1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 8 #include "gen8_engine_cs.h" 9 #include "i915_drv.h" 10 #include "i915_perf.h" 11 #include "i915_reg.h" 12 #include "intel_context.h" 13 #include "intel_engine.h" 14 #include "intel_engine_regs.h" 15 #include "intel_gpu_commands.h" 16 #include "intel_gt.h" 17 #include "intel_gt_regs.h" 18 #include "intel_lrc.h" 19 #include "intel_lrc_reg.h" 20 #include "intel_ring.h" 21 #include "shmem_utils.h" 22 23 /* 24 * The per-platform tables are u8-encoded in @data. Decode @data and set the 25 * addresses' offset and commands in @regs. The following encoding is used 26 * for each byte. There are 2 steps: decoding commands and decoding addresses. 27 * 28 * Commands: 29 * [7]: create NOPs - number of NOPs are set in lower bits 30 * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set 31 * MI_LRI_FORCE_POSTED 32 * [5:0]: Number of NOPs or registers to set values to in case of 33 * MI_LOAD_REGISTER_IMM 34 * 35 * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count" 36 * number of registers. They are set by using the REG/REG16 macros: the former 37 * is used for offsets smaller than 0x200 while the latter is for values bigger 38 * than that. Those macros already set all the bits documented below correctly: 39 * 40 * [7]: When a register offset needs more than 6 bits, use additional bytes, to 41 * follow, for the lower bits 42 * [6:0]: Register offset, without considering the engine base. 43 * 44 * This function only tweaks the commands and register offsets. Values are not 45 * filled out. 46 */ 47 static void set_offsets(u32 *regs, 48 const u8 *data, 49 const struct intel_engine_cs *engine, 50 bool close) 51 #define NOP(x) (BIT(7) | (x)) 52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6))) 53 #define POSTED BIT(0) 54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200)) 55 #define REG16(x) \ 56 (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \ 57 (((x) >> 2) & 0x7f) 58 #define END 0 59 { 60 const u32 base = engine->mmio_base; 61 62 while (*data) { 63 u8 count, flags; 64 65 if (*data & BIT(7)) { /* skip */ 66 count = *data++ & ~BIT(7); 67 regs += count; 68 continue; 69 } 70 71 count = *data & 0x3f; 72 flags = *data >> 6; 73 data++; 74 75 *regs = MI_LOAD_REGISTER_IMM(count); 76 if (flags & POSTED) 77 *regs |= MI_LRI_FORCE_POSTED; 78 if (GRAPHICS_VER(engine->i915) >= 11) 79 *regs |= MI_LRI_LRM_CS_MMIO; 80 regs++; 81 82 GEM_BUG_ON(!count); 83 do { 84 u32 offset = 0; 85 u8 v; 86 87 do { 88 v = *data++; 89 offset <<= 7; 90 offset |= v & ~BIT(7); 91 } while (v & BIT(7)); 92 93 regs[0] = base + (offset << 2); 94 regs += 2; 95 } while (--count); 96 } 97 98 if (close) { 99 /* Close the batch; used mainly by live_lrc_layout() */ 100 *regs = MI_BATCH_BUFFER_END; 101 if (GRAPHICS_VER(engine->i915) >= 11) 102 *regs |= BIT(0); 103 } 104 } 105 106 static const u8 gen8_xcs_offsets[] = { 107 NOP(1), 108 LRI(11, 0), 109 REG16(0x244), 110 REG(0x034), 111 REG(0x030), 112 REG(0x038), 113 REG(0x03c), 114 REG(0x168), 115 REG(0x140), 116 REG(0x110), 117 REG(0x11c), 118 REG(0x114), 119 REG(0x118), 120 121 NOP(9), 122 LRI(9, 0), 123 REG16(0x3a8), 124 REG16(0x28c), 125 REG16(0x288), 126 REG16(0x284), 127 REG16(0x280), 128 REG16(0x27c), 129 REG16(0x278), 130 REG16(0x274), 131 REG16(0x270), 132 133 NOP(13), 134 LRI(2, 0), 135 REG16(0x200), 136 REG(0x028), 137 138 END 139 }; 140 141 static const u8 gen9_xcs_offsets[] = { 142 NOP(1), 143 LRI(14, POSTED), 144 REG16(0x244), 145 REG(0x034), 146 REG(0x030), 147 REG(0x038), 148 REG(0x03c), 149 REG(0x168), 150 REG(0x140), 151 REG(0x110), 152 REG(0x11c), 153 REG(0x114), 154 REG(0x118), 155 REG(0x1c0), 156 REG(0x1c4), 157 REG(0x1c8), 158 159 NOP(3), 160 LRI(9, POSTED), 161 REG16(0x3a8), 162 REG16(0x28c), 163 REG16(0x288), 164 REG16(0x284), 165 REG16(0x280), 166 REG16(0x27c), 167 REG16(0x278), 168 REG16(0x274), 169 REG16(0x270), 170 171 NOP(13), 172 LRI(1, POSTED), 173 REG16(0x200), 174 175 NOP(13), 176 LRI(44, POSTED), 177 REG(0x028), 178 REG(0x09c), 179 REG(0x0c0), 180 REG(0x178), 181 REG(0x17c), 182 REG16(0x358), 183 REG(0x170), 184 REG(0x150), 185 REG(0x154), 186 REG(0x158), 187 REG16(0x41c), 188 REG16(0x600), 189 REG16(0x604), 190 REG16(0x608), 191 REG16(0x60c), 192 REG16(0x610), 193 REG16(0x614), 194 REG16(0x618), 195 REG16(0x61c), 196 REG16(0x620), 197 REG16(0x624), 198 REG16(0x628), 199 REG16(0x62c), 200 REG16(0x630), 201 REG16(0x634), 202 REG16(0x638), 203 REG16(0x63c), 204 REG16(0x640), 205 REG16(0x644), 206 REG16(0x648), 207 REG16(0x64c), 208 REG16(0x650), 209 REG16(0x654), 210 REG16(0x658), 211 REG16(0x65c), 212 REG16(0x660), 213 REG16(0x664), 214 REG16(0x668), 215 REG16(0x66c), 216 REG16(0x670), 217 REG16(0x674), 218 REG16(0x678), 219 REG16(0x67c), 220 REG(0x068), 221 222 END 223 }; 224 225 static const u8 gen12_xcs_offsets[] = { 226 NOP(1), 227 LRI(13, POSTED), 228 REG16(0x244), 229 REG(0x034), 230 REG(0x030), 231 REG(0x038), 232 REG(0x03c), 233 REG(0x168), 234 REG(0x140), 235 REG(0x110), 236 REG(0x1c0), 237 REG(0x1c4), 238 REG(0x1c8), 239 REG(0x180), 240 REG16(0x2b4), 241 242 NOP(5), 243 LRI(9, POSTED), 244 REG16(0x3a8), 245 REG16(0x28c), 246 REG16(0x288), 247 REG16(0x284), 248 REG16(0x280), 249 REG16(0x27c), 250 REG16(0x278), 251 REG16(0x274), 252 REG16(0x270), 253 254 END 255 }; 256 257 static const u8 dg2_xcs_offsets[] = { 258 NOP(1), 259 LRI(15, POSTED), 260 REG16(0x244), 261 REG(0x034), 262 REG(0x030), 263 REG(0x038), 264 REG(0x03c), 265 REG(0x168), 266 REG(0x140), 267 REG(0x110), 268 REG(0x1c0), 269 REG(0x1c4), 270 REG(0x1c8), 271 REG(0x180), 272 REG16(0x2b4), 273 REG(0x120), 274 REG(0x124), 275 276 NOP(1), 277 LRI(9, POSTED), 278 REG16(0x3a8), 279 REG16(0x28c), 280 REG16(0x288), 281 REG16(0x284), 282 REG16(0x280), 283 REG16(0x27c), 284 REG16(0x278), 285 REG16(0x274), 286 REG16(0x270), 287 288 END 289 }; 290 291 static const u8 gen8_rcs_offsets[] = { 292 NOP(1), 293 LRI(14, POSTED), 294 REG16(0x244), 295 REG(0x034), 296 REG(0x030), 297 REG(0x038), 298 REG(0x03c), 299 REG(0x168), 300 REG(0x140), 301 REG(0x110), 302 REG(0x11c), 303 REG(0x114), 304 REG(0x118), 305 REG(0x1c0), 306 REG(0x1c4), 307 REG(0x1c8), 308 309 NOP(3), 310 LRI(9, POSTED), 311 REG16(0x3a8), 312 REG16(0x28c), 313 REG16(0x288), 314 REG16(0x284), 315 REG16(0x280), 316 REG16(0x27c), 317 REG16(0x278), 318 REG16(0x274), 319 REG16(0x270), 320 321 NOP(13), 322 LRI(1, 0), 323 REG(0x0c8), 324 325 END 326 }; 327 328 static const u8 gen9_rcs_offsets[] = { 329 NOP(1), 330 LRI(14, POSTED), 331 REG16(0x244), 332 REG(0x34), 333 REG(0x30), 334 REG(0x38), 335 REG(0x3c), 336 REG(0x168), 337 REG(0x140), 338 REG(0x110), 339 REG(0x11c), 340 REG(0x114), 341 REG(0x118), 342 REG(0x1c0), 343 REG(0x1c4), 344 REG(0x1c8), 345 346 NOP(3), 347 LRI(9, POSTED), 348 REG16(0x3a8), 349 REG16(0x28c), 350 REG16(0x288), 351 REG16(0x284), 352 REG16(0x280), 353 REG16(0x27c), 354 REG16(0x278), 355 REG16(0x274), 356 REG16(0x270), 357 358 NOP(13), 359 LRI(1, 0), 360 REG(0xc8), 361 362 NOP(13), 363 LRI(44, POSTED), 364 REG(0x28), 365 REG(0x9c), 366 REG(0xc0), 367 REG(0x178), 368 REG(0x17c), 369 REG16(0x358), 370 REG(0x170), 371 REG(0x150), 372 REG(0x154), 373 REG(0x158), 374 REG16(0x41c), 375 REG16(0x600), 376 REG16(0x604), 377 REG16(0x608), 378 REG16(0x60c), 379 REG16(0x610), 380 REG16(0x614), 381 REG16(0x618), 382 REG16(0x61c), 383 REG16(0x620), 384 REG16(0x624), 385 REG16(0x628), 386 REG16(0x62c), 387 REG16(0x630), 388 REG16(0x634), 389 REG16(0x638), 390 REG16(0x63c), 391 REG16(0x640), 392 REG16(0x644), 393 REG16(0x648), 394 REG16(0x64c), 395 REG16(0x650), 396 REG16(0x654), 397 REG16(0x658), 398 REG16(0x65c), 399 REG16(0x660), 400 REG16(0x664), 401 REG16(0x668), 402 REG16(0x66c), 403 REG16(0x670), 404 REG16(0x674), 405 REG16(0x678), 406 REG16(0x67c), 407 REG(0x68), 408 409 END 410 }; 411 412 static const u8 gen11_rcs_offsets[] = { 413 NOP(1), 414 LRI(15, POSTED), 415 REG16(0x244), 416 REG(0x034), 417 REG(0x030), 418 REG(0x038), 419 REG(0x03c), 420 REG(0x168), 421 REG(0x140), 422 REG(0x110), 423 REG(0x11c), 424 REG(0x114), 425 REG(0x118), 426 REG(0x1c0), 427 REG(0x1c4), 428 REG(0x1c8), 429 REG(0x180), 430 431 NOP(1), 432 LRI(9, POSTED), 433 REG16(0x3a8), 434 REG16(0x28c), 435 REG16(0x288), 436 REG16(0x284), 437 REG16(0x280), 438 REG16(0x27c), 439 REG16(0x278), 440 REG16(0x274), 441 REG16(0x270), 442 443 LRI(1, POSTED), 444 REG(0x1b0), 445 446 NOP(10), 447 LRI(1, 0), 448 REG(0x0c8), 449 450 END 451 }; 452 453 static const u8 gen12_rcs_offsets[] = { 454 NOP(1), 455 LRI(13, POSTED), 456 REG16(0x244), 457 REG(0x034), 458 REG(0x030), 459 REG(0x038), 460 REG(0x03c), 461 REG(0x168), 462 REG(0x140), 463 REG(0x110), 464 REG(0x1c0), 465 REG(0x1c4), 466 REG(0x1c8), 467 REG(0x180), 468 REG16(0x2b4), 469 470 NOP(5), 471 LRI(9, POSTED), 472 REG16(0x3a8), 473 REG16(0x28c), 474 REG16(0x288), 475 REG16(0x284), 476 REG16(0x280), 477 REG16(0x27c), 478 REG16(0x278), 479 REG16(0x274), 480 REG16(0x270), 481 482 LRI(3, POSTED), 483 REG(0x1b0), 484 REG16(0x5a8), 485 REG16(0x5ac), 486 487 NOP(6), 488 LRI(1, 0), 489 REG(0x0c8), 490 NOP(3 + 9 + 1), 491 492 LRI(51, POSTED), 493 REG16(0x588), 494 REG16(0x588), 495 REG16(0x588), 496 REG16(0x588), 497 REG16(0x588), 498 REG16(0x588), 499 REG(0x028), 500 REG(0x09c), 501 REG(0x0c0), 502 REG(0x178), 503 REG(0x17c), 504 REG16(0x358), 505 REG(0x170), 506 REG(0x150), 507 REG(0x154), 508 REG(0x158), 509 REG16(0x41c), 510 REG16(0x600), 511 REG16(0x604), 512 REG16(0x608), 513 REG16(0x60c), 514 REG16(0x610), 515 REG16(0x614), 516 REG16(0x618), 517 REG16(0x61c), 518 REG16(0x620), 519 REG16(0x624), 520 REG16(0x628), 521 REG16(0x62c), 522 REG16(0x630), 523 REG16(0x634), 524 REG16(0x638), 525 REG16(0x63c), 526 REG16(0x640), 527 REG16(0x644), 528 REG16(0x648), 529 REG16(0x64c), 530 REG16(0x650), 531 REG16(0x654), 532 REG16(0x658), 533 REG16(0x65c), 534 REG16(0x660), 535 REG16(0x664), 536 REG16(0x668), 537 REG16(0x66c), 538 REG16(0x670), 539 REG16(0x674), 540 REG16(0x678), 541 REG16(0x67c), 542 REG(0x068), 543 REG(0x084), 544 NOP(1), 545 546 END 547 }; 548 549 static const u8 xehp_rcs_offsets[] = { 550 NOP(1), 551 LRI(13, POSTED), 552 REG16(0x244), 553 REG(0x034), 554 REG(0x030), 555 REG(0x038), 556 REG(0x03c), 557 REG(0x168), 558 REG(0x140), 559 REG(0x110), 560 REG(0x1c0), 561 REG(0x1c4), 562 REG(0x1c8), 563 REG(0x180), 564 REG16(0x2b4), 565 566 NOP(5), 567 LRI(9, POSTED), 568 REG16(0x3a8), 569 REG16(0x28c), 570 REG16(0x288), 571 REG16(0x284), 572 REG16(0x280), 573 REG16(0x27c), 574 REG16(0x278), 575 REG16(0x274), 576 REG16(0x270), 577 578 LRI(3, POSTED), 579 REG(0x1b0), 580 REG16(0x5a8), 581 REG16(0x5ac), 582 583 NOP(6), 584 LRI(1, 0), 585 REG(0x0c8), 586 587 END 588 }; 589 590 static const u8 dg2_rcs_offsets[] = { 591 NOP(1), 592 LRI(15, POSTED), 593 REG16(0x244), 594 REG(0x034), 595 REG(0x030), 596 REG(0x038), 597 REG(0x03c), 598 REG(0x168), 599 REG(0x140), 600 REG(0x110), 601 REG(0x1c0), 602 REG(0x1c4), 603 REG(0x1c8), 604 REG(0x180), 605 REG16(0x2b4), 606 REG(0x120), 607 REG(0x124), 608 609 NOP(1), 610 LRI(9, POSTED), 611 REG16(0x3a8), 612 REG16(0x28c), 613 REG16(0x288), 614 REG16(0x284), 615 REG16(0x280), 616 REG16(0x27c), 617 REG16(0x278), 618 REG16(0x274), 619 REG16(0x270), 620 621 LRI(3, POSTED), 622 REG(0x1b0), 623 REG16(0x5a8), 624 REG16(0x5ac), 625 626 NOP(6), 627 LRI(1, 0), 628 REG(0x0c8), 629 630 END 631 }; 632 633 static const u8 mtl_rcs_offsets[] = { 634 NOP(1), 635 LRI(15, POSTED), 636 REG16(0x244), 637 REG(0x034), 638 REG(0x030), 639 REG(0x038), 640 REG(0x03c), 641 REG(0x168), 642 REG(0x140), 643 REG(0x110), 644 REG(0x1c0), 645 REG(0x1c4), 646 REG(0x1c8), 647 REG(0x180), 648 REG16(0x2b4), 649 REG(0x120), 650 REG(0x124), 651 652 NOP(1), 653 LRI(9, POSTED), 654 REG16(0x3a8), 655 REG16(0x28c), 656 REG16(0x288), 657 REG16(0x284), 658 REG16(0x280), 659 REG16(0x27c), 660 REG16(0x278), 661 REG16(0x274), 662 REG16(0x270), 663 664 NOP(2), 665 LRI(2, POSTED), 666 REG16(0x5a8), 667 REG16(0x5ac), 668 669 NOP(6), 670 LRI(1, 0), 671 REG(0x0c8), 672 673 END 674 }; 675 676 #undef END 677 #undef REG16 678 #undef REG 679 #undef LRI 680 #undef NOP 681 682 static const u8 *reg_offsets(const struct intel_engine_cs *engine) 683 { 684 /* 685 * The gen12+ lists only have the registers we program in the basic 686 * default state. We rely on the context image using relative 687 * addressing to automatic fixup the register state between the 688 * physical engines for virtual engine. 689 */ 690 GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 && 691 !intel_engine_has_relative_mmio(engine)); 692 693 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) { 694 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) 695 return mtl_rcs_offsets; 696 else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 697 return dg2_rcs_offsets; 698 else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 699 return xehp_rcs_offsets; 700 else if (GRAPHICS_VER(engine->i915) >= 12) 701 return gen12_rcs_offsets; 702 else if (GRAPHICS_VER(engine->i915) >= 11) 703 return gen11_rcs_offsets; 704 else if (GRAPHICS_VER(engine->i915) >= 9) 705 return gen9_rcs_offsets; 706 else 707 return gen8_rcs_offsets; 708 } else { 709 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 710 return dg2_xcs_offsets; 711 else if (GRAPHICS_VER(engine->i915) >= 12) 712 return gen12_xcs_offsets; 713 else if (GRAPHICS_VER(engine->i915) >= 9) 714 return gen9_xcs_offsets; 715 else 716 return gen8_xcs_offsets; 717 } 718 } 719 720 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine) 721 { 722 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 723 return 0x70; 724 else if (GRAPHICS_VER(engine->i915) >= 12) 725 return 0x60; 726 else if (GRAPHICS_VER(engine->i915) >= 9) 727 return 0x54; 728 else if (engine->class == RENDER_CLASS) 729 return 0x58; 730 else 731 return -1; 732 } 733 734 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine) 735 { 736 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 737 return 0x80; 738 else if (GRAPHICS_VER(engine->i915) >= 12) 739 return 0x70; 740 else if (GRAPHICS_VER(engine->i915) >= 9) 741 return 0x64; 742 else if (GRAPHICS_VER(engine->i915) >= 8 && 743 engine->class == RENDER_CLASS) 744 return 0xc4; 745 else 746 return -1; 747 } 748 749 static int lrc_ring_gpr0(const struct intel_engine_cs *engine) 750 { 751 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 752 return 0x84; 753 else if (GRAPHICS_VER(engine->i915) >= 12) 754 return 0x74; 755 else if (GRAPHICS_VER(engine->i915) >= 9) 756 return 0x68; 757 else if (engine->class == RENDER_CLASS) 758 return 0xd8; 759 else 760 return -1; 761 } 762 763 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine) 764 { 765 if (GRAPHICS_VER(engine->i915) >= 12) 766 return 0x12; 767 else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS) 768 return 0x18; 769 else 770 return -1; 771 } 772 773 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine) 774 { 775 int x; 776 777 x = lrc_ring_wa_bb_per_ctx(engine); 778 if (x < 0) 779 return x; 780 781 return x + 2; 782 } 783 784 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine) 785 { 786 int x; 787 788 x = lrc_ring_indirect_ptr(engine); 789 if (x < 0) 790 return x; 791 792 return x + 2; 793 } 794 795 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine) 796 { 797 798 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 799 /* 800 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL 801 * simply to match the RCS context image layout. 802 */ 803 return 0xc6; 804 else if (engine->class != RENDER_CLASS) 805 return -1; 806 else if (GRAPHICS_VER(engine->i915) >= 12) 807 return 0xb6; 808 else if (GRAPHICS_VER(engine->i915) >= 11) 809 return 0xaa; 810 else 811 return -1; 812 } 813 814 static u32 815 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine) 816 { 817 if (GRAPHICS_VER(engine->i915) >= 12) 818 return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 819 else if (GRAPHICS_VER(engine->i915) >= 11) 820 return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 821 else if (GRAPHICS_VER(engine->i915) >= 9) 822 return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 823 else if (GRAPHICS_VER(engine->i915) >= 8) 824 return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 825 826 GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8); 827 828 return 0; 829 } 830 831 static void 832 lrc_setup_indirect_ctx(u32 *regs, 833 const struct intel_engine_cs *engine, 834 u32 ctx_bb_ggtt_addr, 835 u32 size) 836 { 837 GEM_BUG_ON(!size); 838 GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES)); 839 GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1); 840 regs[lrc_ring_indirect_ptr(engine) + 1] = 841 ctx_bb_ggtt_addr | (size / CACHELINE_BYTES); 842 843 GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1); 844 regs[lrc_ring_indirect_offset(engine) + 1] = 845 lrc_ring_indirect_offset_default(engine) << 6; 846 } 847 848 static void init_common_regs(u32 * const regs, 849 const struct intel_context *ce, 850 const struct intel_engine_cs *engine, 851 bool inhibit) 852 { 853 u32 ctl; 854 int loc; 855 856 ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH); 857 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); 858 if (inhibit) 859 ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT; 860 if (GRAPHICS_VER(engine->i915) < 11) 861 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | 862 CTX_CTRL_RS_CTX_ENABLE); 863 regs[CTX_CONTEXT_CONTROL] = ctl; 864 865 regs[CTX_TIMESTAMP] = ce->stats.runtime.last; 866 867 loc = lrc_ring_bb_offset(engine); 868 if (loc != -1) 869 regs[loc + 1] = 0; 870 } 871 872 static void init_wa_bb_regs(u32 * const regs, 873 const struct intel_engine_cs *engine) 874 { 875 const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx; 876 877 if (wa_ctx->per_ctx.size) { 878 const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 879 880 GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1); 881 regs[lrc_ring_wa_bb_per_ctx(engine) + 1] = 882 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; 883 } 884 885 if (wa_ctx->indirect_ctx.size) { 886 lrc_setup_indirect_ctx(regs, engine, 887 i915_ggtt_offset(wa_ctx->vma) + 888 wa_ctx->indirect_ctx.offset, 889 wa_ctx->indirect_ctx.size); 890 } 891 } 892 893 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt) 894 { 895 if (i915_vm_is_4lvl(&ppgtt->vm)) { 896 /* 64b PPGTT (48bit canonical) 897 * PDP0_DESCRIPTOR contains the base address to PML4 and 898 * other PDP Descriptors are ignored. 899 */ 900 ASSIGN_CTX_PML4(ppgtt, regs); 901 } else { 902 ASSIGN_CTX_PDP(ppgtt, regs, 3); 903 ASSIGN_CTX_PDP(ppgtt, regs, 2); 904 ASSIGN_CTX_PDP(ppgtt, regs, 1); 905 ASSIGN_CTX_PDP(ppgtt, regs, 0); 906 } 907 } 908 909 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm) 910 { 911 if (i915_is_ggtt(vm)) 912 return i915_vm_to_ggtt(vm)->alias; 913 else 914 return i915_vm_to_ppgtt(vm); 915 } 916 917 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine) 918 { 919 int x; 920 921 x = lrc_ring_mi_mode(engine); 922 if (x != -1) { 923 regs[x + 1] &= ~STOP_RING; 924 regs[x + 1] |= STOP_RING << 16; 925 } 926 } 927 928 static void __lrc_init_regs(u32 *regs, 929 const struct intel_context *ce, 930 const struct intel_engine_cs *engine, 931 bool inhibit) 932 { 933 /* 934 * A context is actually a big batch buffer with several 935 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The 936 * values we are setting here are only for the first context restore: 937 * on a subsequent save, the GPU will recreate this batchbuffer with new 938 * values (including all the missing MI_LOAD_REGISTER_IMM commands that 939 * we are not initializing here). 940 * 941 * Must keep consistent with virtual_update_register_offsets(). 942 */ 943 944 if (inhibit) 945 memset(regs, 0, PAGE_SIZE); 946 947 set_offsets(regs, reg_offsets(engine), engine, inhibit); 948 949 init_common_regs(regs, ce, engine, inhibit); 950 init_ppgtt_regs(regs, vm_alias(ce->vm)); 951 952 init_wa_bb_regs(regs, engine); 953 954 __reset_stop_ring(regs, engine); 955 } 956 957 void lrc_init_regs(const struct intel_context *ce, 958 const struct intel_engine_cs *engine, 959 bool inhibit) 960 { 961 __lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit); 962 } 963 964 void lrc_reset_regs(const struct intel_context *ce, 965 const struct intel_engine_cs *engine) 966 { 967 __reset_stop_ring(ce->lrc_reg_state, engine); 968 } 969 970 static void 971 set_redzone(void *vaddr, const struct intel_engine_cs *engine) 972 { 973 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 974 return; 975 976 vaddr += engine->context_size; 977 978 memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE); 979 } 980 981 static void 982 check_redzone(const void *vaddr, const struct intel_engine_cs *engine) 983 { 984 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 985 return; 986 987 vaddr += engine->context_size; 988 989 if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE)) 990 drm_err_once(&engine->i915->drm, 991 "%s context redzone overwritten!\n", 992 engine->name); 993 } 994 995 static u32 context_wa_bb_offset(const struct intel_context *ce) 996 { 997 return PAGE_SIZE * ce->wa_bb_page; 998 } 999 1000 static u32 *context_indirect_bb(const struct intel_context *ce) 1001 { 1002 void *ptr; 1003 1004 GEM_BUG_ON(!ce->wa_bb_page); 1005 1006 ptr = ce->lrc_reg_state; 1007 ptr -= LRC_STATE_OFFSET; /* back to start of context image */ 1008 ptr += context_wa_bb_offset(ce); 1009 1010 return ptr; 1011 } 1012 1013 void lrc_init_state(struct intel_context *ce, 1014 struct intel_engine_cs *engine, 1015 void *state) 1016 { 1017 bool inhibit = true; 1018 1019 set_redzone(state, engine); 1020 1021 if (engine->default_state) { 1022 shmem_read(engine->default_state, 0, 1023 state, engine->context_size); 1024 __set_bit(CONTEXT_VALID_BIT, &ce->flags); 1025 inhibit = false; 1026 } 1027 1028 /* Clear the ppHWSP (inc. per-context counters) */ 1029 memset(state, 0, PAGE_SIZE); 1030 1031 /* Clear the indirect wa and storage */ 1032 if (ce->wa_bb_page) 1033 memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE); 1034 1035 /* 1036 * The second page of the context object contains some registers which 1037 * must be set up prior to the first execution. 1038 */ 1039 __lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit); 1040 } 1041 1042 u32 lrc_indirect_bb(const struct intel_context *ce) 1043 { 1044 return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce); 1045 } 1046 1047 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs) 1048 { 1049 /* If predication is active, this will be noop'ed */ 1050 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2); 1051 *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA; 1052 *cs++ = 0; 1053 *cs++ = 0; /* No predication */ 1054 1055 /* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */ 1056 *cs++ = MI_BATCH_BUFFER_END | BIT(15); 1057 *cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE; 1058 1059 /* Instructions are no longer predicated (disabled), we can proceed */ 1060 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2); 1061 *cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA; 1062 *cs++ = 0; 1063 *cs++ = 1; /* enable predication before the next BB */ 1064 1065 *cs++ = MI_BATCH_BUFFER_END; 1066 GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA); 1067 1068 return cs; 1069 } 1070 1071 static struct i915_vma * 1072 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine) 1073 { 1074 struct drm_i915_gem_object *obj; 1075 struct i915_vma *vma; 1076 u32 context_size; 1077 1078 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); 1079 1080 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 1081 context_size += I915_GTT_PAGE_SIZE; /* for redzone */ 1082 1083 if (GRAPHICS_VER(engine->i915) >= 12) { 1084 ce->wa_bb_page = context_size / PAGE_SIZE; 1085 context_size += PAGE_SIZE; 1086 } 1087 1088 if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) { 1089 ce->parallel.guc.parent_page = context_size / PAGE_SIZE; 1090 context_size += PARENT_SCRATCH_SIZE; 1091 } 1092 1093 obj = i915_gem_object_create_lmem(engine->i915, context_size, 1094 I915_BO_ALLOC_PM_VOLATILE); 1095 if (IS_ERR(obj)) 1096 obj = i915_gem_object_create_shmem(engine->i915, context_size); 1097 if (IS_ERR(obj)) 1098 return ERR_CAST(obj); 1099 1100 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1101 if (IS_ERR(vma)) { 1102 i915_gem_object_put(obj); 1103 return vma; 1104 } 1105 1106 return vma; 1107 } 1108 1109 static struct intel_timeline * 1110 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine) 1111 { 1112 struct intel_timeline *tl = fetch_and_zero(&ce->timeline); 1113 1114 return intel_timeline_create_from_engine(engine, page_unmask_bits(tl)); 1115 } 1116 1117 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine) 1118 { 1119 struct intel_ring *ring; 1120 struct i915_vma *vma; 1121 int err; 1122 1123 GEM_BUG_ON(ce->state); 1124 1125 vma = __lrc_alloc_state(ce, engine); 1126 if (IS_ERR(vma)) 1127 return PTR_ERR(vma); 1128 1129 ring = intel_engine_create_ring(engine, ce->ring_size); 1130 if (IS_ERR(ring)) { 1131 err = PTR_ERR(ring); 1132 goto err_vma; 1133 } 1134 1135 if (!page_mask_bits(ce->timeline)) { 1136 struct intel_timeline *tl; 1137 1138 /* 1139 * Use the static global HWSP for the kernel context, and 1140 * a dynamically allocated cacheline for everyone else. 1141 */ 1142 if (unlikely(ce->timeline)) 1143 tl = pinned_timeline(ce, engine); 1144 else 1145 tl = intel_timeline_create(engine->gt); 1146 if (IS_ERR(tl)) { 1147 err = PTR_ERR(tl); 1148 goto err_ring; 1149 } 1150 1151 ce->timeline = tl; 1152 } 1153 1154 ce->ring = ring; 1155 ce->state = vma; 1156 1157 return 0; 1158 1159 err_ring: 1160 intel_ring_put(ring); 1161 err_vma: 1162 i915_vma_put(vma); 1163 return err; 1164 } 1165 1166 void lrc_reset(struct intel_context *ce) 1167 { 1168 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1169 1170 intel_ring_reset(ce->ring, ce->ring->emit); 1171 1172 /* Scrub away the garbage */ 1173 lrc_init_regs(ce, ce->engine, true); 1174 ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail); 1175 } 1176 1177 int 1178 lrc_pre_pin(struct intel_context *ce, 1179 struct intel_engine_cs *engine, 1180 struct i915_gem_ww_ctx *ww, 1181 void **vaddr) 1182 { 1183 GEM_BUG_ON(!ce->state); 1184 GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); 1185 1186 *vaddr = i915_gem_object_pin_map(ce->state->obj, 1187 i915_coherent_map_type(ce->engine->i915, 1188 ce->state->obj, 1189 false) | 1190 I915_MAP_OVERRIDE); 1191 1192 return PTR_ERR_OR_ZERO(*vaddr); 1193 } 1194 1195 int 1196 lrc_pin(struct intel_context *ce, 1197 struct intel_engine_cs *engine, 1198 void *vaddr) 1199 { 1200 ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET; 1201 1202 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) 1203 lrc_init_state(ce, engine, vaddr); 1204 1205 ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail); 1206 return 0; 1207 } 1208 1209 void lrc_unpin(struct intel_context *ce) 1210 { 1211 if (unlikely(ce->parallel.last_rq)) { 1212 i915_request_put(ce->parallel.last_rq); 1213 ce->parallel.last_rq = NULL; 1214 } 1215 check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET, 1216 ce->engine); 1217 } 1218 1219 void lrc_post_unpin(struct intel_context *ce) 1220 { 1221 i915_gem_object_unpin_map(ce->state->obj); 1222 } 1223 1224 void lrc_fini(struct intel_context *ce) 1225 { 1226 if (!ce->state) 1227 return; 1228 1229 intel_ring_put(fetch_and_zero(&ce->ring)); 1230 i915_vma_put(fetch_and_zero(&ce->state)); 1231 } 1232 1233 void lrc_destroy(struct kref *kref) 1234 { 1235 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 1236 1237 GEM_BUG_ON(!i915_active_is_idle(&ce->active)); 1238 GEM_BUG_ON(intel_context_is_pinned(ce)); 1239 1240 lrc_fini(ce); 1241 1242 intel_context_fini(ce); 1243 intel_context_free(ce); 1244 } 1245 1246 static u32 * 1247 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs) 1248 { 1249 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1250 MI_SRM_LRM_GLOBAL_GTT | 1251 MI_LRI_LRM_CS_MMIO; 1252 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1253 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1254 CTX_TIMESTAMP * sizeof(u32); 1255 *cs++ = 0; 1256 1257 *cs++ = MI_LOAD_REGISTER_REG | 1258 MI_LRR_SOURCE_CS_MMIO | 1259 MI_LRI_LRM_CS_MMIO; 1260 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1261 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0)); 1262 1263 *cs++ = MI_LOAD_REGISTER_REG | 1264 MI_LRR_SOURCE_CS_MMIO | 1265 MI_LRI_LRM_CS_MMIO; 1266 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1267 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0)); 1268 1269 return cs; 1270 } 1271 1272 static u32 * 1273 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs) 1274 { 1275 GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1); 1276 1277 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1278 MI_SRM_LRM_GLOBAL_GTT | 1279 MI_LRI_LRM_CS_MMIO; 1280 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1281 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1282 (lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32); 1283 *cs++ = 0; 1284 1285 return cs; 1286 } 1287 1288 static u32 * 1289 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs) 1290 { 1291 GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1); 1292 1293 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1294 MI_SRM_LRM_GLOBAL_GTT | 1295 MI_LRI_LRM_CS_MMIO; 1296 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1297 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1298 (lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32); 1299 *cs++ = 0; 1300 1301 *cs++ = MI_LOAD_REGISTER_REG | 1302 MI_LRR_SOURCE_CS_MMIO | 1303 MI_LRI_LRM_CS_MMIO; 1304 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1305 *cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0)); 1306 1307 return cs; 1308 } 1309 1310 /* 1311 * On DG2 during context restore of a preempted context in GPGPU mode, 1312 * RCS restore hang is detected. This is extremely timing dependent. 1313 * To address this below sw wabb is implemented for DG2 A steppings. 1314 */ 1315 static u32 * 1316 dg2_emit_rcs_hang_wabb(const struct intel_context *ce, u32 *cs) 1317 { 1318 *cs++ = MI_LOAD_REGISTER_IMM(1); 1319 *cs++ = i915_mmio_reg_offset(GEN12_STATE_ACK_DEBUG(ce->engine->mmio_base)); 1320 *cs++ = 0x21; 1321 1322 *cs++ = MI_LOAD_REGISTER_REG; 1323 *cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base)); 1324 *cs++ = i915_mmio_reg_offset(XEHP_CULLBIT1); 1325 1326 *cs++ = MI_LOAD_REGISTER_REG; 1327 *cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base)); 1328 *cs++ = i915_mmio_reg_offset(XEHP_CULLBIT2); 1329 1330 return cs; 1331 } 1332 1333 /* 1334 * The bspec's tuning guide asks us to program a vertical watermark value of 1335 * 0x3FF. However this register is not saved/restored properly by the 1336 * hardware, so we're required to apply the desired value via INDIRECT_CTX 1337 * batch buffer to ensure the value takes effect properly. All other bits 1338 * in this register should remain at 0 (the hardware default). 1339 */ 1340 static u32 * 1341 dg2_emit_draw_watermark_setting(u32 *cs) 1342 { 1343 *cs++ = MI_LOAD_REGISTER_IMM(1); 1344 *cs++ = i915_mmio_reg_offset(DRAW_WATERMARK); 1345 *cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF); 1346 1347 return cs; 1348 } 1349 1350 static u32 * 1351 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs) 1352 { 1353 cs = gen12_emit_timestamp_wa(ce, cs); 1354 cs = gen12_emit_cmd_buf_wa(ce, cs); 1355 cs = gen12_emit_restore_scratch(ce, cs); 1356 1357 /* Wa_22011450934:dg2 */ 1358 if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_A0, STEP_B0) || 1359 IS_DG2_GRAPHICS_STEP(ce->engine->i915, G11, STEP_A0, STEP_B0)) 1360 cs = dg2_emit_rcs_hang_wabb(ce, cs); 1361 1362 /* Wa_16013000631:dg2 */ 1363 if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) || 1364 IS_DG2_G11(ce->engine->i915)) 1365 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0); 1366 1367 /* hsdes: 1809175790 */ 1368 if (!HAS_FLAT_CCS(ce->engine->i915)) 1369 cs = gen12_emit_aux_table_inv(ce->engine->gt, 1370 cs, GEN12_GFX_CCS_AUX_NV); 1371 1372 /* Wa_16014892111 */ 1373 if (IS_MTL_GRAPHICS_STEP(ce->engine->i915, M, STEP_A0, STEP_B0) || 1374 IS_MTL_GRAPHICS_STEP(ce->engine->i915, P, STEP_A0, STEP_B0) || 1375 IS_DG2(ce->engine->i915)) 1376 cs = dg2_emit_draw_watermark_setting(cs); 1377 1378 return cs; 1379 } 1380 1381 static u32 * 1382 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs) 1383 { 1384 cs = gen12_emit_timestamp_wa(ce, cs); 1385 cs = gen12_emit_restore_scratch(ce, cs); 1386 1387 /* Wa_16013000631:dg2 */ 1388 if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) || 1389 IS_DG2_G11(ce->engine->i915)) 1390 if (ce->engine->class == COMPUTE_CLASS) 1391 cs = gen8_emit_pipe_control(cs, 1392 PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 1393 0); 1394 1395 /* hsdes: 1809175790 */ 1396 if (!HAS_FLAT_CCS(ce->engine->i915)) { 1397 if (ce->engine->class == VIDEO_DECODE_CLASS) 1398 cs = gen12_emit_aux_table_inv(ce->engine->gt, 1399 cs, GEN12_VD0_AUX_NV); 1400 else if (ce->engine->class == VIDEO_ENHANCEMENT_CLASS) 1401 cs = gen12_emit_aux_table_inv(ce->engine->gt, 1402 cs, GEN12_VE0_AUX_NV); 1403 } 1404 1405 return cs; 1406 } 1407 1408 static void 1409 setup_indirect_ctx_bb(const struct intel_context *ce, 1410 const struct intel_engine_cs *engine, 1411 u32 *(*emit)(const struct intel_context *, u32 *)) 1412 { 1413 u32 * const start = context_indirect_bb(ce); 1414 u32 *cs; 1415 1416 cs = emit(ce, start); 1417 GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs)); 1418 while ((unsigned long)cs % CACHELINE_BYTES) 1419 *cs++ = MI_NOOP; 1420 1421 GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start)); 1422 setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start)); 1423 1424 lrc_setup_indirect_ctx(ce->lrc_reg_state, engine, 1425 lrc_indirect_bb(ce), 1426 (cs - start) * sizeof(*cs)); 1427 } 1428 1429 /* 1430 * The context descriptor encodes various attributes of a context, 1431 * including its GTT address and some flags. Because it's fairly 1432 * expensive to calculate, we'll just do it once and cache the result, 1433 * which remains valid until the context is unpinned. 1434 * 1435 * This is what a descriptor looks like, from LSB to MSB:: 1436 * 1437 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) 1438 * bits 12-31: LRCA, GTT address of (the HWSP of) this context 1439 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) 1440 * bits 53-54: mbz, reserved for use by hardware 1441 * bits 55-63: group ID, currently unused and set to 0 1442 * 1443 * Starting from Gen11, the upper dword of the descriptor has a new format: 1444 * 1445 * bits 32-36: reserved 1446 * bits 37-47: SW context ID 1447 * bits 48:53: engine instance 1448 * bit 54: mbz, reserved for use by hardware 1449 * bits 55-60: SW counter 1450 * bits 61-63: engine class 1451 * 1452 * On Xe_HP, the upper dword of the descriptor has a new format: 1453 * 1454 * bits 32-37: virtual function number 1455 * bit 38: mbz, reserved for use by hardware 1456 * bits 39-54: SW context ID 1457 * bits 55-57: reserved 1458 * bits 58-63: SW counter 1459 * 1460 * engine info, SW context ID and SW counter need to form a unique number 1461 * (Context ID) per lrc. 1462 */ 1463 static u32 lrc_descriptor(const struct intel_context *ce) 1464 { 1465 u32 desc; 1466 1467 desc = INTEL_LEGACY_32B_CONTEXT; 1468 if (i915_vm_is_4lvl(ce->vm)) 1469 desc = INTEL_LEGACY_64B_CONTEXT; 1470 desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT; 1471 1472 desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE; 1473 if (GRAPHICS_VER(ce->vm->i915) == 8) 1474 desc |= GEN8_CTX_L3LLC_COHERENT; 1475 1476 return i915_ggtt_offset(ce->state) | desc; 1477 } 1478 1479 u32 lrc_update_regs(const struct intel_context *ce, 1480 const struct intel_engine_cs *engine, 1481 u32 head) 1482 { 1483 struct intel_ring *ring = ce->ring; 1484 u32 *regs = ce->lrc_reg_state; 1485 1486 GEM_BUG_ON(!intel_ring_offset_valid(ring, head)); 1487 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); 1488 1489 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); 1490 regs[CTX_RING_HEAD] = head; 1491 regs[CTX_RING_TAIL] = ring->tail; 1492 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 1493 1494 /* RPCS */ 1495 if (engine->class == RENDER_CLASS) { 1496 regs[CTX_R_PWR_CLK_STATE] = 1497 intel_sseu_make_rpcs(engine->gt, &ce->sseu); 1498 1499 i915_oa_init_reg_state(ce, engine); 1500 } 1501 1502 if (ce->wa_bb_page) { 1503 u32 *(*fn)(const struct intel_context *ce, u32 *cs); 1504 1505 fn = gen12_emit_indirect_ctx_xcs; 1506 if (ce->engine->class == RENDER_CLASS) 1507 fn = gen12_emit_indirect_ctx_rcs; 1508 1509 /* Mutually exclusive wrt to global indirect bb */ 1510 GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size); 1511 setup_indirect_ctx_bb(ce, engine, fn); 1512 } 1513 1514 return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE; 1515 } 1516 1517 void lrc_update_offsets(struct intel_context *ce, 1518 struct intel_engine_cs *engine) 1519 { 1520 set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false); 1521 } 1522 1523 void lrc_check_regs(const struct intel_context *ce, 1524 const struct intel_engine_cs *engine, 1525 const char *when) 1526 { 1527 const struct intel_ring *ring = ce->ring; 1528 u32 *regs = ce->lrc_reg_state; 1529 bool valid = true; 1530 int x; 1531 1532 if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) { 1533 pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n", 1534 engine->name, 1535 regs[CTX_RING_START], 1536 i915_ggtt_offset(ring->vma)); 1537 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); 1538 valid = false; 1539 } 1540 1541 if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) != 1542 (RING_CTL_SIZE(ring->size) | RING_VALID)) { 1543 pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n", 1544 engine->name, 1545 regs[CTX_RING_CTL], 1546 (u32)(RING_CTL_SIZE(ring->size) | RING_VALID)); 1547 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 1548 valid = false; 1549 } 1550 1551 x = lrc_ring_mi_mode(engine); 1552 if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) { 1553 pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n", 1554 engine->name, regs[x + 1]); 1555 regs[x + 1] &= ~STOP_RING; 1556 regs[x + 1] |= STOP_RING << 16; 1557 valid = false; 1558 } 1559 1560 WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when); 1561 } 1562 1563 /* 1564 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after 1565 * PIPE_CONTROL instruction. This is required for the flush to happen correctly 1566 * but there is a slight complication as this is applied in WA batch where the 1567 * values are only initialized once so we cannot take register value at the 1568 * beginning and reuse it further; hence we save its value to memory, upload a 1569 * constant value with bit21 set and then we restore it back with the saved value. 1570 * To simplify the WA, a constant value is formed by using the default value 1571 * of this register. This shouldn't be a problem because we are only modifying 1572 * it for a short period and this batch in non-premptible. We can ofcourse 1573 * use additional instructions that read the actual value of the register 1574 * at that time and set our bit of interest but it makes the WA complicated. 1575 * 1576 * This WA is also required for Gen9 so extracting as a function avoids 1577 * code duplication. 1578 */ 1579 static u32 * 1580 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) 1581 { 1582 /* NB no one else is allowed to scribble over scratch + 256! */ 1583 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1584 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1585 *batch++ = intel_gt_scratch_offset(engine->gt, 1586 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); 1587 *batch++ = 0; 1588 1589 *batch++ = MI_LOAD_REGISTER_IMM(1); 1590 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1591 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; 1592 1593 batch = gen8_emit_pipe_control(batch, 1594 PIPE_CONTROL_CS_STALL | 1595 PIPE_CONTROL_DC_FLUSH_ENABLE, 1596 0); 1597 1598 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1599 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1600 *batch++ = intel_gt_scratch_offset(engine->gt, 1601 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); 1602 *batch++ = 0; 1603 1604 return batch; 1605 } 1606 1607 /* 1608 * Typically we only have one indirect_ctx and per_ctx batch buffer which are 1609 * initialized at the beginning and shared across all contexts but this field 1610 * helps us to have multiple batches at different offsets and select them based 1611 * on a criteria. At the moment this batch always start at the beginning of the page 1612 * and at this point we don't have multiple wa_ctx batch buffers. 1613 * 1614 * The number of WA applied are not known at the beginning; we use this field 1615 * to return the no of DWORDS written. 1616 * 1617 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END 1618 * so it adds NOOPs as padding to make it cacheline aligned. 1619 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together 1620 * makes a complete batch buffer. 1621 */ 1622 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1623 { 1624 /* WaDisableCtxRestoreArbitration:bdw,chv */ 1625 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1626 1627 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ 1628 if (IS_BROADWELL(engine->i915)) 1629 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1630 1631 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ 1632 /* Actual scratch location is at 128 bytes offset */ 1633 batch = gen8_emit_pipe_control(batch, 1634 PIPE_CONTROL_FLUSH_L3 | 1635 PIPE_CONTROL_STORE_DATA_INDEX | 1636 PIPE_CONTROL_CS_STALL | 1637 PIPE_CONTROL_QW_WRITE, 1638 LRC_PPHWSP_SCRATCH_ADDR); 1639 1640 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1641 1642 /* Pad to end of cacheline */ 1643 while ((unsigned long)batch % CACHELINE_BYTES) 1644 *batch++ = MI_NOOP; 1645 1646 /* 1647 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because 1648 * execution depends on the length specified in terms of cache lines 1649 * in the register CTX_RCS_INDIRECT_CTX 1650 */ 1651 1652 return batch; 1653 } 1654 1655 struct lri { 1656 i915_reg_t reg; 1657 u32 value; 1658 }; 1659 1660 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) 1661 { 1662 GEM_BUG_ON(!count || count > 63); 1663 1664 *batch++ = MI_LOAD_REGISTER_IMM(count); 1665 do { 1666 *batch++ = i915_mmio_reg_offset(lri->reg); 1667 *batch++ = lri->value; 1668 } while (lri++, --count); 1669 *batch++ = MI_NOOP; 1670 1671 return batch; 1672 } 1673 1674 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1675 { 1676 static const struct lri lri[] = { 1677 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ 1678 { 1679 COMMON_SLICE_CHICKEN2, 1680 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 1681 0), 1682 }, 1683 1684 /* BSpec: 11391 */ 1685 { 1686 FF_SLICE_CHICKEN, 1687 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, 1688 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), 1689 }, 1690 1691 /* BSpec: 11299 */ 1692 { 1693 _3D_CHICKEN3, 1694 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, 1695 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), 1696 } 1697 }; 1698 1699 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1700 1701 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ 1702 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1703 1704 /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */ 1705 batch = gen8_emit_pipe_control(batch, 1706 PIPE_CONTROL_FLUSH_L3 | 1707 PIPE_CONTROL_STORE_DATA_INDEX | 1708 PIPE_CONTROL_CS_STALL | 1709 PIPE_CONTROL_QW_WRITE, 1710 LRC_PPHWSP_SCRATCH_ADDR); 1711 1712 batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); 1713 1714 /* WaMediaPoolStateCmdInWABB:bxt,glk */ 1715 if (HAS_POOLED_EU(engine->i915)) { 1716 /* 1717 * EU pool configuration is setup along with golden context 1718 * during context initialization. This value depends on 1719 * device type (2x6 or 3x6) and needs to be updated based 1720 * on which subslice is disabled especially for 2x6 1721 * devices, however it is safe to load default 1722 * configuration of 3x6 device instead of masking off 1723 * corresponding bits because HW ignores bits of a disabled 1724 * subslice and drops down to appropriate config. Please 1725 * see render_state_setup() in i915_gem_render_state.c for 1726 * possible configurations, to avoid duplication they are 1727 * not shown here again. 1728 */ 1729 *batch++ = GEN9_MEDIA_POOL_STATE; 1730 *batch++ = GEN9_MEDIA_POOL_ENABLE; 1731 *batch++ = 0x00777000; 1732 *batch++ = 0; 1733 *batch++ = 0; 1734 *batch++ = 0; 1735 } 1736 1737 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1738 1739 /* Pad to end of cacheline */ 1740 while ((unsigned long)batch % CACHELINE_BYTES) 1741 *batch++ = MI_NOOP; 1742 1743 return batch; 1744 } 1745 1746 #define CTX_WA_BB_SIZE (PAGE_SIZE) 1747 1748 static int lrc_create_wa_ctx(struct intel_engine_cs *engine) 1749 { 1750 struct drm_i915_gem_object *obj; 1751 struct i915_vma *vma; 1752 int err; 1753 1754 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE); 1755 if (IS_ERR(obj)) 1756 return PTR_ERR(obj); 1757 1758 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1759 if (IS_ERR(vma)) { 1760 err = PTR_ERR(vma); 1761 goto err; 1762 } 1763 1764 engine->wa_ctx.vma = vma; 1765 return 0; 1766 1767 err: 1768 i915_gem_object_put(obj); 1769 return err; 1770 } 1771 1772 void lrc_fini_wa_ctx(struct intel_engine_cs *engine) 1773 { 1774 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); 1775 } 1776 1777 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); 1778 1779 void lrc_init_wa_ctx(struct intel_engine_cs *engine) 1780 { 1781 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 1782 struct i915_wa_ctx_bb *wa_bb[] = { 1783 &wa_ctx->indirect_ctx, &wa_ctx->per_ctx 1784 }; 1785 wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)]; 1786 struct i915_gem_ww_ctx ww; 1787 void *batch, *batch_ptr; 1788 unsigned int i; 1789 int err; 1790 1791 if (GRAPHICS_VER(engine->i915) >= 11 || 1792 !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) 1793 return; 1794 1795 if (GRAPHICS_VER(engine->i915) == 9) { 1796 wa_bb_fn[0] = gen9_init_indirectctx_bb; 1797 wa_bb_fn[1] = NULL; 1798 } else if (GRAPHICS_VER(engine->i915) == 8) { 1799 wa_bb_fn[0] = gen8_init_indirectctx_bb; 1800 wa_bb_fn[1] = NULL; 1801 } 1802 1803 err = lrc_create_wa_ctx(engine); 1804 if (err) { 1805 /* 1806 * We continue even if we fail to initialize WA batch 1807 * because we only expect rare glitches but nothing 1808 * critical to prevent us from using GPU 1809 */ 1810 drm_err(&engine->i915->drm, 1811 "Ignoring context switch w/a allocation error:%d\n", 1812 err); 1813 return; 1814 } 1815 1816 if (!engine->wa_ctx.vma) 1817 return; 1818 1819 i915_gem_ww_ctx_init(&ww, true); 1820 retry: 1821 err = i915_gem_object_lock(wa_ctx->vma->obj, &ww); 1822 if (!err) 1823 err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH); 1824 if (err) 1825 goto err; 1826 1827 batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB); 1828 if (IS_ERR(batch)) { 1829 err = PTR_ERR(batch); 1830 goto err_unpin; 1831 } 1832 1833 /* 1834 * Emit the two workaround batch buffers, recording the offset from the 1835 * start of the workaround batch buffer object for each and their 1836 * respective sizes. 1837 */ 1838 batch_ptr = batch; 1839 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { 1840 wa_bb[i]->offset = batch_ptr - batch; 1841 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, 1842 CACHELINE_BYTES))) { 1843 err = -EINVAL; 1844 break; 1845 } 1846 if (wa_bb_fn[i]) 1847 batch_ptr = wa_bb_fn[i](engine, batch_ptr); 1848 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); 1849 } 1850 GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE); 1851 1852 __i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch); 1853 __i915_gem_object_release_map(wa_ctx->vma->obj); 1854 1855 /* Verify that we can handle failure to setup the wa_ctx */ 1856 if (!err) 1857 err = i915_inject_probe_error(engine->i915, -ENODEV); 1858 1859 err_unpin: 1860 if (err) 1861 i915_vma_unpin(wa_ctx->vma); 1862 err: 1863 if (err == -EDEADLK) { 1864 err = i915_gem_ww_ctx_backoff(&ww); 1865 if (!err) 1866 goto retry; 1867 } 1868 i915_gem_ww_ctx_fini(&ww); 1869 1870 if (err) { 1871 i915_vma_put(engine->wa_ctx.vma); 1872 1873 /* Clear all flags to prevent further use */ 1874 memset(wa_ctx, 0, sizeof(*wa_ctx)); 1875 } 1876 } 1877 1878 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt) 1879 { 1880 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1881 stats->runtime.num_underflow++; 1882 stats->runtime.max_underflow = 1883 max_t(u32, stats->runtime.max_underflow, -dt); 1884 #endif 1885 } 1886 1887 static u32 lrc_get_runtime(const struct intel_context *ce) 1888 { 1889 /* 1890 * We can use either ppHWSP[16] which is recorded before the context 1891 * switch (and so excludes the cost of context switches) or use the 1892 * value from the context image itself, which is saved/restored earlier 1893 * and so includes the cost of the save. 1894 */ 1895 return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]); 1896 } 1897 1898 void lrc_update_runtime(struct intel_context *ce) 1899 { 1900 struct intel_context_stats *stats = &ce->stats; 1901 u32 old; 1902 s32 dt; 1903 1904 old = stats->runtime.last; 1905 stats->runtime.last = lrc_get_runtime(ce); 1906 dt = stats->runtime.last - old; 1907 if (!dt) 1908 return; 1909 1910 if (unlikely(dt < 0)) { 1911 CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n", 1912 old, stats->runtime.last, dt); 1913 st_runtime_underflow(stats, dt); 1914 return; 1915 } 1916 1917 ewma_runtime_add(&stats->runtime.avg, dt); 1918 stats->runtime.total += dt; 1919 } 1920 1921 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1922 #include "selftest_lrc.c" 1923 #endif 1924