xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision 884c4074)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include "i915_drv.h"
137 #include "i915_perf.h"
138 #include "i915_trace.h"
139 #include "i915_vgpu.h"
140 #include "intel_breadcrumbs.h"
141 #include "intel_context.h"
142 #include "intel_engine_pm.h"
143 #include "intel_gt.h"
144 #include "intel_gt_pm.h"
145 #include "intel_gt_requests.h"
146 #include "intel_lrc_reg.h"
147 #include "intel_mocs.h"
148 #include "intel_reset.h"
149 #include "intel_ring.h"
150 #include "intel_workarounds.h"
151 #include "shmem_utils.h"
152 
153 #define RING_EXECLIST_QFULL		(1 << 0x2)
154 #define RING_EXECLIST1_VALID		(1 << 0x3)
155 #define RING_EXECLIST0_VALID		(1 << 0x4)
156 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
157 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
158 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
159 
160 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
161 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
162 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
163 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
164 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
165 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
166 
167 #define GEN8_CTX_STATUS_COMPLETED_MASK \
168 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
169 
170 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
171 
172 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
173 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
174 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
175 #define GEN12_IDLE_CTX_ID		0x7FF
176 #define GEN12_CSB_CTX_VALID(csb_dw) \
177 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
178 
179 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
180 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
181 
182 struct virtual_engine {
183 	struct intel_engine_cs base;
184 	struct intel_context context;
185 
186 	/*
187 	 * We allow only a single request through the virtual engine at a time
188 	 * (each request in the timeline waits for the completion fence of
189 	 * the previous before being submitted). By restricting ourselves to
190 	 * only submitting a single request, each request is placed on to a
191 	 * physical to maximise load spreading (by virtue of the late greedy
192 	 * scheduling -- each real engine takes the next available request
193 	 * upon idling).
194 	 */
195 	struct i915_request *request;
196 
197 	/*
198 	 * We keep a rbtree of available virtual engines inside each physical
199 	 * engine, sorted by priority. Here we preallocate the nodes we need
200 	 * for the virtual engine, indexed by physical_engine->id.
201 	 */
202 	struct ve_node {
203 		struct rb_node rb;
204 		int prio;
205 	} nodes[I915_NUM_ENGINES];
206 
207 	/*
208 	 * Keep track of bonded pairs -- restrictions upon on our selection
209 	 * of physical engines any particular request may be submitted to.
210 	 * If we receive a submit-fence from a master engine, we will only
211 	 * use one of sibling_mask physical engines.
212 	 */
213 	struct ve_bond {
214 		const struct intel_engine_cs *master;
215 		intel_engine_mask_t sibling_mask;
216 	} *bonds;
217 	unsigned int num_bonds;
218 
219 	/* And finally, which physical engines this virtual engine maps onto. */
220 	unsigned int num_siblings;
221 	struct intel_engine_cs *siblings[];
222 };
223 
224 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
225 {
226 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
227 	return container_of(engine, struct virtual_engine, base);
228 }
229 
230 static int __execlists_context_alloc(struct intel_context *ce,
231 				     struct intel_engine_cs *engine);
232 
233 static void execlists_init_reg_state(u32 *reg_state,
234 				     const struct intel_context *ce,
235 				     const struct intel_engine_cs *engine,
236 				     const struct intel_ring *ring,
237 				     bool close);
238 static void
239 __execlists_update_reg_state(const struct intel_context *ce,
240 			     const struct intel_engine_cs *engine,
241 			     u32 head);
242 
243 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
244 {
245 	if (INTEL_GEN(engine->i915) >= 12)
246 		return 0x60;
247 	else if (INTEL_GEN(engine->i915) >= 9)
248 		return 0x54;
249 	else if (engine->class == RENDER_CLASS)
250 		return 0x58;
251 	else
252 		return -1;
253 }
254 
255 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
256 {
257 	if (INTEL_GEN(engine->i915) >= 12)
258 		return 0x74;
259 	else if (INTEL_GEN(engine->i915) >= 9)
260 		return 0x68;
261 	else if (engine->class == RENDER_CLASS)
262 		return 0xd8;
263 	else
264 		return -1;
265 }
266 
267 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
268 {
269 	if (INTEL_GEN(engine->i915) >= 12)
270 		return 0x12;
271 	else if (INTEL_GEN(engine->i915) >= 9 || engine->class == RENDER_CLASS)
272 		return 0x18;
273 	else
274 		return -1;
275 }
276 
277 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
278 {
279 	int x;
280 
281 	x = lrc_ring_wa_bb_per_ctx(engine);
282 	if (x < 0)
283 		return x;
284 
285 	return x + 2;
286 }
287 
288 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
289 {
290 	int x;
291 
292 	x = lrc_ring_indirect_ptr(engine);
293 	if (x < 0)
294 		return x;
295 
296 	return x + 2;
297 }
298 
299 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
300 {
301 	if (engine->class != RENDER_CLASS)
302 		return -1;
303 
304 	if (INTEL_GEN(engine->i915) >= 12)
305 		return 0xb6;
306 	else if (INTEL_GEN(engine->i915) >= 11)
307 		return 0xaa;
308 	else
309 		return -1;
310 }
311 
312 static u32
313 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
314 {
315 	switch (INTEL_GEN(engine->i915)) {
316 	default:
317 		MISSING_CASE(INTEL_GEN(engine->i915));
318 		fallthrough;
319 	case 12:
320 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
321 	case 11:
322 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
323 	case 10:
324 		return GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
325 	case 9:
326 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
327 	case 8:
328 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
329 	}
330 }
331 
332 static void
333 lrc_ring_setup_indirect_ctx(u32 *regs,
334 			    const struct intel_engine_cs *engine,
335 			    u32 ctx_bb_ggtt_addr,
336 			    u32 size)
337 {
338 	GEM_BUG_ON(!size);
339 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
340 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
341 	regs[lrc_ring_indirect_ptr(engine) + 1] =
342 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
343 
344 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
345 	regs[lrc_ring_indirect_offset(engine) + 1] =
346 		lrc_ring_indirect_offset_default(engine) << 6;
347 }
348 
349 static u32 intel_context_get_runtime(const struct intel_context *ce)
350 {
351 	/*
352 	 * We can use either ppHWSP[16] which is recorded before the context
353 	 * switch (and so excludes the cost of context switches) or use the
354 	 * value from the context image itself, which is saved/restored earlier
355 	 * and so includes the cost of the save.
356 	 */
357 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
358 }
359 
360 static void mark_eio(struct i915_request *rq)
361 {
362 	if (i915_request_completed(rq))
363 		return;
364 
365 	GEM_BUG_ON(i915_request_signaled(rq));
366 
367 	i915_request_set_error_once(rq, -EIO);
368 	i915_request_mark_complete(rq);
369 }
370 
371 static struct i915_request *
372 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
373 {
374 	struct i915_request *active = rq;
375 
376 	rcu_read_lock();
377 	list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
378 		if (i915_request_completed(rq))
379 			break;
380 
381 		active = rq;
382 	}
383 	rcu_read_unlock();
384 
385 	return active;
386 }
387 
388 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
389 {
390 	return (i915_ggtt_offset(engine->status_page.vma) +
391 		I915_GEM_HWS_PREEMPT_ADDR);
392 }
393 
394 static inline void
395 ring_set_paused(const struct intel_engine_cs *engine, int state)
396 {
397 	/*
398 	 * We inspect HWS_PREEMPT with a semaphore inside
399 	 * engine->emit_fini_breadcrumb. If the dword is true,
400 	 * the ring is paused as the semaphore will busywait
401 	 * until the dword is false.
402 	 */
403 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
404 	if (state)
405 		wmb();
406 }
407 
408 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
409 {
410 	return rb_entry(rb, struct i915_priolist, node);
411 }
412 
413 static inline int rq_prio(const struct i915_request *rq)
414 {
415 	return READ_ONCE(rq->sched.attr.priority);
416 }
417 
418 static int effective_prio(const struct i915_request *rq)
419 {
420 	int prio = rq_prio(rq);
421 
422 	/*
423 	 * If this request is special and must not be interrupted at any
424 	 * cost, so be it. Note we are only checking the most recent request
425 	 * in the context and so may be masking an earlier vip request. It
426 	 * is hoped that under the conditions where nopreempt is used, this
427 	 * will not matter (i.e. all requests to that context will be
428 	 * nopreempt for as long as desired).
429 	 */
430 	if (i915_request_has_nopreempt(rq))
431 		prio = I915_PRIORITY_UNPREEMPTABLE;
432 
433 	return prio;
434 }
435 
436 static int queue_prio(const struct intel_engine_execlists *execlists)
437 {
438 	struct i915_priolist *p;
439 	struct rb_node *rb;
440 
441 	rb = rb_first_cached(&execlists->queue);
442 	if (!rb)
443 		return INT_MIN;
444 
445 	/*
446 	 * As the priolist[] are inverted, with the highest priority in [0],
447 	 * we have to flip the index value to become priority.
448 	 */
449 	p = to_priolist(rb);
450 	if (!I915_USER_PRIORITY_SHIFT)
451 		return p->priority;
452 
453 	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
454 }
455 
456 static inline bool need_preempt(const struct intel_engine_cs *engine,
457 				const struct i915_request *rq,
458 				struct rb_node *rb)
459 {
460 	int last_prio;
461 
462 	if (!intel_engine_has_semaphores(engine))
463 		return false;
464 
465 	/*
466 	 * Check if the current priority hint merits a preemption attempt.
467 	 *
468 	 * We record the highest value priority we saw during rescheduling
469 	 * prior to this dequeue, therefore we know that if it is strictly
470 	 * less than the current tail of ESLP[0], we do not need to force
471 	 * a preempt-to-idle cycle.
472 	 *
473 	 * However, the priority hint is a mere hint that we may need to
474 	 * preempt. If that hint is stale or we may be trying to preempt
475 	 * ourselves, ignore the request.
476 	 *
477 	 * More naturally we would write
478 	 *      prio >= max(0, last);
479 	 * except that we wish to prevent triggering preemption at the same
480 	 * priority level: the task that is running should remain running
481 	 * to preserve FIFO ordering of dependencies.
482 	 */
483 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
484 	if (engine->execlists.queue_priority_hint <= last_prio)
485 		return false;
486 
487 	/*
488 	 * Check against the first request in ELSP[1], it will, thanks to the
489 	 * power of PI, be the highest priority of that context.
490 	 */
491 	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
492 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
493 		return true;
494 
495 	if (rb) {
496 		struct virtual_engine *ve =
497 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
498 		bool preempt = false;
499 
500 		if (engine == ve->siblings[0]) { /* only preempt one sibling */
501 			struct i915_request *next;
502 
503 			rcu_read_lock();
504 			next = READ_ONCE(ve->request);
505 			if (next)
506 				preempt = rq_prio(next) > last_prio;
507 			rcu_read_unlock();
508 		}
509 
510 		if (preempt)
511 			return preempt;
512 	}
513 
514 	/*
515 	 * If the inflight context did not trigger the preemption, then maybe
516 	 * it was the set of queued requests? Pick the highest priority in
517 	 * the queue (the first active priolist) and see if it deserves to be
518 	 * running instead of ELSP[0].
519 	 *
520 	 * The highest priority request in the queue can not be either
521 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
522 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
523 	 */
524 	return queue_prio(&engine->execlists) > last_prio;
525 }
526 
527 __maybe_unused static inline bool
528 assert_priority_queue(const struct i915_request *prev,
529 		      const struct i915_request *next)
530 {
531 	/*
532 	 * Without preemption, the prev may refer to the still active element
533 	 * which we refuse to let go.
534 	 *
535 	 * Even with preemption, there are times when we think it is better not
536 	 * to preempt and leave an ostensibly lower priority request in flight.
537 	 */
538 	if (i915_request_is_active(prev))
539 		return true;
540 
541 	return rq_prio(prev) >= rq_prio(next);
542 }
543 
544 /*
545  * The context descriptor encodes various attributes of a context,
546  * including its GTT address and some flags. Because it's fairly
547  * expensive to calculate, we'll just do it once and cache the result,
548  * which remains valid until the context is unpinned.
549  *
550  * This is what a descriptor looks like, from LSB to MSB::
551  *
552  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
553  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
554  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
555  *      bits 53-54:    mbz, reserved for use by hardware
556  *      bits 55-63:    group ID, currently unused and set to 0
557  *
558  * Starting from Gen11, the upper dword of the descriptor has a new format:
559  *
560  *      bits 32-36:    reserved
561  *      bits 37-47:    SW context ID
562  *      bits 48:53:    engine instance
563  *      bit 54:        mbz, reserved for use by hardware
564  *      bits 55-60:    SW counter
565  *      bits 61-63:    engine class
566  *
567  * engine info, SW context ID and SW counter need to form a unique number
568  * (Context ID) per lrc.
569  */
570 static u32
571 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
572 {
573 	u32 desc;
574 
575 	desc = INTEL_LEGACY_32B_CONTEXT;
576 	if (i915_vm_is_4lvl(ce->vm))
577 		desc = INTEL_LEGACY_64B_CONTEXT;
578 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
579 
580 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
581 	if (IS_GEN(engine->i915, 8))
582 		desc |= GEN8_CTX_L3LLC_COHERENT;
583 
584 	return i915_ggtt_offset(ce->state) | desc;
585 }
586 
587 static inline unsigned int dword_in_page(void *addr)
588 {
589 	return offset_in_page(addr) / sizeof(u32);
590 }
591 
592 static void set_offsets(u32 *regs,
593 			const u8 *data,
594 			const struct intel_engine_cs *engine,
595 			bool clear)
596 #define NOP(x) (BIT(7) | (x))
597 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
598 #define POSTED BIT(0)
599 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
600 #define REG16(x) \
601 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
602 	(((x) >> 2) & 0x7f)
603 #define END(total_state_size) 0, (total_state_size)
604 {
605 	const u32 base = engine->mmio_base;
606 
607 	while (*data) {
608 		u8 count, flags;
609 
610 		if (*data & BIT(7)) { /* skip */
611 			count = *data++ & ~BIT(7);
612 			if (clear)
613 				memset32(regs, MI_NOOP, count);
614 			regs += count;
615 			continue;
616 		}
617 
618 		count = *data & 0x3f;
619 		flags = *data >> 6;
620 		data++;
621 
622 		*regs = MI_LOAD_REGISTER_IMM(count);
623 		if (flags & POSTED)
624 			*regs |= MI_LRI_FORCE_POSTED;
625 		if (INTEL_GEN(engine->i915) >= 11)
626 			*regs |= MI_LRI_LRM_CS_MMIO;
627 		regs++;
628 
629 		GEM_BUG_ON(!count);
630 		do {
631 			u32 offset = 0;
632 			u8 v;
633 
634 			do {
635 				v = *data++;
636 				offset <<= 7;
637 				offset |= v & ~BIT(7);
638 			} while (v & BIT(7));
639 
640 			regs[0] = base + (offset << 2);
641 			if (clear)
642 				regs[1] = 0;
643 			regs += 2;
644 		} while (--count);
645 	}
646 
647 	if (clear) {
648 		u8 count = *++data;
649 
650 		/* Clear past the tail for HW access */
651 		GEM_BUG_ON(dword_in_page(regs) > count);
652 		memset32(regs, MI_NOOP, count - dword_in_page(regs));
653 
654 		/* Close the batch; used mainly by live_lrc_layout() */
655 		*regs = MI_BATCH_BUFFER_END;
656 		if (INTEL_GEN(engine->i915) >= 10)
657 			*regs |= BIT(0);
658 	}
659 }
660 
661 static const u8 gen8_xcs_offsets[] = {
662 	NOP(1),
663 	LRI(11, 0),
664 	REG16(0x244),
665 	REG(0x034),
666 	REG(0x030),
667 	REG(0x038),
668 	REG(0x03c),
669 	REG(0x168),
670 	REG(0x140),
671 	REG(0x110),
672 	REG(0x11c),
673 	REG(0x114),
674 	REG(0x118),
675 
676 	NOP(9),
677 	LRI(9, 0),
678 	REG16(0x3a8),
679 	REG16(0x28c),
680 	REG16(0x288),
681 	REG16(0x284),
682 	REG16(0x280),
683 	REG16(0x27c),
684 	REG16(0x278),
685 	REG16(0x274),
686 	REG16(0x270),
687 
688 	NOP(13),
689 	LRI(2, 0),
690 	REG16(0x200),
691 	REG(0x028),
692 
693 	END(80)
694 };
695 
696 static const u8 gen9_xcs_offsets[] = {
697 	NOP(1),
698 	LRI(14, POSTED),
699 	REG16(0x244),
700 	REG(0x034),
701 	REG(0x030),
702 	REG(0x038),
703 	REG(0x03c),
704 	REG(0x168),
705 	REG(0x140),
706 	REG(0x110),
707 	REG(0x11c),
708 	REG(0x114),
709 	REG(0x118),
710 	REG(0x1c0),
711 	REG(0x1c4),
712 	REG(0x1c8),
713 
714 	NOP(3),
715 	LRI(9, POSTED),
716 	REG16(0x3a8),
717 	REG16(0x28c),
718 	REG16(0x288),
719 	REG16(0x284),
720 	REG16(0x280),
721 	REG16(0x27c),
722 	REG16(0x278),
723 	REG16(0x274),
724 	REG16(0x270),
725 
726 	NOP(13),
727 	LRI(1, POSTED),
728 	REG16(0x200),
729 
730 	NOP(13),
731 	LRI(44, POSTED),
732 	REG(0x028),
733 	REG(0x09c),
734 	REG(0x0c0),
735 	REG(0x178),
736 	REG(0x17c),
737 	REG16(0x358),
738 	REG(0x170),
739 	REG(0x150),
740 	REG(0x154),
741 	REG(0x158),
742 	REG16(0x41c),
743 	REG16(0x600),
744 	REG16(0x604),
745 	REG16(0x608),
746 	REG16(0x60c),
747 	REG16(0x610),
748 	REG16(0x614),
749 	REG16(0x618),
750 	REG16(0x61c),
751 	REG16(0x620),
752 	REG16(0x624),
753 	REG16(0x628),
754 	REG16(0x62c),
755 	REG16(0x630),
756 	REG16(0x634),
757 	REG16(0x638),
758 	REG16(0x63c),
759 	REG16(0x640),
760 	REG16(0x644),
761 	REG16(0x648),
762 	REG16(0x64c),
763 	REG16(0x650),
764 	REG16(0x654),
765 	REG16(0x658),
766 	REG16(0x65c),
767 	REG16(0x660),
768 	REG16(0x664),
769 	REG16(0x668),
770 	REG16(0x66c),
771 	REG16(0x670),
772 	REG16(0x674),
773 	REG16(0x678),
774 	REG16(0x67c),
775 	REG(0x068),
776 
777 	END(176)
778 };
779 
780 static const u8 gen12_xcs_offsets[] = {
781 	NOP(1),
782 	LRI(13, POSTED),
783 	REG16(0x244),
784 	REG(0x034),
785 	REG(0x030),
786 	REG(0x038),
787 	REG(0x03c),
788 	REG(0x168),
789 	REG(0x140),
790 	REG(0x110),
791 	REG(0x1c0),
792 	REG(0x1c4),
793 	REG(0x1c8),
794 	REG(0x180),
795 	REG16(0x2b4),
796 
797 	NOP(5),
798 	LRI(9, POSTED),
799 	REG16(0x3a8),
800 	REG16(0x28c),
801 	REG16(0x288),
802 	REG16(0x284),
803 	REG16(0x280),
804 	REG16(0x27c),
805 	REG16(0x278),
806 	REG16(0x274),
807 	REG16(0x270),
808 
809 	END(80)
810 };
811 
812 static const u8 gen8_rcs_offsets[] = {
813 	NOP(1),
814 	LRI(14, POSTED),
815 	REG16(0x244),
816 	REG(0x034),
817 	REG(0x030),
818 	REG(0x038),
819 	REG(0x03c),
820 	REG(0x168),
821 	REG(0x140),
822 	REG(0x110),
823 	REG(0x11c),
824 	REG(0x114),
825 	REG(0x118),
826 	REG(0x1c0),
827 	REG(0x1c4),
828 	REG(0x1c8),
829 
830 	NOP(3),
831 	LRI(9, POSTED),
832 	REG16(0x3a8),
833 	REG16(0x28c),
834 	REG16(0x288),
835 	REG16(0x284),
836 	REG16(0x280),
837 	REG16(0x27c),
838 	REG16(0x278),
839 	REG16(0x274),
840 	REG16(0x270),
841 
842 	NOP(13),
843 	LRI(1, 0),
844 	REG(0x0c8),
845 
846 	END(80)
847 };
848 
849 static const u8 gen9_rcs_offsets[] = {
850 	NOP(1),
851 	LRI(14, POSTED),
852 	REG16(0x244),
853 	REG(0x34),
854 	REG(0x30),
855 	REG(0x38),
856 	REG(0x3c),
857 	REG(0x168),
858 	REG(0x140),
859 	REG(0x110),
860 	REG(0x11c),
861 	REG(0x114),
862 	REG(0x118),
863 	REG(0x1c0),
864 	REG(0x1c4),
865 	REG(0x1c8),
866 
867 	NOP(3),
868 	LRI(9, POSTED),
869 	REG16(0x3a8),
870 	REG16(0x28c),
871 	REG16(0x288),
872 	REG16(0x284),
873 	REG16(0x280),
874 	REG16(0x27c),
875 	REG16(0x278),
876 	REG16(0x274),
877 	REG16(0x270),
878 
879 	NOP(13),
880 	LRI(1, 0),
881 	REG(0xc8),
882 
883 	NOP(13),
884 	LRI(44, POSTED),
885 	REG(0x28),
886 	REG(0x9c),
887 	REG(0xc0),
888 	REG(0x178),
889 	REG(0x17c),
890 	REG16(0x358),
891 	REG(0x170),
892 	REG(0x150),
893 	REG(0x154),
894 	REG(0x158),
895 	REG16(0x41c),
896 	REG16(0x600),
897 	REG16(0x604),
898 	REG16(0x608),
899 	REG16(0x60c),
900 	REG16(0x610),
901 	REG16(0x614),
902 	REG16(0x618),
903 	REG16(0x61c),
904 	REG16(0x620),
905 	REG16(0x624),
906 	REG16(0x628),
907 	REG16(0x62c),
908 	REG16(0x630),
909 	REG16(0x634),
910 	REG16(0x638),
911 	REG16(0x63c),
912 	REG16(0x640),
913 	REG16(0x644),
914 	REG16(0x648),
915 	REG16(0x64c),
916 	REG16(0x650),
917 	REG16(0x654),
918 	REG16(0x658),
919 	REG16(0x65c),
920 	REG16(0x660),
921 	REG16(0x664),
922 	REG16(0x668),
923 	REG16(0x66c),
924 	REG16(0x670),
925 	REG16(0x674),
926 	REG16(0x678),
927 	REG16(0x67c),
928 	REG(0x68),
929 
930 	END(176)
931 };
932 
933 static const u8 gen11_rcs_offsets[] = {
934 	NOP(1),
935 	LRI(15, POSTED),
936 	REG16(0x244),
937 	REG(0x034),
938 	REG(0x030),
939 	REG(0x038),
940 	REG(0x03c),
941 	REG(0x168),
942 	REG(0x140),
943 	REG(0x110),
944 	REG(0x11c),
945 	REG(0x114),
946 	REG(0x118),
947 	REG(0x1c0),
948 	REG(0x1c4),
949 	REG(0x1c8),
950 	REG(0x180),
951 
952 	NOP(1),
953 	LRI(9, POSTED),
954 	REG16(0x3a8),
955 	REG16(0x28c),
956 	REG16(0x288),
957 	REG16(0x284),
958 	REG16(0x280),
959 	REG16(0x27c),
960 	REG16(0x278),
961 	REG16(0x274),
962 	REG16(0x270),
963 
964 	LRI(1, POSTED),
965 	REG(0x1b0),
966 
967 	NOP(10),
968 	LRI(1, 0),
969 	REG(0x0c8),
970 
971 	END(80)
972 };
973 
974 static const u8 gen12_rcs_offsets[] = {
975 	NOP(1),
976 	LRI(13, POSTED),
977 	REG16(0x244),
978 	REG(0x034),
979 	REG(0x030),
980 	REG(0x038),
981 	REG(0x03c),
982 	REG(0x168),
983 	REG(0x140),
984 	REG(0x110),
985 	REG(0x1c0),
986 	REG(0x1c4),
987 	REG(0x1c8),
988 	REG(0x180),
989 	REG16(0x2b4),
990 
991 	NOP(5),
992 	LRI(9, POSTED),
993 	REG16(0x3a8),
994 	REG16(0x28c),
995 	REG16(0x288),
996 	REG16(0x284),
997 	REG16(0x280),
998 	REG16(0x27c),
999 	REG16(0x278),
1000 	REG16(0x274),
1001 	REG16(0x270),
1002 
1003 	LRI(3, POSTED),
1004 	REG(0x1b0),
1005 	REG16(0x5a8),
1006 	REG16(0x5ac),
1007 
1008 	NOP(6),
1009 	LRI(1, 0),
1010 	REG(0x0c8),
1011 	NOP(3 + 9 + 1),
1012 
1013 	LRI(51, POSTED),
1014 	REG16(0x588),
1015 	REG16(0x588),
1016 	REG16(0x588),
1017 	REG16(0x588),
1018 	REG16(0x588),
1019 	REG16(0x588),
1020 	REG(0x028),
1021 	REG(0x09c),
1022 	REG(0x0c0),
1023 	REG(0x178),
1024 	REG(0x17c),
1025 	REG16(0x358),
1026 	REG(0x170),
1027 	REG(0x150),
1028 	REG(0x154),
1029 	REG(0x158),
1030 	REG16(0x41c),
1031 	REG16(0x600),
1032 	REG16(0x604),
1033 	REG16(0x608),
1034 	REG16(0x60c),
1035 	REG16(0x610),
1036 	REG16(0x614),
1037 	REG16(0x618),
1038 	REG16(0x61c),
1039 	REG16(0x620),
1040 	REG16(0x624),
1041 	REG16(0x628),
1042 	REG16(0x62c),
1043 	REG16(0x630),
1044 	REG16(0x634),
1045 	REG16(0x638),
1046 	REG16(0x63c),
1047 	REG16(0x640),
1048 	REG16(0x644),
1049 	REG16(0x648),
1050 	REG16(0x64c),
1051 	REG16(0x650),
1052 	REG16(0x654),
1053 	REG16(0x658),
1054 	REG16(0x65c),
1055 	REG16(0x660),
1056 	REG16(0x664),
1057 	REG16(0x668),
1058 	REG16(0x66c),
1059 	REG16(0x670),
1060 	REG16(0x674),
1061 	REG16(0x678),
1062 	REG16(0x67c),
1063 	REG(0x068),
1064 	REG(0x084),
1065 	NOP(1),
1066 
1067 	END(192)
1068 };
1069 
1070 #undef END
1071 #undef REG16
1072 #undef REG
1073 #undef LRI
1074 #undef NOP
1075 
1076 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
1077 {
1078 	/*
1079 	 * The gen12+ lists only have the registers we program in the basic
1080 	 * default state. We rely on the context image using relative
1081 	 * addressing to automatic fixup the register state between the
1082 	 * physical engines for virtual engine.
1083 	 */
1084 	GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
1085 		   !intel_engine_has_relative_mmio(engine));
1086 
1087 	if (engine->class == RENDER_CLASS) {
1088 		if (INTEL_GEN(engine->i915) >= 12)
1089 			return gen12_rcs_offsets;
1090 		else if (INTEL_GEN(engine->i915) >= 11)
1091 			return gen11_rcs_offsets;
1092 		else if (INTEL_GEN(engine->i915) >= 9)
1093 			return gen9_rcs_offsets;
1094 		else
1095 			return gen8_rcs_offsets;
1096 	} else {
1097 		if (INTEL_GEN(engine->i915) >= 12)
1098 			return gen12_xcs_offsets;
1099 		else if (INTEL_GEN(engine->i915) >= 9)
1100 			return gen9_xcs_offsets;
1101 		else
1102 			return gen8_xcs_offsets;
1103 	}
1104 }
1105 
1106 static struct i915_request *
1107 __unwind_incomplete_requests(struct intel_engine_cs *engine)
1108 {
1109 	struct i915_request *rq, *rn, *active = NULL;
1110 	struct list_head *pl;
1111 	int prio = I915_PRIORITY_INVALID;
1112 
1113 	lockdep_assert_held(&engine->active.lock);
1114 
1115 	list_for_each_entry_safe_reverse(rq, rn,
1116 					 &engine->active.requests,
1117 					 sched.link) {
1118 		if (i915_request_completed(rq))
1119 			continue; /* XXX */
1120 
1121 		__i915_request_unsubmit(rq);
1122 
1123 		/*
1124 		 * Push the request back into the queue for later resubmission.
1125 		 * If this request is not native to this physical engine (i.e.
1126 		 * it came from a virtual source), push it back onto the virtual
1127 		 * engine so that it can be moved across onto another physical
1128 		 * engine as load dictates.
1129 		 */
1130 		if (likely(rq->execution_mask == engine->mask)) {
1131 			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1132 			if (rq_prio(rq) != prio) {
1133 				prio = rq_prio(rq);
1134 				pl = i915_sched_lookup_priolist(engine, prio);
1135 			}
1136 			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1137 
1138 			list_move(&rq->sched.link, pl);
1139 			set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1140 
1141 			/* Check in case we rollback so far we wrap [size/2] */
1142 			if (intel_ring_direction(rq->ring,
1143 						 intel_ring_wrap(rq->ring,
1144 								 rq->tail),
1145 						 rq->ring->tail) > 0)
1146 				rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
1147 
1148 			active = rq;
1149 		} else {
1150 			struct intel_engine_cs *owner = rq->context->engine;
1151 
1152 			WRITE_ONCE(rq->engine, owner);
1153 			owner->submit_request(rq);
1154 			active = NULL;
1155 		}
1156 	}
1157 
1158 	return active;
1159 }
1160 
1161 struct i915_request *
1162 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
1163 {
1164 	struct intel_engine_cs *engine =
1165 		container_of(execlists, typeof(*engine), execlists);
1166 
1167 	return __unwind_incomplete_requests(engine);
1168 }
1169 
1170 static inline void
1171 execlists_context_status_change(struct i915_request *rq, unsigned long status)
1172 {
1173 	/*
1174 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
1175 	 * The compiler should eliminate this function as dead-code.
1176 	 */
1177 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
1178 		return;
1179 
1180 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
1181 				   status, rq);
1182 }
1183 
1184 static void intel_engine_context_in(struct intel_engine_cs *engine)
1185 {
1186 	unsigned long flags;
1187 
1188 	if (atomic_add_unless(&engine->stats.active, 1, 0))
1189 		return;
1190 
1191 	write_seqlock_irqsave(&engine->stats.lock, flags);
1192 	if (!atomic_add_unless(&engine->stats.active, 1, 0)) {
1193 		engine->stats.start = ktime_get();
1194 		atomic_inc(&engine->stats.active);
1195 	}
1196 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1197 }
1198 
1199 static void intel_engine_context_out(struct intel_engine_cs *engine)
1200 {
1201 	unsigned long flags;
1202 
1203 	GEM_BUG_ON(!atomic_read(&engine->stats.active));
1204 
1205 	if (atomic_add_unless(&engine->stats.active, -1, 1))
1206 		return;
1207 
1208 	write_seqlock_irqsave(&engine->stats.lock, flags);
1209 	if (atomic_dec_and_test(&engine->stats.active)) {
1210 		engine->stats.total =
1211 			ktime_add(engine->stats.total,
1212 				  ktime_sub(ktime_get(), engine->stats.start));
1213 	}
1214 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1215 }
1216 
1217 static void
1218 execlists_check_context(const struct intel_context *ce,
1219 			const struct intel_engine_cs *engine)
1220 {
1221 	const struct intel_ring *ring = ce->ring;
1222 	u32 *regs = ce->lrc_reg_state;
1223 	bool valid = true;
1224 	int x;
1225 
1226 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1227 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1228 		       engine->name,
1229 		       regs[CTX_RING_START],
1230 		       i915_ggtt_offset(ring->vma));
1231 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1232 		valid = false;
1233 	}
1234 
1235 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1236 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1237 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1238 		       engine->name,
1239 		       regs[CTX_RING_CTL],
1240 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1241 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1242 		valid = false;
1243 	}
1244 
1245 	x = lrc_ring_mi_mode(engine);
1246 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1247 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1248 		       engine->name, regs[x + 1]);
1249 		regs[x + 1] &= ~STOP_RING;
1250 		regs[x + 1] |= STOP_RING << 16;
1251 		valid = false;
1252 	}
1253 
1254 	WARN_ONCE(!valid, "Invalid lrc state found before submission\n");
1255 }
1256 
1257 static void restore_default_state(struct intel_context *ce,
1258 				  struct intel_engine_cs *engine)
1259 {
1260 	u32 *regs;
1261 
1262 	regs = memset(ce->lrc_reg_state, 0, engine->context_size - PAGE_SIZE);
1263 	execlists_init_reg_state(regs, ce, engine, ce->ring, true);
1264 
1265 	ce->runtime.last = intel_context_get_runtime(ce);
1266 }
1267 
1268 static void reset_active(struct i915_request *rq,
1269 			 struct intel_engine_cs *engine)
1270 {
1271 	struct intel_context * const ce = rq->context;
1272 	u32 head;
1273 
1274 	/*
1275 	 * The executing context has been cancelled. We want to prevent
1276 	 * further execution along this context and propagate the error on
1277 	 * to anything depending on its results.
1278 	 *
1279 	 * In __i915_request_submit(), we apply the -EIO and remove the
1280 	 * requests' payloads for any banned requests. But first, we must
1281 	 * rewind the context back to the start of the incomplete request so
1282 	 * that we do not jump back into the middle of the batch.
1283 	 *
1284 	 * We preserve the breadcrumbs and semaphores of the incomplete
1285 	 * requests so that inter-timeline dependencies (i.e other timelines)
1286 	 * remain correctly ordered. And we defer to __i915_request_submit()
1287 	 * so that all asynchronous waits are correctly handled.
1288 	 */
1289 	ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
1290 		     rq->fence.context, rq->fence.seqno);
1291 
1292 	/* On resubmission of the active request, payload will be scrubbed */
1293 	if (i915_request_completed(rq))
1294 		head = rq->tail;
1295 	else
1296 		head = active_request(ce->timeline, rq)->head;
1297 	head = intel_ring_wrap(ce->ring, head);
1298 
1299 	/* Scrub the context image to prevent replaying the previous batch */
1300 	restore_default_state(ce, engine);
1301 	__execlists_update_reg_state(ce, engine, head);
1302 
1303 	/* We've switched away, so this should be a no-op, but intent matters */
1304 	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE;
1305 }
1306 
1307 static void st_update_runtime_underflow(struct intel_context *ce, s32 dt)
1308 {
1309 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1310 	ce->runtime.num_underflow += dt < 0;
1311 	ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt);
1312 #endif
1313 }
1314 
1315 static void intel_context_update_runtime(struct intel_context *ce)
1316 {
1317 	u32 old;
1318 	s32 dt;
1319 
1320 	if (intel_context_is_barrier(ce))
1321 		return;
1322 
1323 	old = ce->runtime.last;
1324 	ce->runtime.last = intel_context_get_runtime(ce);
1325 	dt = ce->runtime.last - old;
1326 
1327 	if (unlikely(dt <= 0)) {
1328 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1329 			 old, ce->runtime.last, dt);
1330 		st_update_runtime_underflow(ce, dt);
1331 		return;
1332 	}
1333 
1334 	ewma_runtime_add(&ce->runtime.avg, dt);
1335 	ce->runtime.total += dt;
1336 }
1337 
1338 static inline struct intel_engine_cs *
1339 __execlists_schedule_in(struct i915_request *rq)
1340 {
1341 	struct intel_engine_cs * const engine = rq->engine;
1342 	struct intel_context * const ce = rq->context;
1343 
1344 	intel_context_get(ce);
1345 
1346 	if (unlikely(intel_context_is_banned(ce)))
1347 		reset_active(rq, engine);
1348 
1349 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1350 		execlists_check_context(ce, engine);
1351 
1352 	if (ce->tag) {
1353 		/* Use a fixed tag for OA and friends */
1354 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
1355 		ce->lrc.ccid = ce->tag;
1356 	} else {
1357 		/* We don't need a strict matching tag, just different values */
1358 		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
1359 
1360 		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
1361 		clear_bit(tag - 1, &engine->context_tag);
1362 		ce->lrc.ccid = tag << (GEN11_SW_CTX_ID_SHIFT - 32);
1363 
1364 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
1365 	}
1366 
1367 	ce->lrc.ccid |= engine->execlists.ccid;
1368 
1369 	__intel_gt_pm_get(engine->gt);
1370 	if (engine->fw_domain && !atomic_fetch_inc(&engine->fw_active))
1371 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
1372 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
1373 	intel_engine_context_in(engine);
1374 
1375 	return engine;
1376 }
1377 
1378 static inline struct i915_request *
1379 execlists_schedule_in(struct i915_request *rq, int idx)
1380 {
1381 	struct intel_context * const ce = rq->context;
1382 	struct intel_engine_cs *old;
1383 
1384 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
1385 	trace_i915_request_in(rq, idx);
1386 
1387 	old = READ_ONCE(ce->inflight);
1388 	do {
1389 		if (!old) {
1390 			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
1391 			break;
1392 		}
1393 	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
1394 
1395 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
1396 	return i915_request_get(rq);
1397 }
1398 
1399 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
1400 {
1401 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
1402 	struct i915_request *next = READ_ONCE(ve->request);
1403 
1404 	if (next == rq || (next && next->execution_mask & ~rq->execution_mask))
1405 		tasklet_hi_schedule(&ve->base.execlists.tasklet);
1406 }
1407 
1408 static inline void
1409 __execlists_schedule_out(struct i915_request *rq,
1410 			 struct intel_engine_cs * const engine,
1411 			 unsigned int ccid)
1412 {
1413 	struct intel_context * const ce = rq->context;
1414 
1415 	/*
1416 	 * NB process_csb() is not under the engine->active.lock and hence
1417 	 * schedule_out can race with schedule_in meaning that we should
1418 	 * refrain from doing non-trivial work here.
1419 	 */
1420 
1421 	/*
1422 	 * If we have just completed this context, the engine may now be
1423 	 * idle and we want to re-enter powersaving.
1424 	 */
1425 	if (list_is_last_rcu(&rq->link, &ce->timeline->requests) &&
1426 	    i915_request_completed(rq))
1427 		intel_engine_add_retire(engine, ce->timeline);
1428 
1429 	ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
1430 	ccid &= GEN12_MAX_CONTEXT_HW_ID;
1431 	if (ccid < BITS_PER_LONG) {
1432 		GEM_BUG_ON(ccid == 0);
1433 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
1434 		set_bit(ccid - 1, &engine->context_tag);
1435 	}
1436 
1437 	intel_context_update_runtime(ce);
1438 	intel_engine_context_out(engine);
1439 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
1440 	if (engine->fw_domain && !atomic_dec_return(&engine->fw_active))
1441 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
1442 	intel_gt_pm_put_async(engine->gt);
1443 
1444 	/*
1445 	 * If this is part of a virtual engine, its next request may
1446 	 * have been blocked waiting for access to the active context.
1447 	 * We have to kick all the siblings again in case we need to
1448 	 * switch (e.g. the next request is not runnable on this
1449 	 * engine). Hopefully, we will already have submitted the next
1450 	 * request before the tasklet runs and do not need to rebuild
1451 	 * each virtual tree and kick everyone again.
1452 	 */
1453 	if (ce->engine != engine)
1454 		kick_siblings(rq, ce);
1455 
1456 	intel_context_put(ce);
1457 }
1458 
1459 static inline void
1460 execlists_schedule_out(struct i915_request *rq)
1461 {
1462 	struct intel_context * const ce = rq->context;
1463 	struct intel_engine_cs *cur, *old;
1464 	u32 ccid;
1465 
1466 	trace_i915_request_out(rq);
1467 
1468 	ccid = rq->context->lrc.ccid;
1469 	old = READ_ONCE(ce->inflight);
1470 	do
1471 		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
1472 	while (!try_cmpxchg(&ce->inflight, &old, cur));
1473 	if (!cur)
1474 		__execlists_schedule_out(rq, old, ccid);
1475 
1476 	i915_request_put(rq);
1477 }
1478 
1479 static u64 execlists_update_context(struct i915_request *rq)
1480 {
1481 	struct intel_context *ce = rq->context;
1482 	u64 desc = ce->lrc.desc;
1483 	u32 tail, prev;
1484 
1485 	/*
1486 	 * WaIdleLiteRestore:bdw,skl
1487 	 *
1488 	 * We should never submit the context with the same RING_TAIL twice
1489 	 * just in case we submit an empty ring, which confuses the HW.
1490 	 *
1491 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
1492 	 * the normal request to be able to always advance the RING_TAIL on
1493 	 * subsequent resubmissions (for lite restore). Should that fail us,
1494 	 * and we try and submit the same tail again, force the context
1495 	 * reload.
1496 	 *
1497 	 * If we need to return to a preempted context, we need to skip the
1498 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
1499 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
1500 	 * an earlier request.
1501 	 */
1502 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
1503 	prev = rq->ring->tail;
1504 	tail = intel_ring_set_tail(rq->ring, rq->tail);
1505 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
1506 		desc |= CTX_DESC_FORCE_RESTORE;
1507 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
1508 	rq->tail = rq->wa_tail;
1509 
1510 	/*
1511 	 * Make sure the context image is complete before we submit it to HW.
1512 	 *
1513 	 * Ostensibly, writes (including the WCB) should be flushed prior to
1514 	 * an uncached write such as our mmio register access, the empirical
1515 	 * evidence (esp. on Braswell) suggests that the WC write into memory
1516 	 * may not be visible to the HW prior to the completion of the UC
1517 	 * register write and that we may begin execution from the context
1518 	 * before its image is complete leading to invalid PD chasing.
1519 	 */
1520 	wmb();
1521 
1522 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
1523 	return desc;
1524 }
1525 
1526 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
1527 {
1528 	if (execlists->ctrl_reg) {
1529 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
1530 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
1531 	} else {
1532 		writel(upper_32_bits(desc), execlists->submit_reg);
1533 		writel(lower_32_bits(desc), execlists->submit_reg);
1534 	}
1535 }
1536 
1537 static __maybe_unused char *
1538 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
1539 {
1540 	if (!rq)
1541 		return "";
1542 
1543 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
1544 		 prefix,
1545 		 rq->context->lrc.ccid,
1546 		 rq->fence.context, rq->fence.seqno,
1547 		 i915_request_completed(rq) ? "!" :
1548 		 i915_request_started(rq) ? "*" :
1549 		 "",
1550 		 rq_prio(rq));
1551 
1552 	return buf;
1553 }
1554 
1555 static __maybe_unused void
1556 trace_ports(const struct intel_engine_execlists *execlists,
1557 	    const char *msg,
1558 	    struct i915_request * const *ports)
1559 {
1560 	const struct intel_engine_cs *engine =
1561 		container_of(execlists, typeof(*engine), execlists);
1562 	char __maybe_unused p0[40], p1[40];
1563 
1564 	if (!ports[0])
1565 		return;
1566 
1567 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
1568 		     dump_port(p0, sizeof(p0), "", ports[0]),
1569 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
1570 }
1571 
1572 static inline bool
1573 reset_in_progress(const struct intel_engine_execlists *execlists)
1574 {
1575 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1576 }
1577 
1578 static __maybe_unused bool
1579 assert_pending_valid(const struct intel_engine_execlists *execlists,
1580 		     const char *msg)
1581 {
1582 	struct intel_engine_cs *engine =
1583 		container_of(execlists, typeof(*engine), execlists);
1584 	struct i915_request * const *port, *rq;
1585 	struct intel_context *ce = NULL;
1586 	bool sentinel = false;
1587 	u32 ccid = -1;
1588 
1589 	trace_ports(execlists, msg, execlists->pending);
1590 
1591 	/* We may be messing around with the lists during reset, lalala */
1592 	if (reset_in_progress(execlists))
1593 		return true;
1594 
1595 	if (!execlists->pending[0]) {
1596 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
1597 			      engine->name);
1598 		return false;
1599 	}
1600 
1601 	if (execlists->pending[execlists_num_ports(execlists)]) {
1602 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
1603 			      engine->name, execlists_num_ports(execlists));
1604 		return false;
1605 	}
1606 
1607 	for (port = execlists->pending; (rq = *port); port++) {
1608 		unsigned long flags;
1609 		bool ok = true;
1610 
1611 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
1612 		GEM_BUG_ON(!i915_request_is_active(rq));
1613 
1614 		if (ce == rq->context) {
1615 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
1616 				      engine->name,
1617 				      ce->timeline->fence_context,
1618 				      port - execlists->pending);
1619 			return false;
1620 		}
1621 		ce = rq->context;
1622 
1623 		if (ccid == ce->lrc.ccid) {
1624 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
1625 				      engine->name,
1626 				      ccid, ce->timeline->fence_context,
1627 				      port - execlists->pending);
1628 			return false;
1629 		}
1630 		ccid = ce->lrc.ccid;
1631 
1632 		/*
1633 		 * Sentinels are supposed to be the last request so they flush
1634 		 * the current execution off the HW. Check that they are the only
1635 		 * request in the pending submission.
1636 		 */
1637 		if (sentinel) {
1638 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
1639 				      engine->name,
1640 				      ce->timeline->fence_context,
1641 				      port - execlists->pending);
1642 			return false;
1643 		}
1644 		sentinel = i915_request_has_sentinel(rq);
1645 
1646 		/* Hold tightly onto the lock to prevent concurrent retires! */
1647 		if (!spin_trylock_irqsave(&rq->lock, flags))
1648 			continue;
1649 
1650 		if (i915_request_completed(rq))
1651 			goto unlock;
1652 
1653 		if (i915_active_is_idle(&ce->active) &&
1654 		    !intel_context_is_barrier(ce)) {
1655 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
1656 				      engine->name,
1657 				      ce->timeline->fence_context,
1658 				      port - execlists->pending);
1659 			ok = false;
1660 			goto unlock;
1661 		}
1662 
1663 		if (!i915_vma_is_pinned(ce->state)) {
1664 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
1665 				      engine->name,
1666 				      ce->timeline->fence_context,
1667 				      port - execlists->pending);
1668 			ok = false;
1669 			goto unlock;
1670 		}
1671 
1672 		if (!i915_vma_is_pinned(ce->ring->vma)) {
1673 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
1674 				      engine->name,
1675 				      ce->timeline->fence_context,
1676 				      port - execlists->pending);
1677 			ok = false;
1678 			goto unlock;
1679 		}
1680 
1681 unlock:
1682 		spin_unlock_irqrestore(&rq->lock, flags);
1683 		if (!ok)
1684 			return false;
1685 	}
1686 
1687 	return ce;
1688 }
1689 
1690 static void execlists_submit_ports(struct intel_engine_cs *engine)
1691 {
1692 	struct intel_engine_execlists *execlists = &engine->execlists;
1693 	unsigned int n;
1694 
1695 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
1696 
1697 	/*
1698 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
1699 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
1700 	 * not be relinquished until the device is idle (see
1701 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
1702 	 * that all ELSP are drained i.e. we have processed the CSB,
1703 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
1704 	 */
1705 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1706 
1707 	/*
1708 	 * ELSQ note: the submit queue is not cleared after being submitted
1709 	 * to the HW so we need to make sure we always clean it up. This is
1710 	 * currently ensured by the fact that we always write the same number
1711 	 * of elsq entries, keep this in mind before changing the loop below.
1712 	 */
1713 	for (n = execlists_num_ports(execlists); n--; ) {
1714 		struct i915_request *rq = execlists->pending[n];
1715 
1716 		write_desc(execlists,
1717 			   rq ? execlists_update_context(rq) : 0,
1718 			   n);
1719 	}
1720 
1721 	/* we need to manually load the submit queue */
1722 	if (execlists->ctrl_reg)
1723 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
1724 }
1725 
1726 static bool ctx_single_port_submission(const struct intel_context *ce)
1727 {
1728 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
1729 		intel_context_force_single_submission(ce));
1730 }
1731 
1732 static bool can_merge_ctx(const struct intel_context *prev,
1733 			  const struct intel_context *next)
1734 {
1735 	if (prev != next)
1736 		return false;
1737 
1738 	if (ctx_single_port_submission(prev))
1739 		return false;
1740 
1741 	return true;
1742 }
1743 
1744 static unsigned long i915_request_flags(const struct i915_request *rq)
1745 {
1746 	return READ_ONCE(rq->fence.flags);
1747 }
1748 
1749 static bool can_merge_rq(const struct i915_request *prev,
1750 			 const struct i915_request *next)
1751 {
1752 	GEM_BUG_ON(prev == next);
1753 	GEM_BUG_ON(!assert_priority_queue(prev, next));
1754 
1755 	/*
1756 	 * We do not submit known completed requests. Therefore if the next
1757 	 * request is already completed, we can pretend to merge it in
1758 	 * with the previous context (and we will skip updating the ELSP
1759 	 * and tracking). Thus hopefully keeping the ELSP full with active
1760 	 * contexts, despite the best efforts of preempt-to-busy to confuse
1761 	 * us.
1762 	 */
1763 	if (i915_request_completed(next))
1764 		return true;
1765 
1766 	if (unlikely((i915_request_flags(prev) ^ i915_request_flags(next)) &
1767 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
1768 		      BIT(I915_FENCE_FLAG_SENTINEL))))
1769 		return false;
1770 
1771 	if (!can_merge_ctx(prev->context, next->context))
1772 		return false;
1773 
1774 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
1775 	return true;
1776 }
1777 
1778 static void virtual_update_register_offsets(u32 *regs,
1779 					    struct intel_engine_cs *engine)
1780 {
1781 	set_offsets(regs, reg_offsets(engine), engine, false);
1782 }
1783 
1784 static bool virtual_matches(const struct virtual_engine *ve,
1785 			    const struct i915_request *rq,
1786 			    const struct intel_engine_cs *engine)
1787 {
1788 	const struct intel_engine_cs *inflight;
1789 
1790 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1791 		return false;
1792 
1793 	/*
1794 	 * We track when the HW has completed saving the context image
1795 	 * (i.e. when we have seen the final CS event switching out of
1796 	 * the context) and must not overwrite the context image before
1797 	 * then. This restricts us to only using the active engine
1798 	 * while the previous virtualized request is inflight (so
1799 	 * we reuse the register offsets). This is a very small
1800 	 * hystersis on the greedy seelction algorithm.
1801 	 */
1802 	inflight = intel_context_inflight(&ve->context);
1803 	if (inflight && inflight != engine)
1804 		return false;
1805 
1806 	return true;
1807 }
1808 
1809 static void virtual_xfer_context(struct virtual_engine *ve,
1810 				 struct intel_engine_cs *engine)
1811 {
1812 	unsigned int n;
1813 
1814 	if (likely(engine == ve->siblings[0]))
1815 		return;
1816 
1817 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1818 	if (!intel_engine_has_relative_mmio(engine))
1819 		virtual_update_register_offsets(ve->context.lrc_reg_state,
1820 						engine);
1821 
1822 	/*
1823 	 * Move the bound engine to the top of the list for
1824 	 * future execution. We then kick this tasklet first
1825 	 * before checking others, so that we preferentially
1826 	 * reuse this set of bound registers.
1827 	 */
1828 	for (n = 1; n < ve->num_siblings; n++) {
1829 		if (ve->siblings[n] == engine) {
1830 			swap(ve->siblings[n], ve->siblings[0]);
1831 			break;
1832 		}
1833 	}
1834 }
1835 
1836 #define for_each_waiter(p__, rq__) \
1837 	list_for_each_entry_lockless(p__, \
1838 				     &(rq__)->sched.waiters_list, \
1839 				     wait_link)
1840 
1841 #define for_each_signaler(p__, rq__) \
1842 	list_for_each_entry_rcu(p__, \
1843 				&(rq__)->sched.signalers_list, \
1844 				signal_link)
1845 
1846 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1847 {
1848 	LIST_HEAD(list);
1849 
1850 	/*
1851 	 * We want to move the interrupted request to the back of
1852 	 * the round-robin list (i.e. its priority level), but
1853 	 * in doing so, we must then move all requests that were in
1854 	 * flight and were waiting for the interrupted request to
1855 	 * be run after it again.
1856 	 */
1857 	do {
1858 		struct i915_dependency *p;
1859 
1860 		GEM_BUG_ON(i915_request_is_active(rq));
1861 		list_move_tail(&rq->sched.link, pl);
1862 
1863 		for_each_waiter(p, rq) {
1864 			struct i915_request *w =
1865 				container_of(p->waiter, typeof(*w), sched);
1866 
1867 			if (p->flags & I915_DEPENDENCY_WEAK)
1868 				continue;
1869 
1870 			/* Leave semaphores spinning on the other engines */
1871 			if (w->engine != rq->engine)
1872 				continue;
1873 
1874 			/* No waiter should start before its signaler */
1875 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1876 				   i915_request_started(w) &&
1877 				   !i915_request_completed(rq));
1878 
1879 			GEM_BUG_ON(i915_request_is_active(w));
1880 			if (!i915_request_is_ready(w))
1881 				continue;
1882 
1883 			if (rq_prio(w) < rq_prio(rq))
1884 				continue;
1885 
1886 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1887 			list_move_tail(&w->sched.link, &list);
1888 		}
1889 
1890 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1891 	} while (rq);
1892 }
1893 
1894 static void defer_active(struct intel_engine_cs *engine)
1895 {
1896 	struct i915_request *rq;
1897 
1898 	rq = __unwind_incomplete_requests(engine);
1899 	if (!rq)
1900 		return;
1901 
1902 	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1903 }
1904 
1905 static bool
1906 need_timeslice(const struct intel_engine_cs *engine,
1907 	       const struct i915_request *rq,
1908 	       const struct rb_node *rb)
1909 {
1910 	int hint;
1911 
1912 	if (!intel_engine_has_timeslices(engine))
1913 		return false;
1914 
1915 	hint = engine->execlists.queue_priority_hint;
1916 
1917 	if (rb) {
1918 		const struct virtual_engine *ve =
1919 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1920 		const struct intel_engine_cs *inflight =
1921 			intel_context_inflight(&ve->context);
1922 
1923 		if (!inflight || inflight == engine) {
1924 			struct i915_request *next;
1925 
1926 			rcu_read_lock();
1927 			next = READ_ONCE(ve->request);
1928 			if (next)
1929 				hint = max(hint, rq_prio(next));
1930 			rcu_read_unlock();
1931 		}
1932 	}
1933 
1934 	if (!list_is_last(&rq->sched.link, &engine->active.requests))
1935 		hint = max(hint, rq_prio(list_next_entry(rq, sched.link)));
1936 
1937 	GEM_BUG_ON(hint >= I915_PRIORITY_UNPREEMPTABLE);
1938 	return hint >= effective_prio(rq);
1939 }
1940 
1941 static bool
1942 timeslice_yield(const struct intel_engine_execlists *el,
1943 		const struct i915_request *rq)
1944 {
1945 	/*
1946 	 * Once bitten, forever smitten!
1947 	 *
1948 	 * If the active context ever busy-waited on a semaphore,
1949 	 * it will be treated as a hog until the end of its timeslice (i.e.
1950 	 * until it is scheduled out and replaced by a new submission,
1951 	 * possibly even its own lite-restore). The HW only sends an interrupt
1952 	 * on the first miss, and we do know if that semaphore has been
1953 	 * signaled, or even if it is now stuck on another semaphore. Play
1954 	 * safe, yield if it might be stuck -- it will be given a fresh
1955 	 * timeslice in the near future.
1956 	 */
1957 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1958 }
1959 
1960 static bool
1961 timeslice_expired(const struct intel_engine_execlists *el,
1962 		  const struct i915_request *rq)
1963 {
1964 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1965 }
1966 
1967 static int
1968 switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
1969 {
1970 	if (list_is_last(&rq->sched.link, &engine->active.requests))
1971 		return engine->execlists.queue_priority_hint;
1972 
1973 	return rq_prio(list_next_entry(rq, sched.link));
1974 }
1975 
1976 static inline unsigned long
1977 timeslice(const struct intel_engine_cs *engine)
1978 {
1979 	return READ_ONCE(engine->props.timeslice_duration_ms);
1980 }
1981 
1982 static unsigned long active_timeslice(const struct intel_engine_cs *engine)
1983 {
1984 	const struct intel_engine_execlists *execlists = &engine->execlists;
1985 	const struct i915_request *rq = *execlists->active;
1986 
1987 	if (!rq || i915_request_completed(rq))
1988 		return 0;
1989 
1990 	if (READ_ONCE(execlists->switch_priority_hint) < effective_prio(rq))
1991 		return 0;
1992 
1993 	return timeslice(engine);
1994 }
1995 
1996 static void set_timeslice(struct intel_engine_cs *engine)
1997 {
1998 	unsigned long duration;
1999 
2000 	if (!intel_engine_has_timeslices(engine))
2001 		return;
2002 
2003 	duration = active_timeslice(engine);
2004 	ENGINE_TRACE(engine, "bump timeslicing, interval:%lu", duration);
2005 
2006 	set_timer_ms(&engine->execlists.timer, duration);
2007 }
2008 
2009 static void start_timeslice(struct intel_engine_cs *engine, int prio)
2010 {
2011 	struct intel_engine_execlists *execlists = &engine->execlists;
2012 	unsigned long duration;
2013 
2014 	if (!intel_engine_has_timeslices(engine))
2015 		return;
2016 
2017 	WRITE_ONCE(execlists->switch_priority_hint, prio);
2018 	if (prio == INT_MIN)
2019 		return;
2020 
2021 	if (timer_pending(&execlists->timer))
2022 		return;
2023 
2024 	duration = timeslice(engine);
2025 	ENGINE_TRACE(engine,
2026 		     "start timeslicing, prio:%d, interval:%lu",
2027 		     prio, duration);
2028 
2029 	set_timer_ms(&execlists->timer, duration);
2030 }
2031 
2032 static void record_preemption(struct intel_engine_execlists *execlists)
2033 {
2034 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
2035 }
2036 
2037 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
2038 					    const struct i915_request *rq)
2039 {
2040 	if (!rq)
2041 		return 0;
2042 
2043 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
2044 	if (unlikely(intel_context_is_banned(rq->context)))
2045 		return 1;
2046 
2047 	return READ_ONCE(engine->props.preempt_timeout_ms);
2048 }
2049 
2050 static void set_preempt_timeout(struct intel_engine_cs *engine,
2051 				const struct i915_request *rq)
2052 {
2053 	if (!intel_engine_has_preempt_reset(engine))
2054 		return;
2055 
2056 	set_timer_ms(&engine->execlists.preempt,
2057 		     active_preempt_timeout(engine, rq));
2058 }
2059 
2060 static inline void clear_ports(struct i915_request **ports, int count)
2061 {
2062 	memset_p((void **)ports, NULL, count);
2063 }
2064 
2065 static inline void
2066 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
2067 {
2068 	/* A memcpy_p() would be very useful here! */
2069 	while (count--)
2070 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
2071 }
2072 
2073 static void execlists_dequeue(struct intel_engine_cs *engine)
2074 {
2075 	struct intel_engine_execlists * const execlists = &engine->execlists;
2076 	struct i915_request **port = execlists->pending;
2077 	struct i915_request ** const last_port = port + execlists->port_mask;
2078 	struct i915_request * const *active;
2079 	struct i915_request *last;
2080 	struct rb_node *rb;
2081 	bool submit = false;
2082 
2083 	/*
2084 	 * Hardware submission is through 2 ports. Conceptually each port
2085 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
2086 	 * static for a context, and unique to each, so we only execute
2087 	 * requests belonging to a single context from each ring. RING_HEAD
2088 	 * is maintained by the CS in the context image, it marks the place
2089 	 * where it got up to last time, and through RING_TAIL we tell the CS
2090 	 * where we want to execute up to this time.
2091 	 *
2092 	 * In this list the requests are in order of execution. Consecutive
2093 	 * requests from the same context are adjacent in the ringbuffer. We
2094 	 * can combine these requests into a single RING_TAIL update:
2095 	 *
2096 	 *              RING_HEAD...req1...req2
2097 	 *                                    ^- RING_TAIL
2098 	 * since to execute req2 the CS must first execute req1.
2099 	 *
2100 	 * Our goal then is to point each port to the end of a consecutive
2101 	 * sequence of requests as being the most optimal (fewest wake ups
2102 	 * and context switches) submission.
2103 	 */
2104 
2105 	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
2106 		struct virtual_engine *ve =
2107 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2108 		struct i915_request *rq = READ_ONCE(ve->request);
2109 
2110 		if (!rq) { /* lazily cleanup after another engine handled rq */
2111 			rb_erase_cached(rb, &execlists->virtual);
2112 			RB_CLEAR_NODE(rb);
2113 			rb = rb_first_cached(&execlists->virtual);
2114 			continue;
2115 		}
2116 
2117 		if (!virtual_matches(ve, rq, engine)) {
2118 			rb = rb_next(rb);
2119 			continue;
2120 		}
2121 
2122 		break;
2123 	}
2124 
2125 	/*
2126 	 * If the queue is higher priority than the last
2127 	 * request in the currently active context, submit afresh.
2128 	 * We will resubmit again afterwards in case we need to split
2129 	 * the active context to interject the preemption request,
2130 	 * i.e. we will retrigger preemption following the ack in case
2131 	 * of trouble.
2132 	 */
2133 	active = READ_ONCE(execlists->active);
2134 
2135 	/*
2136 	 * In theory we can skip over completed contexts that have not
2137 	 * yet been processed by events (as those events are in flight):
2138 	 *
2139 	 * while ((last = *active) && i915_request_completed(last))
2140 	 *	active++;
2141 	 *
2142 	 * However, the GPU cannot handle this as it will ultimately
2143 	 * find itself trying to jump back into a context it has just
2144 	 * completed and barf.
2145 	 */
2146 
2147 	if ((last = *active)) {
2148 		if (need_preempt(engine, last, rb)) {
2149 			if (i915_request_completed(last)) {
2150 				tasklet_hi_schedule(&execlists->tasklet);
2151 				return;
2152 			}
2153 
2154 			ENGINE_TRACE(engine,
2155 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
2156 				     last->fence.context,
2157 				     last->fence.seqno,
2158 				     last->sched.attr.priority,
2159 				     execlists->queue_priority_hint);
2160 			record_preemption(execlists);
2161 
2162 			/*
2163 			 * Don't let the RING_HEAD advance past the breadcrumb
2164 			 * as we unwind (and until we resubmit) so that we do
2165 			 * not accidentally tell it to go backwards.
2166 			 */
2167 			ring_set_paused(engine, 1);
2168 
2169 			/*
2170 			 * Note that we have not stopped the GPU at this point,
2171 			 * so we are unwinding the incomplete requests as they
2172 			 * remain inflight and so by the time we do complete
2173 			 * the preemption, some of the unwound requests may
2174 			 * complete!
2175 			 */
2176 			__unwind_incomplete_requests(engine);
2177 
2178 			last = NULL;
2179 		} else if (need_timeslice(engine, last, rb) &&
2180 			   timeslice_expired(execlists, last)) {
2181 			if (i915_request_completed(last)) {
2182 				tasklet_hi_schedule(&execlists->tasklet);
2183 				return;
2184 			}
2185 
2186 			ENGINE_TRACE(engine,
2187 				     "expired last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
2188 				     last->fence.context,
2189 				     last->fence.seqno,
2190 				     last->sched.attr.priority,
2191 				     execlists->queue_priority_hint,
2192 				     yesno(timeslice_yield(execlists, last)));
2193 
2194 			ring_set_paused(engine, 1);
2195 			defer_active(engine);
2196 
2197 			/*
2198 			 * Unlike for preemption, if we rewind and continue
2199 			 * executing the same context as previously active,
2200 			 * the order of execution will remain the same and
2201 			 * the tail will only advance. We do not need to
2202 			 * force a full context restore, as a lite-restore
2203 			 * is sufficient to resample the monotonic TAIL.
2204 			 *
2205 			 * If we switch to any other context, similarly we
2206 			 * will not rewind TAIL of current context, and
2207 			 * normal save/restore will preserve state and allow
2208 			 * us to later continue executing the same request.
2209 			 */
2210 			last = NULL;
2211 		} else {
2212 			/*
2213 			 * Otherwise if we already have a request pending
2214 			 * for execution after the current one, we can
2215 			 * just wait until the next CS event before
2216 			 * queuing more. In either case we will force a
2217 			 * lite-restore preemption event, but if we wait
2218 			 * we hopefully coalesce several updates into a single
2219 			 * submission.
2220 			 */
2221 			if (!list_is_last(&last->sched.link,
2222 					  &engine->active.requests)) {
2223 				/*
2224 				 * Even if ELSP[1] is occupied and not worthy
2225 				 * of timeslices, our queue might be.
2226 				 */
2227 				start_timeslice(engine, queue_prio(execlists));
2228 				return;
2229 			}
2230 		}
2231 	}
2232 
2233 	while (rb) { /* XXX virtual is always taking precedence */
2234 		struct virtual_engine *ve =
2235 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2236 		struct i915_request *rq;
2237 
2238 		spin_lock(&ve->base.active.lock);
2239 
2240 		rq = ve->request;
2241 		if (unlikely(!rq)) { /* lost the race to a sibling */
2242 			spin_unlock(&ve->base.active.lock);
2243 			rb_erase_cached(rb, &execlists->virtual);
2244 			RB_CLEAR_NODE(rb);
2245 			rb = rb_first_cached(&execlists->virtual);
2246 			continue;
2247 		}
2248 
2249 		GEM_BUG_ON(rq != ve->request);
2250 		GEM_BUG_ON(rq->engine != &ve->base);
2251 		GEM_BUG_ON(rq->context != &ve->context);
2252 
2253 		if (rq_prio(rq) >= queue_prio(execlists)) {
2254 			if (!virtual_matches(ve, rq, engine)) {
2255 				spin_unlock(&ve->base.active.lock);
2256 				rb = rb_next(rb);
2257 				continue;
2258 			}
2259 
2260 			if (last && !can_merge_rq(last, rq)) {
2261 				spin_unlock(&ve->base.active.lock);
2262 				start_timeslice(engine, rq_prio(rq));
2263 				return; /* leave this for another sibling */
2264 			}
2265 
2266 			ENGINE_TRACE(engine,
2267 				     "virtual rq=%llx:%lld%s, new engine? %s\n",
2268 				     rq->fence.context,
2269 				     rq->fence.seqno,
2270 				     i915_request_completed(rq) ? "!" :
2271 				     i915_request_started(rq) ? "*" :
2272 				     "",
2273 				     yesno(engine != ve->siblings[0]));
2274 
2275 			WRITE_ONCE(ve->request, NULL);
2276 			WRITE_ONCE(ve->base.execlists.queue_priority_hint,
2277 				   INT_MIN);
2278 			rb_erase_cached(rb, &execlists->virtual);
2279 			RB_CLEAR_NODE(rb);
2280 
2281 			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
2282 			WRITE_ONCE(rq->engine, engine);
2283 
2284 			if (__i915_request_submit(rq)) {
2285 				/*
2286 				 * Only after we confirm that we will submit
2287 				 * this request (i.e. it has not already
2288 				 * completed), do we want to update the context.
2289 				 *
2290 				 * This serves two purposes. It avoids
2291 				 * unnecessary work if we are resubmitting an
2292 				 * already completed request after timeslicing.
2293 				 * But more importantly, it prevents us altering
2294 				 * ve->siblings[] on an idle context, where
2295 				 * we may be using ve->siblings[] in
2296 				 * virtual_context_enter / virtual_context_exit.
2297 				 */
2298 				virtual_xfer_context(ve, engine);
2299 				GEM_BUG_ON(ve->siblings[0] != engine);
2300 
2301 				submit = true;
2302 				last = rq;
2303 			}
2304 			i915_request_put(rq);
2305 
2306 			/*
2307 			 * Hmm, we have a bunch of virtual engine requests,
2308 			 * but the first one was already completed (thanks
2309 			 * preempt-to-busy!). Keep looking at the veng queue
2310 			 * until we have no more relevant requests (i.e.
2311 			 * the normal submit queue has higher priority).
2312 			 */
2313 			if (!submit) {
2314 				spin_unlock(&ve->base.active.lock);
2315 				rb = rb_first_cached(&execlists->virtual);
2316 				continue;
2317 			}
2318 		}
2319 
2320 		spin_unlock(&ve->base.active.lock);
2321 		break;
2322 	}
2323 
2324 	while ((rb = rb_first_cached(&execlists->queue))) {
2325 		struct i915_priolist *p = to_priolist(rb);
2326 		struct i915_request *rq, *rn;
2327 		int i;
2328 
2329 		priolist_for_each_request_consume(rq, rn, p, i) {
2330 			bool merge = true;
2331 
2332 			/*
2333 			 * Can we combine this request with the current port?
2334 			 * It has to be the same context/ringbuffer and not
2335 			 * have any exceptions (e.g. GVT saying never to
2336 			 * combine contexts).
2337 			 *
2338 			 * If we can combine the requests, we can execute both
2339 			 * by updating the RING_TAIL to point to the end of the
2340 			 * second request, and so we never need to tell the
2341 			 * hardware about the first.
2342 			 */
2343 			if (last && !can_merge_rq(last, rq)) {
2344 				/*
2345 				 * If we are on the second port and cannot
2346 				 * combine this request with the last, then we
2347 				 * are done.
2348 				 */
2349 				if (port == last_port)
2350 					goto done;
2351 
2352 				/*
2353 				 * We must not populate both ELSP[] with the
2354 				 * same LRCA, i.e. we must submit 2 different
2355 				 * contexts if we submit 2 ELSP.
2356 				 */
2357 				if (last->context == rq->context)
2358 					goto done;
2359 
2360 				if (i915_request_has_sentinel(last))
2361 					goto done;
2362 
2363 				/*
2364 				 * If GVT overrides us we only ever submit
2365 				 * port[0], leaving port[1] empty. Note that we
2366 				 * also have to be careful that we don't queue
2367 				 * the same context (even though a different
2368 				 * request) to the second port.
2369 				 */
2370 				if (ctx_single_port_submission(last->context) ||
2371 				    ctx_single_port_submission(rq->context))
2372 					goto done;
2373 
2374 				merge = false;
2375 			}
2376 
2377 			if (__i915_request_submit(rq)) {
2378 				if (!merge) {
2379 					*port = execlists_schedule_in(last, port - execlists->pending);
2380 					port++;
2381 					last = NULL;
2382 				}
2383 
2384 				GEM_BUG_ON(last &&
2385 					   !can_merge_ctx(last->context,
2386 							  rq->context));
2387 				GEM_BUG_ON(last &&
2388 					   i915_seqno_passed(last->fence.seqno,
2389 							     rq->fence.seqno));
2390 
2391 				submit = true;
2392 				last = rq;
2393 			}
2394 		}
2395 
2396 		rb_erase_cached(&p->node, &execlists->queue);
2397 		i915_priolist_free(p);
2398 	}
2399 
2400 done:
2401 	/*
2402 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
2403 	 *
2404 	 * We choose the priority hint such that if we add a request of greater
2405 	 * priority than this, we kick the submission tasklet to decide on
2406 	 * the right order of submitting the requests to hardware. We must
2407 	 * also be prepared to reorder requests as they are in-flight on the
2408 	 * HW. We derive the priority hint then as the first "hole" in
2409 	 * the HW submission ports and if there are no available slots,
2410 	 * the priority of the lowest executing request, i.e. last.
2411 	 *
2412 	 * When we do receive a higher priority request ready to run from the
2413 	 * user, see queue_request(), the priority hint is bumped to that
2414 	 * request triggering preemption on the next dequeue (or subsequent
2415 	 * interrupt for secondary ports).
2416 	 */
2417 	execlists->queue_priority_hint = queue_prio(execlists);
2418 
2419 	if (submit) {
2420 		*port = execlists_schedule_in(last, port - execlists->pending);
2421 		execlists->switch_priority_hint =
2422 			switch_prio(engine, *execlists->pending);
2423 
2424 		/*
2425 		 * Skip if we ended up with exactly the same set of requests,
2426 		 * e.g. trying to timeslice a pair of ordered contexts
2427 		 */
2428 		if (!memcmp(active, execlists->pending,
2429 			    (port - execlists->pending + 1) * sizeof(*port))) {
2430 			do
2431 				execlists_schedule_out(fetch_and_zero(port));
2432 			while (port-- != execlists->pending);
2433 
2434 			goto skip_submit;
2435 		}
2436 		clear_ports(port + 1, last_port - port);
2437 
2438 		WRITE_ONCE(execlists->yield, -1);
2439 		set_preempt_timeout(engine, *active);
2440 		execlists_submit_ports(engine);
2441 	} else {
2442 		start_timeslice(engine, execlists->queue_priority_hint);
2443 skip_submit:
2444 		ring_set_paused(engine, 0);
2445 	}
2446 }
2447 
2448 static void
2449 cancel_port_requests(struct intel_engine_execlists * const execlists)
2450 {
2451 	struct i915_request * const *port;
2452 
2453 	for (port = execlists->pending; *port; port++)
2454 		execlists_schedule_out(*port);
2455 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
2456 
2457 	/* Mark the end of active before we overwrite *active */
2458 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
2459 		execlists_schedule_out(*port);
2460 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
2461 
2462 	smp_wmb(); /* complete the seqlock for execlists_active() */
2463 	WRITE_ONCE(execlists->active, execlists->inflight);
2464 }
2465 
2466 static inline void
2467 invalidate_csb_entries(const u64 *first, const u64 *last)
2468 {
2469 	clflush((void *)first);
2470 	clflush((void *)last);
2471 }
2472 
2473 /*
2474  * Starting with Gen12, the status has a new format:
2475  *
2476  *     bit  0:     switched to new queue
2477  *     bit  1:     reserved
2478  *     bit  2:     semaphore wait mode (poll or signal), only valid when
2479  *                 switch detail is set to "wait on semaphore"
2480  *     bits 3-5:   engine class
2481  *     bits 6-11:  engine instance
2482  *     bits 12-14: reserved
2483  *     bits 15-25: sw context id of the lrc the GT switched to
2484  *     bits 26-31: sw counter of the lrc the GT switched to
2485  *     bits 32-35: context switch detail
2486  *                  - 0: ctx complete
2487  *                  - 1: wait on sync flip
2488  *                  - 2: wait on vblank
2489  *                  - 3: wait on scanline
2490  *                  - 4: wait on semaphore
2491  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
2492  *                       WAIT_FOR_EVENT)
2493  *     bit  36:    reserved
2494  *     bits 37-43: wait detail (for switch detail 1 to 4)
2495  *     bits 44-46: reserved
2496  *     bits 47-57: sw context id of the lrc the GT switched away from
2497  *     bits 58-63: sw counter of the lrc the GT switched away from
2498  */
2499 static inline bool gen12_csb_parse(const u64 csb)
2500 {
2501 	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_32_bits(csb));
2502 	bool new_queue =
2503 		lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
2504 
2505 	/*
2506 	 * The context switch detail is not guaranteed to be 5 when a preemption
2507 	 * occurs, so we can't just check for that. The check below works for
2508 	 * all the cases we care about, including preemptions of WAIT
2509 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
2510 	 * would require some extra handling, but we don't support that.
2511 	 */
2512 	if (!ctx_away_valid || new_queue) {
2513 		GEM_BUG_ON(!GEN12_CSB_CTX_VALID(lower_32_bits(csb)));
2514 		return true;
2515 	}
2516 
2517 	/*
2518 	 * switch detail = 5 is covered by the case above and we do not expect a
2519 	 * context switch on an unsuccessful wait instruction since we always
2520 	 * use polling mode.
2521 	 */
2522 	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
2523 	return false;
2524 }
2525 
2526 static inline bool gen8_csb_parse(const u64 csb)
2527 {
2528 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
2529 }
2530 
2531 static noinline u64 wa_csb_read(u64 * const csb)
2532 {
2533 	u64 entry;
2534 
2535 	preempt_disable();
2536 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 50))
2537 		GEM_WARN_ON("50us CSB timeout");
2538 	preempt_enable();
2539 
2540 	return entry;
2541 }
2542 
2543 static inline u64 csb_read(u64 * const csb)
2544 {
2545 	u64 entry = READ_ONCE(*csb);
2546 
2547 	/*
2548 	 * Unfortunately, the GPU does not always serialise its write
2549 	 * of the CSB entries before its write of the CSB pointer, at least
2550 	 * from the perspective of the CPU, using what is known as a Global
2551 	 * Observation Point. We may read a new CSB tail pointer, but then
2552 	 * read the stale CSB entries, causing us to misinterpret the
2553 	 * context-switch events, and eventually declare the GPU hung.
2554 	 *
2555 	 * icl:HSDES#1806554093
2556 	 * tgl:HSDES#22011248461
2557 	 */
2558 	if (unlikely(entry == -1))
2559 		entry = wa_csb_read(csb);
2560 
2561 	/* Consume this entry so that we can spot its future reuse. */
2562 	WRITE_ONCE(*csb, -1);
2563 
2564 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
2565 	return entry;
2566 }
2567 
2568 static void process_csb(struct intel_engine_cs *engine)
2569 {
2570 	struct intel_engine_execlists * const execlists = &engine->execlists;
2571 	u64 * const buf = execlists->csb_status;
2572 	const u8 num_entries = execlists->csb_size;
2573 	u8 head, tail;
2574 
2575 	/*
2576 	 * As we modify our execlists state tracking we require exclusive
2577 	 * access. Either we are inside the tasklet, or the tasklet is disabled
2578 	 * and we assume that is only inside the reset paths and so serialised.
2579 	 */
2580 	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
2581 		   !reset_in_progress(execlists));
2582 	GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
2583 
2584 	/*
2585 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
2586 	 * When reading from the csb_write mmio register, we have to be
2587 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
2588 	 * the low 4bits. As it happens we know the next 4bits are always
2589 	 * zero and so we can simply masked off the low u8 of the register
2590 	 * and treat it identically to reading from the HWSP (without having
2591 	 * to use explicit shifting and masking, and probably bifurcating
2592 	 * the code to handle the legacy mmio read).
2593 	 */
2594 	head = execlists->csb_head;
2595 	tail = READ_ONCE(*execlists->csb_write);
2596 	if (unlikely(head == tail))
2597 		return;
2598 
2599 	/*
2600 	 * We will consume all events from HW, or at least pretend to.
2601 	 *
2602 	 * The sequence of events from the HW is deterministic, and derived
2603 	 * from our writes to the ELSP, with a smidgen of variability for
2604 	 * the arrival of the asynchronous requests wrt to the inflight
2605 	 * execution. If the HW sends an event that does not correspond with
2606 	 * the one we are expecting, we have to abandon all hope as we lose
2607 	 * all tracking of what the engine is actually executing. We will
2608 	 * only detect we are out of sequence with the HW when we get an
2609 	 * 'impossible' event because we have already drained our own
2610 	 * preemption/promotion queue. If this occurs, we know that we likely
2611 	 * lost track of execution earlier and must unwind and restart, the
2612 	 * simplest way is by stop processing the event queue and force the
2613 	 * engine to reset.
2614 	 */
2615 	execlists->csb_head = tail;
2616 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
2617 
2618 	/*
2619 	 * Hopefully paired with a wmb() in HW!
2620 	 *
2621 	 * We must complete the read of the write pointer before any reads
2622 	 * from the CSB, so that we do not see stale values. Without an rmb
2623 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
2624 	 * we perform the READ_ONCE(*csb_write).
2625 	 */
2626 	rmb();
2627 	do {
2628 		bool promote;
2629 		u64 csb;
2630 
2631 		if (++head == num_entries)
2632 			head = 0;
2633 
2634 		/*
2635 		 * We are flying near dragons again.
2636 		 *
2637 		 * We hold a reference to the request in execlist_port[]
2638 		 * but no more than that. We are operating in softirq
2639 		 * context and so cannot hold any mutex or sleep. That
2640 		 * prevents us stopping the requests we are processing
2641 		 * in port[] from being retired simultaneously (the
2642 		 * breadcrumb will be complete before we see the
2643 		 * context-switch). As we only hold the reference to the
2644 		 * request, any pointer chasing underneath the request
2645 		 * is subject to a potential use-after-free. Thus we
2646 		 * store all of the bookkeeping within port[] as
2647 		 * required, and avoid using unguarded pointers beneath
2648 		 * request itself. The same applies to the atomic
2649 		 * status notifier.
2650 		 */
2651 
2652 		csb = csb_read(buf + head);
2653 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
2654 			     head, upper_32_bits(csb), lower_32_bits(csb));
2655 
2656 		if (INTEL_GEN(engine->i915) >= 12)
2657 			promote = gen12_csb_parse(csb);
2658 		else
2659 			promote = gen8_csb_parse(csb);
2660 		if (promote) {
2661 			struct i915_request * const *old = execlists->active;
2662 
2663 			if (GEM_WARN_ON(!*execlists->pending)) {
2664 				execlists->error_interrupt |= ERROR_CSB;
2665 				break;
2666 			}
2667 
2668 			ring_set_paused(engine, 0);
2669 
2670 			/* Point active to the new ELSP; prevent overwriting */
2671 			WRITE_ONCE(execlists->active, execlists->pending);
2672 			smp_wmb(); /* notify execlists_active() */
2673 
2674 			/* cancel old inflight, prepare for switch */
2675 			trace_ports(execlists, "preempted", old);
2676 			while (*old)
2677 				execlists_schedule_out(*old++);
2678 
2679 			/* switch pending to inflight */
2680 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
2681 			copy_ports(execlists->inflight,
2682 				   execlists->pending,
2683 				   execlists_num_ports(execlists));
2684 			smp_wmb(); /* complete the seqlock */
2685 			WRITE_ONCE(execlists->active, execlists->inflight);
2686 
2687 			WRITE_ONCE(execlists->pending[0], NULL);
2688 		} else {
2689 			if (GEM_WARN_ON(!*execlists->active)) {
2690 				execlists->error_interrupt |= ERROR_CSB;
2691 				break;
2692 			}
2693 
2694 			/* port0 completed, advanced to port1 */
2695 			trace_ports(execlists, "completed", execlists->active);
2696 
2697 			/*
2698 			 * We rely on the hardware being strongly
2699 			 * ordered, that the breadcrumb write is
2700 			 * coherent (visible from the CPU) before the
2701 			 * user interrupt is processed. One might assume
2702 			 * that the breadcrumb write being before the
2703 			 * user interrupt and the CS event for the context
2704 			 * switch would therefore be before the CS event
2705 			 * itself...
2706 			 */
2707 			if (GEM_SHOW_DEBUG() &&
2708 			    !i915_request_completed(*execlists->active)) {
2709 				struct i915_request *rq = *execlists->active;
2710 				const u32 *regs __maybe_unused =
2711 					rq->context->lrc_reg_state;
2712 
2713 				ENGINE_TRACE(engine,
2714 					     "context completed before request!\n");
2715 				ENGINE_TRACE(engine,
2716 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
2717 					     ENGINE_READ(engine, RING_START),
2718 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
2719 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
2720 					     ENGINE_READ(engine, RING_CTL),
2721 					     ENGINE_READ(engine, RING_MI_MODE));
2722 				ENGINE_TRACE(engine,
2723 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
2724 					     i915_ggtt_offset(rq->ring->vma),
2725 					     rq->head, rq->tail,
2726 					     rq->fence.context,
2727 					     lower_32_bits(rq->fence.seqno),
2728 					     hwsp_seqno(rq));
2729 				ENGINE_TRACE(engine,
2730 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
2731 					     regs[CTX_RING_START],
2732 					     regs[CTX_RING_HEAD],
2733 					     regs[CTX_RING_TAIL]);
2734 			}
2735 
2736 			execlists_schedule_out(*execlists->active++);
2737 
2738 			GEM_BUG_ON(execlists->active - execlists->inflight >
2739 				   execlists_num_ports(execlists));
2740 		}
2741 	} while (head != tail);
2742 
2743 	set_timeslice(engine);
2744 
2745 	/*
2746 	 * Gen11 has proven to fail wrt global observation point between
2747 	 * entry and tail update, failing on the ordering and thus
2748 	 * we see an old entry in the context status buffer.
2749 	 *
2750 	 * Forcibly evict out entries for the next gpu csb update,
2751 	 * to increase the odds that we get a fresh entries with non
2752 	 * working hardware. The cost for doing so comes out mostly with
2753 	 * the wash as hardware, working or not, will need to do the
2754 	 * invalidation before.
2755 	 */
2756 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2757 }
2758 
2759 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
2760 {
2761 	lockdep_assert_held(&engine->active.lock);
2762 	if (!READ_ONCE(engine->execlists.pending[0])) {
2763 		rcu_read_lock(); /* protect peeking at execlists->active */
2764 		execlists_dequeue(engine);
2765 		rcu_read_unlock();
2766 	}
2767 }
2768 
2769 static void __execlists_hold(struct i915_request *rq)
2770 {
2771 	LIST_HEAD(list);
2772 
2773 	do {
2774 		struct i915_dependency *p;
2775 
2776 		if (i915_request_is_active(rq))
2777 			__i915_request_unsubmit(rq);
2778 
2779 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2780 		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
2781 		i915_request_set_hold(rq);
2782 		RQ_TRACE(rq, "on hold\n");
2783 
2784 		for_each_waiter(p, rq) {
2785 			struct i915_request *w =
2786 				container_of(p->waiter, typeof(*w), sched);
2787 
2788 			/* Leave semaphores spinning on the other engines */
2789 			if (w->engine != rq->engine)
2790 				continue;
2791 
2792 			if (!i915_request_is_ready(w))
2793 				continue;
2794 
2795 			if (i915_request_completed(w))
2796 				continue;
2797 
2798 			if (i915_request_on_hold(w))
2799 				continue;
2800 
2801 			list_move_tail(&w->sched.link, &list);
2802 		}
2803 
2804 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2805 	} while (rq);
2806 }
2807 
2808 static bool execlists_hold(struct intel_engine_cs *engine,
2809 			   struct i915_request *rq)
2810 {
2811 	spin_lock_irq(&engine->active.lock);
2812 
2813 	if (i915_request_completed(rq)) { /* too late! */
2814 		rq = NULL;
2815 		goto unlock;
2816 	}
2817 
2818 	if (rq->engine != engine) { /* preempted virtual engine */
2819 		struct virtual_engine *ve = to_virtual_engine(rq->engine);
2820 
2821 		/*
2822 		 * intel_context_inflight() is only protected by virtue
2823 		 * of process_csb() being called only by the tasklet (or
2824 		 * directly from inside reset while the tasklet is suspended).
2825 		 * Assert that neither of those are allowed to run while we
2826 		 * poke at the request queues.
2827 		 */
2828 		GEM_BUG_ON(!reset_in_progress(&engine->execlists));
2829 
2830 		/*
2831 		 * An unsubmitted request along a virtual engine will
2832 		 * remain on the active (this) engine until we are able
2833 		 * to process the context switch away (and so mark the
2834 		 * context as no longer in flight). That cannot have happened
2835 		 * yet, otherwise we would not be hanging!
2836 		 */
2837 		spin_lock(&ve->base.active.lock);
2838 		GEM_BUG_ON(intel_context_inflight(rq->context) != engine);
2839 		GEM_BUG_ON(ve->request != rq);
2840 		ve->request = NULL;
2841 		spin_unlock(&ve->base.active.lock);
2842 		i915_request_put(rq);
2843 
2844 		rq->engine = engine;
2845 	}
2846 
2847 	/*
2848 	 * Transfer this request onto the hold queue to prevent it
2849 	 * being resumbitted to HW (and potentially completed) before we have
2850 	 * released it. Since we may have already submitted following
2851 	 * requests, we need to remove those as well.
2852 	 */
2853 	GEM_BUG_ON(i915_request_on_hold(rq));
2854 	GEM_BUG_ON(rq->engine != engine);
2855 	__execlists_hold(rq);
2856 	GEM_BUG_ON(list_empty(&engine->active.hold));
2857 
2858 unlock:
2859 	spin_unlock_irq(&engine->active.lock);
2860 	return rq;
2861 }
2862 
2863 static bool hold_request(const struct i915_request *rq)
2864 {
2865 	struct i915_dependency *p;
2866 	bool result = false;
2867 
2868 	/*
2869 	 * If one of our ancestors is on hold, we must also be on hold,
2870 	 * otherwise we will bypass it and execute before it.
2871 	 */
2872 	rcu_read_lock();
2873 	for_each_signaler(p, rq) {
2874 		const struct i915_request *s =
2875 			container_of(p->signaler, typeof(*s), sched);
2876 
2877 		if (s->engine != rq->engine)
2878 			continue;
2879 
2880 		result = i915_request_on_hold(s);
2881 		if (result)
2882 			break;
2883 	}
2884 	rcu_read_unlock();
2885 
2886 	return result;
2887 }
2888 
2889 static void __execlists_unhold(struct i915_request *rq)
2890 {
2891 	LIST_HEAD(list);
2892 
2893 	do {
2894 		struct i915_dependency *p;
2895 
2896 		RQ_TRACE(rq, "hold release\n");
2897 
2898 		GEM_BUG_ON(!i915_request_on_hold(rq));
2899 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2900 
2901 		i915_request_clear_hold(rq);
2902 		list_move_tail(&rq->sched.link,
2903 			       i915_sched_lookup_priolist(rq->engine,
2904 							  rq_prio(rq)));
2905 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2906 
2907 		/* Also release any children on this engine that are ready */
2908 		for_each_waiter(p, rq) {
2909 			struct i915_request *w =
2910 				container_of(p->waiter, typeof(*w), sched);
2911 
2912 			/* Propagate any change in error status */
2913 			if (rq->fence.error)
2914 				i915_request_set_error_once(w, rq->fence.error);
2915 
2916 			if (w->engine != rq->engine)
2917 				continue;
2918 
2919 			if (!i915_request_on_hold(w))
2920 				continue;
2921 
2922 			/* Check that no other parents are also on hold */
2923 			if (hold_request(w))
2924 				continue;
2925 
2926 			list_move_tail(&w->sched.link, &list);
2927 		}
2928 
2929 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2930 	} while (rq);
2931 }
2932 
2933 static void execlists_unhold(struct intel_engine_cs *engine,
2934 			     struct i915_request *rq)
2935 {
2936 	spin_lock_irq(&engine->active.lock);
2937 
2938 	/*
2939 	 * Move this request back to the priority queue, and all of its
2940 	 * children and grandchildren that were suspended along with it.
2941 	 */
2942 	__execlists_unhold(rq);
2943 
2944 	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2945 		engine->execlists.queue_priority_hint = rq_prio(rq);
2946 		tasklet_hi_schedule(&engine->execlists.tasklet);
2947 	}
2948 
2949 	spin_unlock_irq(&engine->active.lock);
2950 }
2951 
2952 struct execlists_capture {
2953 	struct work_struct work;
2954 	struct i915_request *rq;
2955 	struct i915_gpu_coredump *error;
2956 };
2957 
2958 static void execlists_capture_work(struct work_struct *work)
2959 {
2960 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2961 	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2962 	struct intel_engine_cs *engine = cap->rq->engine;
2963 	struct intel_gt_coredump *gt = cap->error->gt;
2964 	struct intel_engine_capture_vma *vma;
2965 
2966 	/* Compress all the objects attached to the request, slow! */
2967 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2968 	if (vma) {
2969 		struct i915_vma_compress *compress =
2970 			i915_vma_capture_prepare(gt);
2971 
2972 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2973 		i915_vma_capture_finish(gt, compress);
2974 	}
2975 
2976 	gt->simulated = gt->engine->simulated;
2977 	cap->error->simulated = gt->simulated;
2978 
2979 	/* Publish the error state, and announce it to the world */
2980 	i915_error_state_store(cap->error);
2981 	i915_gpu_coredump_put(cap->error);
2982 
2983 	/* Return this request and all that depend upon it for signaling */
2984 	execlists_unhold(engine, cap->rq);
2985 	i915_request_put(cap->rq);
2986 
2987 	kfree(cap);
2988 }
2989 
2990 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2991 {
2992 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2993 	struct execlists_capture *cap;
2994 
2995 	cap = kmalloc(sizeof(*cap), gfp);
2996 	if (!cap)
2997 		return NULL;
2998 
2999 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
3000 	if (!cap->error)
3001 		goto err_cap;
3002 
3003 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
3004 	if (!cap->error->gt)
3005 		goto err_gpu;
3006 
3007 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
3008 	if (!cap->error->gt->engine)
3009 		goto err_gt;
3010 
3011 	return cap;
3012 
3013 err_gt:
3014 	kfree(cap->error->gt);
3015 err_gpu:
3016 	kfree(cap->error);
3017 err_cap:
3018 	kfree(cap);
3019 	return NULL;
3020 }
3021 
3022 static struct i915_request *
3023 active_context(struct intel_engine_cs *engine, u32 ccid)
3024 {
3025 	const struct intel_engine_execlists * const el = &engine->execlists;
3026 	struct i915_request * const *port, *rq;
3027 
3028 	/*
3029 	 * Use the most recent result from process_csb(), but just in case
3030 	 * we trigger an error (via interrupt) before the first CS event has
3031 	 * been written, peek at the next submission.
3032 	 */
3033 
3034 	for (port = el->active; (rq = *port); port++) {
3035 		if (rq->context->lrc.ccid == ccid) {
3036 			ENGINE_TRACE(engine,
3037 				     "ccid found at active:%zd\n",
3038 				     port - el->active);
3039 			return rq;
3040 		}
3041 	}
3042 
3043 	for (port = el->pending; (rq = *port); port++) {
3044 		if (rq->context->lrc.ccid == ccid) {
3045 			ENGINE_TRACE(engine,
3046 				     "ccid found at pending:%zd\n",
3047 				     port - el->pending);
3048 			return rq;
3049 		}
3050 	}
3051 
3052 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
3053 	return NULL;
3054 }
3055 
3056 static u32 active_ccid(struct intel_engine_cs *engine)
3057 {
3058 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
3059 }
3060 
3061 static void execlists_capture(struct intel_engine_cs *engine)
3062 {
3063 	struct execlists_capture *cap;
3064 
3065 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
3066 		return;
3067 
3068 	/*
3069 	 * We need to _quickly_ capture the engine state before we reset.
3070 	 * We are inside an atomic section (softirq) here and we are delaying
3071 	 * the forced preemption event.
3072 	 */
3073 	cap = capture_regs(engine);
3074 	if (!cap)
3075 		return;
3076 
3077 	spin_lock_irq(&engine->active.lock);
3078 	cap->rq = active_context(engine, active_ccid(engine));
3079 	if (cap->rq) {
3080 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
3081 		cap->rq = i915_request_get_rcu(cap->rq);
3082 	}
3083 	spin_unlock_irq(&engine->active.lock);
3084 	if (!cap->rq)
3085 		goto err_free;
3086 
3087 	/*
3088 	 * Remove the request from the execlists queue, and take ownership
3089 	 * of the request. We pass it to our worker who will _slowly_ compress
3090 	 * all the pages the _user_ requested for debugging their batch, after
3091 	 * which we return it to the queue for signaling.
3092 	 *
3093 	 * By removing them from the execlists queue, we also remove the
3094 	 * requests from being processed by __unwind_incomplete_requests()
3095 	 * during the intel_engine_reset(), and so they will *not* be replayed
3096 	 * afterwards.
3097 	 *
3098 	 * Note that because we have not yet reset the engine at this point,
3099 	 * it is possible for the request that we have identified as being
3100 	 * guilty, did in fact complete and we will then hit an arbitration
3101 	 * point allowing the outstanding preemption to succeed. The likelihood
3102 	 * of that is very low (as capturing of the engine registers should be
3103 	 * fast enough to run inside an irq-off atomic section!), so we will
3104 	 * simply hold that request accountable for being non-preemptible
3105 	 * long enough to force the reset.
3106 	 */
3107 	if (!execlists_hold(engine, cap->rq))
3108 		goto err_rq;
3109 
3110 	INIT_WORK(&cap->work, execlists_capture_work);
3111 	schedule_work(&cap->work);
3112 	return;
3113 
3114 err_rq:
3115 	i915_request_put(cap->rq);
3116 err_free:
3117 	i915_gpu_coredump_put(cap->error);
3118 	kfree(cap);
3119 }
3120 
3121 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
3122 {
3123 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
3124 	unsigned long *lock = &engine->gt->reset.flags;
3125 
3126 	if (!intel_has_reset_engine(engine->gt))
3127 		return;
3128 
3129 	if (test_and_set_bit(bit, lock))
3130 		return;
3131 
3132 	ENGINE_TRACE(engine, "reset for %s\n", msg);
3133 
3134 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
3135 	tasklet_disable_nosync(&engine->execlists.tasklet);
3136 
3137 	ring_set_paused(engine, 1); /* Freeze the current request in place */
3138 	execlists_capture(engine);
3139 	intel_engine_reset(engine, msg);
3140 
3141 	tasklet_enable(&engine->execlists.tasklet);
3142 	clear_and_wake_up_bit(bit, lock);
3143 }
3144 
3145 static bool preempt_timeout(const struct intel_engine_cs *const engine)
3146 {
3147 	const struct timer_list *t = &engine->execlists.preempt;
3148 
3149 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
3150 		return false;
3151 
3152 	if (!timer_expired(t))
3153 		return false;
3154 
3155 	return READ_ONCE(engine->execlists.pending[0]);
3156 }
3157 
3158 /*
3159  * Check the unread Context Status Buffers and manage the submission of new
3160  * contexts to the ELSP accordingly.
3161  */
3162 static void execlists_submission_tasklet(unsigned long data)
3163 {
3164 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
3165 	bool timeout = preempt_timeout(engine);
3166 
3167 	process_csb(engine);
3168 
3169 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
3170 		const char *msg;
3171 
3172 		/* Generate the error message in priority wrt to the user! */
3173 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
3174 			msg = "CS error"; /* thrown by a user payload */
3175 		else if (engine->execlists.error_interrupt & ERROR_CSB)
3176 			msg = "invalid CSB event";
3177 		else
3178 			msg = "internal error";
3179 
3180 		engine->execlists.error_interrupt = 0;
3181 		execlists_reset(engine, msg);
3182 	}
3183 
3184 	if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
3185 		unsigned long flags;
3186 
3187 		spin_lock_irqsave(&engine->active.lock, flags);
3188 		__execlists_submission_tasklet(engine);
3189 		spin_unlock_irqrestore(&engine->active.lock, flags);
3190 
3191 		/* Recheck after serialising with direct-submission */
3192 		if (unlikely(timeout && preempt_timeout(engine)))
3193 			execlists_reset(engine, "preemption time out");
3194 	}
3195 }
3196 
3197 static void __execlists_kick(struct intel_engine_execlists *execlists)
3198 {
3199 	/* Kick the tasklet for some interrupt coalescing and reset handling */
3200 	tasklet_hi_schedule(&execlists->tasklet);
3201 }
3202 
3203 #define execlists_kick(t, member) \
3204 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
3205 
3206 static void execlists_timeslice(struct timer_list *timer)
3207 {
3208 	execlists_kick(timer, timer);
3209 }
3210 
3211 static void execlists_preempt(struct timer_list *timer)
3212 {
3213 	execlists_kick(timer, preempt);
3214 }
3215 
3216 static void queue_request(struct intel_engine_cs *engine,
3217 			  struct i915_request *rq)
3218 {
3219 	GEM_BUG_ON(!list_empty(&rq->sched.link));
3220 	list_add_tail(&rq->sched.link,
3221 		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
3222 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3223 }
3224 
3225 static void __submit_queue_imm(struct intel_engine_cs *engine)
3226 {
3227 	struct intel_engine_execlists * const execlists = &engine->execlists;
3228 
3229 	if (reset_in_progress(execlists))
3230 		return; /* defer until we restart the engine following reset */
3231 
3232 	__execlists_submission_tasklet(engine);
3233 }
3234 
3235 static void submit_queue(struct intel_engine_cs *engine,
3236 			 const struct i915_request *rq)
3237 {
3238 	struct intel_engine_execlists *execlists = &engine->execlists;
3239 
3240 	if (rq_prio(rq) <= execlists->queue_priority_hint)
3241 		return;
3242 
3243 	execlists->queue_priority_hint = rq_prio(rq);
3244 	__submit_queue_imm(engine);
3245 }
3246 
3247 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
3248 			     const struct i915_request *rq)
3249 {
3250 	GEM_BUG_ON(i915_request_on_hold(rq));
3251 	return !list_empty(&engine->active.hold) && hold_request(rq);
3252 }
3253 
3254 static void flush_csb(struct intel_engine_cs *engine)
3255 {
3256 	struct intel_engine_execlists *el = &engine->execlists;
3257 
3258 	if (READ_ONCE(el->pending[0]) && tasklet_trylock(&el->tasklet)) {
3259 		if (!reset_in_progress(el))
3260 			process_csb(engine);
3261 		tasklet_unlock(&el->tasklet);
3262 	}
3263 }
3264 
3265 static void execlists_submit_request(struct i915_request *request)
3266 {
3267 	struct intel_engine_cs *engine = request->engine;
3268 	unsigned long flags;
3269 
3270 	/* Hopefully we clear execlists->pending[] to let us through */
3271 	flush_csb(engine);
3272 
3273 	/* Will be called from irq-context when using foreign fences. */
3274 	spin_lock_irqsave(&engine->active.lock, flags);
3275 
3276 	if (unlikely(ancestor_on_hold(engine, request))) {
3277 		RQ_TRACE(request, "ancestor on hold\n");
3278 		list_add_tail(&request->sched.link, &engine->active.hold);
3279 		i915_request_set_hold(request);
3280 	} else {
3281 		queue_request(engine, request);
3282 
3283 		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
3284 		GEM_BUG_ON(list_empty(&request->sched.link));
3285 
3286 		submit_queue(engine, request);
3287 	}
3288 
3289 	spin_unlock_irqrestore(&engine->active.lock, flags);
3290 }
3291 
3292 static void __execlists_context_fini(struct intel_context *ce)
3293 {
3294 	intel_ring_put(ce->ring);
3295 	i915_vma_put(ce->state);
3296 }
3297 
3298 static void execlists_context_destroy(struct kref *kref)
3299 {
3300 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3301 
3302 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
3303 	GEM_BUG_ON(intel_context_is_pinned(ce));
3304 
3305 	if (ce->state)
3306 		__execlists_context_fini(ce);
3307 
3308 	intel_context_fini(ce);
3309 	intel_context_free(ce);
3310 }
3311 
3312 static void
3313 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
3314 {
3315 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3316 		return;
3317 
3318 	vaddr += engine->context_size;
3319 
3320 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
3321 }
3322 
3323 static void
3324 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
3325 {
3326 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3327 		return;
3328 
3329 	vaddr += engine->context_size;
3330 
3331 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
3332 		drm_err_once(&engine->i915->drm,
3333 			     "%s context redzone overwritten!\n",
3334 			     engine->name);
3335 }
3336 
3337 static void execlists_context_unpin(struct intel_context *ce)
3338 {
3339 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
3340 		      ce->engine);
3341 }
3342 
3343 static void execlists_context_post_unpin(struct intel_context *ce)
3344 {
3345 	i915_gem_object_unpin_map(ce->state->obj);
3346 }
3347 
3348 static u32 *
3349 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
3350 {
3351 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3352 		MI_SRM_LRM_GLOBAL_GTT |
3353 		MI_LRI_LRM_CS_MMIO;
3354 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3355 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3356 		CTX_TIMESTAMP * sizeof(u32);
3357 	*cs++ = 0;
3358 
3359 	*cs++ = MI_LOAD_REGISTER_REG |
3360 		MI_LRR_SOURCE_CS_MMIO |
3361 		MI_LRI_LRM_CS_MMIO;
3362 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3363 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
3364 
3365 	*cs++ = MI_LOAD_REGISTER_REG |
3366 		MI_LRR_SOURCE_CS_MMIO |
3367 		MI_LRI_LRM_CS_MMIO;
3368 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3369 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
3370 
3371 	return cs;
3372 }
3373 
3374 static u32 *
3375 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
3376 {
3377 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
3378 
3379 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3380 		MI_SRM_LRM_GLOBAL_GTT |
3381 		MI_LRI_LRM_CS_MMIO;
3382 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3383 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3384 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
3385 	*cs++ = 0;
3386 
3387 	return cs;
3388 }
3389 
3390 static u32 *
3391 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
3392 {
3393 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
3394 
3395 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3396 		MI_SRM_LRM_GLOBAL_GTT |
3397 		MI_LRI_LRM_CS_MMIO;
3398 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3399 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3400 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
3401 	*cs++ = 0;
3402 
3403 	*cs++ = MI_LOAD_REGISTER_REG |
3404 		MI_LRR_SOURCE_CS_MMIO |
3405 		MI_LRI_LRM_CS_MMIO;
3406 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3407 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
3408 
3409 	return cs;
3410 }
3411 
3412 static u32 *
3413 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
3414 {
3415 	cs = gen12_emit_timestamp_wa(ce, cs);
3416 	cs = gen12_emit_cmd_buf_wa(ce, cs);
3417 	cs = gen12_emit_restore_scratch(ce, cs);
3418 
3419 	return cs;
3420 }
3421 
3422 static u32 *
3423 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
3424 {
3425 	cs = gen12_emit_timestamp_wa(ce, cs);
3426 	cs = gen12_emit_restore_scratch(ce, cs);
3427 
3428 	return cs;
3429 }
3430 
3431 static inline u32 context_wa_bb_offset(const struct intel_context *ce)
3432 {
3433 	return PAGE_SIZE * ce->wa_bb_page;
3434 }
3435 
3436 static u32 *context_indirect_bb(const struct intel_context *ce)
3437 {
3438 	void *ptr;
3439 
3440 	GEM_BUG_ON(!ce->wa_bb_page);
3441 
3442 	ptr = ce->lrc_reg_state;
3443 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
3444 	ptr += context_wa_bb_offset(ce);
3445 
3446 	return ptr;
3447 }
3448 
3449 static void
3450 setup_indirect_ctx_bb(const struct intel_context *ce,
3451 		      const struct intel_engine_cs *engine,
3452 		      u32 *(*emit)(const struct intel_context *, u32 *))
3453 {
3454 	u32 * const start = context_indirect_bb(ce);
3455 	u32 *cs;
3456 
3457 	cs = emit(ce, start);
3458 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
3459 	while ((unsigned long)cs % CACHELINE_BYTES)
3460 		*cs++ = MI_NOOP;
3461 
3462 	lrc_ring_setup_indirect_ctx(ce->lrc_reg_state, engine,
3463 				    i915_ggtt_offset(ce->state) +
3464 				    context_wa_bb_offset(ce),
3465 				    (cs - start) * sizeof(*cs));
3466 }
3467 
3468 static void
3469 __execlists_update_reg_state(const struct intel_context *ce,
3470 			     const struct intel_engine_cs *engine,
3471 			     u32 head)
3472 {
3473 	struct intel_ring *ring = ce->ring;
3474 	u32 *regs = ce->lrc_reg_state;
3475 
3476 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
3477 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
3478 
3479 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
3480 	regs[CTX_RING_HEAD] = head;
3481 	regs[CTX_RING_TAIL] = ring->tail;
3482 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
3483 
3484 	/* RPCS */
3485 	if (engine->class == RENDER_CLASS) {
3486 		regs[CTX_R_PWR_CLK_STATE] =
3487 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
3488 
3489 		i915_oa_init_reg_state(ce, engine);
3490 	}
3491 
3492 	if (ce->wa_bb_page) {
3493 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
3494 
3495 		fn = gen12_emit_indirect_ctx_xcs;
3496 		if (ce->engine->class == RENDER_CLASS)
3497 			fn = gen12_emit_indirect_ctx_rcs;
3498 
3499 		/* Mutually exclusive wrt to global indirect bb */
3500 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
3501 		setup_indirect_ctx_bb(ce, engine, fn);
3502 	}
3503 }
3504 
3505 static int
3506 execlists_context_pre_pin(struct intel_context *ce,
3507 			  struct i915_gem_ww_ctx *ww, void **vaddr)
3508 {
3509 	GEM_BUG_ON(!ce->state);
3510 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3511 
3512 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
3513 					i915_coherent_map_type(ce->engine->i915) |
3514 					I915_MAP_OVERRIDE);
3515 
3516 	return PTR_ERR_OR_ZERO(*vaddr);
3517 }
3518 
3519 static int
3520 __execlists_context_pin(struct intel_context *ce,
3521 			struct intel_engine_cs *engine,
3522 			void *vaddr)
3523 {
3524 	ce->lrc.lrca = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE;
3525 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
3526 	__execlists_update_reg_state(ce, engine, ce->ring->tail);
3527 
3528 	return 0;
3529 }
3530 
3531 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
3532 {
3533 	return __execlists_context_pin(ce, ce->engine, vaddr);
3534 }
3535 
3536 static int execlists_context_alloc(struct intel_context *ce)
3537 {
3538 	return __execlists_context_alloc(ce, ce->engine);
3539 }
3540 
3541 static void execlists_context_reset(struct intel_context *ce)
3542 {
3543 	CE_TRACE(ce, "reset\n");
3544 	GEM_BUG_ON(!intel_context_is_pinned(ce));
3545 
3546 	intel_ring_reset(ce->ring, ce->ring->emit);
3547 
3548 	/* Scrub away the garbage */
3549 	execlists_init_reg_state(ce->lrc_reg_state,
3550 				 ce, ce->engine, ce->ring, true);
3551 	__execlists_update_reg_state(ce, ce->engine, ce->ring->tail);
3552 
3553 	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE;
3554 }
3555 
3556 static const struct intel_context_ops execlists_context_ops = {
3557 	.alloc = execlists_context_alloc,
3558 
3559 	.pre_pin = execlists_context_pre_pin,
3560 	.pin = execlists_context_pin,
3561 	.unpin = execlists_context_unpin,
3562 	.post_unpin = execlists_context_post_unpin,
3563 
3564 	.enter = intel_context_enter_engine,
3565 	.exit = intel_context_exit_engine,
3566 
3567 	.reset = execlists_context_reset,
3568 	.destroy = execlists_context_destroy,
3569 };
3570 
3571 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
3572 {
3573 	u32 *cs;
3574 
3575 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
3576 	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
3577 		return 0;
3578 
3579 	cs = intel_ring_begin(rq, 6);
3580 	if (IS_ERR(cs))
3581 		return PTR_ERR(cs);
3582 
3583 	/*
3584 	 * Check if we have been preempted before we even get started.
3585 	 *
3586 	 * After this point i915_request_started() reports true, even if
3587 	 * we get preempted and so are no longer running.
3588 	 */
3589 	*cs++ = MI_ARB_CHECK;
3590 	*cs++ = MI_NOOP;
3591 
3592 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
3593 	*cs++ = i915_request_timeline(rq)->hwsp_offset;
3594 	*cs++ = 0;
3595 	*cs++ = rq->fence.seqno - 1;
3596 
3597 	intel_ring_advance(rq, cs);
3598 
3599 	/* Record the updated position of the request's payload */
3600 	rq->infix = intel_ring_offset(rq, cs);
3601 
3602 	__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
3603 
3604 	return 0;
3605 }
3606 
3607 static int emit_pdps(struct i915_request *rq)
3608 {
3609 	const struct intel_engine_cs * const engine = rq->engine;
3610 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
3611 	int err, i;
3612 	u32 *cs;
3613 
3614 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
3615 
3616 	/*
3617 	 * Beware ye of the dragons, this sequence is magic!
3618 	 *
3619 	 * Small changes to this sequence can cause anything from
3620 	 * GPU hangs to forcewake errors and machine lockups!
3621 	 */
3622 
3623 	/* Flush any residual operations from the context load */
3624 	err = engine->emit_flush(rq, EMIT_FLUSH);
3625 	if (err)
3626 		return err;
3627 
3628 	/* Magic required to prevent forcewake errors! */
3629 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
3630 	if (err)
3631 		return err;
3632 
3633 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
3634 	if (IS_ERR(cs))
3635 		return PTR_ERR(cs);
3636 
3637 	/* Ensure the LRI have landed before we invalidate & continue */
3638 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
3639 	for (i = GEN8_3LVL_PDPES; i--; ) {
3640 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
3641 		u32 base = engine->mmio_base;
3642 
3643 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
3644 		*cs++ = upper_32_bits(pd_daddr);
3645 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
3646 		*cs++ = lower_32_bits(pd_daddr);
3647 	}
3648 	*cs++ = MI_NOOP;
3649 
3650 	intel_ring_advance(rq, cs);
3651 
3652 	return 0;
3653 }
3654 
3655 static int execlists_request_alloc(struct i915_request *request)
3656 {
3657 	int ret;
3658 
3659 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
3660 
3661 	/*
3662 	 * Flush enough space to reduce the likelihood of waiting after
3663 	 * we start building the request - in which case we will just
3664 	 * have to repeat work.
3665 	 */
3666 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
3667 
3668 	/*
3669 	 * Note that after this point, we have committed to using
3670 	 * this request as it is being used to both track the
3671 	 * state of engine initialisation and liveness of the
3672 	 * golden renderstate above. Think twice before you try
3673 	 * to cancel/unwind this request now.
3674 	 */
3675 
3676 	if (!i915_vm_is_4lvl(request->context->vm)) {
3677 		ret = emit_pdps(request);
3678 		if (ret)
3679 			return ret;
3680 	}
3681 
3682 	/* Unconditionally invalidate GPU caches and TLBs. */
3683 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
3684 	if (ret)
3685 		return ret;
3686 
3687 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
3688 	return 0;
3689 }
3690 
3691 /*
3692  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
3693  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
3694  * but there is a slight complication as this is applied in WA batch where the
3695  * values are only initialized once so we cannot take register value at the
3696  * beginning and reuse it further; hence we save its value to memory, upload a
3697  * constant value with bit21 set and then we restore it back with the saved value.
3698  * To simplify the WA, a constant value is formed by using the default value
3699  * of this register. This shouldn't be a problem because we are only modifying
3700  * it for a short period and this batch in non-premptible. We can ofcourse
3701  * use additional instructions that read the actual value of the register
3702  * at that time and set our bit of interest but it makes the WA complicated.
3703  *
3704  * This WA is also required for Gen9 so extracting as a function avoids
3705  * code duplication.
3706  */
3707 static u32 *
3708 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
3709 {
3710 	/* NB no one else is allowed to scribble over scratch + 256! */
3711 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
3712 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3713 	*batch++ = intel_gt_scratch_offset(engine->gt,
3714 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3715 	*batch++ = 0;
3716 
3717 	*batch++ = MI_LOAD_REGISTER_IMM(1);
3718 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3719 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
3720 
3721 	batch = gen8_emit_pipe_control(batch,
3722 				       PIPE_CONTROL_CS_STALL |
3723 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
3724 				       0);
3725 
3726 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
3727 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3728 	*batch++ = intel_gt_scratch_offset(engine->gt,
3729 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3730 	*batch++ = 0;
3731 
3732 	return batch;
3733 }
3734 
3735 /*
3736  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
3737  * initialized at the beginning and shared across all contexts but this field
3738  * helps us to have multiple batches at different offsets and select them based
3739  * on a criteria. At the moment this batch always start at the beginning of the page
3740  * and at this point we don't have multiple wa_ctx batch buffers.
3741  *
3742  * The number of WA applied are not known at the beginning; we use this field
3743  * to return the no of DWORDS written.
3744  *
3745  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
3746  * so it adds NOOPs as padding to make it cacheline aligned.
3747  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
3748  * makes a complete batch buffer.
3749  */
3750 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3751 {
3752 	/* WaDisableCtxRestoreArbitration:bdw,chv */
3753 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3754 
3755 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
3756 	if (IS_BROADWELL(engine->i915))
3757 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3758 
3759 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
3760 	/* Actual scratch location is at 128 bytes offset */
3761 	batch = gen8_emit_pipe_control(batch,
3762 				       PIPE_CONTROL_FLUSH_L3 |
3763 				       PIPE_CONTROL_STORE_DATA_INDEX |
3764 				       PIPE_CONTROL_CS_STALL |
3765 				       PIPE_CONTROL_QW_WRITE,
3766 				       LRC_PPHWSP_SCRATCH_ADDR);
3767 
3768 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3769 
3770 	/* Pad to end of cacheline */
3771 	while ((unsigned long)batch % CACHELINE_BYTES)
3772 		*batch++ = MI_NOOP;
3773 
3774 	/*
3775 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
3776 	 * execution depends on the length specified in terms of cache lines
3777 	 * in the register CTX_RCS_INDIRECT_CTX
3778 	 */
3779 
3780 	return batch;
3781 }
3782 
3783 struct lri {
3784 	i915_reg_t reg;
3785 	u32 value;
3786 };
3787 
3788 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
3789 {
3790 	GEM_BUG_ON(!count || count > 63);
3791 
3792 	*batch++ = MI_LOAD_REGISTER_IMM(count);
3793 	do {
3794 		*batch++ = i915_mmio_reg_offset(lri->reg);
3795 		*batch++ = lri->value;
3796 	} while (lri++, --count);
3797 	*batch++ = MI_NOOP;
3798 
3799 	return batch;
3800 }
3801 
3802 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3803 {
3804 	static const struct lri lri[] = {
3805 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
3806 		{
3807 			COMMON_SLICE_CHICKEN2,
3808 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
3809 				       0),
3810 		},
3811 
3812 		/* BSpec: 11391 */
3813 		{
3814 			FF_SLICE_CHICKEN,
3815 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
3816 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
3817 		},
3818 
3819 		/* BSpec: 11299 */
3820 		{
3821 			_3D_CHICKEN3,
3822 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
3823 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
3824 		}
3825 	};
3826 
3827 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3828 
3829 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
3830 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3831 
3832 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
3833 	batch = gen8_emit_pipe_control(batch,
3834 				       PIPE_CONTROL_FLUSH_L3 |
3835 				       PIPE_CONTROL_STORE_DATA_INDEX |
3836 				       PIPE_CONTROL_CS_STALL |
3837 				       PIPE_CONTROL_QW_WRITE,
3838 				       LRC_PPHWSP_SCRATCH_ADDR);
3839 
3840 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
3841 
3842 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
3843 	if (HAS_POOLED_EU(engine->i915)) {
3844 		/*
3845 		 * EU pool configuration is setup along with golden context
3846 		 * during context initialization. This value depends on
3847 		 * device type (2x6 or 3x6) and needs to be updated based
3848 		 * on which subslice is disabled especially for 2x6
3849 		 * devices, however it is safe to load default
3850 		 * configuration of 3x6 device instead of masking off
3851 		 * corresponding bits because HW ignores bits of a disabled
3852 		 * subslice and drops down to appropriate config. Please
3853 		 * see render_state_setup() in i915_gem_render_state.c for
3854 		 * possible configurations, to avoid duplication they are
3855 		 * not shown here again.
3856 		 */
3857 		*batch++ = GEN9_MEDIA_POOL_STATE;
3858 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
3859 		*batch++ = 0x00777000;
3860 		*batch++ = 0;
3861 		*batch++ = 0;
3862 		*batch++ = 0;
3863 	}
3864 
3865 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3866 
3867 	/* Pad to end of cacheline */
3868 	while ((unsigned long)batch % CACHELINE_BYTES)
3869 		*batch++ = MI_NOOP;
3870 
3871 	return batch;
3872 }
3873 
3874 static u32 *
3875 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3876 {
3877 	int i;
3878 
3879 	/*
3880 	 * WaPipeControlBefore3DStateSamplePattern: cnl
3881 	 *
3882 	 * Ensure the engine is idle prior to programming a
3883 	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
3884 	 */
3885 	batch = gen8_emit_pipe_control(batch,
3886 				       PIPE_CONTROL_CS_STALL,
3887 				       0);
3888 	/*
3889 	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
3890 	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
3891 	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
3892 	 * confusing. Since gen8_emit_pipe_control() already advances the
3893 	 * batch by 6 dwords, we advance the other 10 here, completing a
3894 	 * cacheline. It's not clear if the workaround requires this padding
3895 	 * before other commands, or if it's just the regular padding we would
3896 	 * already have for the workaround bb, so leave it here for now.
3897 	 */
3898 	for (i = 0; i < 10; i++)
3899 		*batch++ = MI_NOOP;
3900 
3901 	/* Pad to end of cacheline */
3902 	while ((unsigned long)batch % CACHELINE_BYTES)
3903 		*batch++ = MI_NOOP;
3904 
3905 	return batch;
3906 }
3907 
3908 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
3909 
3910 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
3911 {
3912 	struct drm_i915_gem_object *obj;
3913 	struct i915_vma *vma;
3914 	int err;
3915 
3916 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
3917 	if (IS_ERR(obj))
3918 		return PTR_ERR(obj);
3919 
3920 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
3921 	if (IS_ERR(vma)) {
3922 		err = PTR_ERR(vma);
3923 		goto err;
3924 	}
3925 
3926 	err = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
3927 	if (err)
3928 		goto err;
3929 
3930 	engine->wa_ctx.vma = vma;
3931 	return 0;
3932 
3933 err:
3934 	i915_gem_object_put(obj);
3935 	return err;
3936 }
3937 
3938 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
3939 {
3940 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
3941 }
3942 
3943 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
3944 
3945 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
3946 {
3947 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3948 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
3949 					    &wa_ctx->per_ctx };
3950 	wa_bb_func_t wa_bb_fn[2];
3951 	void *batch, *batch_ptr;
3952 	unsigned int i;
3953 	int ret;
3954 
3955 	if (engine->class != RENDER_CLASS)
3956 		return 0;
3957 
3958 	switch (INTEL_GEN(engine->i915)) {
3959 	case 12:
3960 	case 11:
3961 		return 0;
3962 	case 10:
3963 		wa_bb_fn[0] = gen10_init_indirectctx_bb;
3964 		wa_bb_fn[1] = NULL;
3965 		break;
3966 	case 9:
3967 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
3968 		wa_bb_fn[1] = NULL;
3969 		break;
3970 	case 8:
3971 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
3972 		wa_bb_fn[1] = NULL;
3973 		break;
3974 	default:
3975 		MISSING_CASE(INTEL_GEN(engine->i915));
3976 		return 0;
3977 	}
3978 
3979 	ret = lrc_setup_wa_ctx(engine);
3980 	if (ret) {
3981 		drm_dbg(&engine->i915->drm,
3982 			"Failed to setup context WA page: %d\n", ret);
3983 		return ret;
3984 	}
3985 
3986 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
3987 
3988 	/*
3989 	 * Emit the two workaround batch buffers, recording the offset from the
3990 	 * start of the workaround batch buffer object for each and their
3991 	 * respective sizes.
3992 	 */
3993 	batch_ptr = batch;
3994 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
3995 		wa_bb[i]->offset = batch_ptr - batch;
3996 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
3997 						  CACHELINE_BYTES))) {
3998 			ret = -EINVAL;
3999 			break;
4000 		}
4001 		if (wa_bb_fn[i])
4002 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
4003 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
4004 	}
4005 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
4006 
4007 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
4008 	__i915_gem_object_release_map(wa_ctx->vma->obj);
4009 	if (ret)
4010 		lrc_destroy_wa_ctx(engine);
4011 
4012 	return ret;
4013 }
4014 
4015 static void reset_csb_pointers(struct intel_engine_cs *engine)
4016 {
4017 	struct intel_engine_execlists * const execlists = &engine->execlists;
4018 	const unsigned int reset_value = execlists->csb_size - 1;
4019 
4020 	ring_set_paused(engine, 0);
4021 
4022 	/*
4023 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
4024 	 * Bludgeon them with a mmio update to be sure.
4025 	 */
4026 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
4027 		     0xffff << 16 | reset_value << 8 | reset_value);
4028 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
4029 
4030 	/*
4031 	 * After a reset, the HW starts writing into CSB entry [0]. We
4032 	 * therefore have to set our HEAD pointer back one entry so that
4033 	 * the *first* entry we check is entry 0. To complicate this further,
4034 	 * as we don't wait for the first interrupt after reset, we have to
4035 	 * fake the HW write to point back to the last entry so that our
4036 	 * inline comparison of our cached head position against the last HW
4037 	 * write works even before the first interrupt.
4038 	 */
4039 	execlists->csb_head = reset_value;
4040 	WRITE_ONCE(*execlists->csb_write, reset_value);
4041 	wmb(); /* Make sure this is visible to HW (paranoia?) */
4042 
4043 	/* Check that the GPU does indeed update the CSB entries! */
4044 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
4045 	invalidate_csb_entries(&execlists->csb_status[0],
4046 			       &execlists->csb_status[reset_value]);
4047 
4048 	/* Once more for luck and our trusty paranoia */
4049 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
4050 		     0xffff << 16 | reset_value << 8 | reset_value);
4051 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
4052 
4053 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
4054 }
4055 
4056 static void execlists_sanitize(struct intel_engine_cs *engine)
4057 {
4058 	/*
4059 	 * Poison residual state on resume, in case the suspend didn't!
4060 	 *
4061 	 * We have to assume that across suspend/resume (or other loss
4062 	 * of control) that the contents of our pinned buffers has been
4063 	 * lost, replaced by garbage. Since this doesn't always happen,
4064 	 * let's poison such state so that we more quickly spot when
4065 	 * we falsely assume it has been preserved.
4066 	 */
4067 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4068 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4069 
4070 	reset_csb_pointers(engine);
4071 
4072 	/*
4073 	 * The kernel_context HWSP is stored in the status_page. As above,
4074 	 * that may be lost on resume/initialisation, and so we need to
4075 	 * reset the value in the HWSP.
4076 	 */
4077 	intel_timeline_reset_seqno(engine->kernel_context->timeline);
4078 
4079 	/* And scrub the dirty cachelines for the HWSP */
4080 	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
4081 }
4082 
4083 static void enable_error_interrupt(struct intel_engine_cs *engine)
4084 {
4085 	u32 status;
4086 
4087 	engine->execlists.error_interrupt = 0;
4088 	ENGINE_WRITE(engine, RING_EMR, ~0u);
4089 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
4090 
4091 	status = ENGINE_READ(engine, RING_ESR);
4092 	if (unlikely(status)) {
4093 		drm_err(&engine->i915->drm,
4094 			"engine '%s' resumed still in error: %08x\n",
4095 			engine->name, status);
4096 		__intel_gt_reset(engine->gt, engine->mask);
4097 	}
4098 
4099 	/*
4100 	 * On current gen8+, we have 2 signals to play with
4101 	 *
4102 	 * - I915_ERROR_INSTUCTION (bit 0)
4103 	 *
4104 	 *    Generate an error if the command parser encounters an invalid
4105 	 *    instruction
4106 	 *
4107 	 *    This is a fatal error.
4108 	 *
4109 	 * - CP_PRIV (bit 2)
4110 	 *
4111 	 *    Generate an error on privilege violation (where the CP replaces
4112 	 *    the instruction with a no-op). This also fires for writes into
4113 	 *    read-only scratch pages.
4114 	 *
4115 	 *    This is a non-fatal error, parsing continues.
4116 	 *
4117 	 * * there are a few others defined for odd HW that we do not use
4118 	 *
4119 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
4120 	 * error (as the HW is validating and suppressing the mistakes), we
4121 	 * only unmask the instruction error bit.
4122 	 */
4123 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
4124 }
4125 
4126 static void enable_execlists(struct intel_engine_cs *engine)
4127 {
4128 	u32 mode;
4129 
4130 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4131 
4132 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4133 
4134 	if (INTEL_GEN(engine->i915) >= 11)
4135 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
4136 	else
4137 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
4138 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
4139 
4140 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4141 
4142 	ENGINE_WRITE_FW(engine,
4143 			RING_HWS_PGA,
4144 			i915_ggtt_offset(engine->status_page.vma));
4145 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
4146 
4147 	enable_error_interrupt(engine);
4148 
4149 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
4150 }
4151 
4152 static bool unexpected_starting_state(struct intel_engine_cs *engine)
4153 {
4154 	bool unexpected = false;
4155 
4156 	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
4157 		drm_dbg(&engine->i915->drm,
4158 			"STOP_RING still set in RING_MI_MODE\n");
4159 		unexpected = true;
4160 	}
4161 
4162 	return unexpected;
4163 }
4164 
4165 static int execlists_resume(struct intel_engine_cs *engine)
4166 {
4167 	intel_mocs_init_engine(engine);
4168 
4169 	intel_breadcrumbs_reset(engine->breadcrumbs);
4170 
4171 	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
4172 		struct drm_printer p = drm_debug_printer(__func__);
4173 
4174 		intel_engine_dump(engine, &p, NULL);
4175 	}
4176 
4177 	enable_execlists(engine);
4178 
4179 	return 0;
4180 }
4181 
4182 static void execlists_reset_prepare(struct intel_engine_cs *engine)
4183 {
4184 	struct intel_engine_execlists * const execlists = &engine->execlists;
4185 	unsigned long flags;
4186 
4187 	ENGINE_TRACE(engine, "depth<-%d\n",
4188 		     atomic_read(&execlists->tasklet.count));
4189 
4190 	/*
4191 	 * Prevent request submission to the hardware until we have
4192 	 * completed the reset in i915_gem_reset_finish(). If a request
4193 	 * is completed by one engine, it may then queue a request
4194 	 * to a second via its execlists->tasklet *just* as we are
4195 	 * calling engine->resume() and also writing the ELSP.
4196 	 * Turning off the execlists->tasklet until the reset is over
4197 	 * prevents the race.
4198 	 */
4199 	__tasklet_disable_sync_once(&execlists->tasklet);
4200 	GEM_BUG_ON(!reset_in_progress(execlists));
4201 
4202 	/* And flush any current direct submission. */
4203 	spin_lock_irqsave(&engine->active.lock, flags);
4204 	spin_unlock_irqrestore(&engine->active.lock, flags);
4205 
4206 	/*
4207 	 * We stop engines, otherwise we might get failed reset and a
4208 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
4209 	 * from system hang if batchbuffer is progressing when
4210 	 * the reset is issued, regardless of READY_TO_RESET ack.
4211 	 * Thus assume it is best to stop engines on all gens
4212 	 * where we have a gpu reset.
4213 	 *
4214 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
4215 	 *
4216 	 * FIXME: Wa for more modern gens needs to be validated
4217 	 */
4218 	ring_set_paused(engine, 1);
4219 	intel_engine_stop_cs(engine);
4220 
4221 	engine->execlists.reset_ccid = active_ccid(engine);
4222 }
4223 
4224 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
4225 {
4226 	int x;
4227 
4228 	x = lrc_ring_mi_mode(engine);
4229 	if (x != -1) {
4230 		regs[x + 1] &= ~STOP_RING;
4231 		regs[x + 1] |= STOP_RING << 16;
4232 	}
4233 }
4234 
4235 static void __execlists_reset_reg_state(const struct intel_context *ce,
4236 					const struct intel_engine_cs *engine)
4237 {
4238 	u32 *regs = ce->lrc_reg_state;
4239 
4240 	__reset_stop_ring(regs, engine);
4241 }
4242 
4243 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
4244 {
4245 	struct intel_engine_execlists * const execlists = &engine->execlists;
4246 	struct intel_context *ce;
4247 	struct i915_request *rq;
4248 	u32 head;
4249 
4250 	mb(); /* paranoia: read the CSB pointers from after the reset */
4251 	clflush(execlists->csb_write);
4252 	mb();
4253 
4254 	process_csb(engine); /* drain preemption events */
4255 
4256 	/* Following the reset, we need to reload the CSB read/write pointers */
4257 	reset_csb_pointers(engine);
4258 
4259 	/*
4260 	 * Save the currently executing context, even if we completed
4261 	 * its request, it was still running at the time of the
4262 	 * reset and will have been clobbered.
4263 	 */
4264 	rq = active_context(engine, engine->execlists.reset_ccid);
4265 	if (!rq)
4266 		goto unwind;
4267 
4268 	ce = rq->context;
4269 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
4270 
4271 	if (i915_request_completed(rq)) {
4272 		/* Idle context; tidy up the ring so we can restart afresh */
4273 		head = intel_ring_wrap(ce->ring, rq->tail);
4274 		goto out_replay;
4275 	}
4276 
4277 	/* We still have requests in-flight; the engine should be active */
4278 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
4279 
4280 	/* Context has requests still in-flight; it should not be idle! */
4281 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
4282 
4283 	rq = active_request(ce->timeline, rq);
4284 	head = intel_ring_wrap(ce->ring, rq->head);
4285 	GEM_BUG_ON(head == ce->ring->tail);
4286 
4287 	/*
4288 	 * If this request hasn't started yet, e.g. it is waiting on a
4289 	 * semaphore, we need to avoid skipping the request or else we
4290 	 * break the signaling chain. However, if the context is corrupt
4291 	 * the request will not restart and we will be stuck with a wedged
4292 	 * device. It is quite often the case that if we issue a reset
4293 	 * while the GPU is loading the context image, that the context
4294 	 * image becomes corrupt.
4295 	 *
4296 	 * Otherwise, if we have not started yet, the request should replay
4297 	 * perfectly and we do not need to flag the result as being erroneous.
4298 	 */
4299 	if (!i915_request_started(rq))
4300 		goto out_replay;
4301 
4302 	/*
4303 	 * If the request was innocent, we leave the request in the ELSP
4304 	 * and will try to replay it on restarting. The context image may
4305 	 * have been corrupted by the reset, in which case we may have
4306 	 * to service a new GPU hang, but more likely we can continue on
4307 	 * without impact.
4308 	 *
4309 	 * If the request was guilty, we presume the context is corrupt
4310 	 * and have to at least restore the RING register in the context
4311 	 * image back to the expected values to skip over the guilty request.
4312 	 */
4313 	__i915_request_reset(rq, stalled);
4314 
4315 	/*
4316 	 * We want a simple context + ring to execute the breadcrumb update.
4317 	 * We cannot rely on the context being intact across the GPU hang,
4318 	 * so clear it and rebuild just what we need for the breadcrumb.
4319 	 * All pending requests for this context will be zapped, and any
4320 	 * future request will be after userspace has had the opportunity
4321 	 * to recreate its own state.
4322 	 */
4323 out_replay:
4324 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
4325 		     head, ce->ring->tail);
4326 	__execlists_reset_reg_state(ce, engine);
4327 	__execlists_update_reg_state(ce, engine, head);
4328 	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
4329 
4330 unwind:
4331 	/* Push back any incomplete requests for replay after the reset. */
4332 	cancel_port_requests(execlists);
4333 	__unwind_incomplete_requests(engine);
4334 }
4335 
4336 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
4337 {
4338 	unsigned long flags;
4339 
4340 	ENGINE_TRACE(engine, "\n");
4341 
4342 	spin_lock_irqsave(&engine->active.lock, flags);
4343 
4344 	__execlists_reset(engine, stalled);
4345 
4346 	spin_unlock_irqrestore(&engine->active.lock, flags);
4347 }
4348 
4349 static void nop_submission_tasklet(unsigned long data)
4350 {
4351 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
4352 
4353 	/* The driver is wedged; don't process any more events. */
4354 	WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
4355 }
4356 
4357 static void execlists_reset_cancel(struct intel_engine_cs *engine)
4358 {
4359 	struct intel_engine_execlists * const execlists = &engine->execlists;
4360 	struct i915_request *rq, *rn;
4361 	struct rb_node *rb;
4362 	unsigned long flags;
4363 
4364 	ENGINE_TRACE(engine, "\n");
4365 
4366 	/*
4367 	 * Before we call engine->cancel_requests(), we should have exclusive
4368 	 * access to the submission state. This is arranged for us by the
4369 	 * caller disabling the interrupt generation, the tasklet and other
4370 	 * threads that may then access the same state, giving us a free hand
4371 	 * to reset state. However, we still need to let lockdep be aware that
4372 	 * we know this state may be accessed in hardirq context, so we
4373 	 * disable the irq around this manipulation and we want to keep
4374 	 * the spinlock focused on its duties and not accidentally conflate
4375 	 * coverage to the submission's irq state. (Similarly, although we
4376 	 * shouldn't need to disable irq around the manipulation of the
4377 	 * submission's irq state, we also wish to remind ourselves that
4378 	 * it is irq state.)
4379 	 */
4380 	spin_lock_irqsave(&engine->active.lock, flags);
4381 
4382 	__execlists_reset(engine, true);
4383 
4384 	/* Mark all executing requests as skipped. */
4385 	list_for_each_entry(rq, &engine->active.requests, sched.link)
4386 		mark_eio(rq);
4387 
4388 	/* Flush the queued requests to the timeline list (for retiring). */
4389 	while ((rb = rb_first_cached(&execlists->queue))) {
4390 		struct i915_priolist *p = to_priolist(rb);
4391 		int i;
4392 
4393 		priolist_for_each_request_consume(rq, rn, p, i) {
4394 			mark_eio(rq);
4395 			__i915_request_submit(rq);
4396 		}
4397 
4398 		rb_erase_cached(&p->node, &execlists->queue);
4399 		i915_priolist_free(p);
4400 	}
4401 
4402 	/* On-hold requests will be flushed to timeline upon their release */
4403 	list_for_each_entry(rq, &engine->active.hold, sched.link)
4404 		mark_eio(rq);
4405 
4406 	/* Cancel all attached virtual engines */
4407 	while ((rb = rb_first_cached(&execlists->virtual))) {
4408 		struct virtual_engine *ve =
4409 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4410 
4411 		rb_erase_cached(rb, &execlists->virtual);
4412 		RB_CLEAR_NODE(rb);
4413 
4414 		spin_lock(&ve->base.active.lock);
4415 		rq = fetch_and_zero(&ve->request);
4416 		if (rq) {
4417 			mark_eio(rq);
4418 
4419 			rq->engine = engine;
4420 			__i915_request_submit(rq);
4421 			i915_request_put(rq);
4422 
4423 			ve->base.execlists.queue_priority_hint = INT_MIN;
4424 		}
4425 		spin_unlock(&ve->base.active.lock);
4426 	}
4427 
4428 	/* Remaining _unready_ requests will be nop'ed when submitted */
4429 
4430 	execlists->queue_priority_hint = INT_MIN;
4431 	execlists->queue = RB_ROOT_CACHED;
4432 
4433 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
4434 	execlists->tasklet.func = nop_submission_tasklet;
4435 
4436 	spin_unlock_irqrestore(&engine->active.lock, flags);
4437 }
4438 
4439 static void execlists_reset_finish(struct intel_engine_cs *engine)
4440 {
4441 	struct intel_engine_execlists * const execlists = &engine->execlists;
4442 
4443 	/*
4444 	 * After a GPU reset, we may have requests to replay. Do so now while
4445 	 * we still have the forcewake to be sure that the GPU is not allowed
4446 	 * to sleep before we restart and reload a context.
4447 	 */
4448 	GEM_BUG_ON(!reset_in_progress(execlists));
4449 	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
4450 		execlists->tasklet.func(execlists->tasklet.data);
4451 
4452 	if (__tasklet_enable(&execlists->tasklet))
4453 		/* And kick in case we missed a new request submission. */
4454 		tasklet_hi_schedule(&execlists->tasklet);
4455 	ENGINE_TRACE(engine, "depth->%d\n",
4456 		     atomic_read(&execlists->tasklet.count));
4457 }
4458 
4459 static int gen8_emit_bb_start_noarb(struct i915_request *rq,
4460 				    u64 offset, u32 len,
4461 				    const unsigned int flags)
4462 {
4463 	u32 *cs;
4464 
4465 	cs = intel_ring_begin(rq, 4);
4466 	if (IS_ERR(cs))
4467 		return PTR_ERR(cs);
4468 
4469 	/*
4470 	 * WaDisableCtxRestoreArbitration:bdw,chv
4471 	 *
4472 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
4473 	 * particular all the gen that do not need the w/a at all!), if we
4474 	 * took care to make sure that on every switch into this context
4475 	 * (both ordinary and for preemption) that arbitrartion was enabled
4476 	 * we would be fine.  However, for gen8 there is another w/a that
4477 	 * requires us to not preempt inside GPGPU execution, so we keep
4478 	 * arbitration disabled for gen8 batches. Arbitration will be
4479 	 * re-enabled before we close the request
4480 	 * (engine->emit_fini_breadcrumb).
4481 	 */
4482 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4483 
4484 	/* FIXME(BDW+): Address space and security selectors. */
4485 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4486 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4487 	*cs++ = lower_32_bits(offset);
4488 	*cs++ = upper_32_bits(offset);
4489 
4490 	intel_ring_advance(rq, cs);
4491 
4492 	return 0;
4493 }
4494 
4495 static int gen8_emit_bb_start(struct i915_request *rq,
4496 			      u64 offset, u32 len,
4497 			      const unsigned int flags)
4498 {
4499 	u32 *cs;
4500 
4501 	cs = intel_ring_begin(rq, 6);
4502 	if (IS_ERR(cs))
4503 		return PTR_ERR(cs);
4504 
4505 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4506 
4507 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4508 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4509 	*cs++ = lower_32_bits(offset);
4510 	*cs++ = upper_32_bits(offset);
4511 
4512 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4513 	*cs++ = MI_NOOP;
4514 
4515 	intel_ring_advance(rq, cs);
4516 
4517 	return 0;
4518 }
4519 
4520 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
4521 {
4522 	ENGINE_WRITE(engine, RING_IMR,
4523 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
4524 	ENGINE_POSTING_READ(engine, RING_IMR);
4525 }
4526 
4527 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
4528 {
4529 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
4530 }
4531 
4532 static int gen8_emit_flush(struct i915_request *request, u32 mode)
4533 {
4534 	u32 cmd, *cs;
4535 
4536 	cs = intel_ring_begin(request, 4);
4537 	if (IS_ERR(cs))
4538 		return PTR_ERR(cs);
4539 
4540 	cmd = MI_FLUSH_DW + 1;
4541 
4542 	/* We always require a command barrier so that subsequent
4543 	 * commands, such as breadcrumb interrupts, are strictly ordered
4544 	 * wrt the contents of the write cache being flushed to memory
4545 	 * (and thus being coherent from the CPU).
4546 	 */
4547 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
4548 
4549 	if (mode & EMIT_INVALIDATE) {
4550 		cmd |= MI_INVALIDATE_TLB;
4551 		if (request->engine->class == VIDEO_DECODE_CLASS)
4552 			cmd |= MI_INVALIDATE_BSD;
4553 	}
4554 
4555 	*cs++ = cmd;
4556 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
4557 	*cs++ = 0; /* upper addr */
4558 	*cs++ = 0; /* value */
4559 	intel_ring_advance(request, cs);
4560 
4561 	return 0;
4562 }
4563 
4564 static int gen8_emit_flush_render(struct i915_request *request,
4565 				  u32 mode)
4566 {
4567 	bool vf_flush_wa = false, dc_flush_wa = false;
4568 	u32 *cs, flags = 0;
4569 	int len;
4570 
4571 	flags |= PIPE_CONTROL_CS_STALL;
4572 
4573 	if (mode & EMIT_FLUSH) {
4574 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4575 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4576 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4577 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4578 	}
4579 
4580 	if (mode & EMIT_INVALIDATE) {
4581 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
4582 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4583 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4584 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4585 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4586 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4587 		flags |= PIPE_CONTROL_QW_WRITE;
4588 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4589 
4590 		/*
4591 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
4592 		 * pipe control.
4593 		 */
4594 		if (IS_GEN(request->engine->i915, 9))
4595 			vf_flush_wa = true;
4596 
4597 		/* WaForGAMHang:kbl */
4598 		if (IS_KBL_GT_REVID(request->engine->i915, 0, KBL_REVID_B0))
4599 			dc_flush_wa = true;
4600 	}
4601 
4602 	len = 6;
4603 
4604 	if (vf_flush_wa)
4605 		len += 6;
4606 
4607 	if (dc_flush_wa)
4608 		len += 12;
4609 
4610 	cs = intel_ring_begin(request, len);
4611 	if (IS_ERR(cs))
4612 		return PTR_ERR(cs);
4613 
4614 	if (vf_flush_wa)
4615 		cs = gen8_emit_pipe_control(cs, 0, 0);
4616 
4617 	if (dc_flush_wa)
4618 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
4619 					    0);
4620 
4621 	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4622 
4623 	if (dc_flush_wa)
4624 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
4625 
4626 	intel_ring_advance(request, cs);
4627 
4628 	return 0;
4629 }
4630 
4631 static int gen11_emit_flush_render(struct i915_request *request,
4632 				   u32 mode)
4633 {
4634 	if (mode & EMIT_FLUSH) {
4635 		u32 *cs;
4636 		u32 flags = 0;
4637 
4638 		flags |= PIPE_CONTROL_CS_STALL;
4639 
4640 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
4641 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4642 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4643 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4644 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4645 		flags |= PIPE_CONTROL_QW_WRITE;
4646 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4647 
4648 		cs = intel_ring_begin(request, 6);
4649 		if (IS_ERR(cs))
4650 			return PTR_ERR(cs);
4651 
4652 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4653 		intel_ring_advance(request, cs);
4654 	}
4655 
4656 	if (mode & EMIT_INVALIDATE) {
4657 		u32 *cs;
4658 		u32 flags = 0;
4659 
4660 		flags |= PIPE_CONTROL_CS_STALL;
4661 
4662 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4663 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
4664 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4665 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4666 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4667 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4668 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4669 		flags |= PIPE_CONTROL_QW_WRITE;
4670 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4671 
4672 		cs = intel_ring_begin(request, 6);
4673 		if (IS_ERR(cs))
4674 			return PTR_ERR(cs);
4675 
4676 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4677 		intel_ring_advance(request, cs);
4678 	}
4679 
4680 	return 0;
4681 }
4682 
4683 static u32 preparser_disable(bool state)
4684 {
4685 	return MI_ARB_CHECK | 1 << 8 | state;
4686 }
4687 
4688 static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
4689 {
4690 	static const i915_reg_t vd[] = {
4691 		GEN12_VD0_AUX_NV,
4692 		GEN12_VD1_AUX_NV,
4693 		GEN12_VD2_AUX_NV,
4694 		GEN12_VD3_AUX_NV,
4695 	};
4696 
4697 	static const i915_reg_t ve[] = {
4698 		GEN12_VE0_AUX_NV,
4699 		GEN12_VE1_AUX_NV,
4700 	};
4701 
4702 	if (engine->class == VIDEO_DECODE_CLASS)
4703 		return vd[engine->instance];
4704 
4705 	if (engine->class == VIDEO_ENHANCEMENT_CLASS)
4706 		return ve[engine->instance];
4707 
4708 	GEM_BUG_ON("unknown aux_inv_reg\n");
4709 
4710 	return INVALID_MMIO_REG;
4711 }
4712 
4713 static u32 *
4714 gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
4715 {
4716 	*cs++ = MI_LOAD_REGISTER_IMM(1);
4717 	*cs++ = i915_mmio_reg_offset(inv_reg);
4718 	*cs++ = AUX_INV;
4719 	*cs++ = MI_NOOP;
4720 
4721 	return cs;
4722 }
4723 
4724 static int gen12_emit_flush_render(struct i915_request *request,
4725 				   u32 mode)
4726 {
4727 	if (mode & EMIT_FLUSH) {
4728 		u32 flags = 0;
4729 		u32 *cs;
4730 
4731 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
4732 		flags |= PIPE_CONTROL_FLUSH_L3;
4733 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4734 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4735 		/* Wa_1409600907:tgl */
4736 		flags |= PIPE_CONTROL_DEPTH_STALL;
4737 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4738 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4739 
4740 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4741 		flags |= PIPE_CONTROL_QW_WRITE;
4742 
4743 		flags |= PIPE_CONTROL_CS_STALL;
4744 
4745 		cs = intel_ring_begin(request, 6);
4746 		if (IS_ERR(cs))
4747 			return PTR_ERR(cs);
4748 
4749 		cs = gen12_emit_pipe_control(cs,
4750 					     PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
4751 					     flags, LRC_PPHWSP_SCRATCH_ADDR);
4752 		intel_ring_advance(request, cs);
4753 	}
4754 
4755 	if (mode & EMIT_INVALIDATE) {
4756 		u32 flags = 0;
4757 		u32 *cs;
4758 
4759 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4760 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
4761 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4762 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4763 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4764 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4765 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4766 
4767 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4768 		flags |= PIPE_CONTROL_QW_WRITE;
4769 
4770 		flags |= PIPE_CONTROL_CS_STALL;
4771 
4772 		cs = intel_ring_begin(request, 8 + 4);
4773 		if (IS_ERR(cs))
4774 			return PTR_ERR(cs);
4775 
4776 		/*
4777 		 * Prevent the pre-parser from skipping past the TLB
4778 		 * invalidate and loading a stale page for the batch
4779 		 * buffer / request payload.
4780 		 */
4781 		*cs++ = preparser_disable(true);
4782 
4783 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4784 
4785 		/* hsdes: 1809175790 */
4786 		cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
4787 
4788 		*cs++ = preparser_disable(false);
4789 		intel_ring_advance(request, cs);
4790 	}
4791 
4792 	return 0;
4793 }
4794 
4795 static int gen12_emit_flush(struct i915_request *request, u32 mode)
4796 {
4797 	intel_engine_mask_t aux_inv = 0;
4798 	u32 cmd, *cs;
4799 
4800 	cmd = 4;
4801 	if (mode & EMIT_INVALIDATE)
4802 		cmd += 2;
4803 	if (mode & EMIT_INVALIDATE)
4804 		aux_inv = request->engine->mask & ~BIT(BCS0);
4805 	if (aux_inv)
4806 		cmd += 2 * hweight8(aux_inv) + 2;
4807 
4808 	cs = intel_ring_begin(request, cmd);
4809 	if (IS_ERR(cs))
4810 		return PTR_ERR(cs);
4811 
4812 	if (mode & EMIT_INVALIDATE)
4813 		*cs++ = preparser_disable(true);
4814 
4815 	cmd = MI_FLUSH_DW + 1;
4816 
4817 	/* We always require a command barrier so that subsequent
4818 	 * commands, such as breadcrumb interrupts, are strictly ordered
4819 	 * wrt the contents of the write cache being flushed to memory
4820 	 * (and thus being coherent from the CPU).
4821 	 */
4822 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
4823 
4824 	if (mode & EMIT_INVALIDATE) {
4825 		cmd |= MI_INVALIDATE_TLB;
4826 		if (request->engine->class == VIDEO_DECODE_CLASS)
4827 			cmd |= MI_INVALIDATE_BSD;
4828 	}
4829 
4830 	*cs++ = cmd;
4831 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
4832 	*cs++ = 0; /* upper addr */
4833 	*cs++ = 0; /* value */
4834 
4835 	if (aux_inv) { /* hsdes: 1809175790 */
4836 		struct intel_engine_cs *engine;
4837 		unsigned int tmp;
4838 
4839 		*cs++ = MI_LOAD_REGISTER_IMM(hweight8(aux_inv));
4840 		for_each_engine_masked(engine, request->engine->gt,
4841 				       aux_inv, tmp) {
4842 			*cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
4843 			*cs++ = AUX_INV;
4844 		}
4845 		*cs++ = MI_NOOP;
4846 	}
4847 
4848 	if (mode & EMIT_INVALIDATE)
4849 		*cs++ = preparser_disable(false);
4850 
4851 	intel_ring_advance(request, cs);
4852 
4853 	return 0;
4854 }
4855 
4856 static void assert_request_valid(struct i915_request *rq)
4857 {
4858 	struct intel_ring *ring __maybe_unused = rq->ring;
4859 
4860 	/* Can we unwind this request without appearing to go forwards? */
4861 	GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
4862 }
4863 
4864 /*
4865  * Reserve space for 2 NOOPs at the end of each request to be
4866  * used as a workaround for not being allowed to do lite
4867  * restore with HEAD==TAIL (WaIdleLiteRestore).
4868  */
4869 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
4870 {
4871 	/* Ensure there's always at least one preemption point per-request. */
4872 	*cs++ = MI_ARB_CHECK;
4873 	*cs++ = MI_NOOP;
4874 	request->wa_tail = intel_ring_offset(request, cs);
4875 
4876 	/* Check that entire request is less than half the ring */
4877 	assert_request_valid(request);
4878 
4879 	return cs;
4880 }
4881 
4882 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
4883 {
4884 	*cs++ = MI_SEMAPHORE_WAIT |
4885 		MI_SEMAPHORE_GLOBAL_GTT |
4886 		MI_SEMAPHORE_POLL |
4887 		MI_SEMAPHORE_SAD_EQ_SDD;
4888 	*cs++ = 0;
4889 	*cs++ = intel_hws_preempt_address(request->engine);
4890 	*cs++ = 0;
4891 
4892 	return cs;
4893 }
4894 
4895 static __always_inline u32*
4896 gen8_emit_fini_breadcrumb_tail(struct i915_request *request, u32 *cs)
4897 {
4898 	*cs++ = MI_USER_INTERRUPT;
4899 
4900 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4901 	if (intel_engine_has_semaphores(request->engine))
4902 		cs = emit_preempt_busywait(request, cs);
4903 
4904 	request->tail = intel_ring_offset(request, cs);
4905 	assert_ring_tail_valid(request->ring, request->tail);
4906 
4907 	return gen8_emit_wa_tail(request, cs);
4908 }
4909 
4910 static u32 *emit_xcs_breadcrumb(struct i915_request *request, u32 *cs)
4911 {
4912 	u32 addr = i915_request_active_timeline(request)->hwsp_offset;
4913 
4914 	return gen8_emit_ggtt_write(cs, request->fence.seqno, addr, 0);
4915 }
4916 
4917 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *rq, u32 *cs)
4918 {
4919 	return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
4920 }
4921 
4922 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4923 {
4924 	cs = gen8_emit_pipe_control(cs,
4925 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4926 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4927 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
4928 				    0);
4929 
4930 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
4931 	cs = gen8_emit_ggtt_write_rcs(cs,
4932 				      request->fence.seqno,
4933 				      i915_request_active_timeline(request)->hwsp_offset,
4934 				      PIPE_CONTROL_FLUSH_ENABLE |
4935 				      PIPE_CONTROL_CS_STALL);
4936 
4937 	return gen8_emit_fini_breadcrumb_tail(request, cs);
4938 }
4939 
4940 static u32 *
4941 gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4942 {
4943 	cs = gen8_emit_ggtt_write_rcs(cs,
4944 				      request->fence.seqno,
4945 				      i915_request_active_timeline(request)->hwsp_offset,
4946 				      PIPE_CONTROL_CS_STALL |
4947 				      PIPE_CONTROL_TILE_CACHE_FLUSH |
4948 				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4949 				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4950 				      PIPE_CONTROL_DC_FLUSH_ENABLE |
4951 				      PIPE_CONTROL_FLUSH_ENABLE);
4952 
4953 	return gen8_emit_fini_breadcrumb_tail(request, cs);
4954 }
4955 
4956 /*
4957  * Note that the CS instruction pre-parser will not stall on the breadcrumb
4958  * flush and will continue pre-fetching the instructions after it before the
4959  * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
4960  * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
4961  * of the next request before the memory has been flushed, we're guaranteed that
4962  * we won't access the batch itself too early.
4963  * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
4964  * so, if the current request is modifying an instruction in the next request on
4965  * the same intel_context, we might pre-fetch and then execute the pre-update
4966  * instruction. To avoid this, the users of self-modifying code should either
4967  * disable the parser around the code emitting the memory writes, via a new flag
4968  * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
4969  * the in-kernel use-cases we've opted to use a separate context, see
4970  * reloc_gpu() as an example.
4971  * All the above applies only to the instructions themselves. Non-inline data
4972  * used by the instructions is not pre-fetched.
4973  */
4974 
4975 static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
4976 {
4977 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
4978 		MI_SEMAPHORE_GLOBAL_GTT |
4979 		MI_SEMAPHORE_POLL |
4980 		MI_SEMAPHORE_SAD_EQ_SDD;
4981 	*cs++ = 0;
4982 	*cs++ = intel_hws_preempt_address(request->engine);
4983 	*cs++ = 0;
4984 	*cs++ = 0;
4985 	*cs++ = MI_NOOP;
4986 
4987 	return cs;
4988 }
4989 
4990 static __always_inline u32*
4991 gen12_emit_fini_breadcrumb_tail(struct i915_request *request, u32 *cs)
4992 {
4993 	*cs++ = MI_USER_INTERRUPT;
4994 
4995 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4996 	if (intel_engine_has_semaphores(request->engine))
4997 		cs = gen12_emit_preempt_busywait(request, cs);
4998 
4999 	request->tail = intel_ring_offset(request, cs);
5000 	assert_ring_tail_valid(request->ring, request->tail);
5001 
5002 	return gen8_emit_wa_tail(request, cs);
5003 }
5004 
5005 static u32 *gen12_emit_fini_breadcrumb(struct i915_request *rq, u32 *cs)
5006 {
5007 	return gen12_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
5008 }
5009 
5010 static u32 *
5011 gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
5012 {
5013 	cs = gen12_emit_ggtt_write_rcs(cs,
5014 				       request->fence.seqno,
5015 				       i915_request_active_timeline(request)->hwsp_offset,
5016 				       PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
5017 				       PIPE_CONTROL_CS_STALL |
5018 				       PIPE_CONTROL_TILE_CACHE_FLUSH |
5019 				       PIPE_CONTROL_FLUSH_L3 |
5020 				       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
5021 				       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5022 				       /* Wa_1409600907:tgl */
5023 				       PIPE_CONTROL_DEPTH_STALL |
5024 				       PIPE_CONTROL_DC_FLUSH_ENABLE |
5025 				       PIPE_CONTROL_FLUSH_ENABLE);
5026 
5027 	return gen12_emit_fini_breadcrumb_tail(request, cs);
5028 }
5029 
5030 static void execlists_park(struct intel_engine_cs *engine)
5031 {
5032 	cancel_timer(&engine->execlists.timer);
5033 	cancel_timer(&engine->execlists.preempt);
5034 }
5035 
5036 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
5037 {
5038 	engine->submit_request = execlists_submit_request;
5039 	engine->schedule = i915_schedule;
5040 	engine->execlists.tasklet.func = execlists_submission_tasklet;
5041 
5042 	engine->reset.prepare = execlists_reset_prepare;
5043 	engine->reset.rewind = execlists_reset_rewind;
5044 	engine->reset.cancel = execlists_reset_cancel;
5045 	engine->reset.finish = execlists_reset_finish;
5046 
5047 	engine->park = execlists_park;
5048 	engine->unpark = NULL;
5049 
5050 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
5051 	if (!intel_vgpu_active(engine->i915)) {
5052 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
5053 		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) {
5054 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
5055 			if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
5056 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
5057 		}
5058 	}
5059 
5060 	if (INTEL_GEN(engine->i915) >= 12)
5061 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
5062 
5063 	if (intel_engine_has_preemption(engine))
5064 		engine->emit_bb_start = gen8_emit_bb_start;
5065 	else
5066 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
5067 }
5068 
5069 static void execlists_shutdown(struct intel_engine_cs *engine)
5070 {
5071 	/* Synchronise with residual timers and any softirq they raise */
5072 	del_timer_sync(&engine->execlists.timer);
5073 	del_timer_sync(&engine->execlists.preempt);
5074 	tasklet_kill(&engine->execlists.tasklet);
5075 }
5076 
5077 static void execlists_release(struct intel_engine_cs *engine)
5078 {
5079 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
5080 
5081 	execlists_shutdown(engine);
5082 
5083 	intel_engine_cleanup_common(engine);
5084 	lrc_destroy_wa_ctx(engine);
5085 }
5086 
5087 static void
5088 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
5089 {
5090 	/* Default vfuncs which can be overriden by each engine. */
5091 
5092 	engine->resume = execlists_resume;
5093 
5094 	engine->cops = &execlists_context_ops;
5095 	engine->request_alloc = execlists_request_alloc;
5096 
5097 	engine->emit_flush = gen8_emit_flush;
5098 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
5099 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
5100 	if (INTEL_GEN(engine->i915) >= 12) {
5101 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
5102 		engine->emit_flush = gen12_emit_flush;
5103 	}
5104 	engine->set_default_submission = intel_execlists_set_default_submission;
5105 
5106 	if (INTEL_GEN(engine->i915) < 11) {
5107 		engine->irq_enable = gen8_logical_ring_enable_irq;
5108 		engine->irq_disable = gen8_logical_ring_disable_irq;
5109 	} else {
5110 		/*
5111 		 * TODO: On Gen11 interrupt masks need to be clear
5112 		 * to allow C6 entry. Keep interrupts enabled at
5113 		 * and take the hit of generating extra interrupts
5114 		 * until a more refined solution exists.
5115 		 */
5116 	}
5117 }
5118 
5119 static inline void
5120 logical_ring_default_irqs(struct intel_engine_cs *engine)
5121 {
5122 	unsigned int shift = 0;
5123 
5124 	if (INTEL_GEN(engine->i915) < 11) {
5125 		const u8 irq_shifts[] = {
5126 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
5127 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
5128 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
5129 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
5130 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
5131 		};
5132 
5133 		shift = irq_shifts[engine->id];
5134 	}
5135 
5136 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
5137 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
5138 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
5139 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
5140 }
5141 
5142 static void rcs_submission_override(struct intel_engine_cs *engine)
5143 {
5144 	switch (INTEL_GEN(engine->i915)) {
5145 	case 12:
5146 		engine->emit_flush = gen12_emit_flush_render;
5147 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
5148 		break;
5149 	case 11:
5150 		engine->emit_flush = gen11_emit_flush_render;
5151 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
5152 		break;
5153 	default:
5154 		engine->emit_flush = gen8_emit_flush_render;
5155 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
5156 		break;
5157 	}
5158 }
5159 
5160 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
5161 {
5162 	struct intel_engine_execlists * const execlists = &engine->execlists;
5163 	struct drm_i915_private *i915 = engine->i915;
5164 	struct intel_uncore *uncore = engine->uncore;
5165 	u32 base = engine->mmio_base;
5166 
5167 	tasklet_init(&engine->execlists.tasklet,
5168 		     execlists_submission_tasklet, (unsigned long)engine);
5169 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
5170 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
5171 
5172 	logical_ring_default_vfuncs(engine);
5173 	logical_ring_default_irqs(engine);
5174 
5175 	if (engine->class == RENDER_CLASS)
5176 		rcs_submission_override(engine);
5177 
5178 	if (intel_init_workaround_bb(engine))
5179 		/*
5180 		 * We continue even if we fail to initialize WA batch
5181 		 * because we only expect rare glitches but nothing
5182 		 * critical to prevent us from using GPU
5183 		 */
5184 		drm_err(&i915->drm, "WA batch buffer initialization failed\n");
5185 
5186 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
5187 		execlists->submit_reg = uncore->regs +
5188 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
5189 		execlists->ctrl_reg = uncore->regs +
5190 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
5191 	} else {
5192 		execlists->submit_reg = uncore->regs +
5193 			i915_mmio_reg_offset(RING_ELSP(base));
5194 	}
5195 
5196 	execlists->csb_status =
5197 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
5198 
5199 	execlists->csb_write =
5200 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
5201 
5202 	if (INTEL_GEN(i915) < 11)
5203 		execlists->csb_size = GEN8_CSB_ENTRIES;
5204 	else
5205 		execlists->csb_size = GEN11_CSB_ENTRIES;
5206 
5207 	if (INTEL_GEN(engine->i915) >= 11) {
5208 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
5209 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
5210 	}
5211 
5212 	/* Finally, take ownership and responsibility for cleanup! */
5213 	engine->sanitize = execlists_sanitize;
5214 	engine->release = execlists_release;
5215 
5216 	return 0;
5217 }
5218 
5219 static void init_common_reg_state(u32 * const regs,
5220 				  const struct intel_engine_cs *engine,
5221 				  const struct intel_ring *ring,
5222 				  bool inhibit)
5223 {
5224 	u32 ctl;
5225 
5226 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
5227 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
5228 	if (inhibit)
5229 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
5230 	if (INTEL_GEN(engine->i915) < 11)
5231 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
5232 					   CTX_CTRL_RS_CTX_ENABLE);
5233 	regs[CTX_CONTEXT_CONTROL] = ctl;
5234 
5235 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
5236 	regs[CTX_TIMESTAMP] = 0;
5237 }
5238 
5239 static void init_wa_bb_reg_state(u32 * const regs,
5240 				 const struct intel_engine_cs *engine)
5241 {
5242 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
5243 
5244 	if (wa_ctx->per_ctx.size) {
5245 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
5246 
5247 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
5248 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
5249 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
5250 	}
5251 
5252 	if (wa_ctx->indirect_ctx.size) {
5253 		lrc_ring_setup_indirect_ctx(regs, engine,
5254 					    i915_ggtt_offset(wa_ctx->vma) +
5255 					    wa_ctx->indirect_ctx.offset,
5256 					    wa_ctx->indirect_ctx.size);
5257 	}
5258 }
5259 
5260 static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
5261 {
5262 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
5263 		/* 64b PPGTT (48bit canonical)
5264 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
5265 		 * other PDP Descriptors are ignored.
5266 		 */
5267 		ASSIGN_CTX_PML4(ppgtt, regs);
5268 	} else {
5269 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
5270 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
5271 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
5272 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
5273 	}
5274 }
5275 
5276 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
5277 {
5278 	if (i915_is_ggtt(vm))
5279 		return i915_vm_to_ggtt(vm)->alias;
5280 	else
5281 		return i915_vm_to_ppgtt(vm);
5282 }
5283 
5284 static void execlists_init_reg_state(u32 *regs,
5285 				     const struct intel_context *ce,
5286 				     const struct intel_engine_cs *engine,
5287 				     const struct intel_ring *ring,
5288 				     bool inhibit)
5289 {
5290 	/*
5291 	 * A context is actually a big batch buffer with several
5292 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
5293 	 * values we are setting here are only for the first context restore:
5294 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
5295 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
5296 	 * we are not initializing here).
5297 	 *
5298 	 * Must keep consistent with virtual_update_register_offsets().
5299 	 */
5300 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
5301 
5302 	init_common_reg_state(regs, engine, ring, inhibit);
5303 	init_ppgtt_reg_state(regs, vm_alias(ce->vm));
5304 
5305 	init_wa_bb_reg_state(regs, engine);
5306 
5307 	__reset_stop_ring(regs, engine);
5308 }
5309 
5310 static int
5311 populate_lr_context(struct intel_context *ce,
5312 		    struct drm_i915_gem_object *ctx_obj,
5313 		    struct intel_engine_cs *engine,
5314 		    struct intel_ring *ring)
5315 {
5316 	bool inhibit = true;
5317 	void *vaddr;
5318 
5319 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
5320 	if (IS_ERR(vaddr)) {
5321 		drm_dbg(&engine->i915->drm, "Could not map object pages!\n");
5322 		return PTR_ERR(vaddr);
5323 	}
5324 
5325 	set_redzone(vaddr, engine);
5326 
5327 	if (engine->default_state) {
5328 		shmem_read(engine->default_state, 0,
5329 			   vaddr, engine->context_size);
5330 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
5331 		inhibit = false;
5332 	}
5333 
5334 	/* Clear the ppHWSP (inc. per-context counters) */
5335 	memset(vaddr, 0, PAGE_SIZE);
5336 
5337 	/*
5338 	 * The second page of the context object contains some registers which
5339 	 * must be set up prior to the first execution.
5340 	 */
5341 	execlists_init_reg_state(vaddr + LRC_STATE_OFFSET,
5342 				 ce, engine, ring, inhibit);
5343 
5344 	__i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
5345 	i915_gem_object_unpin_map(ctx_obj);
5346 	return 0;
5347 }
5348 
5349 static struct intel_timeline *pinned_timeline(struct intel_context *ce)
5350 {
5351 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
5352 
5353 	return intel_timeline_create_from_engine(ce->engine,
5354 						 page_unmask_bits(tl));
5355 }
5356 
5357 static int __execlists_context_alloc(struct intel_context *ce,
5358 				     struct intel_engine_cs *engine)
5359 {
5360 	struct drm_i915_gem_object *ctx_obj;
5361 	struct intel_ring *ring;
5362 	struct i915_vma *vma;
5363 	u32 context_size;
5364 	int ret;
5365 
5366 	GEM_BUG_ON(ce->state);
5367 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
5368 
5369 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
5370 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
5371 
5372 	if (INTEL_GEN(engine->i915) == 12) {
5373 		ce->wa_bb_page = context_size / PAGE_SIZE;
5374 		context_size += PAGE_SIZE;
5375 	}
5376 
5377 	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
5378 	if (IS_ERR(ctx_obj))
5379 		return PTR_ERR(ctx_obj);
5380 
5381 	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
5382 	if (IS_ERR(vma)) {
5383 		ret = PTR_ERR(vma);
5384 		goto error_deref_obj;
5385 	}
5386 
5387 	if (!page_mask_bits(ce->timeline)) {
5388 		struct intel_timeline *tl;
5389 
5390 		/*
5391 		 * Use the static global HWSP for the kernel context, and
5392 		 * a dynamically allocated cacheline for everyone else.
5393 		 */
5394 		if (unlikely(ce->timeline))
5395 			tl = pinned_timeline(ce);
5396 		else
5397 			tl = intel_timeline_create(engine->gt);
5398 		if (IS_ERR(tl)) {
5399 			ret = PTR_ERR(tl);
5400 			goto error_deref_obj;
5401 		}
5402 
5403 		ce->timeline = tl;
5404 	}
5405 
5406 	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
5407 	if (IS_ERR(ring)) {
5408 		ret = PTR_ERR(ring);
5409 		goto error_deref_obj;
5410 	}
5411 
5412 	ret = populate_lr_context(ce, ctx_obj, engine, ring);
5413 	if (ret) {
5414 		drm_dbg(&engine->i915->drm,
5415 			"Failed to populate LRC: %d\n", ret);
5416 		goto error_ring_free;
5417 	}
5418 
5419 	ce->ring = ring;
5420 	ce->state = vma;
5421 
5422 	return 0;
5423 
5424 error_ring_free:
5425 	intel_ring_put(ring);
5426 error_deref_obj:
5427 	i915_gem_object_put(ctx_obj);
5428 	return ret;
5429 }
5430 
5431 static struct list_head *virtual_queue(struct virtual_engine *ve)
5432 {
5433 	return &ve->base.execlists.default_priolist.requests[0];
5434 }
5435 
5436 static void virtual_context_destroy(struct kref *kref)
5437 {
5438 	struct virtual_engine *ve =
5439 		container_of(kref, typeof(*ve), context.ref);
5440 	unsigned int n;
5441 
5442 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
5443 	GEM_BUG_ON(ve->request);
5444 	GEM_BUG_ON(ve->context.inflight);
5445 
5446 	for (n = 0; n < ve->num_siblings; n++) {
5447 		struct intel_engine_cs *sibling = ve->siblings[n];
5448 		struct rb_node *node = &ve->nodes[sibling->id].rb;
5449 		unsigned long flags;
5450 
5451 		if (RB_EMPTY_NODE(node))
5452 			continue;
5453 
5454 		spin_lock_irqsave(&sibling->active.lock, flags);
5455 
5456 		/* Detachment is lazily performed in the execlists tasklet */
5457 		if (!RB_EMPTY_NODE(node))
5458 			rb_erase_cached(node, &sibling->execlists.virtual);
5459 
5460 		spin_unlock_irqrestore(&sibling->active.lock, flags);
5461 	}
5462 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
5463 
5464 	if (ve->context.state)
5465 		__execlists_context_fini(&ve->context);
5466 	intel_context_fini(&ve->context);
5467 
5468 	intel_engine_free_request_pool(&ve->base);
5469 
5470 	kfree(ve->bonds);
5471 	kfree(ve);
5472 }
5473 
5474 static void virtual_engine_initial_hint(struct virtual_engine *ve)
5475 {
5476 	int swp;
5477 
5478 	/*
5479 	 * Pick a random sibling on starting to help spread the load around.
5480 	 *
5481 	 * New contexts are typically created with exactly the same order
5482 	 * of siblings, and often started in batches. Due to the way we iterate
5483 	 * the array of sibling when submitting requests, sibling[0] is
5484 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
5485 	 * randomised across the system, we also help spread the load by the
5486 	 * first engine we inspect being different each time.
5487 	 *
5488 	 * NB This does not force us to execute on this engine, it will just
5489 	 * typically be the first we inspect for submission.
5490 	 */
5491 	swp = prandom_u32_max(ve->num_siblings);
5492 	if (swp)
5493 		swap(ve->siblings[swp], ve->siblings[0]);
5494 }
5495 
5496 static int virtual_context_alloc(struct intel_context *ce)
5497 {
5498 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5499 
5500 	return __execlists_context_alloc(ce, ve->siblings[0]);
5501 }
5502 
5503 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
5504 {
5505 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5506 
5507 	/* Note: we must use a real engine class for setting up reg state */
5508 	return __execlists_context_pin(ce, ve->siblings[0], vaddr);
5509 }
5510 
5511 static void virtual_context_enter(struct intel_context *ce)
5512 {
5513 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5514 	unsigned int n;
5515 
5516 	for (n = 0; n < ve->num_siblings; n++)
5517 		intel_engine_pm_get(ve->siblings[n]);
5518 
5519 	intel_timeline_enter(ce->timeline);
5520 }
5521 
5522 static void virtual_context_exit(struct intel_context *ce)
5523 {
5524 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5525 	unsigned int n;
5526 
5527 	intel_timeline_exit(ce->timeline);
5528 
5529 	for (n = 0; n < ve->num_siblings; n++)
5530 		intel_engine_pm_put(ve->siblings[n]);
5531 }
5532 
5533 static const struct intel_context_ops virtual_context_ops = {
5534 	.alloc = virtual_context_alloc,
5535 
5536 	.pre_pin = execlists_context_pre_pin,
5537 	.pin = virtual_context_pin,
5538 	.unpin = execlists_context_unpin,
5539 	.post_unpin = execlists_context_post_unpin,
5540 
5541 	.enter = virtual_context_enter,
5542 	.exit = virtual_context_exit,
5543 
5544 	.destroy = virtual_context_destroy,
5545 };
5546 
5547 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
5548 {
5549 	struct i915_request *rq;
5550 	intel_engine_mask_t mask;
5551 
5552 	rq = READ_ONCE(ve->request);
5553 	if (!rq)
5554 		return 0;
5555 
5556 	/* The rq is ready for submission; rq->execution_mask is now stable. */
5557 	mask = rq->execution_mask;
5558 	if (unlikely(!mask)) {
5559 		/* Invalid selection, submit to a random engine in error */
5560 		i915_request_set_error_once(rq, -ENODEV);
5561 		mask = ve->siblings[0]->mask;
5562 	}
5563 
5564 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
5565 		     rq->fence.context, rq->fence.seqno,
5566 		     mask, ve->base.execlists.queue_priority_hint);
5567 
5568 	return mask;
5569 }
5570 
5571 static void virtual_submission_tasklet(unsigned long data)
5572 {
5573 	struct virtual_engine * const ve = (struct virtual_engine *)data;
5574 	const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
5575 	intel_engine_mask_t mask;
5576 	unsigned int n;
5577 
5578 	rcu_read_lock();
5579 	mask = virtual_submission_mask(ve);
5580 	rcu_read_unlock();
5581 	if (unlikely(!mask))
5582 		return;
5583 
5584 	local_irq_disable();
5585 	for (n = 0; n < ve->num_siblings; n++) {
5586 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
5587 		struct ve_node * const node = &ve->nodes[sibling->id];
5588 		struct rb_node **parent, *rb;
5589 		bool first;
5590 
5591 		if (!READ_ONCE(ve->request))
5592 			break; /* already handled by a sibling's tasklet */
5593 
5594 		if (unlikely(!(mask & sibling->mask))) {
5595 			if (!RB_EMPTY_NODE(&node->rb)) {
5596 				spin_lock(&sibling->active.lock);
5597 				rb_erase_cached(&node->rb,
5598 						&sibling->execlists.virtual);
5599 				RB_CLEAR_NODE(&node->rb);
5600 				spin_unlock(&sibling->active.lock);
5601 			}
5602 			continue;
5603 		}
5604 
5605 		spin_lock(&sibling->active.lock);
5606 
5607 		if (!RB_EMPTY_NODE(&node->rb)) {
5608 			/*
5609 			 * Cheat and avoid rebalancing the tree if we can
5610 			 * reuse this node in situ.
5611 			 */
5612 			first = rb_first_cached(&sibling->execlists.virtual) ==
5613 				&node->rb;
5614 			if (prio == node->prio || (prio > node->prio && first))
5615 				goto submit_engine;
5616 
5617 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
5618 		}
5619 
5620 		rb = NULL;
5621 		first = true;
5622 		parent = &sibling->execlists.virtual.rb_root.rb_node;
5623 		while (*parent) {
5624 			struct ve_node *other;
5625 
5626 			rb = *parent;
5627 			other = rb_entry(rb, typeof(*other), rb);
5628 			if (prio > other->prio) {
5629 				parent = &rb->rb_left;
5630 			} else {
5631 				parent = &rb->rb_right;
5632 				first = false;
5633 			}
5634 		}
5635 
5636 		rb_link_node(&node->rb, rb, parent);
5637 		rb_insert_color_cached(&node->rb,
5638 				       &sibling->execlists.virtual,
5639 				       first);
5640 
5641 submit_engine:
5642 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
5643 		node->prio = prio;
5644 		if (first && prio > sibling->execlists.queue_priority_hint)
5645 			tasklet_hi_schedule(&sibling->execlists.tasklet);
5646 
5647 		spin_unlock(&sibling->active.lock);
5648 	}
5649 	local_irq_enable();
5650 }
5651 
5652 static void virtual_submit_request(struct i915_request *rq)
5653 {
5654 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5655 	struct i915_request *old;
5656 	unsigned long flags;
5657 
5658 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
5659 		     rq->fence.context,
5660 		     rq->fence.seqno);
5661 
5662 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
5663 
5664 	spin_lock_irqsave(&ve->base.active.lock, flags);
5665 
5666 	old = ve->request;
5667 	if (old) { /* background completion event from preempt-to-busy */
5668 		GEM_BUG_ON(!i915_request_completed(old));
5669 		__i915_request_submit(old);
5670 		i915_request_put(old);
5671 	}
5672 
5673 	if (i915_request_completed(rq)) {
5674 		__i915_request_submit(rq);
5675 
5676 		ve->base.execlists.queue_priority_hint = INT_MIN;
5677 		ve->request = NULL;
5678 	} else {
5679 		ve->base.execlists.queue_priority_hint = rq_prio(rq);
5680 		ve->request = i915_request_get(rq);
5681 
5682 		GEM_BUG_ON(!list_empty(virtual_queue(ve)));
5683 		list_move_tail(&rq->sched.link, virtual_queue(ve));
5684 
5685 		tasklet_hi_schedule(&ve->base.execlists.tasklet);
5686 	}
5687 
5688 	spin_unlock_irqrestore(&ve->base.active.lock, flags);
5689 }
5690 
5691 static struct ve_bond *
5692 virtual_find_bond(struct virtual_engine *ve,
5693 		  const struct intel_engine_cs *master)
5694 {
5695 	int i;
5696 
5697 	for (i = 0; i < ve->num_bonds; i++) {
5698 		if (ve->bonds[i].master == master)
5699 			return &ve->bonds[i];
5700 	}
5701 
5702 	return NULL;
5703 }
5704 
5705 static void
5706 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
5707 {
5708 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5709 	intel_engine_mask_t allowed, exec;
5710 	struct ve_bond *bond;
5711 
5712 	allowed = ~to_request(signal)->engine->mask;
5713 
5714 	bond = virtual_find_bond(ve, to_request(signal)->engine);
5715 	if (bond)
5716 		allowed &= bond->sibling_mask;
5717 
5718 	/* Restrict the bonded request to run on only the available engines */
5719 	exec = READ_ONCE(rq->execution_mask);
5720 	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
5721 		;
5722 
5723 	/* Prevent the master from being re-run on the bonded engines */
5724 	to_request(signal)->execution_mask &= ~allowed;
5725 }
5726 
5727 struct intel_context *
5728 intel_execlists_create_virtual(struct intel_engine_cs **siblings,
5729 			       unsigned int count)
5730 {
5731 	struct virtual_engine *ve;
5732 	unsigned int n;
5733 	int err;
5734 
5735 	if (count == 0)
5736 		return ERR_PTR(-EINVAL);
5737 
5738 	if (count == 1)
5739 		return intel_context_create(siblings[0]);
5740 
5741 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
5742 	if (!ve)
5743 		return ERR_PTR(-ENOMEM);
5744 
5745 	ve->base.i915 = siblings[0]->i915;
5746 	ve->base.gt = siblings[0]->gt;
5747 	ve->base.uncore = siblings[0]->uncore;
5748 	ve->base.id = -1;
5749 
5750 	ve->base.class = OTHER_CLASS;
5751 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5752 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5753 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5754 
5755 	/*
5756 	 * The decision on whether to submit a request using semaphores
5757 	 * depends on the saturated state of the engine. We only compute
5758 	 * this during HW submission of the request, and we need for this
5759 	 * state to be globally applied to all requests being submitted
5760 	 * to this engine. Virtual engines encompass more than one physical
5761 	 * engine and so we cannot accurately tell in advance if one of those
5762 	 * engines is already saturated and so cannot afford to use a semaphore
5763 	 * and be pessimized in priority for doing so -- if we are the only
5764 	 * context using semaphores after all other clients have stopped, we
5765 	 * will be starved on the saturated system. Such a global switch for
5766 	 * semaphores is less than ideal, but alas is the current compromise.
5767 	 */
5768 	ve->base.saturated = ALL_ENGINES;
5769 
5770 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5771 
5772 	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
5773 	intel_engine_init_execlists(&ve->base);
5774 
5775 	ve->base.cops = &virtual_context_ops;
5776 	ve->base.request_alloc = execlists_request_alloc;
5777 
5778 	ve->base.schedule = i915_schedule;
5779 	ve->base.submit_request = virtual_submit_request;
5780 	ve->base.bond_execute = virtual_bond_execute;
5781 
5782 	INIT_LIST_HEAD(virtual_queue(ve));
5783 	ve->base.execlists.queue_priority_hint = INT_MIN;
5784 	tasklet_init(&ve->base.execlists.tasklet,
5785 		     virtual_submission_tasklet,
5786 		     (unsigned long)ve);
5787 
5788 	intel_context_init(&ve->context, &ve->base);
5789 
5790 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
5791 	if (!ve->base.breadcrumbs) {
5792 		err = -ENOMEM;
5793 		goto err_put;
5794 	}
5795 
5796 	for (n = 0; n < count; n++) {
5797 		struct intel_engine_cs *sibling = siblings[n];
5798 
5799 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5800 		if (sibling->mask & ve->base.mask) {
5801 			DRM_DEBUG("duplicate %s entry in load balancer\n",
5802 				  sibling->name);
5803 			err = -EINVAL;
5804 			goto err_put;
5805 		}
5806 
5807 		/*
5808 		 * The virtual engine implementation is tightly coupled to
5809 		 * the execlists backend -- we push out request directly
5810 		 * into a tree inside each physical engine. We could support
5811 		 * layering if we handle cloning of the requests and
5812 		 * submitting a copy into each backend.
5813 		 */
5814 		if (sibling->execlists.tasklet.func !=
5815 		    execlists_submission_tasklet) {
5816 			err = -ENODEV;
5817 			goto err_put;
5818 		}
5819 
5820 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
5821 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
5822 
5823 		ve->siblings[ve->num_siblings++] = sibling;
5824 		ve->base.mask |= sibling->mask;
5825 
5826 		/*
5827 		 * All physical engines must be compatible for their emission
5828 		 * functions (as we build the instructions during request
5829 		 * construction and do not alter them before submission
5830 		 * on the physical engine). We use the engine class as a guide
5831 		 * here, although that could be refined.
5832 		 */
5833 		if (ve->base.class != OTHER_CLASS) {
5834 			if (ve->base.class != sibling->class) {
5835 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5836 					  sibling->class, ve->base.class);
5837 				err = -EINVAL;
5838 				goto err_put;
5839 			}
5840 			continue;
5841 		}
5842 
5843 		ve->base.class = sibling->class;
5844 		ve->base.uabi_class = sibling->uabi_class;
5845 		snprintf(ve->base.name, sizeof(ve->base.name),
5846 			 "v%dx%d", ve->base.class, count);
5847 		ve->base.context_size = sibling->context_size;
5848 
5849 		ve->base.emit_bb_start = sibling->emit_bb_start;
5850 		ve->base.emit_flush = sibling->emit_flush;
5851 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
5852 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
5853 		ve->base.emit_fini_breadcrumb_dw =
5854 			sibling->emit_fini_breadcrumb_dw;
5855 
5856 		ve->base.flags = sibling->flags;
5857 	}
5858 
5859 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
5860 
5861 	virtual_engine_initial_hint(ve);
5862 	return &ve->context;
5863 
5864 err_put:
5865 	intel_context_put(&ve->context);
5866 	return ERR_PTR(err);
5867 }
5868 
5869 struct intel_context *
5870 intel_execlists_clone_virtual(struct intel_engine_cs *src)
5871 {
5872 	struct virtual_engine *se = to_virtual_engine(src);
5873 	struct intel_context *dst;
5874 
5875 	dst = intel_execlists_create_virtual(se->siblings,
5876 					     se->num_siblings);
5877 	if (IS_ERR(dst))
5878 		return dst;
5879 
5880 	if (se->num_bonds) {
5881 		struct virtual_engine *de = to_virtual_engine(dst->engine);
5882 
5883 		de->bonds = kmemdup(se->bonds,
5884 				    sizeof(*se->bonds) * se->num_bonds,
5885 				    GFP_KERNEL);
5886 		if (!de->bonds) {
5887 			intel_context_put(dst);
5888 			return ERR_PTR(-ENOMEM);
5889 		}
5890 
5891 		de->num_bonds = se->num_bonds;
5892 	}
5893 
5894 	return dst;
5895 }
5896 
5897 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
5898 				     const struct intel_engine_cs *master,
5899 				     const struct intel_engine_cs *sibling)
5900 {
5901 	struct virtual_engine *ve = to_virtual_engine(engine);
5902 	struct ve_bond *bond;
5903 	int n;
5904 
5905 	/* Sanity check the sibling is part of the virtual engine */
5906 	for (n = 0; n < ve->num_siblings; n++)
5907 		if (sibling == ve->siblings[n])
5908 			break;
5909 	if (n == ve->num_siblings)
5910 		return -EINVAL;
5911 
5912 	bond = virtual_find_bond(ve, master);
5913 	if (bond) {
5914 		bond->sibling_mask |= sibling->mask;
5915 		return 0;
5916 	}
5917 
5918 	bond = krealloc(ve->bonds,
5919 			sizeof(*bond) * (ve->num_bonds + 1),
5920 			GFP_KERNEL);
5921 	if (!bond)
5922 		return -ENOMEM;
5923 
5924 	bond[ve->num_bonds].master = master;
5925 	bond[ve->num_bonds].sibling_mask = sibling->mask;
5926 
5927 	ve->bonds = bond;
5928 	ve->num_bonds++;
5929 
5930 	return 0;
5931 }
5932 
5933 struct intel_engine_cs *
5934 intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
5935 				 unsigned int sibling)
5936 {
5937 	struct virtual_engine *ve = to_virtual_engine(engine);
5938 
5939 	if (sibling >= ve->num_siblings)
5940 		return NULL;
5941 
5942 	return ve->siblings[sibling];
5943 }
5944 
5945 void intel_execlists_show_requests(struct intel_engine_cs *engine,
5946 				   struct drm_printer *m,
5947 				   void (*show_request)(struct drm_printer *m,
5948 							struct i915_request *rq,
5949 							const char *prefix),
5950 				   unsigned int max)
5951 {
5952 	const struct intel_engine_execlists *execlists = &engine->execlists;
5953 	struct i915_request *rq, *last;
5954 	unsigned long flags;
5955 	unsigned int count;
5956 	struct rb_node *rb;
5957 
5958 	spin_lock_irqsave(&engine->active.lock, flags);
5959 
5960 	last = NULL;
5961 	count = 0;
5962 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
5963 		if (count++ < max - 1)
5964 			show_request(m, rq, "\t\tE ");
5965 		else
5966 			last = rq;
5967 	}
5968 	if (last) {
5969 		if (count > max) {
5970 			drm_printf(m,
5971 				   "\t\t...skipping %d executing requests...\n",
5972 				   count - max);
5973 		}
5974 		show_request(m, last, "\t\tE ");
5975 	}
5976 
5977 	if (execlists->switch_priority_hint != INT_MIN)
5978 		drm_printf(m, "\t\tSwitch priority hint: %d\n",
5979 			   READ_ONCE(execlists->switch_priority_hint));
5980 	if (execlists->queue_priority_hint != INT_MIN)
5981 		drm_printf(m, "\t\tQueue priority hint: %d\n",
5982 			   READ_ONCE(execlists->queue_priority_hint));
5983 
5984 	last = NULL;
5985 	count = 0;
5986 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
5987 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
5988 		int i;
5989 
5990 		priolist_for_each_request(rq, p, i) {
5991 			if (count++ < max - 1)
5992 				show_request(m, rq, "\t\tQ ");
5993 			else
5994 				last = rq;
5995 		}
5996 	}
5997 	if (last) {
5998 		if (count > max) {
5999 			drm_printf(m,
6000 				   "\t\t...skipping %d queued requests...\n",
6001 				   count - max);
6002 		}
6003 		show_request(m, last, "\t\tQ ");
6004 	}
6005 
6006 	last = NULL;
6007 	count = 0;
6008 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
6009 		struct virtual_engine *ve =
6010 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
6011 		struct i915_request *rq = READ_ONCE(ve->request);
6012 
6013 		if (rq) {
6014 			if (count++ < max - 1)
6015 				show_request(m, rq, "\t\tV ");
6016 			else
6017 				last = rq;
6018 		}
6019 	}
6020 	if (last) {
6021 		if (count > max) {
6022 			drm_printf(m,
6023 				   "\t\t...skipping %d virtual requests...\n",
6024 				   count - max);
6025 		}
6026 		show_request(m, last, "\t\tV ");
6027 	}
6028 
6029 	spin_unlock_irqrestore(&engine->active.lock, flags);
6030 }
6031 
6032 void intel_lr_context_reset(struct intel_engine_cs *engine,
6033 			    struct intel_context *ce,
6034 			    u32 head,
6035 			    bool scrub)
6036 {
6037 	GEM_BUG_ON(!intel_context_is_pinned(ce));
6038 
6039 	/*
6040 	 * We want a simple context + ring to execute the breadcrumb update.
6041 	 * We cannot rely on the context being intact across the GPU hang,
6042 	 * so clear it and rebuild just what we need for the breadcrumb.
6043 	 * All pending requests for this context will be zapped, and any
6044 	 * future request will be after userspace has had the opportunity
6045 	 * to recreate its own state.
6046 	 */
6047 	if (scrub)
6048 		restore_default_state(ce, engine);
6049 
6050 	/* Rerun the request; its payload has been neutered (if guilty). */
6051 	__execlists_update_reg_state(ce, engine, head);
6052 }
6053 
6054 bool
6055 intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
6056 {
6057 	return engine->set_default_submission ==
6058 	       intel_execlists_set_default_submission;
6059 }
6060 
6061 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6062 #include "selftest_lrc.c"
6063 #endif
6064