 521 u8 v; 522 523 do { 524 v = *data++; 525 offset <<= 7; 526 offset |= v & ~BIT(7); 527 } while (v & BIT(7)); 528 529 regs[0] = base + (offset << 2); 530 if (clear) 531 regs[1] = 0; 532 regs += 2; 533 } while (--count); 534 } 535 536 if (clear) { 537 u8 count = *++data; 538 539 /* Clear past the tail for HW access */ 540 GEM_BUG_ON(dword_in_page(regs) > count); 541 memset32(regs, MI_NOOP, count - dword_in_page(regs)); 542 543 /* Close the batch; used mainly by live_lrc_layout() */ 544 *regs = MI_BATCH_BUFFER_END; 545 if (INTEL_GEN(engine->i915) >= 10) 546 *regs |= BIT(0); 547 } 548 } 549 550 static const u8 gen8_xcs_offsets[] = { 551 NOP(1), 552 LRI(11, 0), 553 REG16(0x244), 554 REG(0x034), 555 REG(0x030), 556 REG(0x038), 557 REG(0x03c), 558 REG(0x168), 559 REG(0x140), 560 REG(0x110), 561 REG(0x11c), 562 REG(0x114), 563 REG(0x118), 564 565 NOP(9), 566 LRI(9, 0), 567 REG16(0x3a8), 568 REG16(0x28c), 569 REG16(0x288), 570 REG16(0x284), 571 REG16(0x280), 572 REG16(0x27c), 573 REG16(0x278), 574 REG16(0x274), 575 REG16(0x270), 576 577 NOP(13), 578 LRI(2, 0), 579 REG16(0x200), 580 REG(0x028), 581 582 END(80) 583 }; 584 585 static const u8 gen9_xcs_offsets[] = { 586 NOP(1), 587 LRI(14, POSTED), 588 REG16(0x244), 589 REG(0x034), 590 REG(0x030), 591 REG(0x038), 592 REG(0x03c), 593 REG(0x168), 594 REG(0x140), 595 REG(0x110), 596 REG(0x11c), 597 REG(0x114), 598 REG(0x118), 599 REG(0x1c0), 600 REG(0x1c4), 601 REG(0x1c8), 602 603 NOP(3), 604 LRI(9, POSTED), 605 REG16(0x3a8), 606 REG16(0x28c), 607 REG16(0x288), 608 REG16(0x284), 609 REG16(0x280), 610 REG16(0x27c), 611 REG16(0x278), 612 REG16(0x274), 613 REG16(0x270), 614 615 NOP(13), 616 LRI(1, POSTED), 617 REG16(0x200), 618 619 NOP(13), 620 LRI(44, POSTED), 621 REG(0x028), 622 REG(0x09c), 623 REG(0x0c0), 624 REG(0x178), 625 REG(0x17c), 626 REG16(0x358), 627 REG(0x170), 628 REG(0x150), 629 REG(0x154), 630 REG(0x158), 631 REG16(0x41c), 632 REG16(0x600), 633 REG16(0x604), 634 REG16(0x608), 635 REG16(0x60c), 636 REG16(0x610), 637 REG16(0x614), 638 REG16(0x618), 639 REG16(0x61c), 640 REG16(0x620), 641 REG16(0x624), 642 REG16(0x628), 643 REG16(0x62c), 644 REG16(0x630), 645 REG16(0x634), 646 REG16(0x638), 647 REG16(0x63c), 648 REG16(0x640), 649 REG16(0x644), 650 REG16(0x648), 651 REG16(0x64c), 652 REG16(0x650), 653 REG16(0x654), 654 REG16(0x658), 655 REG16(0x65c), 656 REG16(0x660), 657 REG16(0x664), 658 REG16(0x668), 659 REG16(0x66c), 660 REG16(0x670), 661 REG16(0x674), 662 REG16(0x678), 663 REG16(0x67c), 664 REG(0x068), 665 666 END(176) 667 }; 668 669 static const u8 gen12_xcs_offsets[] = { 670 NOP(1), 671 LRI(13, POSTED), 672 REG16(0x244), 673 REG(0x034), 674 REG(0x030), 675 REG(0x038), 676 REG(0x03c), 677 REG(0x168), 678 REG(0x140), 679 REG(0x110), 680 REG(0x1c0), 681 REG(0x1c4), 682 REG(0x1c8), 683 REG(0x180), 684 REG16(0x2b4), 685 686 NOP(5), 687 LRI(9, POSTED), 688 REG16(0x3a8), 689 REG16(0x28c), 690 REG16(0x288), 691 REG16(0x284), 692 REG16(0x280), 693 REG16(0x27c), 694 REG16(0x278), 695 REG16(0x274), 696 REG16(0x270), 697 698 END(80) 699 }; 700 701 static const u8 gen8_rcs_offsets[] = { 702 NOP(1), 703 LRI(14, POSTED), 704 REG16(0x244), 705 REG(0x034), 706 REG(0x030), 707 REG(0x038), 708 REG(0x03c), 709 REG(0x168), 710 REG(0x140), 711 REG(0x110), 712 REG(0x11c), 713 REG(0x114), 714 REG(0x118), 715 REG(0x1c0), 716 REG(0x1c4), 717 REG(0x1c8), 718 719 NOP(3), 720 LRI(9, POSTED), 721 REG16(0x3a8), 722 REG16(0x28c), 723 REG16(0x288), 724 REG16(0x284), 725 REG16(0x280), 726 REG16(0x27c), 727 REG16(0x278), 728 REG16(0x274), 729 REG16(0x270), 730 731 NOP(13), 732 LRI(1, 0), 733 REG(0x0c8), 734 735 END(80) 736 }; 737 738 static const u8 gen9_rcs_offsets[] = { 739 NOP(1), 740 LRI(14, POSTED), 741 REG16(0x244), 742 REG(0x34), 743 REG(0x30), 744 REG(0x38), 745 REG(0x3c), 746 REG(0x168), 747 REG(0x140), 748 REG(0x110), 749 REG(0x11c), 750 REG(0x114), 751 REG(0x118), 752 REG(0x1c0), 753 REG(0x1c4), 754 REG(0x1c8), 755 756 NOP(3), 757 LRI(9, POSTED), 758 REG16(0x3a8), 759 REG16(0x28c), 760 REG16(0x288), 761 REG16(0x284), 762 REG16(0x280), 763 REG16(0x27c), 764 REG16(0x278), 765 REG16(0x274), 766 REG16(0x270), 767 768 NOP(13), 769 LRI(1, 0), 770 REG(0xc8), 771 772 NOP(13), 773 LRI(44, POSTED), 774 REG(0x28), 775 REG(0x9c), 776 REG(0xc0), 777 REG(0x178), 778 REG(0x17c), 779 REG16(0x358), 780 REG(0x170), 781 REG(0x150), 782 REG(0x154), 783 REG(0x158), 784 REG16(0x41c), 785 REG16(0x600), 786 REG16(0x604), 787 REG16(0x608), 788 REG16(0x60c), 789 REG16(0x610), 790 REG16(0x614), 791 REG16(0x618), 792 REG16(0x61c), 793 REG16(0x620), 794 REG16(0x624), 795 REG16(0x628), 796 REG16(0x62c), 797 REG16(0x630), 798 REG16(0x634), 799 REG16(0x638), 800 REG16(0x63c), 801 REG16(0x640), 802 REG16(0x644), 803 REG16(0x648), 804 REG16(0x64c), 805 REG16(0x650), 806 REG16(0x654), 807 REG16(0x658), 808 REG16(0x65c), 809 REG16(0x660), 810 REG16(0x664), 811 REG16(0x668), 812 REG16(0x66c), 813 REG16(0x670), 814 REG16(0x674), 815 REG16(0x678), 816 REG16(0x67c), 817 REG(0x68), 818 819 END(176) 820 }; 821 822 static const u8 gen11_rcs_offsets[] = { 823 NOP(1), 824 LRI(15, POSTED), 825 REG16(0x244), 826 REG(0x034), 827 REG(0x030), 828 REG(0x038), 829 REG(0x03c), 830 REG(0x168), 831 REG(0x140), 832 REG(0x110), 833 REG(0x11c), 834 REG(0x114), 835 REG(0x118), 836 REG(0x1c0), 837 REG(0x1c4), 838 REG(0x1c8), 839 REG(0x180), 840 841 NOP(1), 842 LRI(9, POSTED), 843 REG16(0x3a8), 844 REG16(0x28c), 845 REG16(0x288), 846 REG16(0x284), 847 REG16(0x280), 848 REG16(0x27c), 849 REG16(0x278), 850 REG16(0x274), 851 REG16(0x270), 852 853 LRI(1, POSTED), 854 REG(0x1b0), 855 856 NOP(10), 857 LRI(1, 0), 858 REG(0x0c8), 859 860 END(80) 861 }; 862 863 static const u8 gen12_rcs_offsets[] = { 864 NOP(1), 865 LRI(13, POSTED), 866 REG16(0x244), 867 REG(0x034), 868 REG(0x030), 869 REG(0x038), 870 REG(0x03c), 871 REG(0x168), 872 REG(0x140), 873 REG(0x110), 874 REG(0x1c0), 875 REG(0x1c4), 876 REG(0x1c8), 877 REG(0x180), 878 REG16(0x2b4), 879 880 NOP(5), 881 LRI(9, POSTED), 882 REG16(0x3a8), 883 REG16(0x28c), 884 REG16(0x288), 885 REG16(0x284), 886 REG16(0x280), 887 REG16(0x27c), 888 REG16(0x278), 889 REG16(0x274), 890 REG16(0x270), 891 892 LRI(3, POSTED), 893 REG(0x1b0), 894 REG16(0x5a8), 895 REG16(0x5ac), 896 897 NOP(6), 898 LRI(1, 0), 899 REG(0x0c8), 900 901 END(80) 902 }; 903 904 #undef END 905 #undef REG16 906 #undef REG 907 #undef LRI 908 #undef NOP 909 910 static const u8 *reg_offsets(const struct intel_engine_cs *engine) 911 { 912 /* 913 * The gen12+ lists only have the registers we program in the basic 914 * default state. We rely on the context image using relative 915 * addressing to automatic fixup the register state between the 916 * physical engines for virtual engine. 917 */ 918 GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 && 919 !intel_engine_has_relative_mmio(engine)); 920 921 if (engine->class == RENDER_CLASS) { 922 if (INTEL_GEN(engine->i915) >= 12) 923 return gen12_rcs_offsets; 924 else if (INTEL_GEN(engine->i915) >= 11) 925 return gen11_rcs_offsets; 926 else if (INTEL_GEN(engine->i915) >= 9) 927 return gen9_rcs_offsets; 928 else 929 return gen8_rcs_offsets; 930 } else { 931 if (INTEL_GEN(engine->i915) >= 12) 932 return gen12_xcs_offsets; 933 else if (INTEL_GEN(engine->i915) >= 9) 934 return gen9_xcs_offsets; 935 else 936 return gen8_xcs_offsets; 937 } 938 } 939 940 static struct i915_request * 941 __unwind_incomplete_requests(struct intel_engine_cs *engine) 942 { 943 struct i915_request *rq, *rn, *active = NULL; 944 struct list_head *uninitialized_var(pl); 945 int prio = I915_PRIORITY_INVALID; 946 947 lockdep_assert_held(&engine->active.lock); 948 949 list_for_each_entry_safe_reverse(rq, rn, 950 &engine->active.requests, 951 sched.link) { 952 if (i915_request_completed(rq)) 953 continue; /* XXX */ 954 955 __i915_request_unsubmit(rq); 956 957 /* 958 * Push the request back into the queue for later resubmission. 959 * If this request is not native to this physical engine (i.e. 960 * it came from a virtual source), push it back onto the virtual 961 * engine so that it can be moved across onto another physical 962 * engine as load dictates. 963 */ 964 if (likely(rq->execution_mask == engine->mask)) { 965 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 966 if (rq_prio(rq) != prio) { 967 prio = rq_prio(rq); 968 pl = i915_sched_lookup_priolist(engine, prio); 969 } 970 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); 971 972 list_move(&rq->sched.link, pl); 973 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 974 975 active = rq; 976 } else { 977 struct intel_engine_cs *owner = rq->context->engine; 978 979 /* 980 * Decouple the virtual breadcrumb before moving it 981 * back to the virtual engine -- we don't want the 982 * request to complete in the background and try 983 * and cancel the breadcrumb on the virtual engine 984 * (instead of the old engine where it is linked)! 985 */ 986 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 987 &rq->fence.flags)) { 988 spin_lock_nested(&rq->lock, 989 SINGLE_DEPTH_NESTING); 990 i915_request_cancel_breadcrumb(rq); 991 spin_unlock(&rq->lock); 992 } 993 WRITE_ONCE(rq->engine, owner); 994 owner->submit_request(rq); 995 active = NULL; 996 } 997 } 998 999 return active; 1000 } 1001 1002 struct i915_request * 1003 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) 1004 { 1005 struct intel_engine_cs *engine = 1006 container_of(execlists, typeof(*engine), execlists); 1007 1008 return __unwind_incomplete_requests(engine); 1009 } 1010 1011 static inline void 1012 execlists_context_status_change(struct i915_request *rq, unsigned long status) 1013 { 1014 /* 1015 * Only used when GVT-g is enabled now. When GVT-g is disabled, 1016 * The compiler should eliminate this function as dead-code. 1017 */ 1018 if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) 1019 return; 1020 1021 atomic_notifier_call_chain(&rq->engine->context_status_notifier, 1022 status, rq); 1023 } 1024 1025 static void intel_engine_context_in(struct intel_engine_cs *engine) 1026 { 1027 unsigned long flags; 1028 1029 if (READ_ONCE(engine->stats.enabled) == 0) 1030 return; 1031 1032 write_seqlock_irqsave(&engine->stats.lock, flags); 1033 1034 if (engine->stats.enabled > 0) { 1035 if (engine->stats.active++ == 0) 1036 engine->stats.start = ktime_get(); 1037 GEM_BUG_ON(engine->stats.active == 0); 1038 } 1039 1040 write_sequnlock_irqrestore(&engine->stats.lock, flags); 1041 } 1042 1043 static void intel_engine_context_out(struct intel_engine_cs *engine) 1044 { 1045 unsigned long flags; 1046 1047 if (READ_ONCE(engine->stats.enabled) == 0) 1048 return; 1049 1050 write_seqlock_irqsave(&engine->stats.lock, flags); 1051 1052 if (engine->stats.enabled > 0) { 1053 ktime_t last; 1054 1055 if (engine->stats.active && --engine->stats.active == 0) { 1056 /* 1057 * Decrement the active context count and in case GPU 1058 * is now idle add up to the running total. 1059 */ 1060 last = ktime_sub(ktime_get(), engine->stats.start); 1061 1062 engine->stats.total = ktime_add(engine->stats.total, 1063 last); 1064 } else if (engine->stats.active == 0) { 1065 /* 1066 * After turning on engine stats, context out might be 1067 * the first event in which case we account from the 1068 * time stats gathering was turned on. 1069 */ 1070 last = ktime_sub(ktime_get(), engine->stats.enabled_at); 1071 1072 engine->stats.total = ktime_add(engine->stats.total, 1073 last); 1074 } 1075 } 1076 1077 write_sequnlock_irqrestore(&engine->stats.lock, flags); 1078 } 1079 1080 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine) 1081 { 1082 if (INTEL_GEN(engine->i915) >= 12) 1083 return 0x60; 1084 else if (INTEL_GEN(engine->i915) >= 9) 1085 return 0x54; 1086 else if (engine->class == RENDER_CLASS) 1087 return 0x58; 1088 else 1089 return -1; 1090 } 1091 1092 static void 1093 execlists_check_context(const struct intel_context *ce, 1094 const struct intel_engine_cs *engine) 1095 { 1096 const struct intel_ring *ring = ce->ring; 1097 u32 *regs = ce->lrc_reg_state; 1098 bool valid = true; 1099 int x; 1100 1101 if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) { 1102 pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n", 1103 engine->name, 1104 regs[CTX_RING_START], 1105 i915_ggtt_offset(ring->vma)); 1106 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); 1107 valid = false; 1108 } 1109 1110 if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) != 1111 (RING_CTL_SIZE(ring->size) | RING_VALID)) { 1112 pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n", 1113 engine->name, 1114 regs[CTX_RING_CTL], 1115 (u32)(RING_CTL_SIZE(ring->size) | RING_VALID)); 1116 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 1117 valid = false; 1118 } 1119 1120 x = lrc_ring_mi_mode(engine); 1121 if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) { 1122 pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n", 1123 engine->name, regs[x + 1]); 1124 regs[x + 1] &= ~STOP_RING; 1125 regs[x + 1] |= STOP_RING << 16; 1126 valid = false; 1127 } 1128 1129 WARN_ONCE(!valid, "Invalid lrc state found before submission\n"); 1130 } 1131 1132 static void restore_default_state(struct intel_context *ce, 1133 struct intel_engine_cs *engine) 1134 { 1135 u32 *regs = ce->lrc_reg_state; 1136 1137 if (engine->pinned_default_state) 1138 memcpy(regs, /* skip restoring the vanilla PPHWSP */ 1139 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, 1140 engine->context_size - PAGE_SIZE); 1141 1142 execlists_init_reg_state(regs, ce, engine, ce->ring, false); 1143 } 1144 1145 static void reset_active(struct i915_request *rq, 1146 struct intel_engine_cs *engine) 1147 { 1148 struct intel_context * const ce = rq->context; 1149 u32 head; 1150 1151 /* 1152 * The executing context has been cancelled. We want to prevent 1153 * further execution along this context and propagate the error on 1154 * to anything depending on its results. 1155 * 1156 * In __i915_request_submit(), we apply the -EIO and remove the 1157 * requests' payloads for any banned requests. But first, we must 1158 * rewind the context back to the start of the incomplete request so 1159 * that we do not jump back into the middle of the batch. 1160 * 1161 * We preserve the breadcrumbs and semaphores of the incomplete 1162 * requests so that inter-timeline dependencies (i.e other timelines) 1163 * remain correctly ordered. And we defer to __i915_request_submit() 1164 * so that all asynchronous waits are correctly handled. 1165 */ 1166 ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n", 1167 rq->fence.context, rq->fence.seqno); 1168 1169 /* On resubmission of the active request, payload will be scrubbed */ 1170 if (i915_request_completed(rq)) 1171 head = rq->tail; 1172 else 1173 head = active_request(ce->timeline, rq)->head; 1174 head = intel_ring_wrap(ce->ring, head); 1175 1176 /* Scrub the context image to prevent replaying the previous batch */ 1177 restore_default_state(ce, engine); 1178 __execlists_update_reg_state(ce, engine, head); 1179 1180 /* We've switched away, so this should be a no-op, but intent matters */ 1181 ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; 1182 } 1183 1184 static u32 intel_context_get_runtime(const struct intel_context *ce) 1185 { 1186 /* 1187 * We can use either ppHWSP[16] which is recorded before the context 1188 * switch (and so excludes the cost of context switches) or use the 1189 * value from the context image itself, which is saved/restored earlier 1190 * and so includes the cost of the save. 1191 */ 1192 return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]); 1193 } 1194 1195 static void st_update_runtime_underflow(struct intel_context *ce, s32 dt) 1196 { 1197 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1198 ce->runtime.num_underflow += dt < 0; 1199 ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt); 1200 #endif 1201 } 1202 1203 static void intel_context_update_runtime(struct intel_context *ce) 1204 { 1205 u32 old; 1206 s32 dt; 1207 1208 if (intel_context_is_barrier(ce)) 1209 return; 1210 1211 old = ce->runtime.last; 1212 ce->runtime.last = intel_context_get_runtime(ce); 1213 dt = ce->runtime.last - old; 1214 1215 if (unlikely(dt <= 0)) { 1216 CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n", 1217 old, ce->runtime.last, dt); 1218 st_update_runtime_underflow(ce, dt); 1219 return; 1220 } 1221 1222 ewma_runtime_add(&ce->runtime.avg, dt); 1223 ce->runtime.total += dt; 1224 } 1225 1226 static inline struct intel_engine_cs * 1227 __execlists_schedule_in(struct i915_request *rq) 1228 { 1229 struct intel_engine_cs * const engine = rq->engine; 1230 struct intel_context * const ce = rq->context; 1231 1232 intel_context_get(ce); 1233 1234 if (unlikely(intel_context_is_banned(ce))) 1235 reset_active(rq, engine); 1236 1237 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 1238 execlists_check_context(ce, engine); 1239 1240 if (ce->tag) { 1241 /* Use a fixed tag for OA and friends */ 1242 GEM_BUG_ON(ce->tag <= BITS_PER_LONG); 1243 ce->lrc.ccid = ce->tag; 1244 } else { 1245 /* We don't need a strict matching tag, just different values */ 1246 unsigned int tag = ffs(engine->context_tag); 1247 1248 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG); 1249 clear_bit(tag - 1, &engine->context_tag); 1250 ce->lrc.ccid = tag << (GEN11_SW_CTX_ID_SHIFT - 32); 1251 1252 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID); 1253 } 1254 1255 ce->lrc.ccid |= engine->execlists.ccid; 1256 1257 __intel_gt_pm_get(engine->gt); 1258 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); 1259 intel_engine_context_in(engine); 1260 1261 return engine; 1262 } 1263 1264 static inline struct i915_request * 1265 execlists_schedule_in(struct i915_request *rq, int idx) 1266 { 1267 struct intel_context * const ce = rq->context; 1268 struct intel_engine_cs *old; 1269 1270 GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine)); 1271 trace_i915_request_in(rq, idx); 1272 1273 old = READ_ONCE(ce->inflight); 1274 do { 1275 if (!old) { 1276 WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq)); 1277 break; 1278 } 1279 } while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old))); 1280 1281 GEM_BUG_ON(intel_context_inflight(ce) != rq->engine); 1282 return i915_request_get(rq); 1283 } 1284 1285 static void kick_siblings(struct i915_request *rq, struct intel_context *ce) 1286 { 1287 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 1288 struct i915_request *next = READ_ONCE(ve->request); 1289 1290 if (next && next->execution_mask & ~rq->execution_mask) 1291 tasklet_schedule(&ve->base.execlists.tasklet); 1292 } 1293 1294 static inline void 1295 __execlists_schedule_out(struct i915_request *rq, 1296 struct intel_engine_cs * const engine, 1297 unsigned int ccid) 1298 { 1299 struct intel_context * const ce = rq->context; 1300 1301 /* 1302 * NB process_csb() is not under the engine->active.lock and hence 1303 * schedule_out can race with schedule_in meaning that we should 1304 * refrain from doing non-trivial work here. 1305 */ 1306 1307 /* 1308 * If we have just completed this context, the engine may now be 1309 * idle and we want to re-enter powersaving. 1310 */ 1311 if (list_is_last_rcu(&rq->link, &ce->timeline->requests) && 1312 i915_request_completed(rq)) 1313 intel_engine_add_retire(engine, ce->timeline); 1314 1315 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32; 1316 ccid &= GEN12_MAX_CONTEXT_HW_ID; 1317 if (ccid < BITS_PER_LONG) { 1318 GEM_BUG_ON(ccid == 0); 1319 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag)); 1320 set_bit(ccid - 1, &engine->context_tag); 1321 } 1322 1323 intel_context_update_runtime(ce); 1324 intel_engine_context_out(engine); 1325 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT); 1326 intel_gt_pm_put_async(engine->gt); 1327 1328 /* 1329 * If this is part of a virtual engine, its next request may 1330 * have been blocked waiting for access to the active context. 1331 * We have to kick all the siblings again in case we need to 1332 * switch (e.g. the next request is not runnable on this 1333 * engine). Hopefully, we will already have submitted the next 1334 * request before the tasklet runs and do not need to rebuild 1335 * each virtual tree and kick everyone again. 1336 */ 1337 if (ce->engine != engine) 1338 kick_siblings(rq, ce); 1339 1340 intel_context_put(ce); 1341 } 1342 1343 static inline void 1344 execlists_schedule_out(struct i915_request *rq) 1345 { 1346 struct intel_context * const ce = rq->context; 1347 struct intel_engine_cs *cur, *old; 1348 u32 ccid; 1349 1350 trace_i915_request_out(rq); 1351 1352 ccid = rq->context->lrc.ccid; 1353 old = READ_ONCE(ce->inflight); 1354 do 1355 cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL; 1356 while (!try_cmpxchg(&ce->inflight, &old, cur)); 1357 if (!cur) 1358 __execlists_schedule_out(rq, old, ccid); 1359 1360 i915_request_put(rq); 1361 } 1362 1363 static u64 execlists_update_context(struct i915_request *rq) 1364 { 1365 struct intel_context *ce = rq->context; 1366 u64 desc = ce->lrc.desc; 1367 u32 tail, prev; 1368 1369 /* 1370 * WaIdleLiteRestore:bdw,skl 1371 * 1372 * We should never submit the context with the same RING_TAIL twice 1373 * just in case we submit an empty ring, which confuses the HW. 1374 * 1375 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of 1376 * the normal request to be able to always advance the RING_TAIL on 1377 * subsequent resubmissions (for lite restore). Should that fail us, 1378 * and we try and submit the same tail again, force the context 1379 * reload. 1380 * 1381 * If we need to return to a preempted context, we need to skip the 1382 * lite-restore and force it to reload the RING_TAIL. Otherwise, the 1383 * HW has a tendency to ignore us rewinding the TAIL to the end of 1384 * an earlier request. 1385 */ 1386 tail = intel_ring_set_tail(rq->ring, rq->tail); 1387 prev = ce->lrc_reg_state[CTX_RING_TAIL]; 1388 if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0)) 1389 desc |= CTX_DESC_FORCE_RESTORE; 1390 ce->lrc_reg_state[CTX_RING_TAIL] = tail; 1391 rq->tail = rq->wa_tail; 1392 1393 /* 1394 * Make sure the context image is complete before we submit it to HW. 1395 * 1396 * Ostensibly, writes (including the WCB) should be flushed prior to 1397 * an uncached write such as our mmio register access, the empirical 1398 * evidence (esp. on Braswell) suggests that the WC write into memory 1399 * may not be visible to the HW prior to the completion of the UC 1400 * register write and that we may begin execution from the context 1401 * before its image is complete leading to invalid PD chasing. 1402 */ 1403 wmb(); 1404 1405 ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE; 1406 return desc; 1407 } 1408 1409 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) 1410 { 1411 if (execlists->ctrl_reg) { 1412 writel(lower_32_bits(desc), execlists->submit_reg + port * 2); 1413 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); 1414 } else { 1415 writel(upper_32_bits(desc), execlists->submit_reg); 1416 writel(lower_32_bits(desc), execlists->submit_reg); 1417 } 1418 } 1419 1420 static __maybe_unused void 1421 trace_ports(const struct intel_engine_execlists *execlists, 1422 const char *msg, 1423 struct i915_request * const *ports) 1424 { 1425 const struct intel_engine_cs *engine = 1426 container_of(execlists, typeof(*engine), execlists); 1427 1428 if (!ports[0]) 1429 return; 1430 1431 ENGINE_TRACE(engine, "%s { %llx:%lld%s, %llx:%lld }\n", msg, 1432 ports[0]->fence.context, 1433 ports[0]->fence.seqno, 1434 i915_request_completed(ports[0]) ? "!" : 1435 i915_request_started(ports[0]) ? "*" : 1436 "", 1437 ports[1] ? ports[1]->fence.context : 0, 1438 ports[1] ? ports[1]->fence.seqno : 0); 1439 } 1440 1441 static inline bool 1442 reset_in_progress(const struct intel_engine_execlists *execlists) 1443 { 1444 return unlikely(!__tasklet_is_enabled(&execlists->tasklet)); 1445 } 1446 1447 static __maybe_unused bool 1448 assert_pending_valid(const struct intel_engine_execlists *execlists, 1449 const char *msg) 1450 { 1451 struct i915_request * const *port, *rq; 1452 struct intel_context *ce = NULL; 1453 bool sentinel = false; 1454 1455 trace_ports(execlists, msg, execlists->pending); 1456 1457 /* We may be messing around with the lists during reset, lalala */ 1458 if (reset_in_progress(execlists)) 1459 return true; 1460 1461 if (!execlists->pending[0]) { 1462 GEM_TRACE_ERR("Nothing pending for promotion!\n"); 1463 return false; 1464 } 1465 1466 if (execlists->pending[execlists_num_ports(execlists)]) { 1467 GEM_TRACE_ERR("Excess pending[%d] for promotion!\n", 1468 execlists_num_ports(execlists)); 1469 return false; 1470 } 1471 1472 for (port = execlists->pending; (rq = *port); port++) { 1473 unsigned long flags; 1474 bool ok = true; 1475 1476 GEM_BUG_ON(!kref_read(&rq->fence.refcount)); 1477 GEM_BUG_ON(!i915_request_is_active(rq)); 1478 1479 if (ce == rq->context) { 1480 GEM_TRACE_ERR("Dup context:%llx in pending[%zd]\n", 1481 ce->timeline->fence_context, 1482 port - execlists->pending); 1483 return false; 1484 } 1485 ce = rq->context; 1486 1487 /* 1488 * Sentinels are supposed to be lonely so they flush the 1489 * current exection off the HW. Check that they are the 1490 * only request in the pending submission. 1491 */ 1492 if (sentinel) { 1493 GEM_TRACE_ERR("context:%llx after sentinel in pending[%zd]\n", 1494 ce->timeline->fence_context, 1495 port - execlists->pending); 1496 return false; 1497 } 1498 1499 sentinel = i915_request_has_sentinel(rq); 1500 if (sentinel && port != execlists->pending) { 1501 GEM_TRACE_ERR("sentinel context:%llx not in prime position[%zd]\n", 1502 ce->timeline->fence_context, 1503 port - execlists->pending); 1504 return false; 1505 } 1506 1507 /* Hold tightly onto the lock to prevent concurrent retires! */ 1508 if (!spin_trylock_irqsave(&rq->lock, flags)) 1509 continue; 1510 1511 if (i915_request_completed(rq)) 1512 goto unlock; 1513 1514 if (i915_active_is_idle(&ce->active) && 1515 !intel_context_is_barrier(ce)) { 1516 GEM_TRACE_ERR("Inactive context:%llx in pending[%zd]\n", 1517 ce->timeline->fence_context, 1518 port - execlists->pending); 1519 ok = false; 1520 goto unlock; 1521 } 1522 1523 if (!i915_vma_is_pinned(ce->state)) { 1524 GEM_TRACE_ERR("Unpinned context:%llx in pending[%zd]\n", 1525 ce->timeline->fence_context, 1526 port - execlists->pending); 1527 ok = false; 1528 goto unlock; 1529 } 1530 1531 if (!i915_vma_is_pinned(ce->ring->vma)) { 1532 GEM_TRACE_ERR("Unpinned ring:%llx in pending[%zd]\n", 1533 ce->timeline->fence_context, 1534 port - execlists->pending); 1535 ok = false; 1536 goto unlock; 1537 } 1538 1539 unlock: 1540 spin_unlock_irqrestore(&rq->lock, flags); 1541 if (!ok) 1542 return false; 1543 } 1544 1545 return ce; 1546 } 1547 1548 static void execlists_submit_ports(struct intel_engine_cs *engine) 1549 { 1550 struct intel_engine_execlists *execlists = &engine->execlists; 1551 unsigned int n; 1552 1553 GEM_BUG_ON(!assert_pending_valid(execlists, "submit")); 1554 1555 /* 1556 * We can skip acquiring intel_runtime_pm_get() here as it was taken 1557 * on our behalf by the request (see i915_gem_mark_busy()) and it will 1558 * not be relinquished until the device is idle (see 1559 * i915_gem_idle_work_handler()). As a precaution, we make sure 1560 * that all ELSP are drained i.e. we have processed the CSB, 1561 * before allowing ourselves to idle and calling intel_runtime_pm_put(). 1562 */ 1563 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 1564 1565 /* 1566 * ELSQ note: the submit queue is not cleared after being submitted 1567 * to the HW so we need to make sure we always clean it up. This is 1568 * currently ensured by the fact that we always write the same number 1569 * of elsq entries, keep this in mind before changing the loop below. 1570 */ 1571 for (n = execlists_num_ports(execlists); n--; ) { 1572 struct i915_request *rq = execlists->pending[n]; 1573 1574 write_desc(execlists, 1575 rq ? execlists_update_context(rq) : 0, 1576 n); 1577 } 1578 1579 /* we need to manually load the submit queue */ 1580 if (execlists->ctrl_reg) 1581 writel(EL_CTRL_LOAD, execlists->ctrl_reg); 1582 } 1583 1584 static bool ctx_single_port_submission(const struct intel_context *ce) 1585 { 1586 return (IS_ENABLED(CONFIG_DRM_I915_GVT) && 1587 intel_context_force_single_submission(ce)); 1588 } 1589 1590 static bool can_merge_ctx(const struct intel_context *prev, 1591 const struct intel_context *next) 1592 { 1593 if (prev != next) 1594 return false; 1595 1596 if (ctx_single_port_submission(prev)) 1597 return false; 1598 1599 return true; 1600 } 1601 1602 static unsigned long i915_request_flags(const struct i915_request *rq) 1603 { 1604 return READ_ONCE(rq->fence.flags); 1605 } 1606 1607 static bool can_merge_rq(const struct i915_request *prev, 1608 const struct i915_request *next) 1609 { 1610 GEM_BUG_ON(prev == next); 1611 GEM_BUG_ON(!assert_priority_queue(prev, next)); 1612 1613 /* 1614 * We do not submit known completed requests. Therefore if the next 1615 * request is already completed, we can pretend to merge it in 1616 * with the previous context (and we will skip updating the ELSP 1617 * and tracking). Thus hopefully keeping the ELSP full with active 1618 * contexts, despite the best efforts of preempt-to-busy to confuse 1619 * us. 1620 */ 1621 if (i915_request_completed(next)) 1622 return true; 1623 1624 if (unlikely((i915_request_flags(prev) ^ i915_request_flags(next)) & 1625 (BIT(I915_FENCE_FLAG_NOPREEMPT) | 1626 BIT(I915_FENCE_FLAG_SENTINEL)))) 1627 return false; 1628 1629 if (!can_merge_ctx(prev->context, next->context)) 1630 return false; 1631 1632 GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno)); 1633 return true; 1634 } 1635 1636 static void virtual_update_register_offsets(u32 *regs, 1637 struct intel_engine_cs *engine) 1638 { 1639 set_offsets(regs, reg_offsets(engine), engine, false); 1640 } 1641 1642 static bool virtual_matches(const struct virtual_engine *ve, 1643 const struct i915_request *rq, 1644 const struct intel_engine_cs *engine) 1645 { 1646 const struct intel_engine_cs *inflight; 1647 1648 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ 1649 return false; 1650 1651 /* 1652 * We track when the HW has completed saving the context image 1653 * (i.e. when we have seen the final CS event switching out of 1654 * the context) and must not overwrite the context image before 1655 * then. This restricts us to only using the active engine 1656 * while the previous virtualized request is inflight (so 1657 * we reuse the register offsets). This is a very small 1658 * hystersis on the greedy seelction algorithm. 1659 */ 1660 inflight = intel_context_inflight(&ve->context); 1661 if (inflight && inflight != engine) 1662 return false; 1663 1664 return true; 1665 } 1666 1667 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve, 1668 struct i915_request *rq) 1669 { 1670 struct intel_engine_cs *old = ve->siblings[0]; 1671 1672 /* All unattached (rq->engine == old) must already be completed */ 1673 1674 spin_lock(&old->breadcrumbs.irq_lock); 1675 if (!list_empty(&ve->context.signal_link)) { 1676 list_del_init(&ve->context.signal_link); 1677 1678 /* 1679 * We cannot acquire the new engine->breadcrumbs.irq_lock 1680 * (as we are holding a breadcrumbs.irq_lock already), 1681 * so attach this request to the signaler on submission. 1682 * The queued irq_work will occur when we finally drop 1683 * the engine->active.lock after dequeue. 1684 */ 1685 set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags); 1686 1687 /* Also transfer the pending irq_work for the old breadcrumb. */ 1688 intel_engine_signal_breadcrumbs(rq->engine); 1689 } 1690 spin_unlock(&old->breadcrumbs.irq_lock); 1691 } 1692 1693 #define for_each_waiter(p__, rq__) \ 1694 list_for_each_entry_lockless(p__, \ 1695 &(rq__)->sched.waiters_list, \ 1696 wait_link) 1697 1698 #define for_each_signaler(p__, rq__) \ 1699 list_for_each_entry_rcu(p__, \ 1700 &(rq__)->sched.signalers_list, \ 1701 signal_link) 1702 1703 static void defer_request(struct i915_request *rq, struct list_head * const pl) 1704 { 1705 LIST_HEAD(list); 1706 1707 /* 1708 * We want to move the interrupted request to the back of 1709 * the round-robin list (i.e. its priority level), but 1710 * in doing so, we must then move all requests that were in 1711 * flight and were waiting for the interrupted request to 1712 * be run after it again. 1713 */ 1714 do { 1715 struct i915_dependency *p; 1716 1717 GEM_BUG_ON(i915_request_is_active(rq)); 1718 list_move_tail(&rq->sched.link, pl); 1719 1720 for_each_waiter(p, rq) { 1721 struct i915_request *w = 1722 container_of(p->waiter, typeof(*w), sched); 1723 1724 if (p->flags & I915_DEPENDENCY_WEAK) 1725 continue; 1726 1727 /* Leave semaphores spinning on the other engines */ 1728 if (w->engine != rq->engine) 1729 continue; 1730 1731 /* No waiter should start before its signaler */ 1732 GEM_BUG_ON(i915_request_started(w) && 1733 !i915_request_completed(rq)); 1734 1735 GEM_BUG_ON(i915_request_is_active(w)); 1736 if (!i915_request_is_ready(w)) 1737 continue; 1738 1739 if (rq_prio(w) < rq_prio(rq)) 1740 continue; 1741 1742 GEM_BUG_ON(rq_prio(w) > rq_prio(rq)); 1743 list_move_tail(&w->sched.link, &list); 1744 } 1745 1746 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); 1747 } while (rq); 1748 } 1749 1750 static void defer_active(struct intel_engine_cs *engine) 1751 { 1752 struct i915_request *rq; 1753 1754 rq = __unwind_incomplete_requests(engine); 1755 if (!rq) 1756 return; 1757 1758 defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq))); 1759 } 1760 1761 static bool 1762 need_timeslice(const struct intel_engine_cs *engine, 1763 const struct i915_request *rq) 1764 { 1765 int hint; 1766 1767 if (!intel_engine_has_timeslices(engine)) 1768 return false; 1769 1770 hint = engine->execlists.queue_priority_hint; 1771 if (!list_is_last(&rq->sched.link, &engine->active.requests)) 1772 hint = max(hint, rq_prio(list_next_entry(rq, sched.link))); 1773 1774 return hint >= effective_prio(rq); 1775 } 1776 1777 static bool 1778 timeslice_yield(const struct intel_engine_execlists *el, 1779 const struct i915_request *rq) 1780 { 1781 /* 1782 * Once bitten, forever smitten! 1783 * 1784 * If the active context ever busy-waited on a semaphore, 1785 * it will be treated as a hog until the end of its timeslice (i.e. 1786 * until it is scheduled out and replaced by a new submission, 1787 * possibly even its own lite-restore). The HW only sends an interrupt 1788 * on the first miss, and we do know if that semaphore has been 1789 * signaled, or even if it is now stuck on another semaphore. Play 1790 * safe, yield if it might be stuck -- it will be given a fresh 1791 * timeslice in the near future. 1792 */ 1793 return rq->context->lrc.ccid == READ_ONCE(el->yield); 1794 } 1795 1796 static bool 1797 timeslice_expired(const struct intel_engine_execlists *el, 1798 const struct i915_request *rq) 1799 { 1800 return timer_expired(&el->timer) || timeslice_yield(el, rq); 1801 } 1802 1803 static int 1804 switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq) 1805 { 1806 if (list_is_last(&rq->sched.link, &engine->active.requests)) 1807 return INT_MIN; 1808 1809 return rq_prio(list_next_entry(rq, sched.link)); 1810 } 1811 1812 static inline unsigned long 1813 timeslice(const struct intel_engine_cs *engine) 1814 { 1815 return READ_ONCE(engine->props.timeslice_duration_ms); 1816 } 1817 1818 static unsigned long active_timeslice(const struct intel_engine_cs *engine) 1819 { 1820 const struct intel_engine_execlists *execlists = &engine->execlists; 1821 const struct i915_request *rq = *execlists->active; 1822 1823 if (!rq || i915_request_completed(rq)) 1824 return 0; 1825 1826 if (READ_ONCE(execlists->switch_priority_hint) < effective_prio(rq)) 1827 return 0; 1828 1829 return timeslice(engine); 1830 } 1831 1832 static void set_timeslice(struct intel_engine_cs *engine) 1833 { 1834 if (!intel_engine_has_timeslices(engine)) 1835 return; 1836 1837 set_timer_ms(&engine->execlists.timer, active_timeslice(engine)); 1838 } 1839 1840 static void start_timeslice(struct intel_engine_cs *engine) 1841 { 1842 struct intel_engine_execlists *execlists = &engine->execlists; 1843 int prio = queue_prio(execlists); 1844 1845 WRITE_ONCE(execlists->switch_priority_hint, prio); 1846 if (prio == INT_MIN) 1847 return; 1848 1849 if (timer_pending(&execlists->timer)) 1850 return; 1851 1852 set_timer_ms(&execlists->timer, timeslice(engine)); 1853 } 1854 1855 static void record_preemption(struct intel_engine_execlists *execlists) 1856 { 1857 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); 1858 } 1859 1860 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine, 1861 const struct i915_request *rq) 1862 { 1863 if (!rq) 1864 return 0; 1865 1866 /* Force a fast reset for terminated contexts (ignoring sysfs!) */ 1867 if (unlikely(intel_context_is_banned(rq->context))) 1868 return 1; 1869 1870 return READ_ONCE(engine->props.preempt_timeout_ms); 1871 } 1872 1873 static void set_preempt_timeout(struct intel_engine_cs *engine, 1874 const struct i915_request *rq) 1875 { 1876 if (!intel_engine_has_preempt_reset(engine)) 1877 return; 1878 1879 set_timer_ms(&engine->execlists.preempt, 1880 active_preempt_timeout(engine, rq)); 1881 } 1882 1883 static inline void clear_ports(struct i915_request **ports, int count) 1884 { 1885 memset_p((void **)ports, NULL, count); 1886 } 1887 1888 static void execlists_dequeue(struct intel_engine_cs *engine) 1889 { 1890 struct intel_engine_execlists * const execlists = &engine->execlists; 1891 struct i915_request **port = execlists->pending; 1892 struct i915_request ** const last_port = port + execlists->port_mask; 1893 struct i915_request * const *active; 1894 struct i915_request *last; 1895 struct rb_node *rb; 1896 bool submit = false; 1897 1898 /* 1899 * Hardware submission is through 2 ports. Conceptually each port 1900 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is 1901 * static for a context, and unique to each, so we only execute 1902 * requests belonging to a single context from each ring. RING_HEAD 1903 * is maintained by the CS in the context image, it marks the place 1904 * where it got up to last time, and through RING_TAIL we tell the CS 1905 * where we want to execute up to this time. 1906 * 1907 * In this list the requests are in order of execution. Consecutive 1908 * requests from the same context are adjacent in the ringbuffer. We 1909 * can combine these requests into a single RING_TAIL update: 1910 * 1911 * RING_HEAD...req1...req2 1912 * ^- RING_TAIL 1913 * since to execute req2 the CS must first execute req1. 1914 * 1915 * Our goal then is to point each port to the end of a consecutive 1916 * sequence of requests as being the most optimal (fewest wake ups 1917 * and context switches) submission. 1918 */ 1919 1920 for (rb = rb_first_cached(&execlists->virtual); rb; ) { 1921 struct virtual_engine *ve = 1922 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 1923 struct i915_request *rq = READ_ONCE(ve->request); 1924 1925 if (!rq) { /* lazily cleanup after another engine handled rq */ 1926 rb_erase_cached(rb, &execlists->virtual); 1927 RB_CLEAR_NODE(rb); 1928 rb = rb_first_cached(&execlists->virtual); 1929 continue; 1930 } 1931 1932 if (!virtual_matches(ve, rq, engine)) { 1933 rb = rb_next(rb); 1934 continue; 1935 } 1936 1937 break; 1938 } 1939 1940 /* 1941 * If the queue is higher priority than the last 1942 * request in the currently active context, submit afresh. 1943 * We will resubmit again afterwards in case we need to split 1944 * the active context to interject the preemption request, 1945 * i.e. we will retrigger preemption following the ack in case 1946 * of trouble. 1947 */ 1948 active = READ_ONCE(execlists->active); 1949 while ((last = *active) && i915_request_completed(last)) 1950 active++; 1951 1952 if (last) { 1953 if (need_preempt(engine, last, rb)) { 1954 ENGINE_TRACE(engine, 1955 "preempting last=%llx:%lld, prio=%d, hint=%d\n", 1956 last->fence.context, 1957 last->fence.seqno, 1958 last->sched.attr.priority, 1959 execlists->queue_priority_hint); 1960 record_preemption(execlists); 1961 1962 /* 1963 * Don't let the RING_HEAD advance past the breadcrumb 1964 * as we unwind (and until we resubmit) so that we do 1965 * not accidentally tell it to go backwards. 1966 */ 1967 ring_set_paused(engine, 1); 1968 1969 /* 1970 * Note that we have not stopped the GPU at this point, 1971 * so we are unwinding the incomplete requests as they 1972 * remain inflight and so by the time we do complete 1973 * the preemption, some of the unwound requests may 1974 * complete! 1975 */ 1976 __unwind_incomplete_requests(engine); 1977 1978 last = NULL; 1979 } else if (need_timeslice(engine, last) && 1980 timeslice_expired(execlists, last)) { 1981 ENGINE_TRACE(engine, 1982 "expired last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n", 1983 last->fence.context, 1984 last->fence.seqno, 1985 last->sched.attr.priority, 1986 execlists->queue_priority_hint, 1987 yesno(timeslice_yield(execlists, last))); 1988 1989 ring_set_paused(engine, 1); 1990 defer_active(engine); 1991 1992 /* 1993 * Unlike for preemption, if we rewind and continue 1994 * executing the same context as previously active, 1995 * the order of execution will remain the same and 1996 * the tail will only advance. We do not need to 1997 * force a full context restore, as a lite-restore 1998 * is sufficient to resample the monotonic TAIL. 1999 * 2000 * If we switch to any other context, similarly we 2001 * will not rewind TAIL of current context, and 2002 * normal save/restore will preserve state and allow 2003 * us to later continue executing the same request. 2004 */ 2005 last = NULL; 2006 } else { 2007 /* 2008 * Otherwise if we already have a request pending 2009 * for execution after the current one, we can 2010 * just wait until the next CS event before 2011 * queuing more. In either case we will force a 2012 * lite-restore preemption event, but if we wait 2013 * we hopefully coalesce several updates into a single 2014 * submission. 2015 */ 2016 if (!list_is_last(&last->sched.link, 2017 &engine->active.requests)) { 2018 /* 2019 * Even if ELSP[1] is occupied and not worthy 2020 * of timeslices, our queue might be. 2021 */ 2022 start_timeslice(engine); 2023 return; 2024 } 2025 } 2026 } 2027 2028 while (rb) { /* XXX virtual is always taking precedence */ 2029 struct virtual_engine *ve = 2030 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 2031 struct i915_request *rq; 2032 2033 spin_lock(&ve->base.active.lock); 2034 2035 rq = ve->request; 2036 if (unlikely(!rq)) { /* lost the race to a sibling */ 2037 spin_unlock(&ve->base.active.lock); 2038 rb_erase_cached(rb, &execlists->virtual); 2039 RB_CLEAR_NODE(rb); 2040 rb = rb_first_cached(&execlists->virtual); 2041 continue; 2042 } 2043 2044 GEM_BUG_ON(rq != ve->request); 2045 GEM_BUG_ON(rq->engine != &ve->base); 2046 GEM_BUG_ON(rq->context != &ve->context); 2047 2048 if (rq_prio(rq) >= queue_prio(execlists)) { 2049 if (!virtual_matches(ve, rq, engine)) { 2050 spin_unlock(&ve->base.active.lock); 2051 rb = rb_next(rb); 2052 continue; 2053 } 2054 2055 if (last && !can_merge_rq(last, rq)) { 2056 spin_unlock(&ve->base.active.lock); 2057 start_timeslice(engine); 2058 return; /* leave this for another sibling */ 2059 } 2060 2061 ENGINE_TRACE(engine, 2062 "virtual rq=%llx:%lld%s, new engine? %s\n", 2063 rq->fence.context, 2064 rq->fence.seqno, 2065 i915_request_completed(rq) ? "!" : 2066 i915_request_started(rq) ? "*" : 2067 "", 2068 yesno(engine != ve->siblings[0])); 2069 2070 WRITE_ONCE(ve->request, NULL); 2071 WRITE_ONCE(ve->base.execlists.queue_priority_hint, 2072 INT_MIN); 2073 rb_erase_cached(rb, &execlists->virtual); 2074 RB_CLEAR_NODE(rb); 2075 2076 GEM_BUG_ON(!(rq->execution_mask & engine->mask)); 2077 WRITE_ONCE(rq->engine, engine); 2078 2079 if (engine != ve->siblings[0]) { 2080 u32 *regs = ve->context.lrc_reg_state; 2081 unsigned int n; 2082 2083 GEM_BUG_ON(READ_ONCE(ve->context.inflight)); 2084 2085 if (!intel_engine_has_relative_mmio(engine)) 2086 virtual_update_register_offsets(regs, 2087 engine); 2088 2089 if (!list_empty(&ve->context.signals)) 2090 virtual_xfer_breadcrumbs(ve, rq); 2091 2092 /* 2093 * Move the bound engine to the top of the list 2094 * for future execution. We then kick this 2095 * tasklet first before checking others, so that 2096 * we preferentially reuse this set of bound 2097 * registers. 2098 */ 2099 for (n = 1; n < ve->num_siblings; n++) { 2100 if (ve->siblings[n] == engine) { 2101 swap(ve->siblings[n], 2102 ve->siblings[0]); 2103 break; 2104 } 2105 } 2106 2107 GEM_BUG_ON(ve->siblings[0] != engine); 2108 } 2109 2110 if (__i915_request_submit(rq)) { 2111 submit = true; 2112 last = rq; 2113 } 2114 i915_request_put(rq); 2115 2116 /* 2117 * Hmm, we have a bunch of virtual engine requests, 2118 * but the first one was already completed (thanks 2119 * preempt-to-busy!). Keep looking at the veng queue 2120 * until we have no more relevant requests (i.e. 2121 * the normal submit queue has higher priority). 2122 */ 2123 if (!submit) { 2124 spin_unlock(&ve->base.active.lock); 2125 rb = rb_first_cached(&execlists->virtual); 2126 continue; 2127 } 2128 } 2129 2130 spin_unlock(&ve->base.active.lock); 2131 break; 2132 } 2133 2134 while ((rb = rb_first_cached(&execlists->queue))) { 2135 struct i915_priolist *p = to_priolist(rb); 2136 struct i915_request *rq, *rn; 2137 int i; 2138 2139 priolist_for_each_request_consume(rq, rn, p, i) { 2140 bool merge = true; 2141 2142 /* 2143 * Can we combine this request with the current port? 2144 * It has to be the same context/ringbuffer and not 2145 * have any exceptions (e.g. GVT saying never to 2146 * combine contexts). 2147 * 2148 * If we can combine the requests, we can execute both 2149 * by updating the RING_TAIL to point to the end of the 2150 * second request, and so we never need to tell the 2151 * hardware about the first. 2152 */ 2153 if (last && !can_merge_rq(last, rq)) { 2154 /* 2155 * If we are on the second port and cannot 2156 * combine this request with the last, then we 2157 * are done. 2158 */ 2159 if (port == last_port) 2160 goto done; 2161 2162 /* 2163 * We must not populate both ELSP[] with the 2164 * same LRCA, i.e. we must submit 2 different 2165 * contexts if we submit 2 ELSP. 2166 */ 2167 if (last->context == rq->context) 2168 goto done; 2169 2170 if (i915_request_has_sentinel(last)) 2171 goto done; 2172 2173 /* 2174 * If GVT overrides us we only ever submit 2175 * port[0], leaving port[1] empty. Note that we 2176 * also have to be careful that we don't queue 2177 * the same context (even though a different 2178 * request) to the second port. 2179 */ 2180 if (ctx_single_port_submission(last->context) || 2181 ctx_single_port_submission(rq->context)) 2182 goto done; 2183 2184 merge = false; 2185 } 2186 2187 if (__i915_request_submit(rq)) { 2188 if (!merge) { 2189 *port = execlists_schedule_in(last, port - execlists->pending); 2190 port++; 2191 last = NULL; 2192 } 2193 2194 GEM_BUG_ON(last && 2195 !can_merge_ctx(last->context, 2196 rq->context)); 2197 GEM_BUG_ON(last && 2198 i915_seqno_passed(last->fence.seqno, 2199 rq->fence.seqno)); 2200 2201 submit = true; 2202 last = rq; 2203 } 2204 } 2205 2206 rb_erase_cached(&p->node, &execlists->queue); 2207 i915_priolist_free(p); 2208 } 2209 2210 done: 2211 /* 2212 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. 2213 * 2214 * We choose the priority hint such that if we add a request of greater 2215 * priority than this, we kick the submission tasklet to decide on 2216 * the right order of submitting the requests to hardware. We must 2217 * also be prepared to reorder requests as they are in-flight on the 2218 * HW. We derive the priority hint then as the first "hole" in 2219 * the HW submission ports and if there are no available slots, 2220 * the priority of the lowest executing request, i.e. last. 2221 * 2222 * When we do receive a higher priority request ready to run from the 2223 * user, see queue_request(), the priority hint is bumped to that 2224 * request triggering preemption on the next dequeue (or subsequent 2225 * interrupt for secondary ports). 2226 */ 2227 execlists->queue_priority_hint = queue_prio(execlists); 2228 2229 if (submit) { 2230 *port = execlists_schedule_in(last, port - execlists->pending); 2231 execlists->switch_priority_hint = 2232 switch_prio(engine, *execlists->pending); 2233 2234 /* 2235 * Skip if we ended up with exactly the same set of requests, 2236 * e.g. trying to timeslice a pair of ordered contexts 2237 */ 2238 if (!memcmp(active, execlists->pending, 2239 (port - execlists->pending + 1) * sizeof(*port))) { 2240 do 2241 execlists_schedule_out(fetch_and_zero(port)); 2242 while (port-- != execlists->pending); 2243 2244 goto skip_submit; 2245 } 2246 clear_ports(port + 1, last_port - port); 2247 2248 WRITE_ONCE(execlists->yield, -1); 2249 execlists_submit_ports(engine); 2250 set_preempt_timeout(engine, *active); 2251 } else { 2252 skip_submit: 2253 ring_set_paused(engine, 0); 2254 } 2255 } 2256 2257 static void 2258 cancel_port_requests(struct intel_engine_execlists * const execlists) 2259 { 2260 struct i915_request * const *port; 2261 2262 for (port = execlists->pending; *port; port++) 2263 execlists_schedule_out(*port); 2264 clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending)); 2265 2266 /* Mark the end of active before we overwrite *active */ 2267 for (port = xchg(&execlists->active, execlists->pending); *port; port++) 2268 execlists_schedule_out(*port); 2269 clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight)); 2270 2271 smp_wmb(); /* complete the seqlock for execlists_active() */ 2272 WRITE_ONCE(execlists->active, execlists->inflight); 2273 } 2274 2275 static inline void 2276 invalidate_csb_entries(const u32 *first, const u32 *last) 2277 { 2278 clflush((void *)first); 2279 clflush((void *)last); 2280 } 2281 2282 /* 2283 * Starting with Gen12, the status has a new format: 2284 * 2285 * bit 0: switched to new queue 2286 * bit 1: reserved 2287 * bit 2: semaphore wait mode (poll or signal), only valid when 2288 * switch detail is set to "wait on semaphore" 2289 * bits 3-5: engine class 2290 * bits 6-11: engine instance 2291 * bits 12-14: reserved 2292 * bits 15-25: sw context id of the lrc the GT switched to 2293 * bits 26-31: sw counter of the lrc the GT switched to 2294 * bits 32-35: context switch detail 2295 * - 0: ctx complete 2296 * - 1: wait on sync flip 2297 * - 2: wait on vblank 2298 * - 3: wait on scanline 2299 * - 4: wait on semaphore 2300 * - 5: context preempted (not on SEMAPHORE_WAIT or 2301 * WAIT_FOR_EVENT) 2302 * bit 36: reserved 2303 * bits 37-43: wait detail (for switch detail 1 to 4) 2304 * bits 44-46: reserved 2305 * bits 47-57: sw context id of the lrc the GT switched away from 2306 * bits 58-63: sw counter of the lrc the GT switched away from 2307 */ 2308 static inline bool 2309 gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb) 2310 { 2311 u32 lower_dw = csb[0]; 2312 u32 upper_dw = csb[1]; 2313 bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw); 2314 bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw); 2315 bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE; 2316 2317 /* 2318 * The context switch detail is not guaranteed to be 5 when a preemption 2319 * occurs, so we can't just check for that. The check below works for 2320 * all the cases we care about, including preemptions of WAIT 2321 * instructions and lite-restore. Preempt-to-idle via the CTRL register 2322 * would require some extra handling, but we don't support that. 2323 */ 2324 if (!ctx_away_valid || new_queue) { 2325 GEM_BUG_ON(!ctx_to_valid); 2326 return true; 2327 } 2328 2329 /* 2330 * switch detail = 5 is covered by the case above and we do not expect a 2331 * context switch on an unsuccessful wait instruction since we always 2332 * use polling mode. 2333 */ 2334 GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw)); 2335 return false; 2336 } 2337 2338 static inline bool 2339 gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb) 2340 { 2341 return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED); 2342 } 2343 2344 static void process_csb(struct intel_engine_cs *engine) 2345 { 2346 struct intel_engine_execlists * const execlists = &engine->execlists; 2347 const u32 * const buf = execlists->csb_status; 2348 const u8 num_entries = execlists->csb_size; 2349 u8 head, tail; 2350 2351 /* 2352 * As we modify our execlists state tracking we require exclusive 2353 * access. Either we are inside the tasklet, or the tasklet is disabled 2354 * and we assume that is only inside the reset paths and so serialised. 2355 */ 2356 GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) && 2357 !reset_in_progress(execlists)); 2358 GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine)); 2359 2360 /* 2361 * Note that csb_write, csb_status may be either in HWSP or mmio. 2362 * When reading from the csb_write mmio register, we have to be 2363 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is 2364 * the low 4bits. As it happens we know the next 4bits are always 2365 * zero and so we can simply masked off the low u8 of the register 2366 * and treat it identically to reading from the HWSP (without having 2367 * to use explicit shifting and masking, and probably bifurcating 2368 * the code to handle the legacy mmio read). 2369 */ 2370 head = execlists->csb_head; 2371 tail = READ_ONCE(*execlists->csb_write); 2372 if (unlikely(head == tail)) 2373 return; 2374 2375 /* 2376 * Hopefully paired with a wmb() in HW! 2377 * 2378 * We must complete the read of the write pointer before any reads 2379 * from the CSB, so that we do not see stale values. Without an rmb 2380 * (lfence) the HW may speculatively perform the CSB[] reads *before* 2381 * we perform the READ_ONCE(*csb_write). 2382 */ 2383 rmb(); 2384 2385 ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail); 2386 do { 2387 bool promote; 2388 2389 if (++head == num_entries) 2390 head = 0; 2391 2392 /* 2393 * We are flying near dragons again. 2394 * 2395 * We hold a reference to the request in execlist_port[] 2396 * but no more than that. We are operating in softirq 2397 * context and so cannot hold any mutex or sleep. That 2398 * prevents us stopping the requests we are processing 2399 * in port[] from being retired simultaneously (the 2400 * breadcrumb will be complete before we see the 2401 * context-switch). As we only hold the reference to the 2402 * request, any pointer chasing underneath the request 2403 * is subject to a potential use-after-free. Thus we 2404 * store all of the bookkeeping within port[] as 2405 * required, and avoid using unguarded pointers beneath 2406 * request itself. The same applies to the atomic 2407 * status notifier. 2408 */ 2409 2410 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n", 2411 head, buf[2 * head + 0], buf[2 * head + 1]); 2412 2413 if (INTEL_GEN(engine->i915) >= 12) 2414 promote = gen12_csb_parse(execlists, buf + 2 * head); 2415 else 2416 promote = gen8_csb_parse(execlists, buf + 2 * head); 2417 if (promote) { 2418 struct i915_request * const *old = execlists->active; 2419 2420 GEM_BUG_ON(!assert_pending_valid(execlists, "promote")); 2421 2422 ring_set_paused(engine, 0); 2423 2424 /* Point active to the new ELSP; prevent overwriting */ 2425 WRITE_ONCE(execlists->active, execlists->pending); 2426 smp_wmb(); /* notify execlists_active() */ 2427 2428 /* cancel old inflight, prepare for switch */ 2429 trace_ports(execlists, "preempted", old); 2430 while (*old) 2431 execlists_schedule_out(*old++); 2432 2433 /* switch pending to inflight */ 2434 memcpy(execlists->inflight, 2435 execlists->pending, 2436 execlists_num_ports(execlists) * 2437 sizeof(*execlists->pending)); 2438 smp_wmb(); /* complete the seqlock */ 2439 WRITE_ONCE(execlists->active, execlists->inflight); 2440 2441 WRITE_ONCE(execlists->pending[0], NULL); 2442 } else { 2443 GEM_BUG_ON(!*execlists->active); 2444 2445 /* port0 completed, advanced to port1 */ 2446 trace_ports(execlists, "completed", execlists->active); 2447 2448 /* 2449 * We rely on the hardware being strongly 2450 * ordered, that the breadcrumb write is 2451 * coherent (visible from the CPU) before the 2452 * user interrupt and CSB is processed. 2453 */ 2454 if (GEM_SHOW_DEBUG() && 2455 !i915_request_completed(*execlists->active) && 2456 !reset_in_progress(execlists)) { 2457 struct i915_request *rq __maybe_unused = 2458 *execlists->active; 2459 const u32 *regs __maybe_unused = 2460 rq->context->lrc_reg_state; 2461 2462 ENGINE_TRACE(engine, 2463 "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n", 2464 ENGINE_READ(engine, RING_START), 2465 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR, 2466 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR, 2467 ENGINE_READ(engine, RING_CTL), 2468 ENGINE_READ(engine, RING_MI_MODE)); 2469 ENGINE_TRACE(engine, 2470 "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ", 2471 i915_ggtt_offset(rq->ring->vma), 2472 rq->head, rq->tail, 2473 rq->fence.context, 2474 lower_32_bits(rq->fence.seqno), 2475 hwsp_seqno(rq)); 2476 ENGINE_TRACE(engine, 2477 "ctx:{start:%08x, head:%04x, tail:%04x}, ", 2478 regs[CTX_RING_START], 2479 regs[CTX_RING_HEAD], 2480 regs[CTX_RING_TAIL]); 2481 2482 GEM_BUG_ON("context completed before request"); 2483 } 2484 2485 execlists_schedule_out(*execlists->active++); 2486 2487 GEM_BUG_ON(execlists->active - execlists->inflight > 2488 execlists_num_ports(execlists)); 2489 } 2490 } while (head != tail); 2491 2492 execlists->csb_head = head; 2493 set_timeslice(engine); 2494 2495 /* 2496 * Gen11 has proven to fail wrt global observation point between 2497 * entry and tail update, failing on the ordering and thus 2498 * we see an old entry in the context status buffer. 2499 * 2500 * Forcibly evict out entries for the next gpu csb update, 2501 * to increase the odds that we get a fresh entries with non 2502 * working hardware. The cost for doing so comes out mostly with 2503 * the wash as hardware, working or not, will need to do the 2504 * invalidation before. 2505 */ 2506 invalidate_csb_entries(&buf[0], &buf[num_entries - 1]); 2507 } 2508 2509 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine) 2510 { 2511 lockdep_assert_held(&engine->active.lock); 2512 if (!READ_ONCE(engine->execlists.pending[0])) { 2513 rcu_read_lock(); /* protect peeking at execlists->active */ 2514 execlists_dequeue(engine); 2515 rcu_read_unlock(); 2516 } 2517 } 2518 2519 static void __execlists_hold(struct i915_request *rq) 2520 { 2521 LIST_HEAD(list); 2522 2523 do { 2524 struct i915_dependency *p; 2525 2526 if (i915_request_is_active(rq)) 2527 __i915_request_unsubmit(rq); 2528 2529 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 2530 list_move_tail(&rq->sched.link, &rq->engine->active.hold); 2531 i915_request_set_hold(rq); 2532 RQ_TRACE(rq, "on hold\n"); 2533 2534 for_each_waiter(p, rq) { 2535 struct i915_request *w = 2536 container_of(p->waiter, typeof(*w), sched); 2537 2538 /* Leave semaphores spinning on the other engines */ 2539 if (w->engine != rq->engine) 2540 continue; 2541 2542 if (!i915_request_is_ready(w)) 2543 continue; 2544 2545 if (i915_request_completed(w)) 2546 continue; 2547 2548 if (i915_request_on_hold(w)) 2549 continue; 2550 2551 list_move_tail(&w->sched.link, &list); 2552 } 2553 2554 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); 2555 } while (rq); 2556 } 2557 2558 static bool execlists_hold(struct intel_engine_cs *engine, 2559 struct i915_request *rq) 2560 { 2561 spin_lock_irq(&engine->active.lock); 2562 2563 if (i915_request_completed(rq)) { /* too late! */ 2564 rq = NULL; 2565 goto unlock; 2566 } 2567 2568 if (rq->engine != engine) { /* preempted virtual engine */ 2569 struct virtual_engine *ve = to_virtual_engine(rq->engine); 2570 2571 /* 2572 * intel_context_inflight() is only protected by virtue 2573 * of process_csb() being called only by the tasklet (or 2574 * directly from inside reset while the tasklet is suspended). 2575 * Assert that neither of those are allowed to run while we 2576 * poke at the request queues. 2577 */ 2578 GEM_BUG_ON(!reset_in_progress(&engine->execlists)); 2579 2580 /* 2581 * An unsubmitted request along a virtual engine will 2582 * remain on the active (this) engine until we are able 2583 * to process the context switch away (and so mark the 2584 * context as no longer in flight). That cannot have happened 2585 * yet, otherwise we would not be hanging! 2586 */ 2587 spin_lock(&ve->base.active.lock); 2588 GEM_BUG_ON(intel_context_inflight(rq->context) != engine); 2589 GEM_BUG_ON(ve->request != rq); 2590 ve->request = NULL; 2591 spin_unlock(&ve->base.active.lock); 2592 i915_request_put(rq); 2593 2594 rq->engine = engine; 2595 } 2596 2597 /* 2598 * Transfer this request onto the hold queue to prevent it 2599 * being resumbitted to HW (and potentially completed) before we have 2600 * released it. Since we may have already submitted following 2601 * requests, we need to remove those as well. 2602 */ 2603 GEM_BUG_ON(i915_request_on_hold(rq)); 2604 GEM_BUG_ON(rq->engine != engine); 2605 __execlists_hold(rq); 2606 GEM_BUG_ON(list_empty(&engine->active.hold)); 2607 2608 unlock: 2609 spin_unlock_irq(&engine->active.lock); 2610 return rq; 2611 } 2612 2613 static bool hold_request(const struct i915_request *rq) 2614 { 2615 struct i915_dependency *p; 2616 bool result = false; 2617 2618 /* 2619 * If one of our ancestors is on hold, we must also be on hold, 2620 * otherwise we will bypass it and execute before it. 2621 */ 2622 rcu_read_lock(); 2623 for_each_signaler(p, rq) { 2624 const struct i915_request *s = 2625 container_of(p->signaler, typeof(*s), sched); 2626 2627 if (s->engine != rq->engine) 2628 continue; 2629 2630 result = i915_request_on_hold(s); 2631 if (result) 2632 break; 2633 } 2634 rcu_read_unlock(); 2635 2636 return result; 2637 } 2638 2639 static void __execlists_unhold(struct i915_request *rq) 2640 { 2641 LIST_HEAD(list); 2642 2643 do { 2644 struct i915_dependency *p; 2645 2646 RQ_TRACE(rq, "hold release\n"); 2647 2648 GEM_BUG_ON(!i915_request_on_hold(rq)); 2649 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 2650 2651 i915_request_clear_hold(rq); 2652 list_move_tail(&rq->sched.link, 2653 i915_sched_lookup_priolist(rq->engine, 2654 rq_prio(rq))); 2655 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 2656 2657 /* Also release any children on this engine that are ready */ 2658 for_each_waiter(p, rq) { 2659 struct i915_request *w = 2660 container_of(p->waiter, typeof(*w), sched); 2661 2662 /* Propagate any change in error status */ 2663 if (rq->fence.error) 2664 i915_request_set_error_once(w, rq->fence.error); 2665 2666 if (w->engine != rq->engine) 2667 continue; 2668 2669 if (!i915_request_on_hold(w)) 2670 continue; 2671 2672 /* Check that no other parents are also on hold */ 2673 if (hold_request(w)) 2674 continue; 2675 2676 list_move_tail(&w->sched.link, &list); 2677 } 2678 2679 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); 2680 } while (rq); 2681 } 2682 2683 static void execlists_unhold(struct intel_engine_cs *engine, 2684 struct i915_request *rq) 2685 { 2686 spin_lock_irq(&engine->active.lock); 2687 2688 /* 2689 * Move this request back to the priority queue, and all of its 2690 * children and grandchildren that were suspended along with it. 2691 */ 2692 __execlists_unhold(rq); 2693 2694 if (rq_prio(rq) > engine->execlists.queue_priority_hint) { 2695 engine->execlists.queue_priority_hint = rq_prio(rq); 2696 tasklet_hi_schedule(&engine->execlists.tasklet); 2697 } 2698 2699 spin_unlock_irq(&engine->active.lock); 2700 } 2701 2702 struct execlists_capture { 2703 struct work_struct work; 2704 struct i915_request *rq; 2705 struct i915_gpu_coredump *error; 2706 }; 2707 2708 static void execlists_capture_work(struct work_struct *work) 2709 { 2710 struct execlists_capture *cap = container_of(work, typeof(*cap), work); 2711 const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 2712 struct intel_engine_cs *engine = cap->rq->engine; 2713 struct intel_gt_coredump *gt = cap->error->gt; 2714 struct intel_engine_capture_vma *vma; 2715 2716 /* Compress all the objects attached to the request, slow! */ 2717 vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp); 2718 if (vma) { 2719 struct i915_vma_compress *compress = 2720 i915_vma_capture_prepare(gt); 2721 2722 intel_engine_coredump_add_vma(gt->engine, vma, compress); 2723 i915_vma_capture_finish(gt, compress); 2724 } 2725 2726 gt->simulated = gt->engine->simulated; 2727 cap->error->simulated = gt->simulated; 2728 2729 /* Publish the error state, and announce it to the world */ 2730 i915_error_state_store(cap->error); 2731 i915_gpu_coredump_put(cap->error); 2732 2733 /* Return this request and all that depend upon it for signaling */ 2734 execlists_unhold(engine, cap->rq); 2735 i915_request_put(cap->rq); 2736 2737 kfree(cap); 2738 } 2739 2740 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine) 2741 { 2742 const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; 2743 struct execlists_capture *cap; 2744 2745 cap = kmalloc(sizeof(*cap), gfp); 2746 if (!cap) 2747 return NULL; 2748 2749 cap->error = i915_gpu_coredump_alloc(engine->i915, gfp); 2750 if (!cap->error) 2751 goto err_cap; 2752 2753 cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp); 2754 if (!cap->error->gt) 2755 goto err_gpu; 2756 2757 cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp); 2758 if (!cap->error->gt->engine) 2759 goto err_gt; 2760 2761 return cap; 2762 2763 err_gt: 2764 kfree(cap->error->gt); 2765 err_gpu: 2766 kfree(cap->error); 2767 err_cap: 2768 kfree(cap); 2769 return NULL; 2770 } 2771 2772 static bool execlists_capture(struct intel_engine_cs *engine) 2773 { 2774 struct execlists_capture *cap; 2775 2776 if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)) 2777 return true; 2778 2779 /* 2780 * We need to _quickly_ capture the engine state before we reset. 2781 * We are inside an atomic section (softirq) here and we are delaying 2782 * the forced preemption event. 2783 */ 2784 cap = capture_regs(engine); 2785 if (!cap) 2786 return true; 2787 2788 spin_lock_irq(&engine->active.lock); 2789 cap->rq = execlists_active(&engine->execlists); 2790 if (cap->rq) { 2791 cap->rq = active_request(cap->rq->context->timeline, cap->rq); 2792 cap->rq = i915_request_get_rcu(cap->rq); 2793 } 2794 spin_unlock_irq(&engine->active.lock); 2795 if (!cap->rq) 2796 goto err_free; 2797 2798 /* 2799 * Remove the request from the execlists queue, and take ownership 2800 * of the request. We pass it to our worker who will _slowly_ compress 2801 * all the pages the _user_ requested for debugging their batch, after 2802 * which we return it to the queue for signaling. 2803 * 2804 * By removing them from the execlists queue, we also remove the 2805 * requests from being processed by __unwind_incomplete_requests() 2806 * during the intel_engine_reset(), and so they will *not* be replayed 2807 * afterwards. 2808 * 2809 * Note that because we have not yet reset the engine at this point, 2810 * it is possible for the request that we have identified as being 2811 * guilty, did in fact complete and we will then hit an arbitration 2812 * point allowing the outstanding preemption to succeed. The likelihood 2813 * of that is very low (as capturing of the engine registers should be 2814 * fast enough to run inside an irq-off atomic section!), so we will 2815 * simply hold that request accountable for being non-preemptible 2816 * long enough to force the reset. 2817 */ 2818 if (!execlists_hold(engine, cap->rq)) 2819 goto err_rq; 2820 2821 INIT_WORK(&cap->work, execlists_capture_work); 2822 schedule_work(&cap->work); 2823 return true; 2824 2825 err_rq: 2826 i915_request_put(cap->rq); 2827 err_free: 2828 i915_gpu_coredump_put(cap->error); 2829 kfree(cap); 2830 return false; 2831 } 2832 2833 static void execlists_reset(struct intel_engine_cs *engine, const char *msg) 2834 { 2835 const unsigned int bit = I915_RESET_ENGINE + engine->id; 2836 unsigned long *lock = &engine->gt->reset.flags; 2837 2838 if (!intel_has_reset_engine(engine->gt)) 2839 return; 2840 2841 if (test_and_set_bit(bit, lock)) 2842 return; 2843 2844 ENGINE_TRACE(engine, "reset for %s\n", msg); 2845 2846 /* Mark this tasklet as disabled to avoid waiting for it to complete */ 2847 tasklet_disable_nosync(&engine->execlists.tasklet); 2848 2849 ring_set_paused(engine, 1); /* Freeze the current request in place */ 2850 if (execlists_capture(engine)) 2851 intel_engine_reset(engine, msg); 2852 else 2853 ring_set_paused(engine, 0); 2854 2855 tasklet_enable(&engine->execlists.tasklet); 2856 clear_and_wake_up_bit(bit, lock); 2857 } 2858 2859 static bool preempt_timeout(const struct intel_engine_cs *const engine) 2860 { 2861 const struct timer_list *t = &engine->execlists.preempt; 2862 2863 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) 2864 return false; 2865 2866 if (!timer_expired(t)) 2867 return false; 2868 2869 return READ_ONCE(engine->execlists.pending[0]); 2870 } 2871 2872 /* 2873 * Check the unread Context Status Buffers and manage the submission of new 2874 * contexts to the ELSP accordingly. 2875 */ 2876 static void execlists_submission_tasklet(unsigned long data) 2877 { 2878 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; 2879 bool timeout = preempt_timeout(engine); 2880 2881 process_csb(engine); 2882 2883 if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) { 2884 engine->execlists.error_interrupt = 0; 2885 if (ENGINE_READ(engine, RING_ESR)) /* confirm the error */ 2886 execlists_reset(engine, "CS error"); 2887 } 2888 2889 if (!READ_ONCE(engine->execlists.pending[0]) || timeout) { 2890 unsigned long flags; 2891 2892 spin_lock_irqsave(&engine->active.lock, flags); 2893 __execlists_submission_tasklet(engine); 2894 spin_unlock_irqrestore(&engine->active.lock, flags); 2895 2896 /* Recheck after serialising with direct-submission */ 2897 if (unlikely(timeout && preempt_timeout(engine))) 2898 execlists_reset(engine, "preemption time out"); 2899 } 2900 } 2901 2902 static void __execlists_kick(struct intel_engine_execlists *execlists) 2903 { 2904 /* Kick the tasklet for some interrupt coalescing and reset handling */ 2905 tasklet_hi_schedule(&execlists->tasklet); 2906 } 2907 2908 #define execlists_kick(t, member) \ 2909 __execlists_kick(container_of(t, struct intel_engine_execlists, member)) 2910 2911 static void execlists_timeslice(struct timer_list *timer) 2912 { 2913 execlists_kick(timer, timer); 2914 } 2915 2916 static void execlists_preempt(struct timer_list *timer) 2917 { 2918 execlists_kick(timer, preempt); 2919 } 2920 2921 static void queue_request(struct intel_engine_cs *engine, 2922 struct i915_request *rq) 2923 { 2924 GEM_BUG_ON(!list_empty(&rq->sched.link)); 2925 list_add_tail(&rq->sched.link, 2926 i915_sched_lookup_priolist(engine, rq_prio(rq))); 2927 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 2928 } 2929 2930 static void __submit_queue_imm(struct intel_engine_cs *engine) 2931 { 2932 struct intel_engine_execlists * const execlists = &engine->execlists; 2933 2934 if (reset_in_progress(execlists)) 2935 return; /* defer until we restart the engine following reset */ 2936 2937 if (execlists->tasklet.func == execlists_submission_tasklet) 2938 __execlists_submission_tasklet(engine); 2939 else 2940 tasklet_hi_schedule(&execlists->tasklet); 2941 } 2942 2943 static void submit_queue(struct intel_engine_cs *engine, 2944 const struct i915_request *rq) 2945 { 2946 struct intel_engine_execlists *execlists = &engine->execlists; 2947 2948 if (rq_prio(rq) <= execlists->queue_priority_hint) 2949 return; 2950 2951 execlists->queue_priority_hint = rq_prio(rq); 2952 __submit_queue_imm(engine); 2953 } 2954 2955 static bool ancestor_on_hold(const struct intel_engine_cs *engine, 2956 const struct i915_request *rq) 2957 { 2958 GEM_BUG_ON(i915_request_on_hold(rq)); 2959 return !list_empty(&engine->active.hold) && hold_request(rq); 2960 } 2961 2962 static void execlists_submit_request(struct i915_request *request) 2963 { 2964 struct intel_engine_cs *engine = request->engine; 2965 unsigned long flags; 2966 2967 /* Will be called from irq-context when using foreign fences. */ 2968 spin_lock_irqsave(&engine->active.lock, flags); 2969 2970 if (unlikely(ancestor_on_hold(engine, request))) { 2971 RQ_TRACE(request, "ancestor on hold\n"); 2972 list_add_tail(&request->sched.link, &engine->active.hold); 2973 i915_request_set_hold(request); 2974 } else { 2975 queue_request(engine, request); 2976 2977 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); 2978 GEM_BUG_ON(list_empty(&request->sched.link)); 2979 2980 submit_queue(engine, request); 2981 } 2982 2983 spin_unlock_irqrestore(&engine->active.lock, flags); 2984 } 2985 2986 static void __execlists_context_fini(struct intel_context *ce) 2987 { 2988 intel_ring_put(ce->ring); 2989 i915_vma_put(ce->state); 2990 } 2991 2992 static void execlists_context_destroy(struct kref *kref) 2993 { 2994 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 2995 2996 GEM_BUG_ON(!i915_active_is_idle(&ce->active)); 2997 GEM_BUG_ON(intel_context_is_pinned(ce)); 2998 2999 if (ce->state) 3000 __execlists_context_fini(ce); 3001 3002 intel_context_fini(ce); 3003 intel_context_free(ce); 3004 } 3005 3006 static void 3007 set_redzone(void *vaddr, const struct intel_engine_cs *engine) 3008 { 3009 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 3010 return; 3011 3012 vaddr += engine->context_size; 3013 3014 memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE); 3015 } 3016 3017 static void 3018 check_redzone(const void *vaddr, const struct intel_engine_cs *engine) 3019 { 3020 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 3021 return; 3022 3023 vaddr += engine->context_size; 3024 3025 if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE)) 3026 dev_err_once(engine->i915->drm.dev, 3027 "%s context redzone overwritten!\n", 3028 engine->name); 3029 } 3030 3031 static void execlists_context_unpin(struct intel_context *ce) 3032 { 3033 check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE, 3034 ce->engine); 3035 3036 i915_gem_object_unpin_map(ce->state->obj); 3037 } 3038 3039 static void 3040 __execlists_update_reg_state(const struct intel_context *ce, 3041 const struct intel_engine_cs *engine, 3042 u32 head) 3043 { 3044 struct intel_ring *ring = ce->ring; 3045 u32 *regs = ce->lrc_reg_state; 3046 3047 GEM_BUG_ON(!intel_ring_offset_valid(ring, head)); 3048 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); 3049 3050 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); 3051 regs[CTX_RING_HEAD] = head; 3052 regs[CTX_RING_TAIL] = ring->tail; 3053 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 3054 3055 /* RPCS */ 3056 if (engine->class == RENDER_CLASS) { 3057 regs[CTX_R_PWR_CLK_STATE] = 3058 intel_sseu_make_rpcs(engine->i915, &ce->sseu); 3059 3060 i915_oa_init_reg_state(ce, engine); 3061 } 3062 } 3063 3064 static int 3065 __execlists_context_pin(struct intel_context *ce, 3066 struct intel_engine_cs *engine) 3067 { 3068 void *vaddr; 3069 3070 GEM_BUG_ON(!ce->state); 3071 GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); 3072 3073 vaddr = i915_gem_object_pin_map(ce->state->obj, 3074 i915_coherent_map_type(engine->i915) | 3075 I915_MAP_OVERRIDE); 3076 if (IS_ERR(vaddr)) 3077 return PTR_ERR(vaddr); 3078 3079 ce->lrc.lrca = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE; 3080 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; 3081 __execlists_update_reg_state(ce, engine, ce->ring->tail); 3082 3083 return 0; 3084 } 3085 3086 static int execlists_context_pin(struct intel_context *ce) 3087 { 3088 return __execlists_context_pin(ce, ce->engine); 3089 } 3090 3091 static int execlists_context_alloc(struct intel_context *ce) 3092 { 3093 return __execlists_context_alloc(ce, ce->engine); 3094 } 3095 3096 static void execlists_context_reset(struct intel_context *ce) 3097 { 3098 CE_TRACE(ce, "reset\n"); 3099 GEM_BUG_ON(!intel_context_is_pinned(ce)); 3100 3101 intel_ring_reset(ce->ring, ce->ring->emit); 3102 3103 /* Scrub away the garbage */ 3104 execlists_init_reg_state(ce->lrc_reg_state, 3105 ce, ce->engine, ce->ring, true); 3106 __execlists_update_reg_state(ce, ce->engine, ce->ring->tail); 3107 3108 ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; 3109 } 3110 3111 static const struct intel_context_ops execlists_context_ops = { 3112 .alloc = execlists_context_alloc, 3113 3114 .pin = execlists_context_pin, 3115 .unpin = execlists_context_unpin, 3116 3117 .enter = intel_context_enter_engine, 3118 .exit = intel_context_exit_engine, 3119 3120 .reset = execlists_context_reset, 3121 .destroy = execlists_context_destroy, 3122 }; 3123 3124 static int gen8_emit_init_breadcrumb(struct i915_request *rq) 3125 { 3126 u32 *cs; 3127 3128 if (!i915_request_timeline(rq)->has_initial_breadcrumb) 3129 return 0; 3130 3131 cs = intel_ring_begin(rq, 6); 3132 if (IS_ERR(cs)) 3133 return PTR_ERR(cs); 3134 3135 /* 3136 * Check if we have been preempted before we even get started. 3137 * 3138 * After this point i915_request_started() reports true, even if 3139 * we get preempted and so are no longer running. 3140 */ 3141 *cs++ = MI_ARB_CHECK; 3142 *cs++ = MI_NOOP; 3143 3144 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 3145 *cs++ = i915_request_timeline(rq)->hwsp_offset; 3146 *cs++ = 0; 3147 *cs++ = rq->fence.seqno - 1; 3148 3149 intel_ring_advance(rq, cs); 3150 3151 /* Record the updated position of the request's payload */ 3152 rq->infix = intel_ring_offset(rq, cs); 3153 3154 return 0; 3155 } 3156 3157 static int execlists_request_alloc(struct i915_request *request) 3158 { 3159 int ret; 3160 3161 GEM_BUG_ON(!intel_context_is_pinned(request->context)); 3162 3163 /* 3164 * Flush enough space to reduce the likelihood of waiting after 3165 * we start building the request - in which case we will just 3166 * have to repeat work. 3167 */ 3168 request->reserved_space += EXECLISTS_REQUEST_SIZE; 3169 3170 /* 3171 * Note that after this point, we have committed to using 3172 * this request as it is being used to both track the 3173 * state of engine initialisation and liveness of the 3174 * golden renderstate above. Think twice before you try 3175 * to cancel/unwind this request now. 3176 */ 3177 3178 /* Unconditionally invalidate GPU caches and TLBs. */ 3179 ret = request->engine->emit_flush(request, EMIT_INVALIDATE); 3180 if (ret) 3181 return ret; 3182 3183 request->reserved_space -= EXECLISTS_REQUEST_SIZE; 3184 return 0; 3185 } 3186 3187 /* 3188 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after 3189 * PIPE_CONTROL instruction. This is required for the flush to happen correctly 3190 * but there is a slight complication as this is applied in WA batch where the 3191 * values are only initialized once so we cannot take register value at the 3192 * beginning and reuse it further; hence we save its value to memory, upload a 3193 * constant value with bit21 set and then we restore it back with the saved value. 3194 * To simplify the WA, a constant value is formed by using the default value 3195 * of this register. This shouldn't be a problem because we are only modifying 3196 * it for a short period and this batch in non-premptible. We can ofcourse 3197 * use additional instructions that read the actual value of the register 3198 * at that time and set our bit of interest but it makes the WA complicated. 3199 * 3200 * This WA is also required for Gen9 so extracting as a function avoids 3201 * code duplication. 3202 */ 3203 static u32 * 3204 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) 3205 { 3206 /* NB no one else is allowed to scribble over scratch + 256! */ 3207 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 3208 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 3209 *batch++ = intel_gt_scratch_offset(engine->gt, 3210 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); 3211 *batch++ = 0; 3212 3213 *batch++ = MI_LOAD_REGISTER_IMM(1); 3214 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 3215 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; 3216 3217 batch = gen8_emit_pipe_control(batch, 3218 PIPE_CONTROL_CS_STALL | 3219 PIPE_CONTROL_DC_FLUSH_ENABLE, 3220 0); 3221 3222 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 3223 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 3224 *batch++ = intel_gt_scratch_offset(engine->gt, 3225 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); 3226 *batch++ = 0; 3227 3228 return batch; 3229 } 3230 3231 /* 3232 * Typically we only have one indirect_ctx and per_ctx batch buffer which are 3233 * initialized at the beginning and shared across all contexts but this field 3234 * helps us to have multiple batches at different offsets and select them based 3235 * on a criteria. At the moment this batch always start at the beginning of the page 3236 * and at this point we don't have multiple wa_ctx batch buffers. 3237 * 3238 * The number of WA applied are not known at the beginning; we use this field 3239 * to return the no of DWORDS written. 3240 * 3241 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END 3242 * so it adds NOOPs as padding to make it cacheline aligned. 3243 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together 3244 * makes a complete batch buffer. 3245 */ 3246 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 3247 { 3248 /* WaDisableCtxRestoreArbitration:bdw,chv */ 3249 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 3250 3251 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ 3252 if (IS_BROADWELL(engine->i915)) 3253 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 3254 3255 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ 3256 /* Actual scratch location is at 128 bytes offset */ 3257 batch = gen8_emit_pipe_control(batch, 3258 PIPE_CONTROL_FLUSH_L3 | 3259 PIPE_CONTROL_STORE_DATA_INDEX | 3260 PIPE_CONTROL_CS_STALL | 3261 PIPE_CONTROL_QW_WRITE, 3262 LRC_PPHWSP_SCRATCH_ADDR); 3263 3264 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 3265 3266 /* Pad to end of cacheline */ 3267 while ((unsigned long)batch % CACHELINE_BYTES) 3268 *batch++ = MI_NOOP; 3269 3270 /* 3271 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because 3272 * execution depends on the length specified in terms of cache lines 3273 * in the register CTX_RCS_INDIRECT_CTX 3274 */ 3275 3276 return batch; 3277 } 3278 3279 struct lri { 3280 i915_reg_t reg; 3281 u32 value; 3282 }; 3283 3284 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) 3285 { 3286 GEM_BUG_ON(!count || count > 63); 3287 3288 *batch++ = MI_LOAD_REGISTER_IMM(count); 3289 do { 3290 *batch++ = i915_mmio_reg_offset(lri->reg); 3291 *batch++ = lri->value; 3292 } while (lri++, --count); 3293 *batch++ = MI_NOOP; 3294 3295 return batch; 3296 } 3297 3298 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 3299 { 3300 static const struct lri lri[] = { 3301 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ 3302 { 3303 COMMON_SLICE_CHICKEN2, 3304 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 3305 0), 3306 }, 3307 3308 /* BSpec: 11391 */ 3309 { 3310 FF_SLICE_CHICKEN, 3311 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, 3312 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), 3313 }, 3314 3315 /* BSpec: 11299 */ 3316 { 3317 _3D_CHICKEN3, 3318 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, 3319 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), 3320 } 3321 }; 3322 3323 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 3324 3325 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ 3326 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 3327 3328 /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */ 3329 batch = gen8_emit_pipe_control(batch, 3330 PIPE_CONTROL_FLUSH_L3 | 3331 PIPE_CONTROL_STORE_DATA_INDEX | 3332 PIPE_CONTROL_CS_STALL | 3333 PIPE_CONTROL_QW_WRITE, 3334 LRC_PPHWSP_SCRATCH_ADDR); 3335 3336 batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); 3337 3338 /* WaMediaPoolStateCmdInWABB:bxt,glk */ 3339 if (HAS_POOLED_EU(engine->i915)) { 3340 /* 3341 * EU pool configuration is setup along with golden context 3342 * during context initialization. This value depends on 3343 * device type (2x6 or 3x6) and needs to be updated based 3344 * on which subslice is disabled especially for 2x6 3345 * devices, however it is safe to load default 3346 * configuration of 3x6 device instead of masking off 3347 * corresponding bits because HW ignores bits of a disabled 3348 * subslice and drops down to appropriate config. Please 3349 * see render_state_setup() in i915_gem_render_state.c for 3350 * possible configurations, to avoid duplication they are 3351 * not shown here again. 3352 */ 3353 *batch++ = GEN9_MEDIA_POOL_STATE; 3354 *batch++ = GEN9_MEDIA_POOL_ENABLE; 3355 *batch++ = 0x00777000; 3356 *batch++ = 0; 3357 *batch++ = 0; 3358 *batch++ = 0; 3359 } 3360 3361 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 3362 3363 /* Pad to end of cacheline */ 3364 while ((unsigned long)batch % CACHELINE_BYTES) 3365 *batch++ = MI_NOOP; 3366 3367 return batch; 3368 } 3369 3370 static u32 * 3371 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 3372 { 3373 int i; 3374 3375 /* 3376 * WaPipeControlBefore3DStateSamplePattern: cnl 3377 * 3378 * Ensure the engine is idle prior to programming a 3379 * 3DSTATE_SAMPLE_PATTERN during a context restore. 3380 */ 3381 batch = gen8_emit_pipe_control(batch, 3382 PIPE_CONTROL_CS_STALL, 3383 0); 3384 /* 3385 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for 3386 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in 3387 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is 3388 * confusing. Since gen8_emit_pipe_control() already advances the 3389 * batch by 6 dwords, we advance the other 10 here, completing a 3390 * cacheline. It's not clear if the workaround requires this padding 3391 * before other commands, or if it's just the regular padding we would 3392 * already have for the workaround bb, so leave it here for now. 3393 */ 3394 for (i = 0; i < 10; i++) 3395 *batch++ = MI_NOOP; 3396 3397 /* Pad to end of cacheline */ 3398 while ((unsigned long)batch % CACHELINE_BYTES) 3399 *batch++ = MI_NOOP; 3400 3401 return batch; 3402 } 3403 3404 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE) 3405 3406 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine) 3407 { 3408 struct drm_i915_gem_object *obj; 3409 struct i915_vma *vma; 3410 int err; 3411 3412 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE); 3413 if (IS_ERR(obj)) 3414 return PTR_ERR(obj); 3415 3416 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 3417 if (IS_ERR(vma)) { 3418 err = PTR_ERR(vma); 3419 goto err; 3420 } 3421 3422 err = i915_ggtt_pin(vma, 0, PIN_HIGH); 3423 if (err) 3424 goto err; 3425 3426 engine->wa_ctx.vma = vma; 3427 return 0; 3428 3429 err: 3430 i915_gem_object_put(obj); 3431 return err; 3432 } 3433 3434 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine) 3435 { 3436 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); 3437 } 3438 3439 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); 3440 3441 static int intel_init_workaround_bb(struct intel_engine_cs *engine) 3442 { 3443 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 3444 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx, 3445 &wa_ctx->per_ctx }; 3446 wa_bb_func_t wa_bb_fn[2]; 3447 struct page *page; 3448 void *batch, *batch_ptr; 3449 unsigned int i; 3450 int ret; 3451 3452 if (engine->class != RENDER_CLASS) 3453 return 0; 3454 3455 switch (INTEL_GEN(engine->i915)) { 3456 case 12: 3457 case 11: 3458 return 0; 3459 case 10: 3460 wa_bb_fn[0] = gen10_init_indirectctx_bb; 3461 wa_bb_fn[1] = NULL; 3462 break; 3463 case 9: 3464 wa_bb_fn[0] = gen9_init_indirectctx_bb; 3465 wa_bb_fn[1] = NULL; 3466 break; 3467 case 8: 3468 wa_bb_fn[0] = gen8_init_indirectctx_bb; 3469 wa_bb_fn[1] = NULL; 3470 break; 3471 default: 3472 MISSING_CASE(INTEL_GEN(engine->i915)); 3473 return 0; 3474 } 3475 3476 ret = lrc_setup_wa_ctx(engine); 3477 if (ret) { 3478 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); 3479 return ret; 3480 } 3481 3482 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0); 3483 batch = batch_ptr = kmap_atomic(page); 3484 3485 /* 3486 * Emit the two workaround batch buffers, recording the offset from the 3487 * start of the workaround batch buffer object for each and their 3488 * respective sizes. 3489 */ 3490 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { 3491 wa_bb[i]->offset = batch_ptr - batch; 3492 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, 3493 CACHELINE_BYTES))) { 3494 ret = -EINVAL; 3495 break; 3496 } 3497 if (wa_bb_fn[i]) 3498 batch_ptr = wa_bb_fn[i](engine, batch_ptr); 3499 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); 3500 } 3501 3502 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE); 3503 3504 kunmap_atomic(batch); 3505 if (ret) 3506 lrc_destroy_wa_ctx(engine); 3507 3508 return ret; 3509 } 3510 3511 static void enable_error_interrupt(struct intel_engine_cs *engine) 3512 { 3513 u32 status; 3514 3515 engine->execlists.error_interrupt = 0; 3516 ENGINE_WRITE(engine, RING_EMR, ~0u); 3517 ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */ 3518 3519 status = ENGINE_READ(engine, RING_ESR); 3520 if (unlikely(status)) { 3521 dev_err(engine->i915->drm.dev, 3522 "engine '%s' resumed still in error: %08x\n", 3523 engine->name, status); 3524 __intel_gt_reset(engine->gt, engine->mask); 3525 } 3526 3527 /* 3528 * On current gen8+, we have 2 signals to play with 3529 * 3530 * - I915_ERROR_INSTUCTION (bit 0) 3531 * 3532 * Generate an error if the command parser encounters an invalid 3533 * instruction 3534 * 3535 * This is a fatal error. 3536 * 3537 * - CP_PRIV (bit 2) 3538 * 3539 * Generate an error on privilege violation (where the CP replaces 3540 * the instruction with a no-op). This also fires for writes into 3541 * read-only scratch pages. 3542 * 3543 * This is a non-fatal error, parsing continues. 3544 * 3545 * * there are a few others defined for odd HW that we do not use 3546 * 3547 * Since CP_PRIV fires for cases where we have chosen to ignore the 3548 * error (as the HW is validating and suppressing the mistakes), we 3549 * only unmask the instruction error bit. 3550 */ 3551 ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION); 3552 } 3553 3554 static void enable_execlists(struct intel_engine_cs *engine) 3555 { 3556 u32 mode; 3557 3558 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 3559 3560 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 3561 3562 if (INTEL_GEN(engine->i915) >= 11) 3563 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE); 3564 else 3565 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE); 3566 ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode); 3567 3568 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 3569 3570 ENGINE_WRITE_FW(engine, 3571 RING_HWS_PGA, 3572 i915_ggtt_offset(engine->status_page.vma)); 3573 ENGINE_POSTING_READ(engine, RING_HWS_PGA); 3574 3575 enable_error_interrupt(engine); 3576 3577 engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0); 3578 } 3579 3580 static bool unexpected_starting_state(struct intel_engine_cs *engine) 3581 { 3582 bool unexpected = false; 3583 3584 if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) { 3585 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n"); 3586 unexpected = true; 3587 } 3588 3589 return unexpected; 3590 } 3591 3592 static int execlists_resume(struct intel_engine_cs *engine) 3593 { 3594 intel_mocs_init_engine(engine); 3595 3596 intel_engine_reset_breadcrumbs(engine); 3597 3598 if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) { 3599 struct drm_printer p = drm_debug_printer(__func__); 3600 3601 intel_engine_dump(engine, &p, NULL); 3602 } 3603 3604 enable_execlists(engine); 3605 3606 return 0; 3607 } 3608 3609 static void execlists_reset_prepare(struct intel_engine_cs *engine) 3610 { 3611 struct intel_engine_execlists * const execlists = &engine->execlists; 3612 unsigned long flags; 3613 3614 ENGINE_TRACE(engine, "depth<-%d\n", 3615 atomic_read(&execlists->tasklet.count)); 3616 3617 /* 3618 * Prevent request submission to the hardware until we have 3619 * completed the reset in i915_gem_reset_finish(). If a request 3620 * is completed by one engine, it may then queue a request 3621 * to a second via its execlists->tasklet *just* as we are 3622 * calling engine->resume() and also writing the ELSP. 3623 * Turning off the execlists->tasklet until the reset is over 3624 * prevents the race. 3625 */ 3626 __tasklet_disable_sync_once(&execlists->tasklet); 3627 GEM_BUG_ON(!reset_in_progress(execlists)); 3628 3629 /* And flush any current direct submission. */ 3630 spin_lock_irqsave(&engine->active.lock, flags); 3631 spin_unlock_irqrestore(&engine->active.lock, flags); 3632 3633 /* 3634 * We stop engines, otherwise we might get failed reset and a 3635 * dead gpu (on elk). Also as modern gpu as kbl can suffer 3636 * from system hang if batchbuffer is progressing when 3637 * the reset is issued, regardless of READY_TO_RESET ack. 3638 * Thus assume it is best to stop engines on all gens 3639 * where we have a gpu reset. 3640 * 3641 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) 3642 * 3643 * FIXME: Wa for more modern gens needs to be validated 3644 */ 3645 intel_engine_stop_cs(engine); 3646 } 3647 3648 static void reset_csb_pointers(struct intel_engine_cs *engine) 3649 { 3650 struct intel_engine_execlists * const execlists = &engine->execlists; 3651 const unsigned int reset_value = execlists->csb_size - 1; 3652 3653 ring_set_paused(engine, 0); 3654 3655 /* 3656 * After a reset, the HW starts writing into CSB entry [0]. We 3657 * therefore have to set our HEAD pointer back one entry so that 3658 * the *first* entry we check is entry 0. To complicate this further, 3659 * as we don't wait for the first interrupt after reset, we have to 3660 * fake the HW write to point back to the last entry so that our 3661 * inline comparison of our cached head position against the last HW 3662 * write works even before the first interrupt. 3663 */ 3664 execlists->csb_head = reset_value; 3665 WRITE_ONCE(*execlists->csb_write, reset_value); 3666 wmb(); /* Make sure this is visible to HW (paranoia?) */ 3667 3668 /* 3669 * Sometimes Icelake forgets to reset its pointers on a GPU reset. 3670 * Bludgeon them with a mmio update to be sure. 3671 */ 3672 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, 3673 reset_value << 8 | reset_value); 3674 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); 3675 3676 invalidate_csb_entries(&execlists->csb_status[0], 3677 &execlists->csb_status[reset_value]); 3678 } 3679 3680 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine) 3681 { 3682 int x; 3683 3684 x = lrc_ring_mi_mode(engine); 3685 if (x != -1) { 3686 regs[x + 1] &= ~STOP_RING; 3687 regs[x + 1] |= STOP_RING << 16; 3688 } 3689 } 3690 3691 static void __execlists_reset_reg_state(const struct intel_context *ce, 3692 const struct intel_engine_cs *engine) 3693 { 3694 u32 *regs = ce->lrc_reg_state; 3695 3696 __reset_stop_ring(regs, engine); 3697 } 3698 3699 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled) 3700 { 3701 struct intel_engine_execlists * const execlists = &engine->execlists; 3702 struct intel_context *ce; 3703 struct i915_request *rq; 3704 u32 head; 3705 3706 mb(); /* paranoia: read the CSB pointers from after the reset */ 3707 clflush(execlists->csb_write); 3708 mb(); 3709 3710 process_csb(engine); /* drain preemption events */ 3711 3712 /* Following the reset, we need to reload the CSB read/write pointers */ 3713 reset_csb_pointers(engine); 3714 3715 /* 3716 * Save the currently executing context, even if we completed 3717 * its request, it was still running at the time of the 3718 * reset and will have been clobbered. 3719 */ 3720 rq = execlists_active(execlists); 3721 if (!rq) 3722 goto unwind; 3723 3724 ce = rq->context; 3725 GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); 3726 3727 if (i915_request_completed(rq)) { 3728 /* Idle context; tidy up the ring so we can restart afresh */ 3729 head = intel_ring_wrap(ce->ring, rq->tail); 3730 goto out_replay; 3731 } 3732 3733 /* We still have requests in-flight; the engine should be active */ 3734 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 3735 3736 /* Context has requests still in-flight; it should not be idle! */ 3737 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 3738 3739 rq = active_request(ce->timeline, rq); 3740 head = intel_ring_wrap(ce->ring, rq->head); 3741 GEM_BUG_ON(head == ce->ring->tail); 3742 3743 /* 3744 * If this request hasn't started yet, e.g. it is waiting on a 3745 * semaphore, we need to avoid skipping the request or else we 3746 * break the signaling chain. However, if the context is corrupt 3747 * the request will not restart and we will be stuck with a wedged 3748 * device. It is quite often the case that if we issue a reset 3749 * while the GPU is loading the context image, that the context 3750 * image becomes corrupt. 3751 * 3752 * Otherwise, if we have not started yet, the request should replay 3753 * perfectly and we do not need to flag the result as being erroneous. 3754 */ 3755 if (!i915_request_started(rq)) 3756 goto out_replay; 3757 3758 /* 3759 * If the request was innocent, we leave the request in the ELSP 3760 * and will try to replay it on restarting. The context image may 3761 * have been corrupted by the reset, in which case we may have 3762 * to service a new GPU hang, but more likely we can continue on 3763 * without impact. 3764 * 3765 * If the request was guilty, we presume the context is corrupt 3766 * and have to at least restore the RING register in the context 3767 * image back to the expected values to skip over the guilty request. 3768 */ 3769 __i915_request_reset(rq, stalled); 3770 if (!stalled) 3771 goto out_replay; 3772 3773 /* 3774 * We want a simple context + ring to execute the breadcrumb update. 3775 * We cannot rely on the context being intact across the GPU hang, 3776 * so clear it and rebuild just what we need for the breadcrumb. 3777 * All pending requests for this context will be zapped, and any 3778 * future request will be after userspace has had the opportunity 3779 * to recreate its own state. 3780 */ 3781 GEM_BUG_ON(!intel_context_is_pinned(ce)); 3782 restore_default_state(ce, engine); 3783 3784 out_replay: 3785 ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n", 3786 head, ce->ring->tail); 3787 __execlists_reset_reg_state(ce, engine); 3788 __execlists_update_reg_state(ce, engine, head); 3789 ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */ 3790 3791 unwind: 3792 /* Push back any incomplete requests for replay after the reset. */ 3793 cancel_port_requests(execlists); 3794 __unwind_incomplete_requests(engine); 3795 } 3796 3797 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled) 3798 { 3799 unsigned long flags; 3800 3801 ENGINE_TRACE(engine, "\n"); 3802 3803 spin_lock_irqsave(&engine->active.lock, flags); 3804 3805 __execlists_reset(engine, stalled); 3806 3807 spin_unlock_irqrestore(&engine->active.lock, flags); 3808 } 3809 3810 static void nop_submission_tasklet(unsigned long data) 3811 { 3812 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; 3813 3814 /* The driver is wedged; don't process any more events. */ 3815 WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN); 3816 } 3817 3818 static void execlists_reset_cancel(struct intel_engine_cs *engine) 3819 { 3820 struct intel_engine_execlists * const execlists = &engine->execlists; 3821 struct i915_request *rq, *rn; 3822 struct rb_node *rb; 3823 unsigned long flags; 3824 3825 ENGINE_TRACE(engine, "\n"); 3826 3827 /* 3828 * Before we call engine->cancel_requests(), we should have exclusive 3829 * access to the submission state. This is arranged for us by the 3830 * caller disabling the interrupt generation, the tasklet and other 3831 * threads that may then access the same state, giving us a free hand 3832 * to reset state. However, we still need to let lockdep be aware that 3833 * we know this state may be accessed in hardirq context, so we 3834 * disable the irq around this manipulation and we want to keep 3835 * the spinlock focused on its duties and not accidentally conflate 3836 * coverage to the submission's irq state. (Similarly, although we 3837 * shouldn't need to disable irq around the manipulation of the 3838 * submission's irq state, we also wish to remind ourselves that 3839 * it is irq state.) 3840 */ 3841 spin_lock_irqsave(&engine->active.lock, flags); 3842 3843 __execlists_reset(engine, true); 3844 3845 /* Mark all executing requests as skipped. */ 3846 list_for_each_entry(rq, &engine->active.requests, sched.link) 3847 mark_eio(rq); 3848 3849 /* Flush the queued requests to the timeline list (for retiring). */ 3850 while ((rb = rb_first_cached(&execlists->queue))) { 3851 struct i915_priolist *p = to_priolist(rb); 3852 int i; 3853 3854 priolist_for_each_request_consume(rq, rn, p, i) { 3855 mark_eio(rq); 3856 __i915_request_submit(rq); 3857 } 3858 3859 rb_erase_cached(&p->node, &execlists->queue); 3860 i915_priolist_free(p); 3861 } 3862 3863 /* On-hold requests will be flushed to timeline upon their release */ 3864 list_for_each_entry(rq, &engine->active.hold, sched.link) 3865 mark_eio(rq); 3866 3867 /* Cancel all attached virtual engines */ 3868 while ((rb = rb_first_cached(&execlists->virtual))) { 3869 struct virtual_engine *ve = 3870 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 3871 3872 rb_erase_cached(rb, &execlists->virtual); 3873 RB_CLEAR_NODE(rb); 3874 3875 spin_lock(&ve->base.active.lock); 3876 rq = fetch_and_zero(&ve->request); 3877 if (rq) { 3878 mark_eio(rq); 3879 3880 rq->engine = engine; 3881 __i915_request_submit(rq); 3882 i915_request_put(rq); 3883 3884 ve->base.execlists.queue_priority_hint = INT_MIN; 3885 } 3886 spin_unlock(&ve->base.active.lock); 3887 } 3888 3889 /* Remaining _unready_ requests will be nop'ed when submitted */ 3890 3891 execlists->queue_priority_hint = INT_MIN; 3892 execlists->queue = RB_ROOT_CACHED; 3893 3894 GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet)); 3895 execlists->tasklet.func = nop_submission_tasklet; 3896 3897 spin_unlock_irqrestore(&engine->active.lock, flags); 3898 } 3899 3900 static void execlists_reset_finish(struct intel_engine_cs *engine) 3901 { 3902 struct intel_engine_execlists * const execlists = &engine->execlists; 3903 3904 /* 3905 * After a GPU reset, we may have requests to replay. Do so now while 3906 * we still have the forcewake to be sure that the GPU is not allowed 3907 * to sleep before we restart and reload a context. 3908 */ 3909 GEM_BUG_ON(!reset_in_progress(execlists)); 3910 if (!RB_EMPTY_ROOT(&execlists->queue.rb_root)) 3911 execlists->tasklet.func(execlists->tasklet.data); 3912 3913 if (__tasklet_enable(&execlists->tasklet)) 3914 /* And kick in case we missed a new request submission. */ 3915 tasklet_hi_schedule(&execlists->tasklet); 3916 ENGINE_TRACE(engine, "depth->%d\n", 3917 atomic_read(&execlists->tasklet.count)); 3918 } 3919 3920 static int gen8_emit_bb_start_noarb(struct i915_request *rq, 3921 u64 offset, u32 len, 3922 const unsigned int flags) 3923 { 3924 u32 *cs; 3925 3926 cs = intel_ring_begin(rq, 4); 3927 if (IS_ERR(cs)) 3928 return PTR_ERR(cs); 3929 3930 /* 3931 * WaDisableCtxRestoreArbitration:bdw,chv 3932 * 3933 * We don't need to perform MI_ARB_ENABLE as often as we do (in 3934 * particular all the gen that do not need the w/a at all!), if we 3935 * took care to make sure that on every switch into this context 3936 * (both ordinary and for preemption) that arbitrartion was enabled 3937 * we would be fine. However, for gen8 there is another w/a that 3938 * requires us to not preempt inside GPGPU execution, so we keep 3939 * arbitration disabled for gen8 batches. Arbitration will be 3940 * re-enabled before we close the request 3941 * (engine->emit_fini_breadcrumb). 3942 */ 3943 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 3944 3945 /* FIXME(BDW+): Address space and security selectors. */ 3946 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 3947 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 3948 *cs++ = lower_32_bits(offset); 3949 *cs++ = upper_32_bits(offset); 3950 3951 intel_ring_advance(rq, cs); 3952 3953 return 0; 3954 } 3955 3956 static int gen8_emit_bb_start(struct i915_request *rq, 3957 u64 offset, u32 len, 3958 const unsigned int flags) 3959 { 3960 u32 *cs; 3961 3962 cs = intel_ring_begin(rq, 6); 3963 if (IS_ERR(cs)) 3964 return PTR_ERR(cs); 3965 3966 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 3967 3968 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 3969 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 3970 *cs++ = lower_32_bits(offset); 3971 *cs++ = upper_32_bits(offset); 3972 3973 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 3974 *cs++ = MI_NOOP; 3975 3976 intel_ring_advance(rq, cs); 3977 3978 return 0; 3979 } 3980 3981 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) 3982 { 3983 ENGINE_WRITE(engine, RING_IMR, 3984 ~(engine->irq_enable_mask | engine->irq_keep_mask)); 3985 ENGINE_POSTING_READ(engine, RING_IMR); 3986 } 3987 3988 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) 3989 { 3990 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); 3991 } 3992 3993 static int gen8_emit_flush(struct i915_request *request, u32 mode) 3994 { 3995 u32 cmd, *cs; 3996 3997 cs = intel_ring_begin(request, 4); 3998 if (IS_ERR(cs)) 3999 return PTR_ERR(cs); 4000 4001 cmd = MI_FLUSH_DW + 1; 4002 4003 /* We always require a command barrier so that subsequent 4004 * commands, such as breadcrumb interrupts, are strictly ordered 4005 * wrt the contents of the write cache being flushed to memory 4006 * (and thus being coherent from the CPU). 4007 */ 4008 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 4009 4010 if (mode & EMIT_INVALIDATE) { 4011 cmd |= MI_INVALIDATE_TLB; 4012 if (request->engine->class == VIDEO_DECODE_CLASS) 4013 cmd |= MI_INVALIDATE_BSD; 4014 } 4015 4016 *cs++ = cmd; 4017 *cs++ = LRC_PPHWSP_SCRATCH_ADDR; 4018 *cs++ = 0; /* upper addr */ 4019 *cs++ = 0; /* value */ 4020 intel_ring_advance(request, cs); 4021 4022 return 0; 4023 } 4024 4025 static int gen8_emit_flush_render(struct i915_request *request, 4026 u32 mode) 4027 { 4028 bool vf_flush_wa = false, dc_flush_wa = false; 4029 u32 *cs, flags = 0; 4030 int len; 4031 4032 flags |= PIPE_CONTROL_CS_STALL; 4033 4034 if (mode & EMIT_FLUSH) { 4035 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 4036 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 4037 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 4038 flags |= PIPE_CONTROL_FLUSH_ENABLE; 4039 } 4040 4041 if (mode & EMIT_INVALIDATE) { 4042 flags |= PIPE_CONTROL_TLB_INVALIDATE; 4043 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 4044 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 4045 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 4046 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 4047 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 4048 flags |= PIPE_CONTROL_QW_WRITE; 4049 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 4050 4051 /* 4052 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL 4053 * pipe control. 4054 */ 4055 if (IS_GEN(request->i915, 9)) 4056 vf_flush_wa = true; 4057 4058 /* WaForGAMHang:kbl */ 4059 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0)) 4060 dc_flush_wa = true; 4061 } 4062 4063 len = 6; 4064 4065 if (vf_flush_wa) 4066 len += 6; 4067 4068 if (dc_flush_wa) 4069 len += 12; 4070 4071 cs = intel_ring_begin(request, len); 4072 if (IS_ERR(cs)) 4073 return PTR_ERR(cs); 4074 4075 if (vf_flush_wa) 4076 cs = gen8_emit_pipe_control(cs, 0, 0); 4077 4078 if (dc_flush_wa) 4079 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 4080 0); 4081 4082 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 4083 4084 if (dc_flush_wa) 4085 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); 4086 4087 intel_ring_advance(request, cs); 4088 4089 return 0; 4090 } 4091 4092 static int gen11_emit_flush_render(struct i915_request *request, 4093 u32 mode) 4094 { 4095 if (mode & EMIT_FLUSH) { 4096 u32 *cs; 4097 u32 flags = 0; 4098 4099 flags |= PIPE_CONTROL_CS_STALL; 4100 4101 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; 4102 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 4103 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 4104 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 4105 flags |= PIPE_CONTROL_FLUSH_ENABLE; 4106 flags |= PIPE_CONTROL_QW_WRITE; 4107 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 4108 4109 cs = intel_ring_begin(request, 6); 4110 if (IS_ERR(cs)) 4111 return PTR_ERR(cs); 4112 4113 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 4114 intel_ring_advance(request, cs); 4115 } 4116 4117 if (mode & EMIT_INVALIDATE) { 4118 u32 *cs; 4119 u32 flags = 0; 4120 4121 flags |= PIPE_CONTROL_CS_STALL; 4122 4123 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; 4124 flags |= PIPE_CONTROL_TLB_INVALIDATE; 4125 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 4126 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 4127 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 4128 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 4129 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 4130 flags |= PIPE_CONTROL_QW_WRITE; 4131 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 4132 4133 cs = intel_ring_begin(request, 6); 4134 if (IS_ERR(cs)) 4135 return PTR_ERR(cs); 4136 4137 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 4138 intel_ring_advance(request, cs); 4139 } 4140 4141 return 0; 4142 } 4143 4144 static u32 preparser_disable(bool state) 4145 { 4146 return MI_ARB_CHECK | 1 << 8 | state; 4147 } 4148 4149 static int gen12_emit_flush_render(struct i915_request *request, 4150 u32 mode) 4151 { 4152 if (mode & EMIT_FLUSH) { 4153 u32 flags = 0; 4154 u32 *cs; 4155 4156 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH; 4157 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 4158 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 4159 /* Wa_1409600907:tgl */ 4160 flags |= PIPE_CONTROL_DEPTH_STALL; 4161 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 4162 flags |= PIPE_CONTROL_FLUSH_ENABLE; 4163 flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH; 4164 4165 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 4166 flags |= PIPE_CONTROL_QW_WRITE; 4167 4168 flags |= PIPE_CONTROL_CS_STALL; 4169 4170 cs = intel_ring_begin(request, 6); 4171 if (IS_ERR(cs)) 4172 return PTR_ERR(cs); 4173 4174 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 4175 intel_ring_advance(request, cs); 4176 } 4177 4178 if (mode & EMIT_INVALIDATE) { 4179 u32 flags = 0; 4180 u32 *cs; 4181 4182 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE; 4183 flags |= PIPE_CONTROL_TLB_INVALIDATE; 4184 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 4185 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 4186 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 4187 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 4188 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 4189 flags |= PIPE_CONTROL_L3_RO_CACHE_INVALIDATE; 4190 4191 flags |= PIPE_CONTROL_STORE_DATA_INDEX; 4192 flags |= PIPE_CONTROL_QW_WRITE; 4193 4194 flags |= PIPE_CONTROL_CS_STALL; 4195 4196 cs = intel_ring_begin(request, 8); 4197 if (IS_ERR(cs)) 4198 return PTR_ERR(cs); 4199 4200 /* 4201 * Prevent the pre-parser from skipping past the TLB 4202 * invalidate and loading a stale page for the batch 4203 * buffer / request payload. 4204 */ 4205 *cs++ = preparser_disable(true); 4206 4207 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR); 4208 4209 *cs++ = preparser_disable(false); 4210 intel_ring_advance(request, cs); 4211 } 4212 4213 return 0; 4214 } 4215 4216 /* 4217 * Reserve space for 2 NOOPs at the end of each request to be 4218 * used as a workaround for not being allowed to do lite 4219 * restore with HEAD==TAIL (WaIdleLiteRestore). 4220 */ 4221 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs) 4222 { 4223 /* Ensure there's always at least one preemption point per-request. */ 4224 *cs++ = MI_ARB_CHECK; 4225 *cs++ = MI_NOOP; 4226 request->wa_tail = intel_ring_offset(request, cs); 4227 4228 return cs; 4229 } 4230 4231 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs) 4232 { 4233 *cs++ = MI_SEMAPHORE_WAIT | 4234 MI_SEMAPHORE_GLOBAL_GTT | 4235 MI_SEMAPHORE_POLL | 4236 MI_SEMAPHORE_SAD_EQ_SDD; 4237 *cs++ = 0; 4238 *cs++ = intel_hws_preempt_address(request->engine); 4239 *cs++ = 0; 4240 4241 return cs; 4242 } 4243 4244 static __always_inline u32* 4245 gen8_emit_fini_breadcrumb_footer(struct i915_request *request, 4246 u32 *cs) 4247 { 4248 *cs++ = MI_USER_INTERRUPT; 4249 4250 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4251 if (intel_engine_has_semaphores(request->engine)) 4252 cs = emit_preempt_busywait(request, cs); 4253 4254 request->tail = intel_ring_offset(request, cs); 4255 assert_ring_tail_valid(request->ring, request->tail); 4256 4257 return gen8_emit_wa_tail(request, cs); 4258 } 4259 4260 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) 4261 { 4262 cs = gen8_emit_ggtt_write(cs, 4263 request->fence.seqno, 4264 i915_request_active_timeline(request)->hwsp_offset, 4265 0); 4266 4267 return gen8_emit_fini_breadcrumb_footer(request, cs); 4268 } 4269 4270 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) 4271 { 4272 cs = gen8_emit_pipe_control(cs, 4273 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 4274 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 4275 PIPE_CONTROL_DC_FLUSH_ENABLE, 4276 0); 4277 4278 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ 4279 cs = gen8_emit_ggtt_write_rcs(cs, 4280 request->fence.seqno, 4281 i915_request_active_timeline(request)->hwsp_offset, 4282 PIPE_CONTROL_FLUSH_ENABLE | 4283 PIPE_CONTROL_CS_STALL); 4284 4285 return gen8_emit_fini_breadcrumb_footer(request, cs); 4286 } 4287 4288 static u32 * 4289 gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) 4290 { 4291 cs = gen8_emit_ggtt_write_rcs(cs, 4292 request->fence.seqno, 4293 i915_request_active_timeline(request)->hwsp_offset, 4294 PIPE_CONTROL_CS_STALL | 4295 PIPE_CONTROL_TILE_CACHE_FLUSH | 4296 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 4297 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 4298 PIPE_CONTROL_DC_FLUSH_ENABLE | 4299 PIPE_CONTROL_FLUSH_ENABLE); 4300 4301 return gen8_emit_fini_breadcrumb_footer(request, cs); 4302 } 4303 4304 /* 4305 * Note that the CS instruction pre-parser will not stall on the breadcrumb 4306 * flush and will continue pre-fetching the instructions after it before the 4307 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at 4308 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble 4309 * of the next request before the memory has been flushed, we're guaranteed that 4310 * we won't access the batch itself too early. 4311 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands, 4312 * so, if the current request is modifying an instruction in the next request on 4313 * the same intel_context, we might pre-fetch and then execute the pre-update 4314 * instruction. To avoid this, the users of self-modifying code should either 4315 * disable the parser around the code emitting the memory writes, via a new flag 4316 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For 4317 * the in-kernel use-cases we've opted to use a separate context, see 4318 * reloc_gpu() as an example. 4319 * All the above applies only to the instructions themselves. Non-inline data 4320 * used by the instructions is not pre-fetched. 4321 */ 4322 4323 static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs) 4324 { 4325 *cs++ = MI_SEMAPHORE_WAIT_TOKEN | 4326 MI_SEMAPHORE_GLOBAL_GTT | 4327 MI_SEMAPHORE_POLL | 4328 MI_SEMAPHORE_SAD_EQ_SDD; 4329 *cs++ = 0; 4330 *cs++ = intel_hws_preempt_address(request->engine); 4331 *cs++ = 0; 4332 *cs++ = 0; 4333 *cs++ = MI_NOOP; 4334 4335 return cs; 4336 } 4337 4338 static __always_inline u32* 4339 gen12_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs) 4340 { 4341 *cs++ = MI_USER_INTERRUPT; 4342 4343 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4344 if (intel_engine_has_semaphores(request->engine)) 4345 cs = gen12_emit_preempt_busywait(request, cs); 4346 4347 request->tail = intel_ring_offset(request, cs); 4348 assert_ring_tail_valid(request->ring, request->tail); 4349 4350 return gen8_emit_wa_tail(request, cs); 4351 } 4352 4353 static u32 *gen12_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) 4354 { 4355 cs = gen8_emit_ggtt_write(cs, 4356 request->fence.seqno, 4357 i915_request_active_timeline(request)->hwsp_offset, 4358 0); 4359 4360 return gen12_emit_fini_breadcrumb_footer(request, cs); 4361 } 4362 4363 static u32 * 4364 gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) 4365 { 4366 cs = gen8_emit_ggtt_write_rcs(cs, 4367 request->fence.seqno, 4368 i915_request_active_timeline(request)->hwsp_offset, 4369 PIPE_CONTROL_CS_STALL | 4370 PIPE_CONTROL_TILE_CACHE_FLUSH | 4371 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 4372 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 4373 /* Wa_1409600907:tgl */ 4374 PIPE_CONTROL_DEPTH_STALL | 4375 PIPE_CONTROL_DC_FLUSH_ENABLE | 4376 PIPE_CONTROL_FLUSH_ENABLE | 4377 PIPE_CONTROL_HDC_PIPELINE_FLUSH); 4378 4379 return gen12_emit_fini_breadcrumb_footer(request, cs); 4380 } 4381 4382 static void execlists_park(struct intel_engine_cs *engine) 4383 { 4384 cancel_timer(&engine->execlists.timer); 4385 cancel_timer(&engine->execlists.preempt); 4386 } 4387 4388 void intel_execlists_set_default_submission(struct intel_engine_cs *engine) 4389 { 4390 engine->submit_request = execlists_submit_request; 4391 engine->schedule = i915_schedule; 4392 engine->execlists.tasklet.func = execlists_submission_tasklet; 4393 4394 engine->reset.prepare = execlists_reset_prepare; 4395 engine->reset.rewind = execlists_reset_rewind; 4396 engine->reset.cancel = execlists_reset_cancel; 4397 engine->reset.finish = execlists_reset_finish; 4398 4399 engine->park = execlists_park; 4400 engine->unpark = NULL; 4401 4402 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4403 if (!intel_vgpu_active(engine->i915)) { 4404 engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4405 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) { 4406 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4407 if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION)) 4408 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4409 } 4410 } 4411 4412 if (INTEL_GEN(engine->i915) >= 12) 4413 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; 4414 4415 if (intel_engine_has_preemption(engine)) 4416 engine->emit_bb_start = gen8_emit_bb_start; 4417 else 4418 engine->emit_bb_start = gen8_emit_bb_start_noarb; 4419 } 4420 4421 static void execlists_shutdown(struct intel_engine_cs *engine) 4422 { 4423 /* Synchronise with residual timers and any softirq they raise */ 4424 del_timer_sync(&engine->execlists.timer); 4425 del_timer_sync(&engine->execlists.preempt); 4426 tasklet_kill(&engine->execlists.tasklet); 4427 } 4428 4429 static void execlists_release(struct intel_engine_cs *engine) 4430 { 4431 execlists_shutdown(engine); 4432 4433 intel_engine_cleanup_common(engine); 4434 lrc_destroy_wa_ctx(engine); 4435 } 4436 4437 static void 4438 logical_ring_default_vfuncs(struct intel_engine_cs *engine) 4439 { 4440 /* Default vfuncs which can be overriden by each engine. */ 4441 4442 engine->resume = execlists_resume; 4443 4444 engine->cops = &execlists_context_ops; 4445 engine->request_alloc = execlists_request_alloc; 4446 4447 engine->emit_flush = gen8_emit_flush; 4448 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4449 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb; 4450 if (INTEL_GEN(engine->i915) >= 12) 4451 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb; 4452 4453 engine->set_default_submission = intel_execlists_set_default_submission; 4454 4455 if (INTEL_GEN(engine->i915) < 11) { 4456 engine->irq_enable = gen8_logical_ring_enable_irq; 4457 engine->irq_disable = gen8_logical_ring_disable_irq; 4458 } else { 4459 /* 4460 * TODO: On Gen11 interrupt masks need to be clear 4461 * to allow C6 entry. Keep interrupts enabled at 4462 * and take the hit of generating extra interrupts 4463 * until a more refined solution exists. 4464 */ 4465 } 4466 } 4467 4468 static inline void 4469 logical_ring_default_irqs(struct intel_engine_cs *engine) 4470 { 4471 unsigned int shift = 0; 4472 4473 if (INTEL_GEN(engine->i915) < 11) { 4474 const u8 irq_shifts[] = { 4475 [RCS0] = GEN8_RCS_IRQ_SHIFT, 4476 [BCS0] = GEN8_BCS_IRQ_SHIFT, 4477 [VCS0] = GEN8_VCS0_IRQ_SHIFT, 4478 [VCS1] = GEN8_VCS1_IRQ_SHIFT, 4479 [VECS0] = GEN8_VECS_IRQ_SHIFT, 4480 }; 4481 4482 shift = irq_shifts[engine->id]; 4483 } 4484 4485 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; 4486 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; 4487 engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift; 4488 engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift; 4489 } 4490 4491 static void rcs_submission_override(struct intel_engine_cs *engine) 4492 { 4493 switch (INTEL_GEN(engine->i915)) { 4494 case 12: 4495 engine->emit_flush = gen12_emit_flush_render; 4496 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4497 break; 4498 case 11: 4499 engine->emit_flush = gen11_emit_flush_render; 4500 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4501 break; 4502 default: 4503 engine->emit_flush = gen8_emit_flush_render; 4504 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4505 break; 4506 } 4507 } 4508 4509 int intel_execlists_submission_setup(struct intel_engine_cs *engine) 4510 { 4511 struct intel_engine_execlists * const execlists = &engine->execlists; 4512 struct drm_i915_private *i915 = engine->i915; 4513 struct intel_uncore *uncore = engine->uncore; 4514 u32 base = engine->mmio_base; 4515 4516 tasklet_init(&engine->execlists.tasklet, 4517 execlists_submission_tasklet, (unsigned long)engine); 4518 timer_setup(&engine->execlists.timer, execlists_timeslice, 0); 4519 timer_setup(&engine->execlists.preempt, execlists_preempt, 0); 4520 4521 logical_ring_default_vfuncs(engine); 4522 logical_ring_default_irqs(engine); 4523 4524 if (engine->class == RENDER_CLASS) 4525 rcs_submission_override(engine); 4526 4527 if (intel_init_workaround_bb(engine)) 4528 /* 4529 * We continue even if we fail to initialize WA batch 4530 * because we only expect rare glitches but nothing 4531 * critical to prevent us from using GPU 4532 */ 4533 DRM_ERROR("WA batch buffer initialization failed\n"); 4534 4535 if (HAS_LOGICAL_RING_ELSQ(i915)) { 4536 execlists->submit_reg = uncore->regs + 4537 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); 4538 execlists->ctrl_reg = uncore->regs + 4539 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); 4540 } else { 4541 execlists->submit_reg = uncore->regs + 4542 i915_mmio_reg_offset(RING_ELSP(base)); 4543 } 4544 4545 execlists->csb_status = 4546 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 4547 4548 execlists->csb_write = 4549 &engine->status_page.addr[intel_hws_csb_write_index(i915)]; 4550 4551 if (INTEL_GEN(i915) < 11) 4552 execlists->csb_size = GEN8_CSB_ENTRIES; 4553 else 4554 execlists->csb_size = GEN11_CSB_ENTRIES; 4555 4556 if (INTEL_GEN(engine->i915) >= 11) { 4557 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32); 4558 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32); 4559 } 4560 4561 reset_csb_pointers(engine); 4562 4563 /* Finally, take ownership and responsibility for cleanup! */ 4564 engine->release = execlists_release; 4565 4566 return 0; 4567 } 4568 4569 static u32 intel_lr_indirect_ctx_offset(const struct intel_engine_cs *engine) 4570 { 4571 u32 indirect_ctx_offset; 4572 4573 switch (INTEL_GEN(engine->i915)) { 4574 default: 4575 MISSING_CASE(INTEL_GEN(engine->i915)); 4576 /* fall through */ 4577 case 12: 4578 indirect_ctx_offset = 4579 GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 4580 break; 4581 case 11: 4582 indirect_ctx_offset = 4583 GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 4584 break; 4585 case 10: 4586 indirect_ctx_offset = 4587 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 4588 break; 4589 case 9: 4590 indirect_ctx_offset = 4591 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 4592 break; 4593 case 8: 4594 indirect_ctx_offset = 4595 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 4596 break; 4597 } 4598 4599 return indirect_ctx_offset; 4600 } 4601 4602 4603 static void init_common_reg_state(u32 * const regs, 4604 const struct intel_engine_cs *engine, 4605 const struct intel_ring *ring, 4606 bool inhibit) 4607 { 4608 u32 ctl; 4609 4610 ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH); 4611 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); 4612 if (inhibit) 4613 ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT; 4614 if (INTEL_GEN(engine->i915) < 11) 4615 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | 4616 CTX_CTRL_RS_CTX_ENABLE); 4617 regs[CTX_CONTEXT_CONTROL] = ctl; 4618 4619 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 4620 } 4621 4622 static void init_wa_bb_reg_state(u32 * const regs, 4623 const struct intel_engine_cs *engine, 4624 u32 pos_bb_per_ctx) 4625 { 4626 const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx; 4627 4628 if (wa_ctx->per_ctx.size) { 4629 const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 4630 4631 regs[pos_bb_per_ctx] = 4632 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; 4633 } 4634 4635 if (wa_ctx->indirect_ctx.size) { 4636 const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 4637 4638 regs[pos_bb_per_ctx + 2] = 4639 (ggtt_offset + wa_ctx->indirect_ctx.offset) | 4640 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES); 4641 4642 regs[pos_bb_per_ctx + 4] = 4643 intel_lr_indirect_ctx_offset(engine) << 6; 4644 } 4645 } 4646 4647 static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt) 4648 { 4649 if (i915_vm_is_4lvl(&ppgtt->vm)) { 4650 /* 64b PPGTT (48bit canonical) 4651 * PDP0_DESCRIPTOR contains the base address to PML4 and 4652 * other PDP Descriptors are ignored. 4653 */ 4654 ASSIGN_CTX_PML4(ppgtt, regs); 4655 } else { 4656 ASSIGN_CTX_PDP(ppgtt, regs, 3); 4657 ASSIGN_CTX_PDP(ppgtt, regs, 2); 4658 ASSIGN_CTX_PDP(ppgtt, regs, 1); 4659 ASSIGN_CTX_PDP(ppgtt, regs, 0); 4660 } 4661 } 4662 4663 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm) 4664 { 4665 if (i915_is_ggtt(vm)) 4666 return i915_vm_to_ggtt(vm)->alias; 4667 else 4668 return i915_vm_to_ppgtt(vm); 4669 } 4670 4671 static void execlists_init_reg_state(u32 *regs, 4672 const struct intel_context *ce, 4673 const struct intel_engine_cs *engine, 4674 const struct intel_ring *ring, 4675 bool inhibit) 4676 { 4677 /* 4678 * A context is actually a big batch buffer with several 4679 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The 4680 * values we are setting here are only for the first context restore: 4681 * on a subsequent save, the GPU will recreate this batchbuffer with new 4682 * values (including all the missing MI_LOAD_REGISTER_IMM commands that 4683 * we are not initializing here). 4684 * 4685 * Must keep consistent with virtual_update_register_offsets(). 4686 */ 4687 set_offsets(regs, reg_offsets(engine), engine, inhibit); 4688 4689 init_common_reg_state(regs, engine, ring, inhibit); 4690 init_ppgtt_reg_state(regs, vm_alias(ce->vm)); 4691 4692 init_wa_bb_reg_state(regs, engine, 4693 INTEL_GEN(engine->i915) >= 12 ? 4694 GEN12_CTX_BB_PER_CTX_PTR : 4695 CTX_BB_PER_CTX_PTR); 4696 4697 __reset_stop_ring(regs, engine); 4698 } 4699 4700 static int 4701 populate_lr_context(struct intel_context *ce, 4702 struct drm_i915_gem_object *ctx_obj, 4703 struct intel_engine_cs *engine, 4704 struct intel_ring *ring) 4705 { 4706 bool inhibit = true; 4707 void *vaddr; 4708 int ret; 4709 4710 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB); 4711 if (IS_ERR(vaddr)) { 4712 ret = PTR_ERR(vaddr); 4713 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret); 4714 return ret; 4715 } 4716 4717 set_redzone(vaddr, engine); 4718 4719 if (engine->default_state) { 4720 void *defaults; 4721 4722 defaults = i915_gem_object_pin_map(engine->default_state, 4723 I915_MAP_WB); 4724 if (IS_ERR(defaults)) { 4725 ret = PTR_ERR(defaults); 4726 goto err_unpin_ctx; 4727 } 4728 4729 memcpy(vaddr, defaults, engine->context_size); 4730 i915_gem_object_unpin_map(engine->default_state); 4731 __set_bit(CONTEXT_VALID_BIT, &ce->flags); 4732 inhibit = false; 4733 } 4734 4735 /* Clear the ppHWSP (inc. per-context counters) */ 4736 memset(vaddr, 0, PAGE_SIZE); 4737 4738 /* 4739 * The second page of the context object contains some registers which 4740 * must be set up prior to the first execution. 4741 */ 4742 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE, 4743 ce, engine, ring, inhibit); 4744 4745 ret = 0; 4746 err_unpin_ctx: 4747 __i915_gem_object_flush_map(ctx_obj, 0, engine->context_size); 4748 i915_gem_object_unpin_map(ctx_obj); 4749 return ret; 4750 } 4751 4752 static int __execlists_context_alloc(struct intel_context *ce, 4753 struct intel_engine_cs *engine) 4754 { 4755 struct drm_i915_gem_object *ctx_obj; 4756 struct intel_ring *ring; 4757 struct i915_vma *vma; 4758 u32 context_size; 4759 int ret; 4760 4761 GEM_BUG_ON(ce->state); 4762 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); 4763 4764 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 4765 context_size += I915_GTT_PAGE_SIZE; /* for redzone */ 4766 4767 ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size); 4768 if (IS_ERR(ctx_obj)) 4769 return PTR_ERR(ctx_obj); 4770 4771 vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL); 4772 if (IS_ERR(vma)) { 4773 ret = PTR_ERR(vma); 4774 goto error_deref_obj; 4775 } 4776 4777 if (!ce->timeline) { 4778 struct intel_timeline *tl; 4779 struct i915_vma *hwsp; 4780 4781 /* 4782 * Use the static global HWSP for the kernel context, and 4783 * a dynamically allocated cacheline for everyone else. 4784 */ 4785 hwsp = NULL; 4786 if (unlikely(intel_context_is_barrier(ce))) 4787 hwsp = engine->status_page.vma; 4788 4789 tl = intel_timeline_create(engine->gt, hwsp); 4790 if (IS_ERR(tl)) { 4791 ret = PTR_ERR(tl); 4792 goto error_deref_obj; 4793 } 4794 4795 ce->timeline = tl; 4796 } 4797 4798 ring = intel_engine_create_ring(engine, (unsigned long)ce->ring); 4799 if (IS_ERR(ring)) { 4800 ret = PTR_ERR(ring); 4801 goto error_deref_obj; 4802 } 4803 4804 ret = populate_lr_context(ce, ctx_obj, engine, ring); 4805 if (ret) { 4806 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); 4807 goto error_ring_free; 4808 } 4809 4810 ce->ring = ring; 4811 ce->state = vma; 4812 4813 return 0; 4814 4815 error_ring_free: 4816 intel_ring_put(ring); 4817 error_deref_obj: 4818 i915_gem_object_put(ctx_obj); 4819 return ret; 4820 } 4821 4822 static struct list_head *virtual_queue(struct virtual_engine *ve) 4823 { 4824 return &ve->base.execlists.default_priolist.requests[0]; 4825 } 4826 4827 static void virtual_context_destroy(struct kref *kref) 4828 { 4829 struct virtual_engine *ve = 4830 container_of(kref, typeof(*ve), context.ref); 4831 unsigned int n; 4832 4833 GEM_BUG_ON(!list_empty(virtual_queue(ve))); 4834 GEM_BUG_ON(ve->request); 4835 GEM_BUG_ON(ve->context.inflight); 4836 4837 for (n = 0; n < ve->num_siblings; n++) { 4838 struct intel_engine_cs *sibling = ve->siblings[n]; 4839 struct rb_node *node = &ve->nodes[sibling->id].rb; 4840 unsigned long flags; 4841 4842 if (RB_EMPTY_NODE(node)) 4843 continue; 4844 4845 spin_lock_irqsave(&sibling->active.lock, flags); 4846 4847 /* Detachment is lazily performed in the execlists tasklet */ 4848 if (!RB_EMPTY_NODE(node)) 4849 rb_erase_cached(node, &sibling->execlists.virtual); 4850 4851 spin_unlock_irqrestore(&sibling->active.lock, flags); 4852 } 4853 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet)); 4854 4855 if (ve->context.state) 4856 __execlists_context_fini(&ve->context); 4857 intel_context_fini(&ve->context); 4858 4859 kfree(ve->bonds); 4860 kfree(ve); 4861 } 4862 4863 static void virtual_engine_initial_hint(struct virtual_engine *ve) 4864 { 4865 int swp; 4866 4867 /* 4868 * Pick a random sibling on starting to help spread the load around. 4869 * 4870 * New contexts are typically created with exactly the same order 4871 * of siblings, and often started in batches. Due to the way we iterate 4872 * the array of sibling when submitting requests, sibling[0] is 4873 * prioritised for dequeuing. If we make sure that sibling[0] is fairly 4874 * randomised across the system, we also help spread the load by the 4875 * first engine we inspect being different each time. 4876 * 4877 * NB This does not force us to execute on this engine, it will just 4878 * typically be the first we inspect for submission. 4879 */ 4880 swp = prandom_u32_max(ve->num_siblings); 4881 if (!swp) 4882 return; 4883 4884 swap(ve->siblings[swp], ve->siblings[0]); 4885 if (!intel_engine_has_relative_mmio(ve->siblings[0])) 4886 virtual_update_register_offsets(ve->context.lrc_reg_state, 4887 ve->siblings[0]); 4888 } 4889 4890 static int virtual_context_alloc(struct intel_context *ce) 4891 { 4892 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 4893 4894 return __execlists_context_alloc(ce, ve->siblings[0]); 4895 } 4896 4897 static int virtual_context_pin(struct intel_context *ce) 4898 { 4899 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 4900 int err; 4901 4902 /* Note: we must use a real engine class for setting up reg state */ 4903 err = __execlists_context_pin(ce, ve->siblings[0]); 4904 if (err) 4905 return err; 4906 4907 virtual_engine_initial_hint(ve); 4908 return 0; 4909 } 4910 4911 static void virtual_context_enter(struct intel_context *ce) 4912 { 4913 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 4914 unsigned int n; 4915 4916 for (n = 0; n < ve->num_siblings; n++) 4917 intel_engine_pm_get(ve->siblings[n]); 4918 4919 intel_timeline_enter(ce->timeline); 4920 } 4921 4922 static void virtual_context_exit(struct intel_context *ce) 4923 { 4924 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 4925 unsigned int n; 4926 4927 intel_timeline_exit(ce->timeline); 4928 4929 for (n = 0; n < ve->num_siblings; n++) 4930 intel_engine_pm_put(ve->siblings[n]); 4931 } 4932 4933 static const struct intel_context_ops virtual_context_ops = { 4934 .alloc = virtual_context_alloc, 4935 4936 .pin = virtual_context_pin, 4937 .unpin = execlists_context_unpin, 4938 4939 .enter = virtual_context_enter, 4940 .exit = virtual_context_exit, 4941 4942 .destroy = virtual_context_destroy, 4943 }; 4944 4945 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) 4946 { 4947 struct i915_request *rq; 4948 intel_engine_mask_t mask; 4949 4950 rq = READ_ONCE(ve->request); 4951 if (!rq) 4952 return 0; 4953 4954 /* The rq is ready for submission; rq->execution_mask is now stable. */ 4955 mask = rq->execution_mask; 4956 if (unlikely(!mask)) { 4957 /* Invalid selection, submit to a random engine in error */ 4958 i915_request_set_error_once(rq, -ENODEV); 4959 mask = ve->siblings[0]->mask; 4960 } 4961 4962 ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n", 4963 rq->fence.context, rq->fence.seqno, 4964 mask, ve->base.execlists.queue_priority_hint); 4965 4966 return mask; 4967 } 4968 4969 static void virtual_submission_tasklet(unsigned long data) 4970 { 4971 struct virtual_engine * const ve = (struct virtual_engine *)data; 4972 const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint); 4973 intel_engine_mask_t mask; 4974 unsigned int n; 4975 4976 rcu_read_lock(); 4977 mask = virtual_submission_mask(ve); 4978 rcu_read_unlock(); 4979 if (unlikely(!mask)) 4980 return; 4981 4982 local_irq_disable(); 4983 for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) { 4984 struct intel_engine_cs *sibling = ve->siblings[n]; 4985 struct ve_node * const node = &ve->nodes[sibling->id]; 4986 struct rb_node **parent, *rb; 4987 bool first; 4988 4989 if (unlikely(!(mask & sibling->mask))) { 4990 if (!RB_EMPTY_NODE(&node->rb)) { 4991 spin_lock(&sibling->active.lock); 4992 rb_erase_cached(&node->rb, 4993 &sibling->execlists.virtual); 4994 RB_CLEAR_NODE(&node->rb); 4995 spin_unlock(&sibling->active.lock); 4996 } 4997 continue; 4998 } 4999 5000 spin_lock(&sibling->active.lock); 5001 5002 if (!RB_EMPTY_NODE(&node->rb)) { 5003 /* 5004 * Cheat and avoid rebalancing the tree if we can 5005 * reuse this node in situ. 5006 */ 5007 first = rb_first_cached(&sibling->execlists.virtual) == 5008 &node->rb; 5009 if (prio == node->prio || (prio > node->prio && first)) 5010 goto submit_engine; 5011 5012 rb_erase_cached(&node->rb, &sibling->execlists.virtual); 5013 } 5014 5015 rb = NULL; 5016 first = true; 5017 parent = &sibling->execlists.virtual.rb_root.rb_node; 5018 while (*parent) { 5019 struct ve_node *other; 5020 5021 rb = *parent; 5022 other = rb_entry(rb, typeof(*other), rb); 5023 if (prio > other->prio) { 5024 parent = &rb->rb_left; 5025 } else { 5026 parent = &rb->rb_right; 5027 first = false; 5028 } 5029 } 5030 5031 rb_link_node(&node->rb, rb, parent); 5032 rb_insert_color_cached(&node->rb, 5033 &sibling->execlists.virtual, 5034 first); 5035 5036 submit_engine: 5037 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); 5038 node->prio = prio; 5039 if (first && prio > sibling->execlists.queue_priority_hint) { 5040 sibling->execlists.queue_priority_hint = prio; 5041 tasklet_hi_schedule(&sibling->execlists.tasklet); 5042 } 5043 5044 spin_unlock(&sibling->active.lock); 5045 } 5046 local_irq_enable(); 5047 } 5048 5049 static void virtual_submit_request(struct i915_request *rq) 5050 { 5051 struct virtual_engine *ve = to_virtual_engine(rq->engine); 5052 struct i915_request *old; 5053 unsigned long flags; 5054 5055 ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n", 5056 rq->fence.context, 5057 rq->fence.seqno); 5058 5059 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); 5060 5061 spin_lock_irqsave(&ve->base.active.lock, flags); 5062 5063 old = ve->request; 5064 if (old) { /* background completion event from preempt-to-busy */ 5065 GEM_BUG_ON(!i915_request_completed(old)); 5066 __i915_request_submit(old); 5067 i915_request_put(old); 5068 } 5069 5070 if (i915_request_completed(rq)) { 5071 __i915_request_submit(rq); 5072 5073 ve->base.execlists.queue_priority_hint = INT_MIN; 5074 ve->request = NULL; 5075 } else { 5076 ve->base.execlists.queue_priority_hint = rq_prio(rq); 5077 ve->request = i915_request_get(rq); 5078 5079 GEM_BUG_ON(!list_empty(virtual_queue(ve))); 5080 list_move_tail(&rq->sched.link, virtual_queue(ve)); 5081 5082 tasklet_schedule(&ve->base.execlists.tasklet); 5083 } 5084 5085 spin_unlock_irqrestore(&ve->base.active.lock, flags); 5086 } 5087 5088 static struct ve_bond * 5089 virtual_find_bond(struct virtual_engine *ve, 5090 const struct intel_engine_cs *master) 5091 { 5092 int i; 5093 5094 for (i = 0; i < ve->num_bonds; i++) { 5095 if (ve->bonds[i].master == master) 5096 return &ve->bonds[i]; 5097 } 5098 5099 return NULL; 5100 } 5101 5102 static void 5103 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal) 5104 { 5105 struct virtual_engine *ve = to_virtual_engine(rq->engine); 5106 intel_engine_mask_t allowed, exec; 5107 struct ve_bond *bond; 5108 5109 allowed = ~to_request(signal)->engine->mask; 5110 5111 bond = virtual_find_bond(ve, to_request(signal)->engine); 5112 if (bond) 5113 allowed &= bond->sibling_mask; 5114 5115 /* Restrict the bonded request to run on only the available engines */ 5116 exec = READ_ONCE(rq->execution_mask); 5117 while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed)) 5118 ; 5119 5120 /* Prevent the master from being re-run on the bonded engines */ 5121 to_request(signal)->execution_mask &= ~allowed; 5122 } 5123 5124 struct intel_context * 5125 intel_execlists_create_virtual(struct intel_engine_cs **siblings, 5126 unsigned int count) 5127 { 5128 struct virtual_engine *ve; 5129 unsigned int n; 5130 int err; 5131 5132 if (count == 0) 5133 return ERR_PTR(-EINVAL); 5134 5135 if (count == 1) 5136 return intel_context_create(siblings[0]); 5137 5138 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); 5139 if (!ve) 5140 return ERR_PTR(-ENOMEM); 5141 5142 ve->base.i915 = siblings[0]->i915; 5143 ve->base.gt = siblings[0]->gt; 5144 ve->base.uncore = siblings[0]->uncore; 5145 ve->base.id = -1; 5146 5147 ve->base.class = OTHER_CLASS; 5148 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5149 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5150 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5151 5152 /* 5153 * The decision on whether to submit a request using semaphores 5154 * depends on the saturated state of the engine. We only compute 5155 * this during HW submission of the request, and we need for this 5156 * state to be globally applied to all requests being submitted 5157 * to this engine. Virtual engines encompass more than one physical 5158 * engine and so we cannot accurately tell in advance if one of those 5159 * engines is already saturated and so cannot afford to use a semaphore 5160 * and be pessimized in priority for doing so -- if we are the only 5161 * context using semaphores after all other clients have stopped, we 5162 * will be starved on the saturated system. Such a global switch for 5163 * semaphores is less than ideal, but alas is the current compromise. 5164 */ 5165 ve->base.saturated = ALL_ENGINES; 5166 5167 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5168 5169 intel_engine_init_active(&ve->base, ENGINE_VIRTUAL); 5170 intel_engine_init_breadcrumbs(&ve->base); 5171 intel_engine_init_execlists(&ve->base); 5172 5173 ve->base.cops = &virtual_context_ops; 5174 ve->base.request_alloc = execlists_request_alloc; 5175 5176 ve->base.schedule = i915_schedule; 5177 ve->base.submit_request = virtual_submit_request; 5178 ve->base.bond_execute = virtual_bond_execute; 5179 5180 INIT_LIST_HEAD(virtual_queue(ve)); 5181 ve->base.execlists.queue_priority_hint = INT_MIN; 5182 tasklet_init(&ve->base.execlists.tasklet, 5183 virtual_submission_tasklet, 5184 (unsigned long)ve); 5185 5186 intel_context_init(&ve->context, &ve->base); 5187 5188 for (n = 0; n < count; n++) { 5189 struct intel_engine_cs *sibling = siblings[n]; 5190 5191 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5192 if (sibling->mask & ve->base.mask) { 5193 DRM_DEBUG("duplicate %s entry in load balancer\n", 5194 sibling->name); 5195 err = -EINVAL; 5196 goto err_put; 5197 } 5198 5199 /* 5200 * The virtual engine implementation is tightly coupled to 5201 * the execlists backend -- we push out request directly 5202 * into a tree inside each physical engine. We could support 5203 * layering if we handle cloning of the requests and 5204 * submitting a copy into each backend. 5205 */ 5206 if (sibling->execlists.tasklet.func != 5207 execlists_submission_tasklet) { 5208 err = -ENODEV; 5209 goto err_put; 5210 } 5211 5212 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); 5213 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); 5214 5215 ve->siblings[ve->num_siblings++] = sibling; 5216 ve->base.mask |= sibling->mask; 5217 5218 /* 5219 * All physical engines must be compatible for their emission 5220 * functions (as we build the instructions during request 5221 * construction and do not alter them before submission 5222 * on the physical engine). We use the engine class as a guide 5223 * here, although that could be refined. 5224 */ 5225 if (ve->base.class != OTHER_CLASS) { 5226 if (ve->base.class != sibling->class) { 5227 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 5228 sibling->class, ve->base.class); 5229 err = -EINVAL; 5230 goto err_put; 5231 } 5232 continue; 5233 } 5234 5235 ve->base.class = sibling->class; 5236 ve->base.uabi_class = sibling->uabi_class; 5237 snprintf(ve->base.name, sizeof(ve->base.name), 5238 "v%dx%d", ve->base.class, count); 5239 ve->base.context_size = sibling->context_size; 5240 5241 ve->base.emit_bb_start = sibling->emit_bb_start; 5242 ve->base.emit_flush = sibling->emit_flush; 5243 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; 5244 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; 5245 ve->base.emit_fini_breadcrumb_dw = 5246 sibling->emit_fini_breadcrumb_dw; 5247 5248 ve->base.flags = sibling->flags; 5249 } 5250 5251 ve->base.flags |= I915_ENGINE_IS_VIRTUAL; 5252 5253 return &ve->context; 5254 5255 err_put: 5256 intel_context_put(&ve->context); 5257 return ERR_PTR(err); 5258 } 5259 5260 struct intel_context * 5261 intel_execlists_clone_virtual(struct intel_engine_cs *src) 5262 { 5263 struct virtual_engine *se = to_virtual_engine(src); 5264 struct intel_context *dst; 5265 5266 dst = intel_execlists_create_virtual(se->siblings, 5267 se->num_siblings); 5268 if (IS_ERR(dst)) 5269 return dst; 5270 5271 if (se->num_bonds) { 5272 struct virtual_engine *de = to_virtual_engine(dst->engine); 5273 5274 de->bonds = kmemdup(se->bonds, 5275 sizeof(*se->bonds) * se->num_bonds, 5276 GFP_KERNEL); 5277 if (!de->bonds) { 5278 intel_context_put(dst); 5279 return ERR_PTR(-ENOMEM); 5280 } 5281 5282 de->num_bonds = se->num_bonds; 5283 } 5284 5285 return dst; 5286 } 5287 5288 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine, 5289 const struct intel_engine_cs *master, 5290 const struct intel_engine_cs *sibling) 5291 { 5292 struct virtual_engine *ve = to_virtual_engine(engine); 5293 struct ve_bond *bond; 5294 int n; 5295 5296 /* Sanity check the sibling is part of the virtual engine */ 5297 for (n = 0; n < ve->num_siblings; n++) 5298 if (sibling == ve->siblings[n]) 5299 break; 5300 if (n == ve->num_siblings) 5301 return -EINVAL; 5302 5303 bond = virtual_find_bond(ve, master); 5304 if (bond) { 5305 bond->sibling_mask |= sibling->mask; 5306 return 0; 5307 } 5308 5309 bond = krealloc(ve->bonds, 5310 sizeof(*bond) * (ve->num_bonds + 1), 5311 GFP_KERNEL); 5312 if (!bond) 5313 return -ENOMEM; 5314 5315 bond[ve->num_bonds].master = master; 5316 bond[ve->num_bonds].sibling_mask = sibling->mask; 5317 5318 ve->bonds = bond; 5319 ve->num_bonds++; 5320 5321 return 0; 5322 } 5323 5324 struct intel_engine_cs * 5325 intel_virtual_engine_get_sibling(struct intel_engine_cs *engine, 5326 unsigned int sibling) 5327 { 5328 struct virtual_engine *ve = to_virtual_engine(engine); 5329 5330 if (sibling >= ve->num_siblings) 5331 return NULL; 5332 5333 return ve->siblings[sibling]; 5334 } 5335 5336 void intel_execlists_show_requests(struct intel_engine_cs *engine, 5337 struct drm_printer *m, 5338 void (*show_request)(struct drm_printer *m, 5339 struct i915_request *rq, 5340 const char *prefix), 5341 unsigned int max) 5342 { 5343 const struct intel_engine_execlists *execlists = &engine->execlists; 5344 struct i915_request *rq, *last; 5345 unsigned long flags; 5346 unsigned int count; 5347 struct rb_node *rb; 5348 5349 spin_lock_irqsave(&engine->active.lock, flags); 5350 5351 last = NULL; 5352 count = 0; 5353 list_for_each_entry(rq, &engine->active.requests, sched.link) { 5354 if (count++ < max - 1) 5355 show_request(m, rq, "\t\tE "); 5356 else 5357 last = rq; 5358 } 5359 if (last) { 5360 if (count > max) { 5361 drm_printf(m, 5362 "\t\t...skipping %d executing requests...\n", 5363 count - max); 5364 } 5365 show_request(m, last, "\t\tE "); 5366 } 5367 5368 if (execlists->switch_priority_hint != INT_MIN) 5369 drm_printf(m, "\t\tSwitch priority hint: %d\n", 5370 READ_ONCE(execlists->switch_priority_hint)); 5371 if (execlists->queue_priority_hint != INT_MIN) 5372 drm_printf(m, "\t\tQueue priority hint: %d\n", 5373 READ_ONCE(execlists->queue_priority_hint)); 5374 5375 last = NULL; 5376 count = 0; 5377 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 5378 struct i915_priolist *p = rb_entry(rb, typeof(*p), node); 5379 int i; 5380 5381 priolist_for_each_request(rq, p, i) { 5382 if (count++ < max - 1) 5383 show_request(m, rq, "\t\tQ "); 5384 else 5385 last = rq; 5386 } 5387 } 5388 if (last) { 5389 if (count > max) { 5390 drm_printf(m, 5391 "\t\t...skipping %d queued requests...\n", 5392 count - max); 5393 } 5394 show_request(m, last, "\t\tQ "); 5395 } 5396 5397 last = NULL; 5398 count = 0; 5399 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { 5400 struct virtual_engine *ve = 5401 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 5402 struct i915_request *rq = READ_ONCE(ve->request); 5403 5404 if (rq) { 5405 if (count++ < max - 1) 5406 show_request(m, rq, "\t\tV "); 5407 else 5408 last = rq; 5409 } 5410 } 5411 if (last) { 5412 if (count > max) { 5413 drm_printf(m, 5414 "\t\t...skipping %d virtual requests...\n", 5415 count - max); 5416 } 5417 show_request(m, last, "\t\tV "); 5418 } 5419 5420 spin_unlock_irqrestore(&engine->active.lock, flags); 5421 } 5422 5423 void intel_lr_context_reset(struct intel_engine_cs *engine, 5424 struct intel_context *ce, 5425 u32 head, 5426 bool scrub) 5427 { 5428 GEM_BUG_ON(!intel_context_is_pinned(ce)); 5429 5430 /* 5431 * We want a simple context + ring to execute the breadcrumb update. 5432 * We cannot rely on the context being intact across the GPU hang, 5433 * so clear it and rebuild just what we need for the breadcrumb. 5434 * All pending requests for this context will be zapped, and any 5435 * future request will be after userspace has had the opportunity 5436 * to recreate its own state. 5437 */ 5438 if (scrub) 5439 restore_default_state(ce, engine); 5440 5441 /* Rerun the request; its payload has been neutered (if guilty). */ 5442 __execlists_update_reg_state(ce, engine, head); 5443 } 5444 5445 bool 5446 intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine) 5447 { 5448 return engine->set_default_submission == 5449 intel_execlists_set_default_submission; 5450 } 5451 5452 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5453 #include "selftest_lrc.c" 5454 #endif 5455