xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision 7af6fbdd)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include "i915_drv.h"
137 #include "i915_perf.h"
138 #include "i915_trace.h"
139 #include "i915_vgpu.h"
140 #include "intel_breadcrumbs.h"
141 #include "intel_context.h"
142 #include "intel_engine_pm.h"
143 #include "intel_gt.h"
144 #include "intel_gt_pm.h"
145 #include "intel_gt_requests.h"
146 #include "intel_lrc_reg.h"
147 #include "intel_mocs.h"
148 #include "intel_reset.h"
149 #include "intel_ring.h"
150 #include "intel_workarounds.h"
151 #include "shmem_utils.h"
152 
153 #define RING_EXECLIST_QFULL		(1 << 0x2)
154 #define RING_EXECLIST1_VALID		(1 << 0x3)
155 #define RING_EXECLIST0_VALID		(1 << 0x4)
156 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
157 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
158 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
159 
160 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
161 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
162 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
163 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
164 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
165 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
166 
167 #define GEN8_CTX_STATUS_COMPLETED_MASK \
168 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
169 
170 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
171 
172 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
173 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
174 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
175 #define GEN12_IDLE_CTX_ID		0x7FF
176 #define GEN12_CSB_CTX_VALID(csb_dw) \
177 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
178 
179 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
180 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
181 
182 struct virtual_engine {
183 	struct intel_engine_cs base;
184 	struct intel_context context;
185 
186 	/*
187 	 * We allow only a single request through the virtual engine at a time
188 	 * (each request in the timeline waits for the completion fence of
189 	 * the previous before being submitted). By restricting ourselves to
190 	 * only submitting a single request, each request is placed on to a
191 	 * physical to maximise load spreading (by virtue of the late greedy
192 	 * scheduling -- each real engine takes the next available request
193 	 * upon idling).
194 	 */
195 	struct i915_request *request;
196 
197 	/*
198 	 * We keep a rbtree of available virtual engines inside each physical
199 	 * engine, sorted by priority. Here we preallocate the nodes we need
200 	 * for the virtual engine, indexed by physical_engine->id.
201 	 */
202 	struct ve_node {
203 		struct rb_node rb;
204 		int prio;
205 	} nodes[I915_NUM_ENGINES];
206 
207 	/*
208 	 * Keep track of bonded pairs -- restrictions upon on our selection
209 	 * of physical engines any particular request may be submitted to.
210 	 * If we receive a submit-fence from a master engine, we will only
211 	 * use one of sibling_mask physical engines.
212 	 */
213 	struct ve_bond {
214 		const struct intel_engine_cs *master;
215 		intel_engine_mask_t sibling_mask;
216 	} *bonds;
217 	unsigned int num_bonds;
218 
219 	/* And finally, which physical engines this virtual engine maps onto. */
220 	unsigned int num_siblings;
221 	struct intel_engine_cs *siblings[];
222 };
223 
224 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
225 {
226 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
227 	return container_of(engine, struct virtual_engine, base);
228 }
229 
230 static int __execlists_context_alloc(struct intel_context *ce,
231 				     struct intel_engine_cs *engine);
232 
233 static void execlists_init_reg_state(u32 *reg_state,
234 				     const struct intel_context *ce,
235 				     const struct intel_engine_cs *engine,
236 				     const struct intel_ring *ring,
237 				     bool close);
238 static void
239 __execlists_update_reg_state(const struct intel_context *ce,
240 			     const struct intel_engine_cs *engine,
241 			     u32 head);
242 
243 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
244 {
245 	if (INTEL_GEN(engine->i915) >= 12)
246 		return 0x60;
247 	else if (INTEL_GEN(engine->i915) >= 9)
248 		return 0x54;
249 	else if (engine->class == RENDER_CLASS)
250 		return 0x58;
251 	else
252 		return -1;
253 }
254 
255 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
256 {
257 	if (INTEL_GEN(engine->i915) >= 12)
258 		return 0x74;
259 	else if (INTEL_GEN(engine->i915) >= 9)
260 		return 0x68;
261 	else if (engine->class == RENDER_CLASS)
262 		return 0xd8;
263 	else
264 		return -1;
265 }
266 
267 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
268 {
269 	if (INTEL_GEN(engine->i915) >= 12)
270 		return 0x12;
271 	else if (INTEL_GEN(engine->i915) >= 9 || engine->class == RENDER_CLASS)
272 		return 0x18;
273 	else
274 		return -1;
275 }
276 
277 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
278 {
279 	int x;
280 
281 	x = lrc_ring_wa_bb_per_ctx(engine);
282 	if (x < 0)
283 		return x;
284 
285 	return x + 2;
286 }
287 
288 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
289 {
290 	int x;
291 
292 	x = lrc_ring_indirect_ptr(engine);
293 	if (x < 0)
294 		return x;
295 
296 	return x + 2;
297 }
298 
299 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
300 {
301 	if (engine->class != RENDER_CLASS)
302 		return -1;
303 
304 	if (INTEL_GEN(engine->i915) >= 12)
305 		return 0xb6;
306 	else if (INTEL_GEN(engine->i915) >= 11)
307 		return 0xaa;
308 	else
309 		return -1;
310 }
311 
312 static u32
313 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
314 {
315 	switch (INTEL_GEN(engine->i915)) {
316 	default:
317 		MISSING_CASE(INTEL_GEN(engine->i915));
318 		fallthrough;
319 	case 12:
320 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
321 	case 11:
322 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
323 	case 10:
324 		return GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
325 	case 9:
326 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
327 	case 8:
328 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
329 	}
330 }
331 
332 static void
333 lrc_ring_setup_indirect_ctx(u32 *regs,
334 			    const struct intel_engine_cs *engine,
335 			    u32 ctx_bb_ggtt_addr,
336 			    u32 size)
337 {
338 	GEM_BUG_ON(!size);
339 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
340 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
341 	regs[lrc_ring_indirect_ptr(engine) + 1] =
342 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
343 
344 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
345 	regs[lrc_ring_indirect_offset(engine) + 1] =
346 		lrc_ring_indirect_offset_default(engine) << 6;
347 }
348 
349 static u32 intel_context_get_runtime(const struct intel_context *ce)
350 {
351 	/*
352 	 * We can use either ppHWSP[16] which is recorded before the context
353 	 * switch (and so excludes the cost of context switches) or use the
354 	 * value from the context image itself, which is saved/restored earlier
355 	 * and so includes the cost of the save.
356 	 */
357 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
358 }
359 
360 static void mark_eio(struct i915_request *rq)
361 {
362 	if (i915_request_completed(rq))
363 		return;
364 
365 	GEM_BUG_ON(i915_request_signaled(rq));
366 
367 	i915_request_set_error_once(rq, -EIO);
368 	i915_request_mark_complete(rq);
369 }
370 
371 static struct i915_request *
372 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
373 {
374 	struct i915_request *active = rq;
375 
376 	rcu_read_lock();
377 	list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
378 		if (i915_request_completed(rq))
379 			break;
380 
381 		active = rq;
382 	}
383 	rcu_read_unlock();
384 
385 	return active;
386 }
387 
388 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
389 {
390 	return (i915_ggtt_offset(engine->status_page.vma) +
391 		I915_GEM_HWS_PREEMPT_ADDR);
392 }
393 
394 static inline void
395 ring_set_paused(const struct intel_engine_cs *engine, int state)
396 {
397 	/*
398 	 * We inspect HWS_PREEMPT with a semaphore inside
399 	 * engine->emit_fini_breadcrumb. If the dword is true,
400 	 * the ring is paused as the semaphore will busywait
401 	 * until the dword is false.
402 	 */
403 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
404 	if (state)
405 		wmb();
406 }
407 
408 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
409 {
410 	return rb_entry(rb, struct i915_priolist, node);
411 }
412 
413 static inline int rq_prio(const struct i915_request *rq)
414 {
415 	return READ_ONCE(rq->sched.attr.priority);
416 }
417 
418 static int effective_prio(const struct i915_request *rq)
419 {
420 	int prio = rq_prio(rq);
421 
422 	/*
423 	 * If this request is special and must not be interrupted at any
424 	 * cost, so be it. Note we are only checking the most recent request
425 	 * in the context and so may be masking an earlier vip request. It
426 	 * is hoped that under the conditions where nopreempt is used, this
427 	 * will not matter (i.e. all requests to that context will be
428 	 * nopreempt for as long as desired).
429 	 */
430 	if (i915_request_has_nopreempt(rq))
431 		prio = I915_PRIORITY_UNPREEMPTABLE;
432 
433 	return prio;
434 }
435 
436 static int queue_prio(const struct intel_engine_execlists *execlists)
437 {
438 	struct i915_priolist *p;
439 	struct rb_node *rb;
440 
441 	rb = rb_first_cached(&execlists->queue);
442 	if (!rb)
443 		return INT_MIN;
444 
445 	/*
446 	 * As the priolist[] are inverted, with the highest priority in [0],
447 	 * we have to flip the index value to become priority.
448 	 */
449 	p = to_priolist(rb);
450 	if (!I915_USER_PRIORITY_SHIFT)
451 		return p->priority;
452 
453 	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
454 }
455 
456 static inline bool need_preempt(const struct intel_engine_cs *engine,
457 				const struct i915_request *rq,
458 				struct rb_node *rb)
459 {
460 	int last_prio;
461 
462 	if (!intel_engine_has_semaphores(engine))
463 		return false;
464 
465 	/*
466 	 * Check if the current priority hint merits a preemption attempt.
467 	 *
468 	 * We record the highest value priority we saw during rescheduling
469 	 * prior to this dequeue, therefore we know that if it is strictly
470 	 * less than the current tail of ESLP[0], we do not need to force
471 	 * a preempt-to-idle cycle.
472 	 *
473 	 * However, the priority hint is a mere hint that we may need to
474 	 * preempt. If that hint is stale or we may be trying to preempt
475 	 * ourselves, ignore the request.
476 	 *
477 	 * More naturally we would write
478 	 *      prio >= max(0, last);
479 	 * except that we wish to prevent triggering preemption at the same
480 	 * priority level: the task that is running should remain running
481 	 * to preserve FIFO ordering of dependencies.
482 	 */
483 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
484 	if (engine->execlists.queue_priority_hint <= last_prio)
485 		return false;
486 
487 	/*
488 	 * Check against the first request in ELSP[1], it will, thanks to the
489 	 * power of PI, be the highest priority of that context.
490 	 */
491 	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
492 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
493 		return true;
494 
495 	if (rb) {
496 		struct virtual_engine *ve =
497 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
498 		bool preempt = false;
499 
500 		if (engine == ve->siblings[0]) { /* only preempt one sibling */
501 			struct i915_request *next;
502 
503 			rcu_read_lock();
504 			next = READ_ONCE(ve->request);
505 			if (next)
506 				preempt = rq_prio(next) > last_prio;
507 			rcu_read_unlock();
508 		}
509 
510 		if (preempt)
511 			return preempt;
512 	}
513 
514 	/*
515 	 * If the inflight context did not trigger the preemption, then maybe
516 	 * it was the set of queued requests? Pick the highest priority in
517 	 * the queue (the first active priolist) and see if it deserves to be
518 	 * running instead of ELSP[0].
519 	 *
520 	 * The highest priority request in the queue can not be either
521 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
522 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
523 	 */
524 	return queue_prio(&engine->execlists) > last_prio;
525 }
526 
527 __maybe_unused static inline bool
528 assert_priority_queue(const struct i915_request *prev,
529 		      const struct i915_request *next)
530 {
531 	/*
532 	 * Without preemption, the prev may refer to the still active element
533 	 * which we refuse to let go.
534 	 *
535 	 * Even with preemption, there are times when we think it is better not
536 	 * to preempt and leave an ostensibly lower priority request in flight.
537 	 */
538 	if (i915_request_is_active(prev))
539 		return true;
540 
541 	return rq_prio(prev) >= rq_prio(next);
542 }
543 
544 /*
545  * The context descriptor encodes various attributes of a context,
546  * including its GTT address and some flags. Because it's fairly
547  * expensive to calculate, we'll just do it once and cache the result,
548  * which remains valid until the context is unpinned.
549  *
550  * This is what a descriptor looks like, from LSB to MSB::
551  *
552  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
553  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
554  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
555  *      bits 53-54:    mbz, reserved for use by hardware
556  *      bits 55-63:    group ID, currently unused and set to 0
557  *
558  * Starting from Gen11, the upper dword of the descriptor has a new format:
559  *
560  *      bits 32-36:    reserved
561  *      bits 37-47:    SW context ID
562  *      bits 48:53:    engine instance
563  *      bit 54:        mbz, reserved for use by hardware
564  *      bits 55-60:    SW counter
565  *      bits 61-63:    engine class
566  *
567  * engine info, SW context ID and SW counter need to form a unique number
568  * (Context ID) per lrc.
569  */
570 static u32
571 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
572 {
573 	u32 desc;
574 
575 	desc = INTEL_LEGACY_32B_CONTEXT;
576 	if (i915_vm_is_4lvl(ce->vm))
577 		desc = INTEL_LEGACY_64B_CONTEXT;
578 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
579 
580 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
581 	if (IS_GEN(engine->i915, 8))
582 		desc |= GEN8_CTX_L3LLC_COHERENT;
583 
584 	return i915_ggtt_offset(ce->state) | desc;
585 }
586 
587 static inline unsigned int dword_in_page(void *addr)
588 {
589 	return offset_in_page(addr) / sizeof(u32);
590 }
591 
592 static void set_offsets(u32 *regs,
593 			const u8 *data,
594 			const struct intel_engine_cs *engine,
595 			bool clear)
596 #define NOP(x) (BIT(7) | (x))
597 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
598 #define POSTED BIT(0)
599 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
600 #define REG16(x) \
601 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
602 	(((x) >> 2) & 0x7f)
603 #define END(total_state_size) 0, (total_state_size)
604 {
605 	const u32 base = engine->mmio_base;
606 
607 	while (*data) {
608 		u8 count, flags;
609 
610 		if (*data & BIT(7)) { /* skip */
611 			count = *data++ & ~BIT(7);
612 			if (clear)
613 				memset32(regs, MI_NOOP, count);
614 			regs += count;
615 			continue;
616 		}
617 
618 		count = *data & 0x3f;
619 		flags = *data >> 6;
620 		data++;
621 
622 		*regs = MI_LOAD_REGISTER_IMM(count);
623 		if (flags & POSTED)
624 			*regs |= MI_LRI_FORCE_POSTED;
625 		if (INTEL_GEN(engine->i915) >= 11)
626 			*regs |= MI_LRI_LRM_CS_MMIO;
627 		regs++;
628 
629 		GEM_BUG_ON(!count);
630 		do {
631 			u32 offset = 0;
632 			u8 v;
633 
634 			do {
635 				v = *data++;
636 				offset <<= 7;
637 				offset |= v & ~BIT(7);
638 			} while (v & BIT(7));
639 
640 			regs[0] = base + (offset << 2);
641 			if (clear)
642 				regs[1] = 0;
643 			regs += 2;
644 		} while (--count);
645 	}
646 
647 	if (clear) {
648 		u8 count = *++data;
649 
650 		/* Clear past the tail for HW access */
651 		GEM_BUG_ON(dword_in_page(regs) > count);
652 		memset32(regs, MI_NOOP, count - dword_in_page(regs));
653 
654 		/* Close the batch; used mainly by live_lrc_layout() */
655 		*regs = MI_BATCH_BUFFER_END;
656 		if (INTEL_GEN(engine->i915) >= 10)
657 			*regs |= BIT(0);
658 	}
659 }
660 
661 static const u8 gen8_xcs_offsets[] = {
662 	NOP(1),
663 	LRI(11, 0),
664 	REG16(0x244),
665 	REG(0x034),
666 	REG(0x030),
667 	REG(0x038),
668 	REG(0x03c),
669 	REG(0x168),
670 	REG(0x140),
671 	REG(0x110),
672 	REG(0x11c),
673 	REG(0x114),
674 	REG(0x118),
675 
676 	NOP(9),
677 	LRI(9, 0),
678 	REG16(0x3a8),
679 	REG16(0x28c),
680 	REG16(0x288),
681 	REG16(0x284),
682 	REG16(0x280),
683 	REG16(0x27c),
684 	REG16(0x278),
685 	REG16(0x274),
686 	REG16(0x270),
687 
688 	NOP(13),
689 	LRI(2, 0),
690 	REG16(0x200),
691 	REG(0x028),
692 
693 	END(80)
694 };
695 
696 static const u8 gen9_xcs_offsets[] = {
697 	NOP(1),
698 	LRI(14, POSTED),
699 	REG16(0x244),
700 	REG(0x034),
701 	REG(0x030),
702 	REG(0x038),
703 	REG(0x03c),
704 	REG(0x168),
705 	REG(0x140),
706 	REG(0x110),
707 	REG(0x11c),
708 	REG(0x114),
709 	REG(0x118),
710 	REG(0x1c0),
711 	REG(0x1c4),
712 	REG(0x1c8),
713 
714 	NOP(3),
715 	LRI(9, POSTED),
716 	REG16(0x3a8),
717 	REG16(0x28c),
718 	REG16(0x288),
719 	REG16(0x284),
720 	REG16(0x280),
721 	REG16(0x27c),
722 	REG16(0x278),
723 	REG16(0x274),
724 	REG16(0x270),
725 
726 	NOP(13),
727 	LRI(1, POSTED),
728 	REG16(0x200),
729 
730 	NOP(13),
731 	LRI(44, POSTED),
732 	REG(0x028),
733 	REG(0x09c),
734 	REG(0x0c0),
735 	REG(0x178),
736 	REG(0x17c),
737 	REG16(0x358),
738 	REG(0x170),
739 	REG(0x150),
740 	REG(0x154),
741 	REG(0x158),
742 	REG16(0x41c),
743 	REG16(0x600),
744 	REG16(0x604),
745 	REG16(0x608),
746 	REG16(0x60c),
747 	REG16(0x610),
748 	REG16(0x614),
749 	REG16(0x618),
750 	REG16(0x61c),
751 	REG16(0x620),
752 	REG16(0x624),
753 	REG16(0x628),
754 	REG16(0x62c),
755 	REG16(0x630),
756 	REG16(0x634),
757 	REG16(0x638),
758 	REG16(0x63c),
759 	REG16(0x640),
760 	REG16(0x644),
761 	REG16(0x648),
762 	REG16(0x64c),
763 	REG16(0x650),
764 	REG16(0x654),
765 	REG16(0x658),
766 	REG16(0x65c),
767 	REG16(0x660),
768 	REG16(0x664),
769 	REG16(0x668),
770 	REG16(0x66c),
771 	REG16(0x670),
772 	REG16(0x674),
773 	REG16(0x678),
774 	REG16(0x67c),
775 	REG(0x068),
776 
777 	END(176)
778 };
779 
780 static const u8 gen12_xcs_offsets[] = {
781 	NOP(1),
782 	LRI(13, POSTED),
783 	REG16(0x244),
784 	REG(0x034),
785 	REG(0x030),
786 	REG(0x038),
787 	REG(0x03c),
788 	REG(0x168),
789 	REG(0x140),
790 	REG(0x110),
791 	REG(0x1c0),
792 	REG(0x1c4),
793 	REG(0x1c8),
794 	REG(0x180),
795 	REG16(0x2b4),
796 
797 	NOP(5),
798 	LRI(9, POSTED),
799 	REG16(0x3a8),
800 	REG16(0x28c),
801 	REG16(0x288),
802 	REG16(0x284),
803 	REG16(0x280),
804 	REG16(0x27c),
805 	REG16(0x278),
806 	REG16(0x274),
807 	REG16(0x270),
808 
809 	END(80)
810 };
811 
812 static const u8 gen8_rcs_offsets[] = {
813 	NOP(1),
814 	LRI(14, POSTED),
815 	REG16(0x244),
816 	REG(0x034),
817 	REG(0x030),
818 	REG(0x038),
819 	REG(0x03c),
820 	REG(0x168),
821 	REG(0x140),
822 	REG(0x110),
823 	REG(0x11c),
824 	REG(0x114),
825 	REG(0x118),
826 	REG(0x1c0),
827 	REG(0x1c4),
828 	REG(0x1c8),
829 
830 	NOP(3),
831 	LRI(9, POSTED),
832 	REG16(0x3a8),
833 	REG16(0x28c),
834 	REG16(0x288),
835 	REG16(0x284),
836 	REG16(0x280),
837 	REG16(0x27c),
838 	REG16(0x278),
839 	REG16(0x274),
840 	REG16(0x270),
841 
842 	NOP(13),
843 	LRI(1, 0),
844 	REG(0x0c8),
845 
846 	END(80)
847 };
848 
849 static const u8 gen9_rcs_offsets[] = {
850 	NOP(1),
851 	LRI(14, POSTED),
852 	REG16(0x244),
853 	REG(0x34),
854 	REG(0x30),
855 	REG(0x38),
856 	REG(0x3c),
857 	REG(0x168),
858 	REG(0x140),
859 	REG(0x110),
860 	REG(0x11c),
861 	REG(0x114),
862 	REG(0x118),
863 	REG(0x1c0),
864 	REG(0x1c4),
865 	REG(0x1c8),
866 
867 	NOP(3),
868 	LRI(9, POSTED),
869 	REG16(0x3a8),
870 	REG16(0x28c),
871 	REG16(0x288),
872 	REG16(0x284),
873 	REG16(0x280),
874 	REG16(0x27c),
875 	REG16(0x278),
876 	REG16(0x274),
877 	REG16(0x270),
878 
879 	NOP(13),
880 	LRI(1, 0),
881 	REG(0xc8),
882 
883 	NOP(13),
884 	LRI(44, POSTED),
885 	REG(0x28),
886 	REG(0x9c),
887 	REG(0xc0),
888 	REG(0x178),
889 	REG(0x17c),
890 	REG16(0x358),
891 	REG(0x170),
892 	REG(0x150),
893 	REG(0x154),
894 	REG(0x158),
895 	REG16(0x41c),
896 	REG16(0x600),
897 	REG16(0x604),
898 	REG16(0x608),
899 	REG16(0x60c),
900 	REG16(0x610),
901 	REG16(0x614),
902 	REG16(0x618),
903 	REG16(0x61c),
904 	REG16(0x620),
905 	REG16(0x624),
906 	REG16(0x628),
907 	REG16(0x62c),
908 	REG16(0x630),
909 	REG16(0x634),
910 	REG16(0x638),
911 	REG16(0x63c),
912 	REG16(0x640),
913 	REG16(0x644),
914 	REG16(0x648),
915 	REG16(0x64c),
916 	REG16(0x650),
917 	REG16(0x654),
918 	REG16(0x658),
919 	REG16(0x65c),
920 	REG16(0x660),
921 	REG16(0x664),
922 	REG16(0x668),
923 	REG16(0x66c),
924 	REG16(0x670),
925 	REG16(0x674),
926 	REG16(0x678),
927 	REG16(0x67c),
928 	REG(0x68),
929 
930 	END(176)
931 };
932 
933 static const u8 gen11_rcs_offsets[] = {
934 	NOP(1),
935 	LRI(15, POSTED),
936 	REG16(0x244),
937 	REG(0x034),
938 	REG(0x030),
939 	REG(0x038),
940 	REG(0x03c),
941 	REG(0x168),
942 	REG(0x140),
943 	REG(0x110),
944 	REG(0x11c),
945 	REG(0x114),
946 	REG(0x118),
947 	REG(0x1c0),
948 	REG(0x1c4),
949 	REG(0x1c8),
950 	REG(0x180),
951 
952 	NOP(1),
953 	LRI(9, POSTED),
954 	REG16(0x3a8),
955 	REG16(0x28c),
956 	REG16(0x288),
957 	REG16(0x284),
958 	REG16(0x280),
959 	REG16(0x27c),
960 	REG16(0x278),
961 	REG16(0x274),
962 	REG16(0x270),
963 
964 	LRI(1, POSTED),
965 	REG(0x1b0),
966 
967 	NOP(10),
968 	LRI(1, 0),
969 	REG(0x0c8),
970 
971 	END(80)
972 };
973 
974 static const u8 gen12_rcs_offsets[] = {
975 	NOP(1),
976 	LRI(13, POSTED),
977 	REG16(0x244),
978 	REG(0x034),
979 	REG(0x030),
980 	REG(0x038),
981 	REG(0x03c),
982 	REG(0x168),
983 	REG(0x140),
984 	REG(0x110),
985 	REG(0x1c0),
986 	REG(0x1c4),
987 	REG(0x1c8),
988 	REG(0x180),
989 	REG16(0x2b4),
990 
991 	NOP(5),
992 	LRI(9, POSTED),
993 	REG16(0x3a8),
994 	REG16(0x28c),
995 	REG16(0x288),
996 	REG16(0x284),
997 	REG16(0x280),
998 	REG16(0x27c),
999 	REG16(0x278),
1000 	REG16(0x274),
1001 	REG16(0x270),
1002 
1003 	LRI(3, POSTED),
1004 	REG(0x1b0),
1005 	REG16(0x5a8),
1006 	REG16(0x5ac),
1007 
1008 	NOP(6),
1009 	LRI(1, 0),
1010 	REG(0x0c8),
1011 	NOP(3 + 9 + 1),
1012 
1013 	LRI(51, POSTED),
1014 	REG16(0x588),
1015 	REG16(0x588),
1016 	REG16(0x588),
1017 	REG16(0x588),
1018 	REG16(0x588),
1019 	REG16(0x588),
1020 	REG(0x028),
1021 	REG(0x09c),
1022 	REG(0x0c0),
1023 	REG(0x178),
1024 	REG(0x17c),
1025 	REG16(0x358),
1026 	REG(0x170),
1027 	REG(0x150),
1028 	REG(0x154),
1029 	REG(0x158),
1030 	REG16(0x41c),
1031 	REG16(0x600),
1032 	REG16(0x604),
1033 	REG16(0x608),
1034 	REG16(0x60c),
1035 	REG16(0x610),
1036 	REG16(0x614),
1037 	REG16(0x618),
1038 	REG16(0x61c),
1039 	REG16(0x620),
1040 	REG16(0x624),
1041 	REG16(0x628),
1042 	REG16(0x62c),
1043 	REG16(0x630),
1044 	REG16(0x634),
1045 	REG16(0x638),
1046 	REG16(0x63c),
1047 	REG16(0x640),
1048 	REG16(0x644),
1049 	REG16(0x648),
1050 	REG16(0x64c),
1051 	REG16(0x650),
1052 	REG16(0x654),
1053 	REG16(0x658),
1054 	REG16(0x65c),
1055 	REG16(0x660),
1056 	REG16(0x664),
1057 	REG16(0x668),
1058 	REG16(0x66c),
1059 	REG16(0x670),
1060 	REG16(0x674),
1061 	REG16(0x678),
1062 	REG16(0x67c),
1063 	REG(0x068),
1064 	REG(0x084),
1065 	NOP(1),
1066 
1067 	END(192)
1068 };
1069 
1070 #undef END
1071 #undef REG16
1072 #undef REG
1073 #undef LRI
1074 #undef NOP
1075 
1076 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
1077 {
1078 	/*
1079 	 * The gen12+ lists only have the registers we program in the basic
1080 	 * default state. We rely on the context image using relative
1081 	 * addressing to automatic fixup the register state between the
1082 	 * physical engines for virtual engine.
1083 	 */
1084 	GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
1085 		   !intel_engine_has_relative_mmio(engine));
1086 
1087 	if (engine->class == RENDER_CLASS) {
1088 		if (INTEL_GEN(engine->i915) >= 12)
1089 			return gen12_rcs_offsets;
1090 		else if (INTEL_GEN(engine->i915) >= 11)
1091 			return gen11_rcs_offsets;
1092 		else if (INTEL_GEN(engine->i915) >= 9)
1093 			return gen9_rcs_offsets;
1094 		else
1095 			return gen8_rcs_offsets;
1096 	} else {
1097 		if (INTEL_GEN(engine->i915) >= 12)
1098 			return gen12_xcs_offsets;
1099 		else if (INTEL_GEN(engine->i915) >= 9)
1100 			return gen9_xcs_offsets;
1101 		else
1102 			return gen8_xcs_offsets;
1103 	}
1104 }
1105 
1106 static struct i915_request *
1107 __unwind_incomplete_requests(struct intel_engine_cs *engine)
1108 {
1109 	struct i915_request *rq, *rn, *active = NULL;
1110 	struct list_head *pl;
1111 	int prio = I915_PRIORITY_INVALID;
1112 
1113 	lockdep_assert_held(&engine->active.lock);
1114 
1115 	list_for_each_entry_safe_reverse(rq, rn,
1116 					 &engine->active.requests,
1117 					 sched.link) {
1118 		if (i915_request_completed(rq))
1119 			continue; /* XXX */
1120 
1121 		__i915_request_unsubmit(rq);
1122 
1123 		/*
1124 		 * Push the request back into the queue for later resubmission.
1125 		 * If this request is not native to this physical engine (i.e.
1126 		 * it came from a virtual source), push it back onto the virtual
1127 		 * engine so that it can be moved across onto another physical
1128 		 * engine as load dictates.
1129 		 */
1130 		if (likely(rq->execution_mask == engine->mask)) {
1131 			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1132 			if (rq_prio(rq) != prio) {
1133 				prio = rq_prio(rq);
1134 				pl = i915_sched_lookup_priolist(engine, prio);
1135 			}
1136 			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1137 
1138 			list_move(&rq->sched.link, pl);
1139 			set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1140 
1141 			/* Check in case we rollback so far we wrap [size/2] */
1142 			if (intel_ring_direction(rq->ring,
1143 						 intel_ring_wrap(rq->ring,
1144 								 rq->tail),
1145 						 rq->ring->tail) > 0)
1146 				rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
1147 
1148 			active = rq;
1149 		} else {
1150 			struct intel_engine_cs *owner = rq->context->engine;
1151 
1152 			WRITE_ONCE(rq->engine, owner);
1153 			owner->submit_request(rq);
1154 			active = NULL;
1155 		}
1156 	}
1157 
1158 	return active;
1159 }
1160 
1161 struct i915_request *
1162 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
1163 {
1164 	struct intel_engine_cs *engine =
1165 		container_of(execlists, typeof(*engine), execlists);
1166 
1167 	return __unwind_incomplete_requests(engine);
1168 }
1169 
1170 static inline void
1171 execlists_context_status_change(struct i915_request *rq, unsigned long status)
1172 {
1173 	/*
1174 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
1175 	 * The compiler should eliminate this function as dead-code.
1176 	 */
1177 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
1178 		return;
1179 
1180 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
1181 				   status, rq);
1182 }
1183 
1184 static void intel_engine_context_in(struct intel_engine_cs *engine)
1185 {
1186 	unsigned long flags;
1187 
1188 	if (atomic_add_unless(&engine->stats.active, 1, 0))
1189 		return;
1190 
1191 	write_seqlock_irqsave(&engine->stats.lock, flags);
1192 	if (!atomic_add_unless(&engine->stats.active, 1, 0)) {
1193 		engine->stats.start = ktime_get();
1194 		atomic_inc(&engine->stats.active);
1195 	}
1196 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1197 }
1198 
1199 static void intel_engine_context_out(struct intel_engine_cs *engine)
1200 {
1201 	unsigned long flags;
1202 
1203 	GEM_BUG_ON(!atomic_read(&engine->stats.active));
1204 
1205 	if (atomic_add_unless(&engine->stats.active, -1, 1))
1206 		return;
1207 
1208 	write_seqlock_irqsave(&engine->stats.lock, flags);
1209 	if (atomic_dec_and_test(&engine->stats.active)) {
1210 		engine->stats.total =
1211 			ktime_add(engine->stats.total,
1212 				  ktime_sub(ktime_get(), engine->stats.start));
1213 	}
1214 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1215 }
1216 
1217 static void
1218 execlists_check_context(const struct intel_context *ce,
1219 			const struct intel_engine_cs *engine)
1220 {
1221 	const struct intel_ring *ring = ce->ring;
1222 	u32 *regs = ce->lrc_reg_state;
1223 	bool valid = true;
1224 	int x;
1225 
1226 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1227 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1228 		       engine->name,
1229 		       regs[CTX_RING_START],
1230 		       i915_ggtt_offset(ring->vma));
1231 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1232 		valid = false;
1233 	}
1234 
1235 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1236 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1237 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1238 		       engine->name,
1239 		       regs[CTX_RING_CTL],
1240 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1241 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1242 		valid = false;
1243 	}
1244 
1245 	x = lrc_ring_mi_mode(engine);
1246 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1247 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1248 		       engine->name, regs[x + 1]);
1249 		regs[x + 1] &= ~STOP_RING;
1250 		regs[x + 1] |= STOP_RING << 16;
1251 		valid = false;
1252 	}
1253 
1254 	WARN_ONCE(!valid, "Invalid lrc state found before submission\n");
1255 }
1256 
1257 static void restore_default_state(struct intel_context *ce,
1258 				  struct intel_engine_cs *engine)
1259 {
1260 	u32 *regs;
1261 
1262 	regs = memset(ce->lrc_reg_state, 0, engine->context_size - PAGE_SIZE);
1263 	execlists_init_reg_state(regs, ce, engine, ce->ring, true);
1264 
1265 	ce->runtime.last = intel_context_get_runtime(ce);
1266 }
1267 
1268 static void reset_active(struct i915_request *rq,
1269 			 struct intel_engine_cs *engine)
1270 {
1271 	struct intel_context * const ce = rq->context;
1272 	u32 head;
1273 
1274 	/*
1275 	 * The executing context has been cancelled. We want to prevent
1276 	 * further execution along this context and propagate the error on
1277 	 * to anything depending on its results.
1278 	 *
1279 	 * In __i915_request_submit(), we apply the -EIO and remove the
1280 	 * requests' payloads for any banned requests. But first, we must
1281 	 * rewind the context back to the start of the incomplete request so
1282 	 * that we do not jump back into the middle of the batch.
1283 	 *
1284 	 * We preserve the breadcrumbs and semaphores of the incomplete
1285 	 * requests so that inter-timeline dependencies (i.e other timelines)
1286 	 * remain correctly ordered. And we defer to __i915_request_submit()
1287 	 * so that all asynchronous waits are correctly handled.
1288 	 */
1289 	ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
1290 		     rq->fence.context, rq->fence.seqno);
1291 
1292 	/* On resubmission of the active request, payload will be scrubbed */
1293 	if (i915_request_completed(rq))
1294 		head = rq->tail;
1295 	else
1296 		head = active_request(ce->timeline, rq)->head;
1297 	head = intel_ring_wrap(ce->ring, head);
1298 
1299 	/* Scrub the context image to prevent replaying the previous batch */
1300 	restore_default_state(ce, engine);
1301 	__execlists_update_reg_state(ce, engine, head);
1302 
1303 	/* We've switched away, so this should be a no-op, but intent matters */
1304 	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE;
1305 }
1306 
1307 static void st_update_runtime_underflow(struct intel_context *ce, s32 dt)
1308 {
1309 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1310 	ce->runtime.num_underflow += dt < 0;
1311 	ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt);
1312 #endif
1313 }
1314 
1315 static void intel_context_update_runtime(struct intel_context *ce)
1316 {
1317 	u32 old;
1318 	s32 dt;
1319 
1320 	if (intel_context_is_barrier(ce))
1321 		return;
1322 
1323 	old = ce->runtime.last;
1324 	ce->runtime.last = intel_context_get_runtime(ce);
1325 	dt = ce->runtime.last - old;
1326 
1327 	if (unlikely(dt <= 0)) {
1328 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1329 			 old, ce->runtime.last, dt);
1330 		st_update_runtime_underflow(ce, dt);
1331 		return;
1332 	}
1333 
1334 	ewma_runtime_add(&ce->runtime.avg, dt);
1335 	ce->runtime.total += dt;
1336 }
1337 
1338 static inline struct intel_engine_cs *
1339 __execlists_schedule_in(struct i915_request *rq)
1340 {
1341 	struct intel_engine_cs * const engine = rq->engine;
1342 	struct intel_context * const ce = rq->context;
1343 
1344 	intel_context_get(ce);
1345 
1346 	if (unlikely(intel_context_is_banned(ce)))
1347 		reset_active(rq, engine);
1348 
1349 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1350 		execlists_check_context(ce, engine);
1351 
1352 	if (ce->tag) {
1353 		/* Use a fixed tag for OA and friends */
1354 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
1355 		ce->lrc.ccid = ce->tag;
1356 	} else {
1357 		/* We don't need a strict matching tag, just different values */
1358 		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
1359 
1360 		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
1361 		clear_bit(tag - 1, &engine->context_tag);
1362 		ce->lrc.ccid = tag << (GEN11_SW_CTX_ID_SHIFT - 32);
1363 
1364 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
1365 	}
1366 
1367 	ce->lrc.ccid |= engine->execlists.ccid;
1368 
1369 	__intel_gt_pm_get(engine->gt);
1370 	if (engine->fw_domain && !atomic_fetch_inc(&engine->fw_active))
1371 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
1372 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
1373 	intel_engine_context_in(engine);
1374 
1375 	return engine;
1376 }
1377 
1378 static inline struct i915_request *
1379 execlists_schedule_in(struct i915_request *rq, int idx)
1380 {
1381 	struct intel_context * const ce = rq->context;
1382 	struct intel_engine_cs *old;
1383 
1384 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
1385 	trace_i915_request_in(rq, idx);
1386 
1387 	old = READ_ONCE(ce->inflight);
1388 	do {
1389 		if (!old) {
1390 			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
1391 			break;
1392 		}
1393 	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
1394 
1395 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
1396 	return i915_request_get(rq);
1397 }
1398 
1399 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
1400 {
1401 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
1402 	struct i915_request *next = READ_ONCE(ve->request);
1403 
1404 	if (next == rq || (next && next->execution_mask & ~rq->execution_mask))
1405 		tasklet_hi_schedule(&ve->base.execlists.tasklet);
1406 }
1407 
1408 static inline void
1409 __execlists_schedule_out(struct i915_request *rq,
1410 			 struct intel_engine_cs * const engine,
1411 			 unsigned int ccid)
1412 {
1413 	struct intel_context * const ce = rq->context;
1414 
1415 	/*
1416 	 * NB process_csb() is not under the engine->active.lock and hence
1417 	 * schedule_out can race with schedule_in meaning that we should
1418 	 * refrain from doing non-trivial work here.
1419 	 */
1420 
1421 	/*
1422 	 * If we have just completed this context, the engine may now be
1423 	 * idle and we want to re-enter powersaving.
1424 	 */
1425 	if (list_is_last_rcu(&rq->link, &ce->timeline->requests) &&
1426 	    i915_request_completed(rq))
1427 		intel_engine_add_retire(engine, ce->timeline);
1428 
1429 	ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
1430 	ccid &= GEN12_MAX_CONTEXT_HW_ID;
1431 	if (ccid < BITS_PER_LONG) {
1432 		GEM_BUG_ON(ccid == 0);
1433 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
1434 		set_bit(ccid - 1, &engine->context_tag);
1435 	}
1436 
1437 	intel_context_update_runtime(ce);
1438 	intel_engine_context_out(engine);
1439 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
1440 	if (engine->fw_domain && !atomic_dec_return(&engine->fw_active))
1441 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
1442 	intel_gt_pm_put_async(engine->gt);
1443 
1444 	/*
1445 	 * If this is part of a virtual engine, its next request may
1446 	 * have been blocked waiting for access to the active context.
1447 	 * We have to kick all the siblings again in case we need to
1448 	 * switch (e.g. the next request is not runnable on this
1449 	 * engine). Hopefully, we will already have submitted the next
1450 	 * request before the tasklet runs and do not need to rebuild
1451 	 * each virtual tree and kick everyone again.
1452 	 */
1453 	if (ce->engine != engine)
1454 		kick_siblings(rq, ce);
1455 
1456 	intel_context_put(ce);
1457 }
1458 
1459 static inline void
1460 execlists_schedule_out(struct i915_request *rq)
1461 {
1462 	struct intel_context * const ce = rq->context;
1463 	struct intel_engine_cs *cur, *old;
1464 	u32 ccid;
1465 
1466 	trace_i915_request_out(rq);
1467 
1468 	ccid = rq->context->lrc.ccid;
1469 	old = READ_ONCE(ce->inflight);
1470 	do
1471 		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
1472 	while (!try_cmpxchg(&ce->inflight, &old, cur));
1473 	if (!cur)
1474 		__execlists_schedule_out(rq, old, ccid);
1475 
1476 	i915_request_put(rq);
1477 }
1478 
1479 static u64 execlists_update_context(struct i915_request *rq)
1480 {
1481 	struct intel_context *ce = rq->context;
1482 	u64 desc = ce->lrc.desc;
1483 	u32 tail, prev;
1484 
1485 	/*
1486 	 * WaIdleLiteRestore:bdw,skl
1487 	 *
1488 	 * We should never submit the context with the same RING_TAIL twice
1489 	 * just in case we submit an empty ring, which confuses the HW.
1490 	 *
1491 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
1492 	 * the normal request to be able to always advance the RING_TAIL on
1493 	 * subsequent resubmissions (for lite restore). Should that fail us,
1494 	 * and we try and submit the same tail again, force the context
1495 	 * reload.
1496 	 *
1497 	 * If we need to return to a preempted context, we need to skip the
1498 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
1499 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
1500 	 * an earlier request.
1501 	 */
1502 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
1503 	prev = rq->ring->tail;
1504 	tail = intel_ring_set_tail(rq->ring, rq->tail);
1505 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
1506 		desc |= CTX_DESC_FORCE_RESTORE;
1507 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
1508 	rq->tail = rq->wa_tail;
1509 
1510 	/*
1511 	 * Make sure the context image is complete before we submit it to HW.
1512 	 *
1513 	 * Ostensibly, writes (including the WCB) should be flushed prior to
1514 	 * an uncached write such as our mmio register access, the empirical
1515 	 * evidence (esp. on Braswell) suggests that the WC write into memory
1516 	 * may not be visible to the HW prior to the completion of the UC
1517 	 * register write and that we may begin execution from the context
1518 	 * before its image is complete leading to invalid PD chasing.
1519 	 */
1520 	wmb();
1521 
1522 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
1523 	return desc;
1524 }
1525 
1526 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
1527 {
1528 	if (execlists->ctrl_reg) {
1529 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
1530 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
1531 	} else {
1532 		writel(upper_32_bits(desc), execlists->submit_reg);
1533 		writel(lower_32_bits(desc), execlists->submit_reg);
1534 	}
1535 }
1536 
1537 static __maybe_unused char *
1538 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
1539 {
1540 	if (!rq)
1541 		return "";
1542 
1543 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
1544 		 prefix,
1545 		 rq->context->lrc.ccid,
1546 		 rq->fence.context, rq->fence.seqno,
1547 		 i915_request_completed(rq) ? "!" :
1548 		 i915_request_started(rq) ? "*" :
1549 		 "",
1550 		 rq_prio(rq));
1551 
1552 	return buf;
1553 }
1554 
1555 static __maybe_unused void
1556 trace_ports(const struct intel_engine_execlists *execlists,
1557 	    const char *msg,
1558 	    struct i915_request * const *ports)
1559 {
1560 	const struct intel_engine_cs *engine =
1561 		container_of(execlists, typeof(*engine), execlists);
1562 	char __maybe_unused p0[40], p1[40];
1563 
1564 	if (!ports[0])
1565 		return;
1566 
1567 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
1568 		     dump_port(p0, sizeof(p0), "", ports[0]),
1569 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
1570 }
1571 
1572 static inline bool
1573 reset_in_progress(const struct intel_engine_execlists *execlists)
1574 {
1575 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1576 }
1577 
1578 static __maybe_unused bool
1579 assert_pending_valid(const struct intel_engine_execlists *execlists,
1580 		     const char *msg)
1581 {
1582 	struct intel_engine_cs *engine =
1583 		container_of(execlists, typeof(*engine), execlists);
1584 	struct i915_request * const *port, *rq;
1585 	struct intel_context *ce = NULL;
1586 	bool sentinel = false;
1587 	u32 ccid = -1;
1588 
1589 	trace_ports(execlists, msg, execlists->pending);
1590 
1591 	/* We may be messing around with the lists during reset, lalala */
1592 	if (reset_in_progress(execlists))
1593 		return true;
1594 
1595 	if (!execlists->pending[0]) {
1596 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
1597 			      engine->name);
1598 		return false;
1599 	}
1600 
1601 	if (execlists->pending[execlists_num_ports(execlists)]) {
1602 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
1603 			      engine->name, execlists_num_ports(execlists));
1604 		return false;
1605 	}
1606 
1607 	for (port = execlists->pending; (rq = *port); port++) {
1608 		unsigned long flags;
1609 		bool ok = true;
1610 
1611 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
1612 		GEM_BUG_ON(!i915_request_is_active(rq));
1613 
1614 		if (ce == rq->context) {
1615 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
1616 				      engine->name,
1617 				      ce->timeline->fence_context,
1618 				      port - execlists->pending);
1619 			return false;
1620 		}
1621 		ce = rq->context;
1622 
1623 		if (ccid == ce->lrc.ccid) {
1624 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
1625 				      engine->name,
1626 				      ccid, ce->timeline->fence_context,
1627 				      port - execlists->pending);
1628 			return false;
1629 		}
1630 		ccid = ce->lrc.ccid;
1631 
1632 		/*
1633 		 * Sentinels are supposed to be the last request so they flush
1634 		 * the current execution off the HW. Check that they are the only
1635 		 * request in the pending submission.
1636 		 */
1637 		if (sentinel) {
1638 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
1639 				      engine->name,
1640 				      ce->timeline->fence_context,
1641 				      port - execlists->pending);
1642 			return false;
1643 		}
1644 		sentinel = i915_request_has_sentinel(rq);
1645 
1646 		/* Hold tightly onto the lock to prevent concurrent retires! */
1647 		if (!spin_trylock_irqsave(&rq->lock, flags))
1648 			continue;
1649 
1650 		if (i915_request_completed(rq))
1651 			goto unlock;
1652 
1653 		if (i915_active_is_idle(&ce->active) &&
1654 		    !intel_context_is_barrier(ce)) {
1655 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
1656 				      engine->name,
1657 				      ce->timeline->fence_context,
1658 				      port - execlists->pending);
1659 			ok = false;
1660 			goto unlock;
1661 		}
1662 
1663 		if (!i915_vma_is_pinned(ce->state)) {
1664 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
1665 				      engine->name,
1666 				      ce->timeline->fence_context,
1667 				      port - execlists->pending);
1668 			ok = false;
1669 			goto unlock;
1670 		}
1671 
1672 		if (!i915_vma_is_pinned(ce->ring->vma)) {
1673 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
1674 				      engine->name,
1675 				      ce->timeline->fence_context,
1676 				      port - execlists->pending);
1677 			ok = false;
1678 			goto unlock;
1679 		}
1680 
1681 unlock:
1682 		spin_unlock_irqrestore(&rq->lock, flags);
1683 		if (!ok)
1684 			return false;
1685 	}
1686 
1687 	return ce;
1688 }
1689 
1690 static void execlists_submit_ports(struct intel_engine_cs *engine)
1691 {
1692 	struct intel_engine_execlists *execlists = &engine->execlists;
1693 	unsigned int n;
1694 
1695 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
1696 
1697 	/*
1698 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
1699 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
1700 	 * not be relinquished until the device is idle (see
1701 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
1702 	 * that all ELSP are drained i.e. we have processed the CSB,
1703 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
1704 	 */
1705 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1706 
1707 	/*
1708 	 * ELSQ note: the submit queue is not cleared after being submitted
1709 	 * to the HW so we need to make sure we always clean it up. This is
1710 	 * currently ensured by the fact that we always write the same number
1711 	 * of elsq entries, keep this in mind before changing the loop below.
1712 	 */
1713 	for (n = execlists_num_ports(execlists); n--; ) {
1714 		struct i915_request *rq = execlists->pending[n];
1715 
1716 		write_desc(execlists,
1717 			   rq ? execlists_update_context(rq) : 0,
1718 			   n);
1719 	}
1720 
1721 	/* we need to manually load the submit queue */
1722 	if (execlists->ctrl_reg)
1723 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
1724 }
1725 
1726 static bool ctx_single_port_submission(const struct intel_context *ce)
1727 {
1728 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
1729 		intel_context_force_single_submission(ce));
1730 }
1731 
1732 static bool can_merge_ctx(const struct intel_context *prev,
1733 			  const struct intel_context *next)
1734 {
1735 	if (prev != next)
1736 		return false;
1737 
1738 	if (ctx_single_port_submission(prev))
1739 		return false;
1740 
1741 	return true;
1742 }
1743 
1744 static unsigned long i915_request_flags(const struct i915_request *rq)
1745 {
1746 	return READ_ONCE(rq->fence.flags);
1747 }
1748 
1749 static bool can_merge_rq(const struct i915_request *prev,
1750 			 const struct i915_request *next)
1751 {
1752 	GEM_BUG_ON(prev == next);
1753 	GEM_BUG_ON(!assert_priority_queue(prev, next));
1754 
1755 	/*
1756 	 * We do not submit known completed requests. Therefore if the next
1757 	 * request is already completed, we can pretend to merge it in
1758 	 * with the previous context (and we will skip updating the ELSP
1759 	 * and tracking). Thus hopefully keeping the ELSP full with active
1760 	 * contexts, despite the best efforts of preempt-to-busy to confuse
1761 	 * us.
1762 	 */
1763 	if (i915_request_completed(next))
1764 		return true;
1765 
1766 	if (unlikely((i915_request_flags(prev) ^ i915_request_flags(next)) &
1767 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
1768 		      BIT(I915_FENCE_FLAG_SENTINEL))))
1769 		return false;
1770 
1771 	if (!can_merge_ctx(prev->context, next->context))
1772 		return false;
1773 
1774 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
1775 	return true;
1776 }
1777 
1778 static void virtual_update_register_offsets(u32 *regs,
1779 					    struct intel_engine_cs *engine)
1780 {
1781 	set_offsets(regs, reg_offsets(engine), engine, false);
1782 }
1783 
1784 static bool virtual_matches(const struct virtual_engine *ve,
1785 			    const struct i915_request *rq,
1786 			    const struct intel_engine_cs *engine)
1787 {
1788 	const struct intel_engine_cs *inflight;
1789 
1790 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1791 		return false;
1792 
1793 	/*
1794 	 * We track when the HW has completed saving the context image
1795 	 * (i.e. when we have seen the final CS event switching out of
1796 	 * the context) and must not overwrite the context image before
1797 	 * then. This restricts us to only using the active engine
1798 	 * while the previous virtualized request is inflight (so
1799 	 * we reuse the register offsets). This is a very small
1800 	 * hystersis on the greedy seelction algorithm.
1801 	 */
1802 	inflight = intel_context_inflight(&ve->context);
1803 	if (inflight && inflight != engine)
1804 		return false;
1805 
1806 	return true;
1807 }
1808 
1809 static void virtual_xfer_context(struct virtual_engine *ve,
1810 				 struct intel_engine_cs *engine)
1811 {
1812 	unsigned int n;
1813 
1814 	if (likely(engine == ve->siblings[0]))
1815 		return;
1816 
1817 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1818 	if (!intel_engine_has_relative_mmio(engine))
1819 		virtual_update_register_offsets(ve->context.lrc_reg_state,
1820 						engine);
1821 
1822 	/*
1823 	 * Move the bound engine to the top of the list for
1824 	 * future execution. We then kick this tasklet first
1825 	 * before checking others, so that we preferentially
1826 	 * reuse this set of bound registers.
1827 	 */
1828 	for (n = 1; n < ve->num_siblings; n++) {
1829 		if (ve->siblings[n] == engine) {
1830 			swap(ve->siblings[n], ve->siblings[0]);
1831 			break;
1832 		}
1833 	}
1834 }
1835 
1836 #define for_each_waiter(p__, rq__) \
1837 	list_for_each_entry_lockless(p__, \
1838 				     &(rq__)->sched.waiters_list, \
1839 				     wait_link)
1840 
1841 #define for_each_signaler(p__, rq__) \
1842 	list_for_each_entry_rcu(p__, \
1843 				&(rq__)->sched.signalers_list, \
1844 				signal_link)
1845 
1846 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1847 {
1848 	LIST_HEAD(list);
1849 
1850 	/*
1851 	 * We want to move the interrupted request to the back of
1852 	 * the round-robin list (i.e. its priority level), but
1853 	 * in doing so, we must then move all requests that were in
1854 	 * flight and were waiting for the interrupted request to
1855 	 * be run after it again.
1856 	 */
1857 	do {
1858 		struct i915_dependency *p;
1859 
1860 		GEM_BUG_ON(i915_request_is_active(rq));
1861 		list_move_tail(&rq->sched.link, pl);
1862 
1863 		for_each_waiter(p, rq) {
1864 			struct i915_request *w =
1865 				container_of(p->waiter, typeof(*w), sched);
1866 
1867 			if (p->flags & I915_DEPENDENCY_WEAK)
1868 				continue;
1869 
1870 			/* Leave semaphores spinning on the other engines */
1871 			if (w->engine != rq->engine)
1872 				continue;
1873 
1874 			/* No waiter should start before its signaler */
1875 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1876 				   i915_request_started(w) &&
1877 				   !i915_request_completed(rq));
1878 
1879 			GEM_BUG_ON(i915_request_is_active(w));
1880 			if (!i915_request_is_ready(w))
1881 				continue;
1882 
1883 			if (rq_prio(w) < rq_prio(rq))
1884 				continue;
1885 
1886 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1887 			list_move_tail(&w->sched.link, &list);
1888 		}
1889 
1890 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1891 	} while (rq);
1892 }
1893 
1894 static void defer_active(struct intel_engine_cs *engine)
1895 {
1896 	struct i915_request *rq;
1897 
1898 	rq = __unwind_incomplete_requests(engine);
1899 	if (!rq)
1900 		return;
1901 
1902 	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1903 }
1904 
1905 static bool
1906 need_timeslice(const struct intel_engine_cs *engine,
1907 	       const struct i915_request *rq,
1908 	       const struct rb_node *rb)
1909 {
1910 	int hint;
1911 
1912 	if (!intel_engine_has_timeslices(engine))
1913 		return false;
1914 
1915 	hint = engine->execlists.queue_priority_hint;
1916 
1917 	if (rb) {
1918 		const struct virtual_engine *ve =
1919 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1920 		const struct intel_engine_cs *inflight =
1921 			intel_context_inflight(&ve->context);
1922 
1923 		if (!inflight || inflight == engine) {
1924 			struct i915_request *next;
1925 
1926 			rcu_read_lock();
1927 			next = READ_ONCE(ve->request);
1928 			if (next)
1929 				hint = max(hint, rq_prio(next));
1930 			rcu_read_unlock();
1931 		}
1932 	}
1933 
1934 	if (!list_is_last(&rq->sched.link, &engine->active.requests))
1935 		hint = max(hint, rq_prio(list_next_entry(rq, sched.link)));
1936 
1937 	GEM_BUG_ON(hint >= I915_PRIORITY_UNPREEMPTABLE);
1938 	return hint >= effective_prio(rq);
1939 }
1940 
1941 static bool
1942 timeslice_yield(const struct intel_engine_execlists *el,
1943 		const struct i915_request *rq)
1944 {
1945 	/*
1946 	 * Once bitten, forever smitten!
1947 	 *
1948 	 * If the active context ever busy-waited on a semaphore,
1949 	 * it will be treated as a hog until the end of its timeslice (i.e.
1950 	 * until it is scheduled out and replaced by a new submission,
1951 	 * possibly even its own lite-restore). The HW only sends an interrupt
1952 	 * on the first miss, and we do know if that semaphore has been
1953 	 * signaled, or even if it is now stuck on another semaphore. Play
1954 	 * safe, yield if it might be stuck -- it will be given a fresh
1955 	 * timeslice in the near future.
1956 	 */
1957 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1958 }
1959 
1960 static bool
1961 timeslice_expired(const struct intel_engine_execlists *el,
1962 		  const struct i915_request *rq)
1963 {
1964 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1965 }
1966 
1967 static int
1968 switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
1969 {
1970 	if (list_is_last(&rq->sched.link, &engine->active.requests))
1971 		return engine->execlists.queue_priority_hint;
1972 
1973 	return rq_prio(list_next_entry(rq, sched.link));
1974 }
1975 
1976 static inline unsigned long
1977 timeslice(const struct intel_engine_cs *engine)
1978 {
1979 	return READ_ONCE(engine->props.timeslice_duration_ms);
1980 }
1981 
1982 static unsigned long active_timeslice(const struct intel_engine_cs *engine)
1983 {
1984 	const struct intel_engine_execlists *execlists = &engine->execlists;
1985 	const struct i915_request *rq = *execlists->active;
1986 
1987 	if (!rq || i915_request_completed(rq))
1988 		return 0;
1989 
1990 	if (READ_ONCE(execlists->switch_priority_hint) < effective_prio(rq))
1991 		return 0;
1992 
1993 	return timeslice(engine);
1994 }
1995 
1996 static void set_timeslice(struct intel_engine_cs *engine)
1997 {
1998 	unsigned long duration;
1999 
2000 	if (!intel_engine_has_timeslices(engine))
2001 		return;
2002 
2003 	duration = active_timeslice(engine);
2004 	ENGINE_TRACE(engine, "bump timeslicing, interval:%lu", duration);
2005 
2006 	set_timer_ms(&engine->execlists.timer, duration);
2007 }
2008 
2009 static void start_timeslice(struct intel_engine_cs *engine, int prio)
2010 {
2011 	struct intel_engine_execlists *execlists = &engine->execlists;
2012 	unsigned long duration;
2013 
2014 	if (!intel_engine_has_timeslices(engine))
2015 		return;
2016 
2017 	WRITE_ONCE(execlists->switch_priority_hint, prio);
2018 	if (prio == INT_MIN)
2019 		return;
2020 
2021 	if (timer_pending(&execlists->timer))
2022 		return;
2023 
2024 	duration = timeslice(engine);
2025 	ENGINE_TRACE(engine,
2026 		     "start timeslicing, prio:%d, interval:%lu",
2027 		     prio, duration);
2028 
2029 	set_timer_ms(&execlists->timer, duration);
2030 }
2031 
2032 static void record_preemption(struct intel_engine_execlists *execlists)
2033 {
2034 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
2035 }
2036 
2037 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
2038 					    const struct i915_request *rq)
2039 {
2040 	if (!rq)
2041 		return 0;
2042 
2043 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
2044 	if (unlikely(intel_context_is_banned(rq->context)))
2045 		return 1;
2046 
2047 	return READ_ONCE(engine->props.preempt_timeout_ms);
2048 }
2049 
2050 static void set_preempt_timeout(struct intel_engine_cs *engine,
2051 				const struct i915_request *rq)
2052 {
2053 	if (!intel_engine_has_preempt_reset(engine))
2054 		return;
2055 
2056 	set_timer_ms(&engine->execlists.preempt,
2057 		     active_preempt_timeout(engine, rq));
2058 }
2059 
2060 static inline void clear_ports(struct i915_request **ports, int count)
2061 {
2062 	memset_p((void **)ports, NULL, count);
2063 }
2064 
2065 static inline void
2066 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
2067 {
2068 	/* A memcpy_p() would be very useful here! */
2069 	while (count--)
2070 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
2071 }
2072 
2073 static void execlists_dequeue(struct intel_engine_cs *engine)
2074 {
2075 	struct intel_engine_execlists * const execlists = &engine->execlists;
2076 	struct i915_request **port = execlists->pending;
2077 	struct i915_request ** const last_port = port + execlists->port_mask;
2078 	struct i915_request * const *active;
2079 	struct i915_request *last;
2080 	struct rb_node *rb;
2081 	bool submit = false;
2082 
2083 	/*
2084 	 * Hardware submission is through 2 ports. Conceptually each port
2085 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
2086 	 * static for a context, and unique to each, so we only execute
2087 	 * requests belonging to a single context from each ring. RING_HEAD
2088 	 * is maintained by the CS in the context image, it marks the place
2089 	 * where it got up to last time, and through RING_TAIL we tell the CS
2090 	 * where we want to execute up to this time.
2091 	 *
2092 	 * In this list the requests are in order of execution. Consecutive
2093 	 * requests from the same context are adjacent in the ringbuffer. We
2094 	 * can combine these requests into a single RING_TAIL update:
2095 	 *
2096 	 *              RING_HEAD...req1...req2
2097 	 *                                    ^- RING_TAIL
2098 	 * since to execute req2 the CS must first execute req1.
2099 	 *
2100 	 * Our goal then is to point each port to the end of a consecutive
2101 	 * sequence of requests as being the most optimal (fewest wake ups
2102 	 * and context switches) submission.
2103 	 */
2104 
2105 	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
2106 		struct virtual_engine *ve =
2107 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2108 		struct i915_request *rq = READ_ONCE(ve->request);
2109 
2110 		if (!rq) { /* lazily cleanup after another engine handled rq */
2111 			rb_erase_cached(rb, &execlists->virtual);
2112 			RB_CLEAR_NODE(rb);
2113 			rb = rb_first_cached(&execlists->virtual);
2114 			continue;
2115 		}
2116 
2117 		if (!virtual_matches(ve, rq, engine)) {
2118 			rb = rb_next(rb);
2119 			continue;
2120 		}
2121 
2122 		break;
2123 	}
2124 
2125 	/*
2126 	 * If the queue is higher priority than the last
2127 	 * request in the currently active context, submit afresh.
2128 	 * We will resubmit again afterwards in case we need to split
2129 	 * the active context to interject the preemption request,
2130 	 * i.e. we will retrigger preemption following the ack in case
2131 	 * of trouble.
2132 	 */
2133 	active = READ_ONCE(execlists->active);
2134 
2135 	/*
2136 	 * In theory we can skip over completed contexts that have not
2137 	 * yet been processed by events (as those events are in flight):
2138 	 *
2139 	 * while ((last = *active) && i915_request_completed(last))
2140 	 *	active++;
2141 	 *
2142 	 * However, the GPU cannot handle this as it will ultimately
2143 	 * find itself trying to jump back into a context it has just
2144 	 * completed and barf.
2145 	 */
2146 
2147 	if ((last = *active)) {
2148 		if (need_preempt(engine, last, rb)) {
2149 			if (i915_request_completed(last)) {
2150 				tasklet_hi_schedule(&execlists->tasklet);
2151 				return;
2152 			}
2153 
2154 			ENGINE_TRACE(engine,
2155 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
2156 				     last->fence.context,
2157 				     last->fence.seqno,
2158 				     last->sched.attr.priority,
2159 				     execlists->queue_priority_hint);
2160 			record_preemption(execlists);
2161 
2162 			/*
2163 			 * Don't let the RING_HEAD advance past the breadcrumb
2164 			 * as we unwind (and until we resubmit) so that we do
2165 			 * not accidentally tell it to go backwards.
2166 			 */
2167 			ring_set_paused(engine, 1);
2168 
2169 			/*
2170 			 * Note that we have not stopped the GPU at this point,
2171 			 * so we are unwinding the incomplete requests as they
2172 			 * remain inflight and so by the time we do complete
2173 			 * the preemption, some of the unwound requests may
2174 			 * complete!
2175 			 */
2176 			__unwind_incomplete_requests(engine);
2177 
2178 			last = NULL;
2179 		} else if (need_timeslice(engine, last, rb) &&
2180 			   timeslice_expired(execlists, last)) {
2181 			if (i915_request_completed(last)) {
2182 				tasklet_hi_schedule(&execlists->tasklet);
2183 				return;
2184 			}
2185 
2186 			ENGINE_TRACE(engine,
2187 				     "expired last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
2188 				     last->fence.context,
2189 				     last->fence.seqno,
2190 				     last->sched.attr.priority,
2191 				     execlists->queue_priority_hint,
2192 				     yesno(timeslice_yield(execlists, last)));
2193 
2194 			ring_set_paused(engine, 1);
2195 			defer_active(engine);
2196 
2197 			/*
2198 			 * Unlike for preemption, if we rewind and continue
2199 			 * executing the same context as previously active,
2200 			 * the order of execution will remain the same and
2201 			 * the tail will only advance. We do not need to
2202 			 * force a full context restore, as a lite-restore
2203 			 * is sufficient to resample the monotonic TAIL.
2204 			 *
2205 			 * If we switch to any other context, similarly we
2206 			 * will not rewind TAIL of current context, and
2207 			 * normal save/restore will preserve state and allow
2208 			 * us to later continue executing the same request.
2209 			 */
2210 			last = NULL;
2211 		} else {
2212 			/*
2213 			 * Otherwise if we already have a request pending
2214 			 * for execution after the current one, we can
2215 			 * just wait until the next CS event before
2216 			 * queuing more. In either case we will force a
2217 			 * lite-restore preemption event, but if we wait
2218 			 * we hopefully coalesce several updates into a single
2219 			 * submission.
2220 			 */
2221 			if (!list_is_last(&last->sched.link,
2222 					  &engine->active.requests)) {
2223 				/*
2224 				 * Even if ELSP[1] is occupied and not worthy
2225 				 * of timeslices, our queue might be.
2226 				 */
2227 				start_timeslice(engine, queue_prio(execlists));
2228 				return;
2229 			}
2230 		}
2231 	}
2232 
2233 	while (rb) { /* XXX virtual is always taking precedence */
2234 		struct virtual_engine *ve =
2235 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2236 		struct i915_request *rq;
2237 
2238 		spin_lock(&ve->base.active.lock);
2239 
2240 		rq = ve->request;
2241 		if (unlikely(!rq)) { /* lost the race to a sibling */
2242 			spin_unlock(&ve->base.active.lock);
2243 			rb_erase_cached(rb, &execlists->virtual);
2244 			RB_CLEAR_NODE(rb);
2245 			rb = rb_first_cached(&execlists->virtual);
2246 			continue;
2247 		}
2248 
2249 		GEM_BUG_ON(rq != ve->request);
2250 		GEM_BUG_ON(rq->engine != &ve->base);
2251 		GEM_BUG_ON(rq->context != &ve->context);
2252 
2253 		if (rq_prio(rq) >= queue_prio(execlists)) {
2254 			if (!virtual_matches(ve, rq, engine)) {
2255 				spin_unlock(&ve->base.active.lock);
2256 				rb = rb_next(rb);
2257 				continue;
2258 			}
2259 
2260 			if (last && !can_merge_rq(last, rq)) {
2261 				spin_unlock(&ve->base.active.lock);
2262 				start_timeslice(engine, rq_prio(rq));
2263 				return; /* leave this for another sibling */
2264 			}
2265 
2266 			ENGINE_TRACE(engine,
2267 				     "virtual rq=%llx:%lld%s, new engine? %s\n",
2268 				     rq->fence.context,
2269 				     rq->fence.seqno,
2270 				     i915_request_completed(rq) ? "!" :
2271 				     i915_request_started(rq) ? "*" :
2272 				     "",
2273 				     yesno(engine != ve->siblings[0]));
2274 
2275 			WRITE_ONCE(ve->request, NULL);
2276 			WRITE_ONCE(ve->base.execlists.queue_priority_hint,
2277 				   INT_MIN);
2278 			rb_erase_cached(rb, &execlists->virtual);
2279 			RB_CLEAR_NODE(rb);
2280 
2281 			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
2282 			WRITE_ONCE(rq->engine, engine);
2283 
2284 			if (__i915_request_submit(rq)) {
2285 				/*
2286 				 * Only after we confirm that we will submit
2287 				 * this request (i.e. it has not already
2288 				 * completed), do we want to update the context.
2289 				 *
2290 				 * This serves two purposes. It avoids
2291 				 * unnecessary work if we are resubmitting an
2292 				 * already completed request after timeslicing.
2293 				 * But more importantly, it prevents us altering
2294 				 * ve->siblings[] on an idle context, where
2295 				 * we may be using ve->siblings[] in
2296 				 * virtual_context_enter / virtual_context_exit.
2297 				 */
2298 				virtual_xfer_context(ve, engine);
2299 				GEM_BUG_ON(ve->siblings[0] != engine);
2300 
2301 				submit = true;
2302 				last = rq;
2303 			}
2304 			i915_request_put(rq);
2305 
2306 			/*
2307 			 * Hmm, we have a bunch of virtual engine requests,
2308 			 * but the first one was already completed (thanks
2309 			 * preempt-to-busy!). Keep looking at the veng queue
2310 			 * until we have no more relevant requests (i.e.
2311 			 * the normal submit queue has higher priority).
2312 			 */
2313 			if (!submit) {
2314 				spin_unlock(&ve->base.active.lock);
2315 				rb = rb_first_cached(&execlists->virtual);
2316 				continue;
2317 			}
2318 		}
2319 
2320 		spin_unlock(&ve->base.active.lock);
2321 		break;
2322 	}
2323 
2324 	while ((rb = rb_first_cached(&execlists->queue))) {
2325 		struct i915_priolist *p = to_priolist(rb);
2326 		struct i915_request *rq, *rn;
2327 		int i;
2328 
2329 		priolist_for_each_request_consume(rq, rn, p, i) {
2330 			bool merge = true;
2331 
2332 			/*
2333 			 * Can we combine this request with the current port?
2334 			 * It has to be the same context/ringbuffer and not
2335 			 * have any exceptions (e.g. GVT saying never to
2336 			 * combine contexts).
2337 			 *
2338 			 * If we can combine the requests, we can execute both
2339 			 * by updating the RING_TAIL to point to the end of the
2340 			 * second request, and so we never need to tell the
2341 			 * hardware about the first.
2342 			 */
2343 			if (last && !can_merge_rq(last, rq)) {
2344 				/*
2345 				 * If we are on the second port and cannot
2346 				 * combine this request with the last, then we
2347 				 * are done.
2348 				 */
2349 				if (port == last_port)
2350 					goto done;
2351 
2352 				/*
2353 				 * We must not populate both ELSP[] with the
2354 				 * same LRCA, i.e. we must submit 2 different
2355 				 * contexts if we submit 2 ELSP.
2356 				 */
2357 				if (last->context == rq->context)
2358 					goto done;
2359 
2360 				if (i915_request_has_sentinel(last))
2361 					goto done;
2362 
2363 				/*
2364 				 * If GVT overrides us we only ever submit
2365 				 * port[0], leaving port[1] empty. Note that we
2366 				 * also have to be careful that we don't queue
2367 				 * the same context (even though a different
2368 				 * request) to the second port.
2369 				 */
2370 				if (ctx_single_port_submission(last->context) ||
2371 				    ctx_single_port_submission(rq->context))
2372 					goto done;
2373 
2374 				merge = false;
2375 			}
2376 
2377 			if (__i915_request_submit(rq)) {
2378 				if (!merge) {
2379 					*port = execlists_schedule_in(last, port - execlists->pending);
2380 					port++;
2381 					last = NULL;
2382 				}
2383 
2384 				GEM_BUG_ON(last &&
2385 					   !can_merge_ctx(last->context,
2386 							  rq->context));
2387 				GEM_BUG_ON(last &&
2388 					   i915_seqno_passed(last->fence.seqno,
2389 							     rq->fence.seqno));
2390 
2391 				submit = true;
2392 				last = rq;
2393 			}
2394 		}
2395 
2396 		rb_erase_cached(&p->node, &execlists->queue);
2397 		i915_priolist_free(p);
2398 	}
2399 
2400 done:
2401 	/*
2402 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
2403 	 *
2404 	 * We choose the priority hint such that if we add a request of greater
2405 	 * priority than this, we kick the submission tasklet to decide on
2406 	 * the right order of submitting the requests to hardware. We must
2407 	 * also be prepared to reorder requests as they are in-flight on the
2408 	 * HW. We derive the priority hint then as the first "hole" in
2409 	 * the HW submission ports and if there are no available slots,
2410 	 * the priority of the lowest executing request, i.e. last.
2411 	 *
2412 	 * When we do receive a higher priority request ready to run from the
2413 	 * user, see queue_request(), the priority hint is bumped to that
2414 	 * request triggering preemption on the next dequeue (or subsequent
2415 	 * interrupt for secondary ports).
2416 	 */
2417 	execlists->queue_priority_hint = queue_prio(execlists);
2418 
2419 	if (submit) {
2420 		*port = execlists_schedule_in(last, port - execlists->pending);
2421 		execlists->switch_priority_hint =
2422 			switch_prio(engine, *execlists->pending);
2423 
2424 		/*
2425 		 * Skip if we ended up with exactly the same set of requests,
2426 		 * e.g. trying to timeslice a pair of ordered contexts
2427 		 */
2428 		if (!memcmp(active, execlists->pending,
2429 			    (port - execlists->pending + 1) * sizeof(*port))) {
2430 			do
2431 				execlists_schedule_out(fetch_and_zero(port));
2432 			while (port-- != execlists->pending);
2433 
2434 			goto skip_submit;
2435 		}
2436 		clear_ports(port + 1, last_port - port);
2437 
2438 		WRITE_ONCE(execlists->yield, -1);
2439 		set_preempt_timeout(engine, *active);
2440 		execlists_submit_ports(engine);
2441 	} else {
2442 		start_timeslice(engine, execlists->queue_priority_hint);
2443 skip_submit:
2444 		ring_set_paused(engine, 0);
2445 	}
2446 }
2447 
2448 static void
2449 cancel_port_requests(struct intel_engine_execlists * const execlists)
2450 {
2451 	struct i915_request * const *port;
2452 
2453 	for (port = execlists->pending; *port; port++)
2454 		execlists_schedule_out(*port);
2455 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
2456 
2457 	/* Mark the end of active before we overwrite *active */
2458 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
2459 		execlists_schedule_out(*port);
2460 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
2461 
2462 	smp_wmb(); /* complete the seqlock for execlists_active() */
2463 	WRITE_ONCE(execlists->active, execlists->inflight);
2464 }
2465 
2466 static inline void
2467 invalidate_csb_entries(const u32 *first, const u32 *last)
2468 {
2469 	clflush((void *)first);
2470 	clflush((void *)last);
2471 }
2472 
2473 /*
2474  * Starting with Gen12, the status has a new format:
2475  *
2476  *     bit  0:     switched to new queue
2477  *     bit  1:     reserved
2478  *     bit  2:     semaphore wait mode (poll or signal), only valid when
2479  *                 switch detail is set to "wait on semaphore"
2480  *     bits 3-5:   engine class
2481  *     bits 6-11:  engine instance
2482  *     bits 12-14: reserved
2483  *     bits 15-25: sw context id of the lrc the GT switched to
2484  *     bits 26-31: sw counter of the lrc the GT switched to
2485  *     bits 32-35: context switch detail
2486  *                  - 0: ctx complete
2487  *                  - 1: wait on sync flip
2488  *                  - 2: wait on vblank
2489  *                  - 3: wait on scanline
2490  *                  - 4: wait on semaphore
2491  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
2492  *                       WAIT_FOR_EVENT)
2493  *     bit  36:    reserved
2494  *     bits 37-43: wait detail (for switch detail 1 to 4)
2495  *     bits 44-46: reserved
2496  *     bits 47-57: sw context id of the lrc the GT switched away from
2497  *     bits 58-63: sw counter of the lrc the GT switched away from
2498  */
2499 static inline bool
2500 gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
2501 {
2502 	u32 lower_dw = csb[0];
2503 	u32 upper_dw = csb[1];
2504 	bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
2505 	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
2506 	bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
2507 
2508 	/*
2509 	 * The context switch detail is not guaranteed to be 5 when a preemption
2510 	 * occurs, so we can't just check for that. The check below works for
2511 	 * all the cases we care about, including preemptions of WAIT
2512 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
2513 	 * would require some extra handling, but we don't support that.
2514 	 */
2515 	if (!ctx_away_valid || new_queue) {
2516 		GEM_BUG_ON(!ctx_to_valid);
2517 		return true;
2518 	}
2519 
2520 	/*
2521 	 * switch detail = 5 is covered by the case above and we do not expect a
2522 	 * context switch on an unsuccessful wait instruction since we always
2523 	 * use polling mode.
2524 	 */
2525 	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
2526 	return false;
2527 }
2528 
2529 static inline bool
2530 gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
2531 {
2532 	return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
2533 }
2534 
2535 static void process_csb(struct intel_engine_cs *engine)
2536 {
2537 	struct intel_engine_execlists * const execlists = &engine->execlists;
2538 	const u32 * const buf = execlists->csb_status;
2539 	const u8 num_entries = execlists->csb_size;
2540 	u8 head, tail;
2541 
2542 	/*
2543 	 * As we modify our execlists state tracking we require exclusive
2544 	 * access. Either we are inside the tasklet, or the tasklet is disabled
2545 	 * and we assume that is only inside the reset paths and so serialised.
2546 	 */
2547 	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
2548 		   !reset_in_progress(execlists));
2549 	GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
2550 
2551 	/*
2552 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
2553 	 * When reading from the csb_write mmio register, we have to be
2554 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
2555 	 * the low 4bits. As it happens we know the next 4bits are always
2556 	 * zero and so we can simply masked off the low u8 of the register
2557 	 * and treat it identically to reading from the HWSP (without having
2558 	 * to use explicit shifting and masking, and probably bifurcating
2559 	 * the code to handle the legacy mmio read).
2560 	 */
2561 	head = execlists->csb_head;
2562 	tail = READ_ONCE(*execlists->csb_write);
2563 	if (unlikely(head == tail))
2564 		return;
2565 
2566 	/*
2567 	 * We will consume all events from HW, or at least pretend to.
2568 	 *
2569 	 * The sequence of events from the HW is deterministic, and derived
2570 	 * from our writes to the ELSP, with a smidgen of variability for
2571 	 * the arrival of the asynchronous requests wrt to the inflight
2572 	 * execution. If the HW sends an event that does not correspond with
2573 	 * the one we are expecting, we have to abandon all hope as we lose
2574 	 * all tracking of what the engine is actually executing. We will
2575 	 * only detect we are out of sequence with the HW when we get an
2576 	 * 'impossible' event because we have already drained our own
2577 	 * preemption/promotion queue. If this occurs, we know that we likely
2578 	 * lost track of execution earlier and must unwind and restart, the
2579 	 * simplest way is by stop processing the event queue and force the
2580 	 * engine to reset.
2581 	 */
2582 	execlists->csb_head = tail;
2583 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
2584 
2585 	/*
2586 	 * Hopefully paired with a wmb() in HW!
2587 	 *
2588 	 * We must complete the read of the write pointer before any reads
2589 	 * from the CSB, so that we do not see stale values. Without an rmb
2590 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
2591 	 * we perform the READ_ONCE(*csb_write).
2592 	 */
2593 	rmb();
2594 	do {
2595 		bool promote;
2596 
2597 		if (++head == num_entries)
2598 			head = 0;
2599 
2600 		/*
2601 		 * We are flying near dragons again.
2602 		 *
2603 		 * We hold a reference to the request in execlist_port[]
2604 		 * but no more than that. We are operating in softirq
2605 		 * context and so cannot hold any mutex or sleep. That
2606 		 * prevents us stopping the requests we are processing
2607 		 * in port[] from being retired simultaneously (the
2608 		 * breadcrumb will be complete before we see the
2609 		 * context-switch). As we only hold the reference to the
2610 		 * request, any pointer chasing underneath the request
2611 		 * is subject to a potential use-after-free. Thus we
2612 		 * store all of the bookkeeping within port[] as
2613 		 * required, and avoid using unguarded pointers beneath
2614 		 * request itself. The same applies to the atomic
2615 		 * status notifier.
2616 		 */
2617 
2618 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
2619 			     head, buf[2 * head + 0], buf[2 * head + 1]);
2620 
2621 		if (INTEL_GEN(engine->i915) >= 12)
2622 			promote = gen12_csb_parse(execlists, buf + 2 * head);
2623 		else
2624 			promote = gen8_csb_parse(execlists, buf + 2 * head);
2625 		if (promote) {
2626 			struct i915_request * const *old = execlists->active;
2627 
2628 			if (GEM_WARN_ON(!*execlists->pending)) {
2629 				execlists->error_interrupt |= ERROR_CSB;
2630 				break;
2631 			}
2632 
2633 			ring_set_paused(engine, 0);
2634 
2635 			/* Point active to the new ELSP; prevent overwriting */
2636 			WRITE_ONCE(execlists->active, execlists->pending);
2637 			smp_wmb(); /* notify execlists_active() */
2638 
2639 			/* cancel old inflight, prepare for switch */
2640 			trace_ports(execlists, "preempted", old);
2641 			while (*old)
2642 				execlists_schedule_out(*old++);
2643 
2644 			/* switch pending to inflight */
2645 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
2646 			copy_ports(execlists->inflight,
2647 				   execlists->pending,
2648 				   execlists_num_ports(execlists));
2649 			smp_wmb(); /* complete the seqlock */
2650 			WRITE_ONCE(execlists->active, execlists->inflight);
2651 
2652 			WRITE_ONCE(execlists->pending[0], NULL);
2653 		} else {
2654 			if (GEM_WARN_ON(!*execlists->active)) {
2655 				execlists->error_interrupt |= ERROR_CSB;
2656 				break;
2657 			}
2658 
2659 			/* port0 completed, advanced to port1 */
2660 			trace_ports(execlists, "completed", execlists->active);
2661 
2662 			/*
2663 			 * We rely on the hardware being strongly
2664 			 * ordered, that the breadcrumb write is
2665 			 * coherent (visible from the CPU) before the
2666 			 * user interrupt is processed. One might assume
2667 			 * that the breadcrumb write being before the
2668 			 * user interrupt and the CS event for the context
2669 			 * switch would therefore be before the CS event
2670 			 * itself...
2671 			 */
2672 			if (GEM_SHOW_DEBUG() &&
2673 			    !i915_request_completed(*execlists->active)) {
2674 				struct i915_request *rq = *execlists->active;
2675 				const u32 *regs __maybe_unused =
2676 					rq->context->lrc_reg_state;
2677 
2678 				ENGINE_TRACE(engine,
2679 					     "context completed before request!\n");
2680 				ENGINE_TRACE(engine,
2681 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
2682 					     ENGINE_READ(engine, RING_START),
2683 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
2684 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
2685 					     ENGINE_READ(engine, RING_CTL),
2686 					     ENGINE_READ(engine, RING_MI_MODE));
2687 				ENGINE_TRACE(engine,
2688 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
2689 					     i915_ggtt_offset(rq->ring->vma),
2690 					     rq->head, rq->tail,
2691 					     rq->fence.context,
2692 					     lower_32_bits(rq->fence.seqno),
2693 					     hwsp_seqno(rq));
2694 				ENGINE_TRACE(engine,
2695 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
2696 					     regs[CTX_RING_START],
2697 					     regs[CTX_RING_HEAD],
2698 					     regs[CTX_RING_TAIL]);
2699 			}
2700 
2701 			execlists_schedule_out(*execlists->active++);
2702 
2703 			GEM_BUG_ON(execlists->active - execlists->inflight >
2704 				   execlists_num_ports(execlists));
2705 		}
2706 	} while (head != tail);
2707 
2708 	set_timeslice(engine);
2709 
2710 	/*
2711 	 * Gen11 has proven to fail wrt global observation point between
2712 	 * entry and tail update, failing on the ordering and thus
2713 	 * we see an old entry in the context status buffer.
2714 	 *
2715 	 * Forcibly evict out entries for the next gpu csb update,
2716 	 * to increase the odds that we get a fresh entries with non
2717 	 * working hardware. The cost for doing so comes out mostly with
2718 	 * the wash as hardware, working or not, will need to do the
2719 	 * invalidation before.
2720 	 */
2721 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2722 }
2723 
2724 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
2725 {
2726 	lockdep_assert_held(&engine->active.lock);
2727 	if (!READ_ONCE(engine->execlists.pending[0])) {
2728 		rcu_read_lock(); /* protect peeking at execlists->active */
2729 		execlists_dequeue(engine);
2730 		rcu_read_unlock();
2731 	}
2732 }
2733 
2734 static void __execlists_hold(struct i915_request *rq)
2735 {
2736 	LIST_HEAD(list);
2737 
2738 	do {
2739 		struct i915_dependency *p;
2740 
2741 		if (i915_request_is_active(rq))
2742 			__i915_request_unsubmit(rq);
2743 
2744 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2745 		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
2746 		i915_request_set_hold(rq);
2747 		RQ_TRACE(rq, "on hold\n");
2748 
2749 		for_each_waiter(p, rq) {
2750 			struct i915_request *w =
2751 				container_of(p->waiter, typeof(*w), sched);
2752 
2753 			/* Leave semaphores spinning on the other engines */
2754 			if (w->engine != rq->engine)
2755 				continue;
2756 
2757 			if (!i915_request_is_ready(w))
2758 				continue;
2759 
2760 			if (i915_request_completed(w))
2761 				continue;
2762 
2763 			if (i915_request_on_hold(w))
2764 				continue;
2765 
2766 			list_move_tail(&w->sched.link, &list);
2767 		}
2768 
2769 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2770 	} while (rq);
2771 }
2772 
2773 static bool execlists_hold(struct intel_engine_cs *engine,
2774 			   struct i915_request *rq)
2775 {
2776 	spin_lock_irq(&engine->active.lock);
2777 
2778 	if (i915_request_completed(rq)) { /* too late! */
2779 		rq = NULL;
2780 		goto unlock;
2781 	}
2782 
2783 	if (rq->engine != engine) { /* preempted virtual engine */
2784 		struct virtual_engine *ve = to_virtual_engine(rq->engine);
2785 
2786 		/*
2787 		 * intel_context_inflight() is only protected by virtue
2788 		 * of process_csb() being called only by the tasklet (or
2789 		 * directly from inside reset while the tasklet is suspended).
2790 		 * Assert that neither of those are allowed to run while we
2791 		 * poke at the request queues.
2792 		 */
2793 		GEM_BUG_ON(!reset_in_progress(&engine->execlists));
2794 
2795 		/*
2796 		 * An unsubmitted request along a virtual engine will
2797 		 * remain on the active (this) engine until we are able
2798 		 * to process the context switch away (and so mark the
2799 		 * context as no longer in flight). That cannot have happened
2800 		 * yet, otherwise we would not be hanging!
2801 		 */
2802 		spin_lock(&ve->base.active.lock);
2803 		GEM_BUG_ON(intel_context_inflight(rq->context) != engine);
2804 		GEM_BUG_ON(ve->request != rq);
2805 		ve->request = NULL;
2806 		spin_unlock(&ve->base.active.lock);
2807 		i915_request_put(rq);
2808 
2809 		rq->engine = engine;
2810 	}
2811 
2812 	/*
2813 	 * Transfer this request onto the hold queue to prevent it
2814 	 * being resumbitted to HW (and potentially completed) before we have
2815 	 * released it. Since we may have already submitted following
2816 	 * requests, we need to remove those as well.
2817 	 */
2818 	GEM_BUG_ON(i915_request_on_hold(rq));
2819 	GEM_BUG_ON(rq->engine != engine);
2820 	__execlists_hold(rq);
2821 	GEM_BUG_ON(list_empty(&engine->active.hold));
2822 
2823 unlock:
2824 	spin_unlock_irq(&engine->active.lock);
2825 	return rq;
2826 }
2827 
2828 static bool hold_request(const struct i915_request *rq)
2829 {
2830 	struct i915_dependency *p;
2831 	bool result = false;
2832 
2833 	/*
2834 	 * If one of our ancestors is on hold, we must also be on hold,
2835 	 * otherwise we will bypass it and execute before it.
2836 	 */
2837 	rcu_read_lock();
2838 	for_each_signaler(p, rq) {
2839 		const struct i915_request *s =
2840 			container_of(p->signaler, typeof(*s), sched);
2841 
2842 		if (s->engine != rq->engine)
2843 			continue;
2844 
2845 		result = i915_request_on_hold(s);
2846 		if (result)
2847 			break;
2848 	}
2849 	rcu_read_unlock();
2850 
2851 	return result;
2852 }
2853 
2854 static void __execlists_unhold(struct i915_request *rq)
2855 {
2856 	LIST_HEAD(list);
2857 
2858 	do {
2859 		struct i915_dependency *p;
2860 
2861 		RQ_TRACE(rq, "hold release\n");
2862 
2863 		GEM_BUG_ON(!i915_request_on_hold(rq));
2864 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2865 
2866 		i915_request_clear_hold(rq);
2867 		list_move_tail(&rq->sched.link,
2868 			       i915_sched_lookup_priolist(rq->engine,
2869 							  rq_prio(rq)));
2870 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2871 
2872 		/* Also release any children on this engine that are ready */
2873 		for_each_waiter(p, rq) {
2874 			struct i915_request *w =
2875 				container_of(p->waiter, typeof(*w), sched);
2876 
2877 			/* Propagate any change in error status */
2878 			if (rq->fence.error)
2879 				i915_request_set_error_once(w, rq->fence.error);
2880 
2881 			if (w->engine != rq->engine)
2882 				continue;
2883 
2884 			if (!i915_request_on_hold(w))
2885 				continue;
2886 
2887 			/* Check that no other parents are also on hold */
2888 			if (hold_request(w))
2889 				continue;
2890 
2891 			list_move_tail(&w->sched.link, &list);
2892 		}
2893 
2894 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2895 	} while (rq);
2896 }
2897 
2898 static void execlists_unhold(struct intel_engine_cs *engine,
2899 			     struct i915_request *rq)
2900 {
2901 	spin_lock_irq(&engine->active.lock);
2902 
2903 	/*
2904 	 * Move this request back to the priority queue, and all of its
2905 	 * children and grandchildren that were suspended along with it.
2906 	 */
2907 	__execlists_unhold(rq);
2908 
2909 	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2910 		engine->execlists.queue_priority_hint = rq_prio(rq);
2911 		tasklet_hi_schedule(&engine->execlists.tasklet);
2912 	}
2913 
2914 	spin_unlock_irq(&engine->active.lock);
2915 }
2916 
2917 struct execlists_capture {
2918 	struct work_struct work;
2919 	struct i915_request *rq;
2920 	struct i915_gpu_coredump *error;
2921 };
2922 
2923 static void execlists_capture_work(struct work_struct *work)
2924 {
2925 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2926 	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2927 	struct intel_engine_cs *engine = cap->rq->engine;
2928 	struct intel_gt_coredump *gt = cap->error->gt;
2929 	struct intel_engine_capture_vma *vma;
2930 
2931 	/* Compress all the objects attached to the request, slow! */
2932 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2933 	if (vma) {
2934 		struct i915_vma_compress *compress =
2935 			i915_vma_capture_prepare(gt);
2936 
2937 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2938 		i915_vma_capture_finish(gt, compress);
2939 	}
2940 
2941 	gt->simulated = gt->engine->simulated;
2942 	cap->error->simulated = gt->simulated;
2943 
2944 	/* Publish the error state, and announce it to the world */
2945 	i915_error_state_store(cap->error);
2946 	i915_gpu_coredump_put(cap->error);
2947 
2948 	/* Return this request and all that depend upon it for signaling */
2949 	execlists_unhold(engine, cap->rq);
2950 	i915_request_put(cap->rq);
2951 
2952 	kfree(cap);
2953 }
2954 
2955 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2956 {
2957 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2958 	struct execlists_capture *cap;
2959 
2960 	cap = kmalloc(sizeof(*cap), gfp);
2961 	if (!cap)
2962 		return NULL;
2963 
2964 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2965 	if (!cap->error)
2966 		goto err_cap;
2967 
2968 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2969 	if (!cap->error->gt)
2970 		goto err_gpu;
2971 
2972 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2973 	if (!cap->error->gt->engine)
2974 		goto err_gt;
2975 
2976 	return cap;
2977 
2978 err_gt:
2979 	kfree(cap->error->gt);
2980 err_gpu:
2981 	kfree(cap->error);
2982 err_cap:
2983 	kfree(cap);
2984 	return NULL;
2985 }
2986 
2987 static struct i915_request *
2988 active_context(struct intel_engine_cs *engine, u32 ccid)
2989 {
2990 	const struct intel_engine_execlists * const el = &engine->execlists;
2991 	struct i915_request * const *port, *rq;
2992 
2993 	/*
2994 	 * Use the most recent result from process_csb(), but just in case
2995 	 * we trigger an error (via interrupt) before the first CS event has
2996 	 * been written, peek at the next submission.
2997 	 */
2998 
2999 	for (port = el->active; (rq = *port); port++) {
3000 		if (rq->context->lrc.ccid == ccid) {
3001 			ENGINE_TRACE(engine,
3002 				     "ccid found at active:%zd\n",
3003 				     port - el->active);
3004 			return rq;
3005 		}
3006 	}
3007 
3008 	for (port = el->pending; (rq = *port); port++) {
3009 		if (rq->context->lrc.ccid == ccid) {
3010 			ENGINE_TRACE(engine,
3011 				     "ccid found at pending:%zd\n",
3012 				     port - el->pending);
3013 			return rq;
3014 		}
3015 	}
3016 
3017 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
3018 	return NULL;
3019 }
3020 
3021 static u32 active_ccid(struct intel_engine_cs *engine)
3022 {
3023 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
3024 }
3025 
3026 static void execlists_capture(struct intel_engine_cs *engine)
3027 {
3028 	struct execlists_capture *cap;
3029 
3030 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
3031 		return;
3032 
3033 	/*
3034 	 * We need to _quickly_ capture the engine state before we reset.
3035 	 * We are inside an atomic section (softirq) here and we are delaying
3036 	 * the forced preemption event.
3037 	 */
3038 	cap = capture_regs(engine);
3039 	if (!cap)
3040 		return;
3041 
3042 	spin_lock_irq(&engine->active.lock);
3043 	cap->rq = active_context(engine, active_ccid(engine));
3044 	if (cap->rq) {
3045 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
3046 		cap->rq = i915_request_get_rcu(cap->rq);
3047 	}
3048 	spin_unlock_irq(&engine->active.lock);
3049 	if (!cap->rq)
3050 		goto err_free;
3051 
3052 	/*
3053 	 * Remove the request from the execlists queue, and take ownership
3054 	 * of the request. We pass it to our worker who will _slowly_ compress
3055 	 * all the pages the _user_ requested for debugging their batch, after
3056 	 * which we return it to the queue for signaling.
3057 	 *
3058 	 * By removing them from the execlists queue, we also remove the
3059 	 * requests from being processed by __unwind_incomplete_requests()
3060 	 * during the intel_engine_reset(), and so they will *not* be replayed
3061 	 * afterwards.
3062 	 *
3063 	 * Note that because we have not yet reset the engine at this point,
3064 	 * it is possible for the request that we have identified as being
3065 	 * guilty, did in fact complete and we will then hit an arbitration
3066 	 * point allowing the outstanding preemption to succeed. The likelihood
3067 	 * of that is very low (as capturing of the engine registers should be
3068 	 * fast enough to run inside an irq-off atomic section!), so we will
3069 	 * simply hold that request accountable for being non-preemptible
3070 	 * long enough to force the reset.
3071 	 */
3072 	if (!execlists_hold(engine, cap->rq))
3073 		goto err_rq;
3074 
3075 	INIT_WORK(&cap->work, execlists_capture_work);
3076 	schedule_work(&cap->work);
3077 	return;
3078 
3079 err_rq:
3080 	i915_request_put(cap->rq);
3081 err_free:
3082 	i915_gpu_coredump_put(cap->error);
3083 	kfree(cap);
3084 }
3085 
3086 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
3087 {
3088 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
3089 	unsigned long *lock = &engine->gt->reset.flags;
3090 
3091 	if (!intel_has_reset_engine(engine->gt))
3092 		return;
3093 
3094 	if (test_and_set_bit(bit, lock))
3095 		return;
3096 
3097 	ENGINE_TRACE(engine, "reset for %s\n", msg);
3098 
3099 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
3100 	tasklet_disable_nosync(&engine->execlists.tasklet);
3101 
3102 	ring_set_paused(engine, 1); /* Freeze the current request in place */
3103 	execlists_capture(engine);
3104 	intel_engine_reset(engine, msg);
3105 
3106 	tasklet_enable(&engine->execlists.tasklet);
3107 	clear_and_wake_up_bit(bit, lock);
3108 }
3109 
3110 static bool preempt_timeout(const struct intel_engine_cs *const engine)
3111 {
3112 	const struct timer_list *t = &engine->execlists.preempt;
3113 
3114 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
3115 		return false;
3116 
3117 	if (!timer_expired(t))
3118 		return false;
3119 
3120 	return READ_ONCE(engine->execlists.pending[0]);
3121 }
3122 
3123 /*
3124  * Check the unread Context Status Buffers and manage the submission of new
3125  * contexts to the ELSP accordingly.
3126  */
3127 static void execlists_submission_tasklet(unsigned long data)
3128 {
3129 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
3130 	bool timeout = preempt_timeout(engine);
3131 
3132 	process_csb(engine);
3133 
3134 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
3135 		const char *msg;
3136 
3137 		/* Generate the error message in priority wrt to the user! */
3138 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
3139 			msg = "CS error"; /* thrown by a user payload */
3140 		else if (engine->execlists.error_interrupt & ERROR_CSB)
3141 			msg = "invalid CSB event";
3142 		else
3143 			msg = "internal error";
3144 
3145 		engine->execlists.error_interrupt = 0;
3146 		execlists_reset(engine, msg);
3147 	}
3148 
3149 	if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
3150 		unsigned long flags;
3151 
3152 		spin_lock_irqsave(&engine->active.lock, flags);
3153 		__execlists_submission_tasklet(engine);
3154 		spin_unlock_irqrestore(&engine->active.lock, flags);
3155 
3156 		/* Recheck after serialising with direct-submission */
3157 		if (unlikely(timeout && preempt_timeout(engine)))
3158 			execlists_reset(engine, "preemption time out");
3159 	}
3160 }
3161 
3162 static void __execlists_kick(struct intel_engine_execlists *execlists)
3163 {
3164 	/* Kick the tasklet for some interrupt coalescing and reset handling */
3165 	tasklet_hi_schedule(&execlists->tasklet);
3166 }
3167 
3168 #define execlists_kick(t, member) \
3169 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
3170 
3171 static void execlists_timeslice(struct timer_list *timer)
3172 {
3173 	execlists_kick(timer, timer);
3174 }
3175 
3176 static void execlists_preempt(struct timer_list *timer)
3177 {
3178 	execlists_kick(timer, preempt);
3179 }
3180 
3181 static void queue_request(struct intel_engine_cs *engine,
3182 			  struct i915_request *rq)
3183 {
3184 	GEM_BUG_ON(!list_empty(&rq->sched.link));
3185 	list_add_tail(&rq->sched.link,
3186 		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
3187 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3188 }
3189 
3190 static void __submit_queue_imm(struct intel_engine_cs *engine)
3191 {
3192 	struct intel_engine_execlists * const execlists = &engine->execlists;
3193 
3194 	if (reset_in_progress(execlists))
3195 		return; /* defer until we restart the engine following reset */
3196 
3197 	__execlists_submission_tasklet(engine);
3198 }
3199 
3200 static void submit_queue(struct intel_engine_cs *engine,
3201 			 const struct i915_request *rq)
3202 {
3203 	struct intel_engine_execlists *execlists = &engine->execlists;
3204 
3205 	if (rq_prio(rq) <= execlists->queue_priority_hint)
3206 		return;
3207 
3208 	execlists->queue_priority_hint = rq_prio(rq);
3209 	__submit_queue_imm(engine);
3210 }
3211 
3212 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
3213 			     const struct i915_request *rq)
3214 {
3215 	GEM_BUG_ON(i915_request_on_hold(rq));
3216 	return !list_empty(&engine->active.hold) && hold_request(rq);
3217 }
3218 
3219 static void flush_csb(struct intel_engine_cs *engine)
3220 {
3221 	struct intel_engine_execlists *el = &engine->execlists;
3222 
3223 	if (READ_ONCE(el->pending[0]) && tasklet_trylock(&el->tasklet)) {
3224 		if (!reset_in_progress(el))
3225 			process_csb(engine);
3226 		tasklet_unlock(&el->tasklet);
3227 	}
3228 }
3229 
3230 static void execlists_submit_request(struct i915_request *request)
3231 {
3232 	struct intel_engine_cs *engine = request->engine;
3233 	unsigned long flags;
3234 
3235 	/* Hopefully we clear execlists->pending[] to let us through */
3236 	flush_csb(engine);
3237 
3238 	/* Will be called from irq-context when using foreign fences. */
3239 	spin_lock_irqsave(&engine->active.lock, flags);
3240 
3241 	if (unlikely(ancestor_on_hold(engine, request))) {
3242 		RQ_TRACE(request, "ancestor on hold\n");
3243 		list_add_tail(&request->sched.link, &engine->active.hold);
3244 		i915_request_set_hold(request);
3245 	} else {
3246 		queue_request(engine, request);
3247 
3248 		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
3249 		GEM_BUG_ON(list_empty(&request->sched.link));
3250 
3251 		submit_queue(engine, request);
3252 	}
3253 
3254 	spin_unlock_irqrestore(&engine->active.lock, flags);
3255 }
3256 
3257 static void __execlists_context_fini(struct intel_context *ce)
3258 {
3259 	intel_ring_put(ce->ring);
3260 	i915_vma_put(ce->state);
3261 }
3262 
3263 static void execlists_context_destroy(struct kref *kref)
3264 {
3265 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3266 
3267 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
3268 	GEM_BUG_ON(intel_context_is_pinned(ce));
3269 
3270 	if (ce->state)
3271 		__execlists_context_fini(ce);
3272 
3273 	intel_context_fini(ce);
3274 	intel_context_free(ce);
3275 }
3276 
3277 static void
3278 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
3279 {
3280 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3281 		return;
3282 
3283 	vaddr += engine->context_size;
3284 
3285 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
3286 }
3287 
3288 static void
3289 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
3290 {
3291 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3292 		return;
3293 
3294 	vaddr += engine->context_size;
3295 
3296 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
3297 		drm_err_once(&engine->i915->drm,
3298 			     "%s context redzone overwritten!\n",
3299 			     engine->name);
3300 }
3301 
3302 static void execlists_context_unpin(struct intel_context *ce)
3303 {
3304 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
3305 		      ce->engine);
3306 }
3307 
3308 static void execlists_context_post_unpin(struct intel_context *ce)
3309 {
3310 	i915_gem_object_unpin_map(ce->state->obj);
3311 }
3312 
3313 static u32 *
3314 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
3315 {
3316 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3317 		MI_SRM_LRM_GLOBAL_GTT |
3318 		MI_LRI_LRM_CS_MMIO;
3319 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3320 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3321 		CTX_TIMESTAMP * sizeof(u32);
3322 	*cs++ = 0;
3323 
3324 	*cs++ = MI_LOAD_REGISTER_REG |
3325 		MI_LRR_SOURCE_CS_MMIO |
3326 		MI_LRI_LRM_CS_MMIO;
3327 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3328 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
3329 
3330 	*cs++ = MI_LOAD_REGISTER_REG |
3331 		MI_LRR_SOURCE_CS_MMIO |
3332 		MI_LRI_LRM_CS_MMIO;
3333 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3334 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
3335 
3336 	return cs;
3337 }
3338 
3339 static u32 *
3340 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
3341 {
3342 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
3343 
3344 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3345 		MI_SRM_LRM_GLOBAL_GTT |
3346 		MI_LRI_LRM_CS_MMIO;
3347 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3348 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3349 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
3350 	*cs++ = 0;
3351 
3352 	return cs;
3353 }
3354 
3355 static u32 *
3356 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
3357 {
3358 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
3359 
3360 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
3361 		MI_SRM_LRM_GLOBAL_GTT |
3362 		MI_LRI_LRM_CS_MMIO;
3363 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3364 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
3365 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
3366 	*cs++ = 0;
3367 
3368 	*cs++ = MI_LOAD_REGISTER_REG |
3369 		MI_LRR_SOURCE_CS_MMIO |
3370 		MI_LRI_LRM_CS_MMIO;
3371 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
3372 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
3373 
3374 	return cs;
3375 }
3376 
3377 static u32 *
3378 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
3379 {
3380 	cs = gen12_emit_timestamp_wa(ce, cs);
3381 	cs = gen12_emit_cmd_buf_wa(ce, cs);
3382 	cs = gen12_emit_restore_scratch(ce, cs);
3383 
3384 	return cs;
3385 }
3386 
3387 static u32 *
3388 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
3389 {
3390 	cs = gen12_emit_timestamp_wa(ce, cs);
3391 	cs = gen12_emit_restore_scratch(ce, cs);
3392 
3393 	return cs;
3394 }
3395 
3396 static inline u32 context_wa_bb_offset(const struct intel_context *ce)
3397 {
3398 	return PAGE_SIZE * ce->wa_bb_page;
3399 }
3400 
3401 static u32 *context_indirect_bb(const struct intel_context *ce)
3402 {
3403 	void *ptr;
3404 
3405 	GEM_BUG_ON(!ce->wa_bb_page);
3406 
3407 	ptr = ce->lrc_reg_state;
3408 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
3409 	ptr += context_wa_bb_offset(ce);
3410 
3411 	return ptr;
3412 }
3413 
3414 static void
3415 setup_indirect_ctx_bb(const struct intel_context *ce,
3416 		      const struct intel_engine_cs *engine,
3417 		      u32 *(*emit)(const struct intel_context *, u32 *))
3418 {
3419 	u32 * const start = context_indirect_bb(ce);
3420 	u32 *cs;
3421 
3422 	cs = emit(ce, start);
3423 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
3424 	while ((unsigned long)cs % CACHELINE_BYTES)
3425 		*cs++ = MI_NOOP;
3426 
3427 	lrc_ring_setup_indirect_ctx(ce->lrc_reg_state, engine,
3428 				    i915_ggtt_offset(ce->state) +
3429 				    context_wa_bb_offset(ce),
3430 				    (cs - start) * sizeof(*cs));
3431 }
3432 
3433 static void
3434 __execlists_update_reg_state(const struct intel_context *ce,
3435 			     const struct intel_engine_cs *engine,
3436 			     u32 head)
3437 {
3438 	struct intel_ring *ring = ce->ring;
3439 	u32 *regs = ce->lrc_reg_state;
3440 
3441 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
3442 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
3443 
3444 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
3445 	regs[CTX_RING_HEAD] = head;
3446 	regs[CTX_RING_TAIL] = ring->tail;
3447 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
3448 
3449 	/* RPCS */
3450 	if (engine->class == RENDER_CLASS) {
3451 		regs[CTX_R_PWR_CLK_STATE] =
3452 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
3453 
3454 		i915_oa_init_reg_state(ce, engine);
3455 	}
3456 
3457 	if (ce->wa_bb_page) {
3458 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
3459 
3460 		fn = gen12_emit_indirect_ctx_xcs;
3461 		if (ce->engine->class == RENDER_CLASS)
3462 			fn = gen12_emit_indirect_ctx_rcs;
3463 
3464 		/* Mutually exclusive wrt to global indirect bb */
3465 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
3466 		setup_indirect_ctx_bb(ce, engine, fn);
3467 	}
3468 }
3469 
3470 static int
3471 execlists_context_pre_pin(struct intel_context *ce,
3472 			  struct i915_gem_ww_ctx *ww, void **vaddr)
3473 {
3474 	GEM_BUG_ON(!ce->state);
3475 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3476 
3477 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
3478 					i915_coherent_map_type(ce->engine->i915) |
3479 					I915_MAP_OVERRIDE);
3480 
3481 	return PTR_ERR_OR_ZERO(*vaddr);
3482 }
3483 
3484 static int
3485 __execlists_context_pin(struct intel_context *ce,
3486 			struct intel_engine_cs *engine,
3487 			void *vaddr)
3488 {
3489 	ce->lrc.lrca = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE;
3490 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
3491 	__execlists_update_reg_state(ce, engine, ce->ring->tail);
3492 
3493 	return 0;
3494 }
3495 
3496 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
3497 {
3498 	return __execlists_context_pin(ce, ce->engine, vaddr);
3499 }
3500 
3501 static int execlists_context_alloc(struct intel_context *ce)
3502 {
3503 	return __execlists_context_alloc(ce, ce->engine);
3504 }
3505 
3506 static void execlists_context_reset(struct intel_context *ce)
3507 {
3508 	CE_TRACE(ce, "reset\n");
3509 	GEM_BUG_ON(!intel_context_is_pinned(ce));
3510 
3511 	intel_ring_reset(ce->ring, ce->ring->emit);
3512 
3513 	/* Scrub away the garbage */
3514 	execlists_init_reg_state(ce->lrc_reg_state,
3515 				 ce, ce->engine, ce->ring, true);
3516 	__execlists_update_reg_state(ce, ce->engine, ce->ring->tail);
3517 
3518 	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE;
3519 }
3520 
3521 static const struct intel_context_ops execlists_context_ops = {
3522 	.alloc = execlists_context_alloc,
3523 
3524 	.pre_pin = execlists_context_pre_pin,
3525 	.pin = execlists_context_pin,
3526 	.unpin = execlists_context_unpin,
3527 	.post_unpin = execlists_context_post_unpin,
3528 
3529 	.enter = intel_context_enter_engine,
3530 	.exit = intel_context_exit_engine,
3531 
3532 	.reset = execlists_context_reset,
3533 	.destroy = execlists_context_destroy,
3534 };
3535 
3536 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
3537 {
3538 	u32 *cs;
3539 
3540 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
3541 	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
3542 		return 0;
3543 
3544 	cs = intel_ring_begin(rq, 6);
3545 	if (IS_ERR(cs))
3546 		return PTR_ERR(cs);
3547 
3548 	/*
3549 	 * Check if we have been preempted before we even get started.
3550 	 *
3551 	 * After this point i915_request_started() reports true, even if
3552 	 * we get preempted and so are no longer running.
3553 	 */
3554 	*cs++ = MI_ARB_CHECK;
3555 	*cs++ = MI_NOOP;
3556 
3557 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
3558 	*cs++ = i915_request_timeline(rq)->hwsp_offset;
3559 	*cs++ = 0;
3560 	*cs++ = rq->fence.seqno - 1;
3561 
3562 	intel_ring_advance(rq, cs);
3563 
3564 	/* Record the updated position of the request's payload */
3565 	rq->infix = intel_ring_offset(rq, cs);
3566 
3567 	__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
3568 
3569 	return 0;
3570 }
3571 
3572 static int emit_pdps(struct i915_request *rq)
3573 {
3574 	const struct intel_engine_cs * const engine = rq->engine;
3575 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
3576 	int err, i;
3577 	u32 *cs;
3578 
3579 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
3580 
3581 	/*
3582 	 * Beware ye of the dragons, this sequence is magic!
3583 	 *
3584 	 * Small changes to this sequence can cause anything from
3585 	 * GPU hangs to forcewake errors and machine lockups!
3586 	 */
3587 
3588 	/* Flush any residual operations from the context load */
3589 	err = engine->emit_flush(rq, EMIT_FLUSH);
3590 	if (err)
3591 		return err;
3592 
3593 	/* Magic required to prevent forcewake errors! */
3594 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
3595 	if (err)
3596 		return err;
3597 
3598 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
3599 	if (IS_ERR(cs))
3600 		return PTR_ERR(cs);
3601 
3602 	/* Ensure the LRI have landed before we invalidate & continue */
3603 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
3604 	for (i = GEN8_3LVL_PDPES; i--; ) {
3605 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
3606 		u32 base = engine->mmio_base;
3607 
3608 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
3609 		*cs++ = upper_32_bits(pd_daddr);
3610 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
3611 		*cs++ = lower_32_bits(pd_daddr);
3612 	}
3613 	*cs++ = MI_NOOP;
3614 
3615 	intel_ring_advance(rq, cs);
3616 
3617 	return 0;
3618 }
3619 
3620 static int execlists_request_alloc(struct i915_request *request)
3621 {
3622 	int ret;
3623 
3624 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
3625 
3626 	/*
3627 	 * Flush enough space to reduce the likelihood of waiting after
3628 	 * we start building the request - in which case we will just
3629 	 * have to repeat work.
3630 	 */
3631 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
3632 
3633 	/*
3634 	 * Note that after this point, we have committed to using
3635 	 * this request as it is being used to both track the
3636 	 * state of engine initialisation and liveness of the
3637 	 * golden renderstate above. Think twice before you try
3638 	 * to cancel/unwind this request now.
3639 	 */
3640 
3641 	if (!i915_vm_is_4lvl(request->context->vm)) {
3642 		ret = emit_pdps(request);
3643 		if (ret)
3644 			return ret;
3645 	}
3646 
3647 	/* Unconditionally invalidate GPU caches and TLBs. */
3648 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
3649 	if (ret)
3650 		return ret;
3651 
3652 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
3653 	return 0;
3654 }
3655 
3656 /*
3657  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
3658  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
3659  * but there is a slight complication as this is applied in WA batch where the
3660  * values are only initialized once so we cannot take register value at the
3661  * beginning and reuse it further; hence we save its value to memory, upload a
3662  * constant value with bit21 set and then we restore it back with the saved value.
3663  * To simplify the WA, a constant value is formed by using the default value
3664  * of this register. This shouldn't be a problem because we are only modifying
3665  * it for a short period and this batch in non-premptible. We can ofcourse
3666  * use additional instructions that read the actual value of the register
3667  * at that time and set our bit of interest but it makes the WA complicated.
3668  *
3669  * This WA is also required for Gen9 so extracting as a function avoids
3670  * code duplication.
3671  */
3672 static u32 *
3673 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
3674 {
3675 	/* NB no one else is allowed to scribble over scratch + 256! */
3676 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
3677 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3678 	*batch++ = intel_gt_scratch_offset(engine->gt,
3679 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3680 	*batch++ = 0;
3681 
3682 	*batch++ = MI_LOAD_REGISTER_IMM(1);
3683 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3684 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
3685 
3686 	batch = gen8_emit_pipe_control(batch,
3687 				       PIPE_CONTROL_CS_STALL |
3688 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
3689 				       0);
3690 
3691 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
3692 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3693 	*batch++ = intel_gt_scratch_offset(engine->gt,
3694 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3695 	*batch++ = 0;
3696 
3697 	return batch;
3698 }
3699 
3700 /*
3701  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
3702  * initialized at the beginning and shared across all contexts but this field
3703  * helps us to have multiple batches at different offsets and select them based
3704  * on a criteria. At the moment this batch always start at the beginning of the page
3705  * and at this point we don't have multiple wa_ctx batch buffers.
3706  *
3707  * The number of WA applied are not known at the beginning; we use this field
3708  * to return the no of DWORDS written.
3709  *
3710  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
3711  * so it adds NOOPs as padding to make it cacheline aligned.
3712  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
3713  * makes a complete batch buffer.
3714  */
3715 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3716 {
3717 	/* WaDisableCtxRestoreArbitration:bdw,chv */
3718 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3719 
3720 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
3721 	if (IS_BROADWELL(engine->i915))
3722 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3723 
3724 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
3725 	/* Actual scratch location is at 128 bytes offset */
3726 	batch = gen8_emit_pipe_control(batch,
3727 				       PIPE_CONTROL_FLUSH_L3 |
3728 				       PIPE_CONTROL_STORE_DATA_INDEX |
3729 				       PIPE_CONTROL_CS_STALL |
3730 				       PIPE_CONTROL_QW_WRITE,
3731 				       LRC_PPHWSP_SCRATCH_ADDR);
3732 
3733 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3734 
3735 	/* Pad to end of cacheline */
3736 	while ((unsigned long)batch % CACHELINE_BYTES)
3737 		*batch++ = MI_NOOP;
3738 
3739 	/*
3740 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
3741 	 * execution depends on the length specified in terms of cache lines
3742 	 * in the register CTX_RCS_INDIRECT_CTX
3743 	 */
3744 
3745 	return batch;
3746 }
3747 
3748 struct lri {
3749 	i915_reg_t reg;
3750 	u32 value;
3751 };
3752 
3753 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
3754 {
3755 	GEM_BUG_ON(!count || count > 63);
3756 
3757 	*batch++ = MI_LOAD_REGISTER_IMM(count);
3758 	do {
3759 		*batch++ = i915_mmio_reg_offset(lri->reg);
3760 		*batch++ = lri->value;
3761 	} while (lri++, --count);
3762 	*batch++ = MI_NOOP;
3763 
3764 	return batch;
3765 }
3766 
3767 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3768 {
3769 	static const struct lri lri[] = {
3770 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
3771 		{
3772 			COMMON_SLICE_CHICKEN2,
3773 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
3774 				       0),
3775 		},
3776 
3777 		/* BSpec: 11391 */
3778 		{
3779 			FF_SLICE_CHICKEN,
3780 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
3781 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
3782 		},
3783 
3784 		/* BSpec: 11299 */
3785 		{
3786 			_3D_CHICKEN3,
3787 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
3788 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
3789 		}
3790 	};
3791 
3792 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3793 
3794 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
3795 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3796 
3797 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
3798 	batch = gen8_emit_pipe_control(batch,
3799 				       PIPE_CONTROL_FLUSH_L3 |
3800 				       PIPE_CONTROL_STORE_DATA_INDEX |
3801 				       PIPE_CONTROL_CS_STALL |
3802 				       PIPE_CONTROL_QW_WRITE,
3803 				       LRC_PPHWSP_SCRATCH_ADDR);
3804 
3805 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
3806 
3807 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
3808 	if (HAS_POOLED_EU(engine->i915)) {
3809 		/*
3810 		 * EU pool configuration is setup along with golden context
3811 		 * during context initialization. This value depends on
3812 		 * device type (2x6 or 3x6) and needs to be updated based
3813 		 * on which subslice is disabled especially for 2x6
3814 		 * devices, however it is safe to load default
3815 		 * configuration of 3x6 device instead of masking off
3816 		 * corresponding bits because HW ignores bits of a disabled
3817 		 * subslice and drops down to appropriate config. Please
3818 		 * see render_state_setup() in i915_gem_render_state.c for
3819 		 * possible configurations, to avoid duplication they are
3820 		 * not shown here again.
3821 		 */
3822 		*batch++ = GEN9_MEDIA_POOL_STATE;
3823 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
3824 		*batch++ = 0x00777000;
3825 		*batch++ = 0;
3826 		*batch++ = 0;
3827 		*batch++ = 0;
3828 	}
3829 
3830 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
3831 
3832 	/* Pad to end of cacheline */
3833 	while ((unsigned long)batch % CACHELINE_BYTES)
3834 		*batch++ = MI_NOOP;
3835 
3836 	return batch;
3837 }
3838 
3839 static u32 *
3840 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3841 {
3842 	int i;
3843 
3844 	/*
3845 	 * WaPipeControlBefore3DStateSamplePattern: cnl
3846 	 *
3847 	 * Ensure the engine is idle prior to programming a
3848 	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
3849 	 */
3850 	batch = gen8_emit_pipe_control(batch,
3851 				       PIPE_CONTROL_CS_STALL,
3852 				       0);
3853 	/*
3854 	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
3855 	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
3856 	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
3857 	 * confusing. Since gen8_emit_pipe_control() already advances the
3858 	 * batch by 6 dwords, we advance the other 10 here, completing a
3859 	 * cacheline. It's not clear if the workaround requires this padding
3860 	 * before other commands, or if it's just the regular padding we would
3861 	 * already have for the workaround bb, so leave it here for now.
3862 	 */
3863 	for (i = 0; i < 10; i++)
3864 		*batch++ = MI_NOOP;
3865 
3866 	/* Pad to end of cacheline */
3867 	while ((unsigned long)batch % CACHELINE_BYTES)
3868 		*batch++ = MI_NOOP;
3869 
3870 	return batch;
3871 }
3872 
3873 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
3874 
3875 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
3876 {
3877 	struct drm_i915_gem_object *obj;
3878 	struct i915_vma *vma;
3879 	int err;
3880 
3881 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
3882 	if (IS_ERR(obj))
3883 		return PTR_ERR(obj);
3884 
3885 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
3886 	if (IS_ERR(vma)) {
3887 		err = PTR_ERR(vma);
3888 		goto err;
3889 	}
3890 
3891 	err = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
3892 	if (err)
3893 		goto err;
3894 
3895 	engine->wa_ctx.vma = vma;
3896 	return 0;
3897 
3898 err:
3899 	i915_gem_object_put(obj);
3900 	return err;
3901 }
3902 
3903 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
3904 {
3905 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
3906 }
3907 
3908 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
3909 
3910 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
3911 {
3912 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3913 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
3914 					    &wa_ctx->per_ctx };
3915 	wa_bb_func_t wa_bb_fn[2];
3916 	void *batch, *batch_ptr;
3917 	unsigned int i;
3918 	int ret;
3919 
3920 	if (engine->class != RENDER_CLASS)
3921 		return 0;
3922 
3923 	switch (INTEL_GEN(engine->i915)) {
3924 	case 12:
3925 	case 11:
3926 		return 0;
3927 	case 10:
3928 		wa_bb_fn[0] = gen10_init_indirectctx_bb;
3929 		wa_bb_fn[1] = NULL;
3930 		break;
3931 	case 9:
3932 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
3933 		wa_bb_fn[1] = NULL;
3934 		break;
3935 	case 8:
3936 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
3937 		wa_bb_fn[1] = NULL;
3938 		break;
3939 	default:
3940 		MISSING_CASE(INTEL_GEN(engine->i915));
3941 		return 0;
3942 	}
3943 
3944 	ret = lrc_setup_wa_ctx(engine);
3945 	if (ret) {
3946 		drm_dbg(&engine->i915->drm,
3947 			"Failed to setup context WA page: %d\n", ret);
3948 		return ret;
3949 	}
3950 
3951 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
3952 
3953 	/*
3954 	 * Emit the two workaround batch buffers, recording the offset from the
3955 	 * start of the workaround batch buffer object for each and their
3956 	 * respective sizes.
3957 	 */
3958 	batch_ptr = batch;
3959 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
3960 		wa_bb[i]->offset = batch_ptr - batch;
3961 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
3962 						  CACHELINE_BYTES))) {
3963 			ret = -EINVAL;
3964 			break;
3965 		}
3966 		if (wa_bb_fn[i])
3967 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
3968 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
3969 	}
3970 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
3971 
3972 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
3973 	__i915_gem_object_release_map(wa_ctx->vma->obj);
3974 	if (ret)
3975 		lrc_destroy_wa_ctx(engine);
3976 
3977 	return ret;
3978 }
3979 
3980 static void reset_csb_pointers(struct intel_engine_cs *engine)
3981 {
3982 	struct intel_engine_execlists * const execlists = &engine->execlists;
3983 	const unsigned int reset_value = execlists->csb_size - 1;
3984 
3985 	ring_set_paused(engine, 0);
3986 
3987 	/*
3988 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
3989 	 * Bludgeon them with a mmio update to be sure.
3990 	 */
3991 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
3992 		     0xffff << 16 | reset_value << 8 | reset_value);
3993 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
3994 
3995 	/*
3996 	 * After a reset, the HW starts writing into CSB entry [0]. We
3997 	 * therefore have to set our HEAD pointer back one entry so that
3998 	 * the *first* entry we check is entry 0. To complicate this further,
3999 	 * as we don't wait for the first interrupt after reset, we have to
4000 	 * fake the HW write to point back to the last entry so that our
4001 	 * inline comparison of our cached head position against the last HW
4002 	 * write works even before the first interrupt.
4003 	 */
4004 	execlists->csb_head = reset_value;
4005 	WRITE_ONCE(*execlists->csb_write, reset_value);
4006 	wmb(); /* Make sure this is visible to HW (paranoia?) */
4007 
4008 	invalidate_csb_entries(&execlists->csb_status[0],
4009 			       &execlists->csb_status[reset_value]);
4010 
4011 	/* Once more for luck and our trusty paranoia */
4012 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
4013 		     0xffff << 16 | reset_value << 8 | reset_value);
4014 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
4015 
4016 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
4017 }
4018 
4019 static void execlists_sanitize(struct intel_engine_cs *engine)
4020 {
4021 	/*
4022 	 * Poison residual state on resume, in case the suspend didn't!
4023 	 *
4024 	 * We have to assume that across suspend/resume (or other loss
4025 	 * of control) that the contents of our pinned buffers has been
4026 	 * lost, replaced by garbage. Since this doesn't always happen,
4027 	 * let's poison such state so that we more quickly spot when
4028 	 * we falsely assume it has been preserved.
4029 	 */
4030 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4031 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4032 
4033 	reset_csb_pointers(engine);
4034 
4035 	/*
4036 	 * The kernel_context HWSP is stored in the status_page. As above,
4037 	 * that may be lost on resume/initialisation, and so we need to
4038 	 * reset the value in the HWSP.
4039 	 */
4040 	intel_timeline_reset_seqno(engine->kernel_context->timeline);
4041 
4042 	/* And scrub the dirty cachelines for the HWSP */
4043 	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
4044 }
4045 
4046 static void enable_error_interrupt(struct intel_engine_cs *engine)
4047 {
4048 	u32 status;
4049 
4050 	engine->execlists.error_interrupt = 0;
4051 	ENGINE_WRITE(engine, RING_EMR, ~0u);
4052 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
4053 
4054 	status = ENGINE_READ(engine, RING_ESR);
4055 	if (unlikely(status)) {
4056 		drm_err(&engine->i915->drm,
4057 			"engine '%s' resumed still in error: %08x\n",
4058 			engine->name, status);
4059 		__intel_gt_reset(engine->gt, engine->mask);
4060 	}
4061 
4062 	/*
4063 	 * On current gen8+, we have 2 signals to play with
4064 	 *
4065 	 * - I915_ERROR_INSTUCTION (bit 0)
4066 	 *
4067 	 *    Generate an error if the command parser encounters an invalid
4068 	 *    instruction
4069 	 *
4070 	 *    This is a fatal error.
4071 	 *
4072 	 * - CP_PRIV (bit 2)
4073 	 *
4074 	 *    Generate an error on privilege violation (where the CP replaces
4075 	 *    the instruction with a no-op). This also fires for writes into
4076 	 *    read-only scratch pages.
4077 	 *
4078 	 *    This is a non-fatal error, parsing continues.
4079 	 *
4080 	 * * there are a few others defined for odd HW that we do not use
4081 	 *
4082 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
4083 	 * error (as the HW is validating and suppressing the mistakes), we
4084 	 * only unmask the instruction error bit.
4085 	 */
4086 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
4087 }
4088 
4089 static void enable_execlists(struct intel_engine_cs *engine)
4090 {
4091 	u32 mode;
4092 
4093 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4094 
4095 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4096 
4097 	if (INTEL_GEN(engine->i915) >= 11)
4098 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
4099 	else
4100 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
4101 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
4102 
4103 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4104 
4105 	ENGINE_WRITE_FW(engine,
4106 			RING_HWS_PGA,
4107 			i915_ggtt_offset(engine->status_page.vma));
4108 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
4109 
4110 	enable_error_interrupt(engine);
4111 
4112 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
4113 }
4114 
4115 static bool unexpected_starting_state(struct intel_engine_cs *engine)
4116 {
4117 	bool unexpected = false;
4118 
4119 	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
4120 		drm_dbg(&engine->i915->drm,
4121 			"STOP_RING still set in RING_MI_MODE\n");
4122 		unexpected = true;
4123 	}
4124 
4125 	return unexpected;
4126 }
4127 
4128 static int execlists_resume(struct intel_engine_cs *engine)
4129 {
4130 	intel_mocs_init_engine(engine);
4131 
4132 	intel_breadcrumbs_reset(engine->breadcrumbs);
4133 
4134 	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
4135 		struct drm_printer p = drm_debug_printer(__func__);
4136 
4137 		intel_engine_dump(engine, &p, NULL);
4138 	}
4139 
4140 	enable_execlists(engine);
4141 
4142 	return 0;
4143 }
4144 
4145 static void execlists_reset_prepare(struct intel_engine_cs *engine)
4146 {
4147 	struct intel_engine_execlists * const execlists = &engine->execlists;
4148 	unsigned long flags;
4149 
4150 	ENGINE_TRACE(engine, "depth<-%d\n",
4151 		     atomic_read(&execlists->tasklet.count));
4152 
4153 	/*
4154 	 * Prevent request submission to the hardware until we have
4155 	 * completed the reset in i915_gem_reset_finish(). If a request
4156 	 * is completed by one engine, it may then queue a request
4157 	 * to a second via its execlists->tasklet *just* as we are
4158 	 * calling engine->resume() and also writing the ELSP.
4159 	 * Turning off the execlists->tasklet until the reset is over
4160 	 * prevents the race.
4161 	 */
4162 	__tasklet_disable_sync_once(&execlists->tasklet);
4163 	GEM_BUG_ON(!reset_in_progress(execlists));
4164 
4165 	/* And flush any current direct submission. */
4166 	spin_lock_irqsave(&engine->active.lock, flags);
4167 	spin_unlock_irqrestore(&engine->active.lock, flags);
4168 
4169 	/*
4170 	 * We stop engines, otherwise we might get failed reset and a
4171 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
4172 	 * from system hang if batchbuffer is progressing when
4173 	 * the reset is issued, regardless of READY_TO_RESET ack.
4174 	 * Thus assume it is best to stop engines on all gens
4175 	 * where we have a gpu reset.
4176 	 *
4177 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
4178 	 *
4179 	 * FIXME: Wa for more modern gens needs to be validated
4180 	 */
4181 	ring_set_paused(engine, 1);
4182 	intel_engine_stop_cs(engine);
4183 
4184 	engine->execlists.reset_ccid = active_ccid(engine);
4185 }
4186 
4187 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
4188 {
4189 	int x;
4190 
4191 	x = lrc_ring_mi_mode(engine);
4192 	if (x != -1) {
4193 		regs[x + 1] &= ~STOP_RING;
4194 		regs[x + 1] |= STOP_RING << 16;
4195 	}
4196 }
4197 
4198 static void __execlists_reset_reg_state(const struct intel_context *ce,
4199 					const struct intel_engine_cs *engine)
4200 {
4201 	u32 *regs = ce->lrc_reg_state;
4202 
4203 	__reset_stop_ring(regs, engine);
4204 }
4205 
4206 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
4207 {
4208 	struct intel_engine_execlists * const execlists = &engine->execlists;
4209 	struct intel_context *ce;
4210 	struct i915_request *rq;
4211 	u32 head;
4212 
4213 	mb(); /* paranoia: read the CSB pointers from after the reset */
4214 	clflush(execlists->csb_write);
4215 	mb();
4216 
4217 	process_csb(engine); /* drain preemption events */
4218 
4219 	/* Following the reset, we need to reload the CSB read/write pointers */
4220 	reset_csb_pointers(engine);
4221 
4222 	/*
4223 	 * Save the currently executing context, even if we completed
4224 	 * its request, it was still running at the time of the
4225 	 * reset and will have been clobbered.
4226 	 */
4227 	rq = active_context(engine, engine->execlists.reset_ccid);
4228 	if (!rq)
4229 		goto unwind;
4230 
4231 	ce = rq->context;
4232 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
4233 
4234 	if (i915_request_completed(rq)) {
4235 		/* Idle context; tidy up the ring so we can restart afresh */
4236 		head = intel_ring_wrap(ce->ring, rq->tail);
4237 		goto out_replay;
4238 	}
4239 
4240 	/* We still have requests in-flight; the engine should be active */
4241 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
4242 
4243 	/* Context has requests still in-flight; it should not be idle! */
4244 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
4245 
4246 	rq = active_request(ce->timeline, rq);
4247 	head = intel_ring_wrap(ce->ring, rq->head);
4248 	GEM_BUG_ON(head == ce->ring->tail);
4249 
4250 	/*
4251 	 * If this request hasn't started yet, e.g. it is waiting on a
4252 	 * semaphore, we need to avoid skipping the request or else we
4253 	 * break the signaling chain. However, if the context is corrupt
4254 	 * the request will not restart and we will be stuck with a wedged
4255 	 * device. It is quite often the case that if we issue a reset
4256 	 * while the GPU is loading the context image, that the context
4257 	 * image becomes corrupt.
4258 	 *
4259 	 * Otherwise, if we have not started yet, the request should replay
4260 	 * perfectly and we do not need to flag the result as being erroneous.
4261 	 */
4262 	if (!i915_request_started(rq))
4263 		goto out_replay;
4264 
4265 	/*
4266 	 * If the request was innocent, we leave the request in the ELSP
4267 	 * and will try to replay it on restarting. The context image may
4268 	 * have been corrupted by the reset, in which case we may have
4269 	 * to service a new GPU hang, but more likely we can continue on
4270 	 * without impact.
4271 	 *
4272 	 * If the request was guilty, we presume the context is corrupt
4273 	 * and have to at least restore the RING register in the context
4274 	 * image back to the expected values to skip over the guilty request.
4275 	 */
4276 	__i915_request_reset(rq, stalled);
4277 
4278 	/*
4279 	 * We want a simple context + ring to execute the breadcrumb update.
4280 	 * We cannot rely on the context being intact across the GPU hang,
4281 	 * so clear it and rebuild just what we need for the breadcrumb.
4282 	 * All pending requests for this context will be zapped, and any
4283 	 * future request will be after userspace has had the opportunity
4284 	 * to recreate its own state.
4285 	 */
4286 out_replay:
4287 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
4288 		     head, ce->ring->tail);
4289 	__execlists_reset_reg_state(ce, engine);
4290 	__execlists_update_reg_state(ce, engine, head);
4291 	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
4292 
4293 unwind:
4294 	/* Push back any incomplete requests for replay after the reset. */
4295 	cancel_port_requests(execlists);
4296 	__unwind_incomplete_requests(engine);
4297 }
4298 
4299 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
4300 {
4301 	unsigned long flags;
4302 
4303 	ENGINE_TRACE(engine, "\n");
4304 
4305 	spin_lock_irqsave(&engine->active.lock, flags);
4306 
4307 	__execlists_reset(engine, stalled);
4308 
4309 	spin_unlock_irqrestore(&engine->active.lock, flags);
4310 }
4311 
4312 static void nop_submission_tasklet(unsigned long data)
4313 {
4314 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
4315 
4316 	/* The driver is wedged; don't process any more events. */
4317 	WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
4318 }
4319 
4320 static void execlists_reset_cancel(struct intel_engine_cs *engine)
4321 {
4322 	struct intel_engine_execlists * const execlists = &engine->execlists;
4323 	struct i915_request *rq, *rn;
4324 	struct rb_node *rb;
4325 	unsigned long flags;
4326 
4327 	ENGINE_TRACE(engine, "\n");
4328 
4329 	/*
4330 	 * Before we call engine->cancel_requests(), we should have exclusive
4331 	 * access to the submission state. This is arranged for us by the
4332 	 * caller disabling the interrupt generation, the tasklet and other
4333 	 * threads that may then access the same state, giving us a free hand
4334 	 * to reset state. However, we still need to let lockdep be aware that
4335 	 * we know this state may be accessed in hardirq context, so we
4336 	 * disable the irq around this manipulation and we want to keep
4337 	 * the spinlock focused on its duties and not accidentally conflate
4338 	 * coverage to the submission's irq state. (Similarly, although we
4339 	 * shouldn't need to disable irq around the manipulation of the
4340 	 * submission's irq state, we also wish to remind ourselves that
4341 	 * it is irq state.)
4342 	 */
4343 	spin_lock_irqsave(&engine->active.lock, flags);
4344 
4345 	__execlists_reset(engine, true);
4346 
4347 	/* Mark all executing requests as skipped. */
4348 	list_for_each_entry(rq, &engine->active.requests, sched.link)
4349 		mark_eio(rq);
4350 
4351 	/* Flush the queued requests to the timeline list (for retiring). */
4352 	while ((rb = rb_first_cached(&execlists->queue))) {
4353 		struct i915_priolist *p = to_priolist(rb);
4354 		int i;
4355 
4356 		priolist_for_each_request_consume(rq, rn, p, i) {
4357 			mark_eio(rq);
4358 			__i915_request_submit(rq);
4359 		}
4360 
4361 		rb_erase_cached(&p->node, &execlists->queue);
4362 		i915_priolist_free(p);
4363 	}
4364 
4365 	/* On-hold requests will be flushed to timeline upon their release */
4366 	list_for_each_entry(rq, &engine->active.hold, sched.link)
4367 		mark_eio(rq);
4368 
4369 	/* Cancel all attached virtual engines */
4370 	while ((rb = rb_first_cached(&execlists->virtual))) {
4371 		struct virtual_engine *ve =
4372 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4373 
4374 		rb_erase_cached(rb, &execlists->virtual);
4375 		RB_CLEAR_NODE(rb);
4376 
4377 		spin_lock(&ve->base.active.lock);
4378 		rq = fetch_and_zero(&ve->request);
4379 		if (rq) {
4380 			mark_eio(rq);
4381 
4382 			rq->engine = engine;
4383 			__i915_request_submit(rq);
4384 			i915_request_put(rq);
4385 
4386 			ve->base.execlists.queue_priority_hint = INT_MIN;
4387 		}
4388 		spin_unlock(&ve->base.active.lock);
4389 	}
4390 
4391 	/* Remaining _unready_ requests will be nop'ed when submitted */
4392 
4393 	execlists->queue_priority_hint = INT_MIN;
4394 	execlists->queue = RB_ROOT_CACHED;
4395 
4396 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
4397 	execlists->tasklet.func = nop_submission_tasklet;
4398 
4399 	spin_unlock_irqrestore(&engine->active.lock, flags);
4400 }
4401 
4402 static void execlists_reset_finish(struct intel_engine_cs *engine)
4403 {
4404 	struct intel_engine_execlists * const execlists = &engine->execlists;
4405 
4406 	/*
4407 	 * After a GPU reset, we may have requests to replay. Do so now while
4408 	 * we still have the forcewake to be sure that the GPU is not allowed
4409 	 * to sleep before we restart and reload a context.
4410 	 */
4411 	GEM_BUG_ON(!reset_in_progress(execlists));
4412 	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
4413 		execlists->tasklet.func(execlists->tasklet.data);
4414 
4415 	if (__tasklet_enable(&execlists->tasklet))
4416 		/* And kick in case we missed a new request submission. */
4417 		tasklet_hi_schedule(&execlists->tasklet);
4418 	ENGINE_TRACE(engine, "depth->%d\n",
4419 		     atomic_read(&execlists->tasklet.count));
4420 }
4421 
4422 static int gen8_emit_bb_start_noarb(struct i915_request *rq,
4423 				    u64 offset, u32 len,
4424 				    const unsigned int flags)
4425 {
4426 	u32 *cs;
4427 
4428 	cs = intel_ring_begin(rq, 4);
4429 	if (IS_ERR(cs))
4430 		return PTR_ERR(cs);
4431 
4432 	/*
4433 	 * WaDisableCtxRestoreArbitration:bdw,chv
4434 	 *
4435 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
4436 	 * particular all the gen that do not need the w/a at all!), if we
4437 	 * took care to make sure that on every switch into this context
4438 	 * (both ordinary and for preemption) that arbitrartion was enabled
4439 	 * we would be fine.  However, for gen8 there is another w/a that
4440 	 * requires us to not preempt inside GPGPU execution, so we keep
4441 	 * arbitration disabled for gen8 batches. Arbitration will be
4442 	 * re-enabled before we close the request
4443 	 * (engine->emit_fini_breadcrumb).
4444 	 */
4445 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4446 
4447 	/* FIXME(BDW+): Address space and security selectors. */
4448 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4449 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4450 	*cs++ = lower_32_bits(offset);
4451 	*cs++ = upper_32_bits(offset);
4452 
4453 	intel_ring_advance(rq, cs);
4454 
4455 	return 0;
4456 }
4457 
4458 static int gen8_emit_bb_start(struct i915_request *rq,
4459 			      u64 offset, u32 len,
4460 			      const unsigned int flags)
4461 {
4462 	u32 *cs;
4463 
4464 	cs = intel_ring_begin(rq, 6);
4465 	if (IS_ERR(cs))
4466 		return PTR_ERR(cs);
4467 
4468 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4469 
4470 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4471 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4472 	*cs++ = lower_32_bits(offset);
4473 	*cs++ = upper_32_bits(offset);
4474 
4475 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4476 	*cs++ = MI_NOOP;
4477 
4478 	intel_ring_advance(rq, cs);
4479 
4480 	return 0;
4481 }
4482 
4483 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
4484 {
4485 	ENGINE_WRITE(engine, RING_IMR,
4486 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
4487 	ENGINE_POSTING_READ(engine, RING_IMR);
4488 }
4489 
4490 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
4491 {
4492 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
4493 }
4494 
4495 static int gen8_emit_flush(struct i915_request *request, u32 mode)
4496 {
4497 	u32 cmd, *cs;
4498 
4499 	cs = intel_ring_begin(request, 4);
4500 	if (IS_ERR(cs))
4501 		return PTR_ERR(cs);
4502 
4503 	cmd = MI_FLUSH_DW + 1;
4504 
4505 	/* We always require a command barrier so that subsequent
4506 	 * commands, such as breadcrumb interrupts, are strictly ordered
4507 	 * wrt the contents of the write cache being flushed to memory
4508 	 * (and thus being coherent from the CPU).
4509 	 */
4510 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
4511 
4512 	if (mode & EMIT_INVALIDATE) {
4513 		cmd |= MI_INVALIDATE_TLB;
4514 		if (request->engine->class == VIDEO_DECODE_CLASS)
4515 			cmd |= MI_INVALIDATE_BSD;
4516 	}
4517 
4518 	*cs++ = cmd;
4519 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
4520 	*cs++ = 0; /* upper addr */
4521 	*cs++ = 0; /* value */
4522 	intel_ring_advance(request, cs);
4523 
4524 	return 0;
4525 }
4526 
4527 static int gen8_emit_flush_render(struct i915_request *request,
4528 				  u32 mode)
4529 {
4530 	bool vf_flush_wa = false, dc_flush_wa = false;
4531 	u32 *cs, flags = 0;
4532 	int len;
4533 
4534 	flags |= PIPE_CONTROL_CS_STALL;
4535 
4536 	if (mode & EMIT_FLUSH) {
4537 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4538 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4539 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4540 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4541 	}
4542 
4543 	if (mode & EMIT_INVALIDATE) {
4544 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
4545 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4546 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4547 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4548 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4549 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4550 		flags |= PIPE_CONTROL_QW_WRITE;
4551 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4552 
4553 		/*
4554 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
4555 		 * pipe control.
4556 		 */
4557 		if (IS_GEN(request->engine->i915, 9))
4558 			vf_flush_wa = true;
4559 
4560 		/* WaForGAMHang:kbl */
4561 		if (IS_KBL_GT_REVID(request->engine->i915, 0, KBL_REVID_B0))
4562 			dc_flush_wa = true;
4563 	}
4564 
4565 	len = 6;
4566 
4567 	if (vf_flush_wa)
4568 		len += 6;
4569 
4570 	if (dc_flush_wa)
4571 		len += 12;
4572 
4573 	cs = intel_ring_begin(request, len);
4574 	if (IS_ERR(cs))
4575 		return PTR_ERR(cs);
4576 
4577 	if (vf_flush_wa)
4578 		cs = gen8_emit_pipe_control(cs, 0, 0);
4579 
4580 	if (dc_flush_wa)
4581 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
4582 					    0);
4583 
4584 	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4585 
4586 	if (dc_flush_wa)
4587 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
4588 
4589 	intel_ring_advance(request, cs);
4590 
4591 	return 0;
4592 }
4593 
4594 static int gen11_emit_flush_render(struct i915_request *request,
4595 				   u32 mode)
4596 {
4597 	if (mode & EMIT_FLUSH) {
4598 		u32 *cs;
4599 		u32 flags = 0;
4600 
4601 		flags |= PIPE_CONTROL_CS_STALL;
4602 
4603 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
4604 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4605 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4606 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4607 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4608 		flags |= PIPE_CONTROL_QW_WRITE;
4609 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4610 
4611 		cs = intel_ring_begin(request, 6);
4612 		if (IS_ERR(cs))
4613 			return PTR_ERR(cs);
4614 
4615 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4616 		intel_ring_advance(request, cs);
4617 	}
4618 
4619 	if (mode & EMIT_INVALIDATE) {
4620 		u32 *cs;
4621 		u32 flags = 0;
4622 
4623 		flags |= PIPE_CONTROL_CS_STALL;
4624 
4625 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4626 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
4627 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4628 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4629 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4630 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4631 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4632 		flags |= PIPE_CONTROL_QW_WRITE;
4633 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4634 
4635 		cs = intel_ring_begin(request, 6);
4636 		if (IS_ERR(cs))
4637 			return PTR_ERR(cs);
4638 
4639 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4640 		intel_ring_advance(request, cs);
4641 	}
4642 
4643 	return 0;
4644 }
4645 
4646 static u32 preparser_disable(bool state)
4647 {
4648 	return MI_ARB_CHECK | 1 << 8 | state;
4649 }
4650 
4651 static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
4652 {
4653 	static const i915_reg_t vd[] = {
4654 		GEN12_VD0_AUX_NV,
4655 		GEN12_VD1_AUX_NV,
4656 		GEN12_VD2_AUX_NV,
4657 		GEN12_VD3_AUX_NV,
4658 	};
4659 
4660 	static const i915_reg_t ve[] = {
4661 		GEN12_VE0_AUX_NV,
4662 		GEN12_VE1_AUX_NV,
4663 	};
4664 
4665 	if (engine->class == VIDEO_DECODE_CLASS)
4666 		return vd[engine->instance];
4667 
4668 	if (engine->class == VIDEO_ENHANCEMENT_CLASS)
4669 		return ve[engine->instance];
4670 
4671 	GEM_BUG_ON("unknown aux_inv_reg\n");
4672 
4673 	return INVALID_MMIO_REG;
4674 }
4675 
4676 static u32 *
4677 gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
4678 {
4679 	*cs++ = MI_LOAD_REGISTER_IMM(1);
4680 	*cs++ = i915_mmio_reg_offset(inv_reg);
4681 	*cs++ = AUX_INV;
4682 	*cs++ = MI_NOOP;
4683 
4684 	return cs;
4685 }
4686 
4687 static int gen12_emit_flush_render(struct i915_request *request,
4688 				   u32 mode)
4689 {
4690 	if (mode & EMIT_FLUSH) {
4691 		u32 flags = 0;
4692 		u32 *cs;
4693 
4694 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
4695 		flags |= PIPE_CONTROL_FLUSH_L3;
4696 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
4697 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4698 		/* Wa_1409600907:tgl */
4699 		flags |= PIPE_CONTROL_DEPTH_STALL;
4700 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4701 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4702 
4703 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4704 		flags |= PIPE_CONTROL_QW_WRITE;
4705 
4706 		flags |= PIPE_CONTROL_CS_STALL;
4707 
4708 		cs = intel_ring_begin(request, 6);
4709 		if (IS_ERR(cs))
4710 			return PTR_ERR(cs);
4711 
4712 		cs = gen12_emit_pipe_control(cs,
4713 					     PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
4714 					     flags, LRC_PPHWSP_SCRATCH_ADDR);
4715 		intel_ring_advance(request, cs);
4716 	}
4717 
4718 	if (mode & EMIT_INVALIDATE) {
4719 		u32 flags = 0;
4720 		u32 *cs;
4721 
4722 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4723 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
4724 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
4725 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
4726 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4727 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
4728 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
4729 
4730 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4731 		flags |= PIPE_CONTROL_QW_WRITE;
4732 
4733 		flags |= PIPE_CONTROL_CS_STALL;
4734 
4735 		cs = intel_ring_begin(request, 8 + 4);
4736 		if (IS_ERR(cs))
4737 			return PTR_ERR(cs);
4738 
4739 		/*
4740 		 * Prevent the pre-parser from skipping past the TLB
4741 		 * invalidate and loading a stale page for the batch
4742 		 * buffer / request payload.
4743 		 */
4744 		*cs++ = preparser_disable(true);
4745 
4746 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4747 
4748 		/* hsdes: 1809175790 */
4749 		cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
4750 
4751 		*cs++ = preparser_disable(false);
4752 		intel_ring_advance(request, cs);
4753 	}
4754 
4755 	return 0;
4756 }
4757 
4758 static int gen12_emit_flush(struct i915_request *request, u32 mode)
4759 {
4760 	intel_engine_mask_t aux_inv = 0;
4761 	u32 cmd, *cs;
4762 
4763 	cmd = 4;
4764 	if (mode & EMIT_INVALIDATE)
4765 		cmd += 2;
4766 	if (mode & EMIT_INVALIDATE)
4767 		aux_inv = request->engine->mask & ~BIT(BCS0);
4768 	if (aux_inv)
4769 		cmd += 2 * hweight8(aux_inv) + 2;
4770 
4771 	cs = intel_ring_begin(request, cmd);
4772 	if (IS_ERR(cs))
4773 		return PTR_ERR(cs);
4774 
4775 	if (mode & EMIT_INVALIDATE)
4776 		*cs++ = preparser_disable(true);
4777 
4778 	cmd = MI_FLUSH_DW + 1;
4779 
4780 	/* We always require a command barrier so that subsequent
4781 	 * commands, such as breadcrumb interrupts, are strictly ordered
4782 	 * wrt the contents of the write cache being flushed to memory
4783 	 * (and thus being coherent from the CPU).
4784 	 */
4785 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
4786 
4787 	if (mode & EMIT_INVALIDATE) {
4788 		cmd |= MI_INVALIDATE_TLB;
4789 		if (request->engine->class == VIDEO_DECODE_CLASS)
4790 			cmd |= MI_INVALIDATE_BSD;
4791 	}
4792 
4793 	*cs++ = cmd;
4794 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
4795 	*cs++ = 0; /* upper addr */
4796 	*cs++ = 0; /* value */
4797 
4798 	if (aux_inv) { /* hsdes: 1809175790 */
4799 		struct intel_engine_cs *engine;
4800 		unsigned int tmp;
4801 
4802 		*cs++ = MI_LOAD_REGISTER_IMM(hweight8(aux_inv));
4803 		for_each_engine_masked(engine, request->engine->gt,
4804 				       aux_inv, tmp) {
4805 			*cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
4806 			*cs++ = AUX_INV;
4807 		}
4808 		*cs++ = MI_NOOP;
4809 	}
4810 
4811 	if (mode & EMIT_INVALIDATE)
4812 		*cs++ = preparser_disable(false);
4813 
4814 	intel_ring_advance(request, cs);
4815 
4816 	return 0;
4817 }
4818 
4819 static void assert_request_valid(struct i915_request *rq)
4820 {
4821 	struct intel_ring *ring __maybe_unused = rq->ring;
4822 
4823 	/* Can we unwind this request without appearing to go forwards? */
4824 	GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
4825 }
4826 
4827 /*
4828  * Reserve space for 2 NOOPs at the end of each request to be
4829  * used as a workaround for not being allowed to do lite
4830  * restore with HEAD==TAIL (WaIdleLiteRestore).
4831  */
4832 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
4833 {
4834 	/* Ensure there's always at least one preemption point per-request. */
4835 	*cs++ = MI_ARB_CHECK;
4836 	*cs++ = MI_NOOP;
4837 	request->wa_tail = intel_ring_offset(request, cs);
4838 
4839 	/* Check that entire request is less than half the ring */
4840 	assert_request_valid(request);
4841 
4842 	return cs;
4843 }
4844 
4845 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
4846 {
4847 	*cs++ = MI_SEMAPHORE_WAIT |
4848 		MI_SEMAPHORE_GLOBAL_GTT |
4849 		MI_SEMAPHORE_POLL |
4850 		MI_SEMAPHORE_SAD_EQ_SDD;
4851 	*cs++ = 0;
4852 	*cs++ = intel_hws_preempt_address(request->engine);
4853 	*cs++ = 0;
4854 
4855 	return cs;
4856 }
4857 
4858 static __always_inline u32*
4859 gen8_emit_fini_breadcrumb_tail(struct i915_request *request, u32 *cs)
4860 {
4861 	*cs++ = MI_USER_INTERRUPT;
4862 
4863 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4864 	if (intel_engine_has_semaphores(request->engine))
4865 		cs = emit_preempt_busywait(request, cs);
4866 
4867 	request->tail = intel_ring_offset(request, cs);
4868 	assert_ring_tail_valid(request->ring, request->tail);
4869 
4870 	return gen8_emit_wa_tail(request, cs);
4871 }
4872 
4873 static u32 *emit_xcs_breadcrumb(struct i915_request *request, u32 *cs)
4874 {
4875 	u32 addr = i915_request_active_timeline(request)->hwsp_offset;
4876 
4877 	return gen8_emit_ggtt_write(cs, request->fence.seqno, addr, 0);
4878 }
4879 
4880 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *rq, u32 *cs)
4881 {
4882 	return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
4883 }
4884 
4885 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4886 {
4887 	cs = gen8_emit_pipe_control(cs,
4888 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4889 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4890 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
4891 				    0);
4892 
4893 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
4894 	cs = gen8_emit_ggtt_write_rcs(cs,
4895 				      request->fence.seqno,
4896 				      i915_request_active_timeline(request)->hwsp_offset,
4897 				      PIPE_CONTROL_FLUSH_ENABLE |
4898 				      PIPE_CONTROL_CS_STALL);
4899 
4900 	return gen8_emit_fini_breadcrumb_tail(request, cs);
4901 }
4902 
4903 static u32 *
4904 gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4905 {
4906 	cs = gen8_emit_ggtt_write_rcs(cs,
4907 				      request->fence.seqno,
4908 				      i915_request_active_timeline(request)->hwsp_offset,
4909 				      PIPE_CONTROL_CS_STALL |
4910 				      PIPE_CONTROL_TILE_CACHE_FLUSH |
4911 				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4912 				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4913 				      PIPE_CONTROL_DC_FLUSH_ENABLE |
4914 				      PIPE_CONTROL_FLUSH_ENABLE);
4915 
4916 	return gen8_emit_fini_breadcrumb_tail(request, cs);
4917 }
4918 
4919 /*
4920  * Note that the CS instruction pre-parser will not stall on the breadcrumb
4921  * flush and will continue pre-fetching the instructions after it before the
4922  * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
4923  * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
4924  * of the next request before the memory has been flushed, we're guaranteed that
4925  * we won't access the batch itself too early.
4926  * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
4927  * so, if the current request is modifying an instruction in the next request on
4928  * the same intel_context, we might pre-fetch and then execute the pre-update
4929  * instruction. To avoid this, the users of self-modifying code should either
4930  * disable the parser around the code emitting the memory writes, via a new flag
4931  * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
4932  * the in-kernel use-cases we've opted to use a separate context, see
4933  * reloc_gpu() as an example.
4934  * All the above applies only to the instructions themselves. Non-inline data
4935  * used by the instructions is not pre-fetched.
4936  */
4937 
4938 static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
4939 {
4940 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
4941 		MI_SEMAPHORE_GLOBAL_GTT |
4942 		MI_SEMAPHORE_POLL |
4943 		MI_SEMAPHORE_SAD_EQ_SDD;
4944 	*cs++ = 0;
4945 	*cs++ = intel_hws_preempt_address(request->engine);
4946 	*cs++ = 0;
4947 	*cs++ = 0;
4948 	*cs++ = MI_NOOP;
4949 
4950 	return cs;
4951 }
4952 
4953 static __always_inline u32*
4954 gen12_emit_fini_breadcrumb_tail(struct i915_request *request, u32 *cs)
4955 {
4956 	*cs++ = MI_USER_INTERRUPT;
4957 
4958 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4959 	if (intel_engine_has_semaphores(request->engine))
4960 		cs = gen12_emit_preempt_busywait(request, cs);
4961 
4962 	request->tail = intel_ring_offset(request, cs);
4963 	assert_ring_tail_valid(request->ring, request->tail);
4964 
4965 	return gen8_emit_wa_tail(request, cs);
4966 }
4967 
4968 static u32 *gen12_emit_fini_breadcrumb(struct i915_request *rq, u32 *cs)
4969 {
4970 	return gen12_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
4971 }
4972 
4973 static u32 *
4974 gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4975 {
4976 	cs = gen12_emit_ggtt_write_rcs(cs,
4977 				       request->fence.seqno,
4978 				       i915_request_active_timeline(request)->hwsp_offset,
4979 				       PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
4980 				       PIPE_CONTROL_CS_STALL |
4981 				       PIPE_CONTROL_TILE_CACHE_FLUSH |
4982 				       PIPE_CONTROL_FLUSH_L3 |
4983 				       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
4984 				       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
4985 				       /* Wa_1409600907:tgl */
4986 				       PIPE_CONTROL_DEPTH_STALL |
4987 				       PIPE_CONTROL_DC_FLUSH_ENABLE |
4988 				       PIPE_CONTROL_FLUSH_ENABLE);
4989 
4990 	return gen12_emit_fini_breadcrumb_tail(request, cs);
4991 }
4992 
4993 static void execlists_park(struct intel_engine_cs *engine)
4994 {
4995 	cancel_timer(&engine->execlists.timer);
4996 	cancel_timer(&engine->execlists.preempt);
4997 }
4998 
4999 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
5000 {
5001 	engine->submit_request = execlists_submit_request;
5002 	engine->schedule = i915_schedule;
5003 	engine->execlists.tasklet.func = execlists_submission_tasklet;
5004 
5005 	engine->reset.prepare = execlists_reset_prepare;
5006 	engine->reset.rewind = execlists_reset_rewind;
5007 	engine->reset.cancel = execlists_reset_cancel;
5008 	engine->reset.finish = execlists_reset_finish;
5009 
5010 	engine->park = execlists_park;
5011 	engine->unpark = NULL;
5012 
5013 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
5014 	if (!intel_vgpu_active(engine->i915)) {
5015 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
5016 		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) {
5017 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
5018 			if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
5019 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
5020 		}
5021 	}
5022 
5023 	if (INTEL_GEN(engine->i915) >= 12)
5024 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
5025 
5026 	if (intel_engine_has_preemption(engine))
5027 		engine->emit_bb_start = gen8_emit_bb_start;
5028 	else
5029 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
5030 }
5031 
5032 static void execlists_shutdown(struct intel_engine_cs *engine)
5033 {
5034 	/* Synchronise with residual timers and any softirq they raise */
5035 	del_timer_sync(&engine->execlists.timer);
5036 	del_timer_sync(&engine->execlists.preempt);
5037 	tasklet_kill(&engine->execlists.tasklet);
5038 }
5039 
5040 static void execlists_release(struct intel_engine_cs *engine)
5041 {
5042 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
5043 
5044 	execlists_shutdown(engine);
5045 
5046 	intel_engine_cleanup_common(engine);
5047 	lrc_destroy_wa_ctx(engine);
5048 }
5049 
5050 static void
5051 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
5052 {
5053 	/* Default vfuncs which can be overriden by each engine. */
5054 
5055 	engine->resume = execlists_resume;
5056 
5057 	engine->cops = &execlists_context_ops;
5058 	engine->request_alloc = execlists_request_alloc;
5059 
5060 	engine->emit_flush = gen8_emit_flush;
5061 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
5062 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
5063 	if (INTEL_GEN(engine->i915) >= 12) {
5064 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
5065 		engine->emit_flush = gen12_emit_flush;
5066 	}
5067 	engine->set_default_submission = intel_execlists_set_default_submission;
5068 
5069 	if (INTEL_GEN(engine->i915) < 11) {
5070 		engine->irq_enable = gen8_logical_ring_enable_irq;
5071 		engine->irq_disable = gen8_logical_ring_disable_irq;
5072 	} else {
5073 		/*
5074 		 * TODO: On Gen11 interrupt masks need to be clear
5075 		 * to allow C6 entry. Keep interrupts enabled at
5076 		 * and take the hit of generating extra interrupts
5077 		 * until a more refined solution exists.
5078 		 */
5079 	}
5080 }
5081 
5082 static inline void
5083 logical_ring_default_irqs(struct intel_engine_cs *engine)
5084 {
5085 	unsigned int shift = 0;
5086 
5087 	if (INTEL_GEN(engine->i915) < 11) {
5088 		const u8 irq_shifts[] = {
5089 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
5090 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
5091 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
5092 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
5093 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
5094 		};
5095 
5096 		shift = irq_shifts[engine->id];
5097 	}
5098 
5099 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
5100 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
5101 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
5102 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
5103 }
5104 
5105 static void rcs_submission_override(struct intel_engine_cs *engine)
5106 {
5107 	switch (INTEL_GEN(engine->i915)) {
5108 	case 12:
5109 		engine->emit_flush = gen12_emit_flush_render;
5110 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
5111 		break;
5112 	case 11:
5113 		engine->emit_flush = gen11_emit_flush_render;
5114 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
5115 		break;
5116 	default:
5117 		engine->emit_flush = gen8_emit_flush_render;
5118 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
5119 		break;
5120 	}
5121 }
5122 
5123 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
5124 {
5125 	struct intel_engine_execlists * const execlists = &engine->execlists;
5126 	struct drm_i915_private *i915 = engine->i915;
5127 	struct intel_uncore *uncore = engine->uncore;
5128 	u32 base = engine->mmio_base;
5129 
5130 	tasklet_init(&engine->execlists.tasklet,
5131 		     execlists_submission_tasklet, (unsigned long)engine);
5132 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
5133 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
5134 
5135 	logical_ring_default_vfuncs(engine);
5136 	logical_ring_default_irqs(engine);
5137 
5138 	if (engine->class == RENDER_CLASS)
5139 		rcs_submission_override(engine);
5140 
5141 	if (intel_init_workaround_bb(engine))
5142 		/*
5143 		 * We continue even if we fail to initialize WA batch
5144 		 * because we only expect rare glitches but nothing
5145 		 * critical to prevent us from using GPU
5146 		 */
5147 		drm_err(&i915->drm, "WA batch buffer initialization failed\n");
5148 
5149 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
5150 		execlists->submit_reg = uncore->regs +
5151 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
5152 		execlists->ctrl_reg = uncore->regs +
5153 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
5154 	} else {
5155 		execlists->submit_reg = uncore->regs +
5156 			i915_mmio_reg_offset(RING_ELSP(base));
5157 	}
5158 
5159 	execlists->csb_status =
5160 		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
5161 
5162 	execlists->csb_write =
5163 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
5164 
5165 	if (INTEL_GEN(i915) < 11)
5166 		execlists->csb_size = GEN8_CSB_ENTRIES;
5167 	else
5168 		execlists->csb_size = GEN11_CSB_ENTRIES;
5169 
5170 	if (INTEL_GEN(engine->i915) >= 11) {
5171 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
5172 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
5173 	}
5174 
5175 	/* Finally, take ownership and responsibility for cleanup! */
5176 	engine->sanitize = execlists_sanitize;
5177 	engine->release = execlists_release;
5178 
5179 	return 0;
5180 }
5181 
5182 static void init_common_reg_state(u32 * const regs,
5183 				  const struct intel_engine_cs *engine,
5184 				  const struct intel_ring *ring,
5185 				  bool inhibit)
5186 {
5187 	u32 ctl;
5188 
5189 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
5190 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
5191 	if (inhibit)
5192 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
5193 	if (INTEL_GEN(engine->i915) < 11)
5194 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
5195 					   CTX_CTRL_RS_CTX_ENABLE);
5196 	regs[CTX_CONTEXT_CONTROL] = ctl;
5197 
5198 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
5199 	regs[CTX_TIMESTAMP] = 0;
5200 }
5201 
5202 static void init_wa_bb_reg_state(u32 * const regs,
5203 				 const struct intel_engine_cs *engine)
5204 {
5205 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
5206 
5207 	if (wa_ctx->per_ctx.size) {
5208 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
5209 
5210 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
5211 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
5212 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
5213 	}
5214 
5215 	if (wa_ctx->indirect_ctx.size) {
5216 		lrc_ring_setup_indirect_ctx(regs, engine,
5217 					    i915_ggtt_offset(wa_ctx->vma) +
5218 					    wa_ctx->indirect_ctx.offset,
5219 					    wa_ctx->indirect_ctx.size);
5220 	}
5221 }
5222 
5223 static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
5224 {
5225 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
5226 		/* 64b PPGTT (48bit canonical)
5227 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
5228 		 * other PDP Descriptors are ignored.
5229 		 */
5230 		ASSIGN_CTX_PML4(ppgtt, regs);
5231 	} else {
5232 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
5233 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
5234 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
5235 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
5236 	}
5237 }
5238 
5239 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
5240 {
5241 	if (i915_is_ggtt(vm))
5242 		return i915_vm_to_ggtt(vm)->alias;
5243 	else
5244 		return i915_vm_to_ppgtt(vm);
5245 }
5246 
5247 static void execlists_init_reg_state(u32 *regs,
5248 				     const struct intel_context *ce,
5249 				     const struct intel_engine_cs *engine,
5250 				     const struct intel_ring *ring,
5251 				     bool inhibit)
5252 {
5253 	/*
5254 	 * A context is actually a big batch buffer with several
5255 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
5256 	 * values we are setting here are only for the first context restore:
5257 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
5258 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
5259 	 * we are not initializing here).
5260 	 *
5261 	 * Must keep consistent with virtual_update_register_offsets().
5262 	 */
5263 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
5264 
5265 	init_common_reg_state(regs, engine, ring, inhibit);
5266 	init_ppgtt_reg_state(regs, vm_alias(ce->vm));
5267 
5268 	init_wa_bb_reg_state(regs, engine);
5269 
5270 	__reset_stop_ring(regs, engine);
5271 }
5272 
5273 static int
5274 populate_lr_context(struct intel_context *ce,
5275 		    struct drm_i915_gem_object *ctx_obj,
5276 		    struct intel_engine_cs *engine,
5277 		    struct intel_ring *ring)
5278 {
5279 	bool inhibit = true;
5280 	void *vaddr;
5281 
5282 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
5283 	if (IS_ERR(vaddr)) {
5284 		drm_dbg(&engine->i915->drm, "Could not map object pages!\n");
5285 		return PTR_ERR(vaddr);
5286 	}
5287 
5288 	set_redzone(vaddr, engine);
5289 
5290 	if (engine->default_state) {
5291 		shmem_read(engine->default_state, 0,
5292 			   vaddr, engine->context_size);
5293 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
5294 		inhibit = false;
5295 	}
5296 
5297 	/* Clear the ppHWSP (inc. per-context counters) */
5298 	memset(vaddr, 0, PAGE_SIZE);
5299 
5300 	/*
5301 	 * The second page of the context object contains some registers which
5302 	 * must be set up prior to the first execution.
5303 	 */
5304 	execlists_init_reg_state(vaddr + LRC_STATE_OFFSET,
5305 				 ce, engine, ring, inhibit);
5306 
5307 	__i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
5308 	i915_gem_object_unpin_map(ctx_obj);
5309 	return 0;
5310 }
5311 
5312 static struct intel_timeline *pinned_timeline(struct intel_context *ce)
5313 {
5314 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
5315 
5316 	return intel_timeline_create_from_engine(ce->engine,
5317 						 page_unmask_bits(tl));
5318 }
5319 
5320 static int __execlists_context_alloc(struct intel_context *ce,
5321 				     struct intel_engine_cs *engine)
5322 {
5323 	struct drm_i915_gem_object *ctx_obj;
5324 	struct intel_ring *ring;
5325 	struct i915_vma *vma;
5326 	u32 context_size;
5327 	int ret;
5328 
5329 	GEM_BUG_ON(ce->state);
5330 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
5331 
5332 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
5333 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
5334 
5335 	if (INTEL_GEN(engine->i915) == 12) {
5336 		ce->wa_bb_page = context_size / PAGE_SIZE;
5337 		context_size += PAGE_SIZE;
5338 	}
5339 
5340 	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
5341 	if (IS_ERR(ctx_obj))
5342 		return PTR_ERR(ctx_obj);
5343 
5344 	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
5345 	if (IS_ERR(vma)) {
5346 		ret = PTR_ERR(vma);
5347 		goto error_deref_obj;
5348 	}
5349 
5350 	if (!page_mask_bits(ce->timeline)) {
5351 		struct intel_timeline *tl;
5352 
5353 		/*
5354 		 * Use the static global HWSP for the kernel context, and
5355 		 * a dynamically allocated cacheline for everyone else.
5356 		 */
5357 		if (unlikely(ce->timeline))
5358 			tl = pinned_timeline(ce);
5359 		else
5360 			tl = intel_timeline_create(engine->gt);
5361 		if (IS_ERR(tl)) {
5362 			ret = PTR_ERR(tl);
5363 			goto error_deref_obj;
5364 		}
5365 
5366 		ce->timeline = tl;
5367 	}
5368 
5369 	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
5370 	if (IS_ERR(ring)) {
5371 		ret = PTR_ERR(ring);
5372 		goto error_deref_obj;
5373 	}
5374 
5375 	ret = populate_lr_context(ce, ctx_obj, engine, ring);
5376 	if (ret) {
5377 		drm_dbg(&engine->i915->drm,
5378 			"Failed to populate LRC: %d\n", ret);
5379 		goto error_ring_free;
5380 	}
5381 
5382 	ce->ring = ring;
5383 	ce->state = vma;
5384 
5385 	return 0;
5386 
5387 error_ring_free:
5388 	intel_ring_put(ring);
5389 error_deref_obj:
5390 	i915_gem_object_put(ctx_obj);
5391 	return ret;
5392 }
5393 
5394 static struct list_head *virtual_queue(struct virtual_engine *ve)
5395 {
5396 	return &ve->base.execlists.default_priolist.requests[0];
5397 }
5398 
5399 static void virtual_context_destroy(struct kref *kref)
5400 {
5401 	struct virtual_engine *ve =
5402 		container_of(kref, typeof(*ve), context.ref);
5403 	unsigned int n;
5404 
5405 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
5406 	GEM_BUG_ON(ve->request);
5407 	GEM_BUG_ON(ve->context.inflight);
5408 
5409 	for (n = 0; n < ve->num_siblings; n++) {
5410 		struct intel_engine_cs *sibling = ve->siblings[n];
5411 		struct rb_node *node = &ve->nodes[sibling->id].rb;
5412 		unsigned long flags;
5413 
5414 		if (RB_EMPTY_NODE(node))
5415 			continue;
5416 
5417 		spin_lock_irqsave(&sibling->active.lock, flags);
5418 
5419 		/* Detachment is lazily performed in the execlists tasklet */
5420 		if (!RB_EMPTY_NODE(node))
5421 			rb_erase_cached(node, &sibling->execlists.virtual);
5422 
5423 		spin_unlock_irqrestore(&sibling->active.lock, flags);
5424 	}
5425 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
5426 
5427 	if (ve->context.state)
5428 		__execlists_context_fini(&ve->context);
5429 	intel_context_fini(&ve->context);
5430 
5431 	intel_engine_free_request_pool(&ve->base);
5432 
5433 	kfree(ve->bonds);
5434 	kfree(ve);
5435 }
5436 
5437 static void virtual_engine_initial_hint(struct virtual_engine *ve)
5438 {
5439 	int swp;
5440 
5441 	/*
5442 	 * Pick a random sibling on starting to help spread the load around.
5443 	 *
5444 	 * New contexts are typically created with exactly the same order
5445 	 * of siblings, and often started in batches. Due to the way we iterate
5446 	 * the array of sibling when submitting requests, sibling[0] is
5447 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
5448 	 * randomised across the system, we also help spread the load by the
5449 	 * first engine we inspect being different each time.
5450 	 *
5451 	 * NB This does not force us to execute on this engine, it will just
5452 	 * typically be the first we inspect for submission.
5453 	 */
5454 	swp = prandom_u32_max(ve->num_siblings);
5455 	if (swp)
5456 		swap(ve->siblings[swp], ve->siblings[0]);
5457 }
5458 
5459 static int virtual_context_alloc(struct intel_context *ce)
5460 {
5461 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5462 
5463 	return __execlists_context_alloc(ce, ve->siblings[0]);
5464 }
5465 
5466 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
5467 {
5468 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5469 
5470 	/* Note: we must use a real engine class for setting up reg state */
5471 	return __execlists_context_pin(ce, ve->siblings[0], vaddr);
5472 }
5473 
5474 static void virtual_context_enter(struct intel_context *ce)
5475 {
5476 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5477 	unsigned int n;
5478 
5479 	for (n = 0; n < ve->num_siblings; n++)
5480 		intel_engine_pm_get(ve->siblings[n]);
5481 
5482 	intel_timeline_enter(ce->timeline);
5483 }
5484 
5485 static void virtual_context_exit(struct intel_context *ce)
5486 {
5487 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
5488 	unsigned int n;
5489 
5490 	intel_timeline_exit(ce->timeline);
5491 
5492 	for (n = 0; n < ve->num_siblings; n++)
5493 		intel_engine_pm_put(ve->siblings[n]);
5494 }
5495 
5496 static const struct intel_context_ops virtual_context_ops = {
5497 	.alloc = virtual_context_alloc,
5498 
5499 	.pre_pin = execlists_context_pre_pin,
5500 	.pin = virtual_context_pin,
5501 	.unpin = execlists_context_unpin,
5502 	.post_unpin = execlists_context_post_unpin,
5503 
5504 	.enter = virtual_context_enter,
5505 	.exit = virtual_context_exit,
5506 
5507 	.destroy = virtual_context_destroy,
5508 };
5509 
5510 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
5511 {
5512 	struct i915_request *rq;
5513 	intel_engine_mask_t mask;
5514 
5515 	rq = READ_ONCE(ve->request);
5516 	if (!rq)
5517 		return 0;
5518 
5519 	/* The rq is ready for submission; rq->execution_mask is now stable. */
5520 	mask = rq->execution_mask;
5521 	if (unlikely(!mask)) {
5522 		/* Invalid selection, submit to a random engine in error */
5523 		i915_request_set_error_once(rq, -ENODEV);
5524 		mask = ve->siblings[0]->mask;
5525 	}
5526 
5527 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
5528 		     rq->fence.context, rq->fence.seqno,
5529 		     mask, ve->base.execlists.queue_priority_hint);
5530 
5531 	return mask;
5532 }
5533 
5534 static void virtual_submission_tasklet(unsigned long data)
5535 {
5536 	struct virtual_engine * const ve = (struct virtual_engine *)data;
5537 	const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
5538 	intel_engine_mask_t mask;
5539 	unsigned int n;
5540 
5541 	rcu_read_lock();
5542 	mask = virtual_submission_mask(ve);
5543 	rcu_read_unlock();
5544 	if (unlikely(!mask))
5545 		return;
5546 
5547 	local_irq_disable();
5548 	for (n = 0; n < ve->num_siblings; n++) {
5549 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
5550 		struct ve_node * const node = &ve->nodes[sibling->id];
5551 		struct rb_node **parent, *rb;
5552 		bool first;
5553 
5554 		if (!READ_ONCE(ve->request))
5555 			break; /* already handled by a sibling's tasklet */
5556 
5557 		if (unlikely(!(mask & sibling->mask))) {
5558 			if (!RB_EMPTY_NODE(&node->rb)) {
5559 				spin_lock(&sibling->active.lock);
5560 				rb_erase_cached(&node->rb,
5561 						&sibling->execlists.virtual);
5562 				RB_CLEAR_NODE(&node->rb);
5563 				spin_unlock(&sibling->active.lock);
5564 			}
5565 			continue;
5566 		}
5567 
5568 		spin_lock(&sibling->active.lock);
5569 
5570 		if (!RB_EMPTY_NODE(&node->rb)) {
5571 			/*
5572 			 * Cheat and avoid rebalancing the tree if we can
5573 			 * reuse this node in situ.
5574 			 */
5575 			first = rb_first_cached(&sibling->execlists.virtual) ==
5576 				&node->rb;
5577 			if (prio == node->prio || (prio > node->prio && first))
5578 				goto submit_engine;
5579 
5580 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
5581 		}
5582 
5583 		rb = NULL;
5584 		first = true;
5585 		parent = &sibling->execlists.virtual.rb_root.rb_node;
5586 		while (*parent) {
5587 			struct ve_node *other;
5588 
5589 			rb = *parent;
5590 			other = rb_entry(rb, typeof(*other), rb);
5591 			if (prio > other->prio) {
5592 				parent = &rb->rb_left;
5593 			} else {
5594 				parent = &rb->rb_right;
5595 				first = false;
5596 			}
5597 		}
5598 
5599 		rb_link_node(&node->rb, rb, parent);
5600 		rb_insert_color_cached(&node->rb,
5601 				       &sibling->execlists.virtual,
5602 				       first);
5603 
5604 submit_engine:
5605 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
5606 		node->prio = prio;
5607 		if (first && prio > sibling->execlists.queue_priority_hint)
5608 			tasklet_hi_schedule(&sibling->execlists.tasklet);
5609 
5610 		spin_unlock(&sibling->active.lock);
5611 	}
5612 	local_irq_enable();
5613 }
5614 
5615 static void virtual_submit_request(struct i915_request *rq)
5616 {
5617 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5618 	struct i915_request *old;
5619 	unsigned long flags;
5620 
5621 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
5622 		     rq->fence.context,
5623 		     rq->fence.seqno);
5624 
5625 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
5626 
5627 	spin_lock_irqsave(&ve->base.active.lock, flags);
5628 
5629 	old = ve->request;
5630 	if (old) { /* background completion event from preempt-to-busy */
5631 		GEM_BUG_ON(!i915_request_completed(old));
5632 		__i915_request_submit(old);
5633 		i915_request_put(old);
5634 	}
5635 
5636 	if (i915_request_completed(rq)) {
5637 		__i915_request_submit(rq);
5638 
5639 		ve->base.execlists.queue_priority_hint = INT_MIN;
5640 		ve->request = NULL;
5641 	} else {
5642 		ve->base.execlists.queue_priority_hint = rq_prio(rq);
5643 		ve->request = i915_request_get(rq);
5644 
5645 		GEM_BUG_ON(!list_empty(virtual_queue(ve)));
5646 		list_move_tail(&rq->sched.link, virtual_queue(ve));
5647 
5648 		tasklet_hi_schedule(&ve->base.execlists.tasklet);
5649 	}
5650 
5651 	spin_unlock_irqrestore(&ve->base.active.lock, flags);
5652 }
5653 
5654 static struct ve_bond *
5655 virtual_find_bond(struct virtual_engine *ve,
5656 		  const struct intel_engine_cs *master)
5657 {
5658 	int i;
5659 
5660 	for (i = 0; i < ve->num_bonds; i++) {
5661 		if (ve->bonds[i].master == master)
5662 			return &ve->bonds[i];
5663 	}
5664 
5665 	return NULL;
5666 }
5667 
5668 static void
5669 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
5670 {
5671 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5672 	intel_engine_mask_t allowed, exec;
5673 	struct ve_bond *bond;
5674 
5675 	allowed = ~to_request(signal)->engine->mask;
5676 
5677 	bond = virtual_find_bond(ve, to_request(signal)->engine);
5678 	if (bond)
5679 		allowed &= bond->sibling_mask;
5680 
5681 	/* Restrict the bonded request to run on only the available engines */
5682 	exec = READ_ONCE(rq->execution_mask);
5683 	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
5684 		;
5685 
5686 	/* Prevent the master from being re-run on the bonded engines */
5687 	to_request(signal)->execution_mask &= ~allowed;
5688 }
5689 
5690 struct intel_context *
5691 intel_execlists_create_virtual(struct intel_engine_cs **siblings,
5692 			       unsigned int count)
5693 {
5694 	struct virtual_engine *ve;
5695 	unsigned int n;
5696 	int err;
5697 
5698 	if (count == 0)
5699 		return ERR_PTR(-EINVAL);
5700 
5701 	if (count == 1)
5702 		return intel_context_create(siblings[0]);
5703 
5704 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
5705 	if (!ve)
5706 		return ERR_PTR(-ENOMEM);
5707 
5708 	ve->base.i915 = siblings[0]->i915;
5709 	ve->base.gt = siblings[0]->gt;
5710 	ve->base.uncore = siblings[0]->uncore;
5711 	ve->base.id = -1;
5712 
5713 	ve->base.class = OTHER_CLASS;
5714 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5715 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5716 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5717 
5718 	/*
5719 	 * The decision on whether to submit a request using semaphores
5720 	 * depends on the saturated state of the engine. We only compute
5721 	 * this during HW submission of the request, and we need for this
5722 	 * state to be globally applied to all requests being submitted
5723 	 * to this engine. Virtual engines encompass more than one physical
5724 	 * engine and so we cannot accurately tell in advance if one of those
5725 	 * engines is already saturated and so cannot afford to use a semaphore
5726 	 * and be pessimized in priority for doing so -- if we are the only
5727 	 * context using semaphores after all other clients have stopped, we
5728 	 * will be starved on the saturated system. Such a global switch for
5729 	 * semaphores is less than ideal, but alas is the current compromise.
5730 	 */
5731 	ve->base.saturated = ALL_ENGINES;
5732 
5733 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5734 
5735 	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
5736 	intel_engine_init_execlists(&ve->base);
5737 
5738 	ve->base.cops = &virtual_context_ops;
5739 	ve->base.request_alloc = execlists_request_alloc;
5740 
5741 	ve->base.schedule = i915_schedule;
5742 	ve->base.submit_request = virtual_submit_request;
5743 	ve->base.bond_execute = virtual_bond_execute;
5744 
5745 	INIT_LIST_HEAD(virtual_queue(ve));
5746 	ve->base.execlists.queue_priority_hint = INT_MIN;
5747 	tasklet_init(&ve->base.execlists.tasklet,
5748 		     virtual_submission_tasklet,
5749 		     (unsigned long)ve);
5750 
5751 	intel_context_init(&ve->context, &ve->base);
5752 
5753 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
5754 	if (!ve->base.breadcrumbs) {
5755 		err = -ENOMEM;
5756 		goto err_put;
5757 	}
5758 
5759 	for (n = 0; n < count; n++) {
5760 		struct intel_engine_cs *sibling = siblings[n];
5761 
5762 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5763 		if (sibling->mask & ve->base.mask) {
5764 			DRM_DEBUG("duplicate %s entry in load balancer\n",
5765 				  sibling->name);
5766 			err = -EINVAL;
5767 			goto err_put;
5768 		}
5769 
5770 		/*
5771 		 * The virtual engine implementation is tightly coupled to
5772 		 * the execlists backend -- we push out request directly
5773 		 * into a tree inside each physical engine. We could support
5774 		 * layering if we handle cloning of the requests and
5775 		 * submitting a copy into each backend.
5776 		 */
5777 		if (sibling->execlists.tasklet.func !=
5778 		    execlists_submission_tasklet) {
5779 			err = -ENODEV;
5780 			goto err_put;
5781 		}
5782 
5783 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
5784 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
5785 
5786 		ve->siblings[ve->num_siblings++] = sibling;
5787 		ve->base.mask |= sibling->mask;
5788 
5789 		/*
5790 		 * All physical engines must be compatible for their emission
5791 		 * functions (as we build the instructions during request
5792 		 * construction and do not alter them before submission
5793 		 * on the physical engine). We use the engine class as a guide
5794 		 * here, although that could be refined.
5795 		 */
5796 		if (ve->base.class != OTHER_CLASS) {
5797 			if (ve->base.class != sibling->class) {
5798 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5799 					  sibling->class, ve->base.class);
5800 				err = -EINVAL;
5801 				goto err_put;
5802 			}
5803 			continue;
5804 		}
5805 
5806 		ve->base.class = sibling->class;
5807 		ve->base.uabi_class = sibling->uabi_class;
5808 		snprintf(ve->base.name, sizeof(ve->base.name),
5809 			 "v%dx%d", ve->base.class, count);
5810 		ve->base.context_size = sibling->context_size;
5811 
5812 		ve->base.emit_bb_start = sibling->emit_bb_start;
5813 		ve->base.emit_flush = sibling->emit_flush;
5814 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
5815 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
5816 		ve->base.emit_fini_breadcrumb_dw =
5817 			sibling->emit_fini_breadcrumb_dw;
5818 
5819 		ve->base.flags = sibling->flags;
5820 	}
5821 
5822 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
5823 
5824 	virtual_engine_initial_hint(ve);
5825 	return &ve->context;
5826 
5827 err_put:
5828 	intel_context_put(&ve->context);
5829 	return ERR_PTR(err);
5830 }
5831 
5832 struct intel_context *
5833 intel_execlists_clone_virtual(struct intel_engine_cs *src)
5834 {
5835 	struct virtual_engine *se = to_virtual_engine(src);
5836 	struct intel_context *dst;
5837 
5838 	dst = intel_execlists_create_virtual(se->siblings,
5839 					     se->num_siblings);
5840 	if (IS_ERR(dst))
5841 		return dst;
5842 
5843 	if (se->num_bonds) {
5844 		struct virtual_engine *de = to_virtual_engine(dst->engine);
5845 
5846 		de->bonds = kmemdup(se->bonds,
5847 				    sizeof(*se->bonds) * se->num_bonds,
5848 				    GFP_KERNEL);
5849 		if (!de->bonds) {
5850 			intel_context_put(dst);
5851 			return ERR_PTR(-ENOMEM);
5852 		}
5853 
5854 		de->num_bonds = se->num_bonds;
5855 	}
5856 
5857 	return dst;
5858 }
5859 
5860 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
5861 				     const struct intel_engine_cs *master,
5862 				     const struct intel_engine_cs *sibling)
5863 {
5864 	struct virtual_engine *ve = to_virtual_engine(engine);
5865 	struct ve_bond *bond;
5866 	int n;
5867 
5868 	/* Sanity check the sibling is part of the virtual engine */
5869 	for (n = 0; n < ve->num_siblings; n++)
5870 		if (sibling == ve->siblings[n])
5871 			break;
5872 	if (n == ve->num_siblings)
5873 		return -EINVAL;
5874 
5875 	bond = virtual_find_bond(ve, master);
5876 	if (bond) {
5877 		bond->sibling_mask |= sibling->mask;
5878 		return 0;
5879 	}
5880 
5881 	bond = krealloc(ve->bonds,
5882 			sizeof(*bond) * (ve->num_bonds + 1),
5883 			GFP_KERNEL);
5884 	if (!bond)
5885 		return -ENOMEM;
5886 
5887 	bond[ve->num_bonds].master = master;
5888 	bond[ve->num_bonds].sibling_mask = sibling->mask;
5889 
5890 	ve->bonds = bond;
5891 	ve->num_bonds++;
5892 
5893 	return 0;
5894 }
5895 
5896 struct intel_engine_cs *
5897 intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
5898 				 unsigned int sibling)
5899 {
5900 	struct virtual_engine *ve = to_virtual_engine(engine);
5901 
5902 	if (sibling >= ve->num_siblings)
5903 		return NULL;
5904 
5905 	return ve->siblings[sibling];
5906 }
5907 
5908 void intel_execlists_show_requests(struct intel_engine_cs *engine,
5909 				   struct drm_printer *m,
5910 				   void (*show_request)(struct drm_printer *m,
5911 							struct i915_request *rq,
5912 							const char *prefix),
5913 				   unsigned int max)
5914 {
5915 	const struct intel_engine_execlists *execlists = &engine->execlists;
5916 	struct i915_request *rq, *last;
5917 	unsigned long flags;
5918 	unsigned int count;
5919 	struct rb_node *rb;
5920 
5921 	spin_lock_irqsave(&engine->active.lock, flags);
5922 
5923 	last = NULL;
5924 	count = 0;
5925 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
5926 		if (count++ < max - 1)
5927 			show_request(m, rq, "\t\tE ");
5928 		else
5929 			last = rq;
5930 	}
5931 	if (last) {
5932 		if (count > max) {
5933 			drm_printf(m,
5934 				   "\t\t...skipping %d executing requests...\n",
5935 				   count - max);
5936 		}
5937 		show_request(m, last, "\t\tE ");
5938 	}
5939 
5940 	if (execlists->switch_priority_hint != INT_MIN)
5941 		drm_printf(m, "\t\tSwitch priority hint: %d\n",
5942 			   READ_ONCE(execlists->switch_priority_hint));
5943 	if (execlists->queue_priority_hint != INT_MIN)
5944 		drm_printf(m, "\t\tQueue priority hint: %d\n",
5945 			   READ_ONCE(execlists->queue_priority_hint));
5946 
5947 	last = NULL;
5948 	count = 0;
5949 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
5950 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
5951 		int i;
5952 
5953 		priolist_for_each_request(rq, p, i) {
5954 			if (count++ < max - 1)
5955 				show_request(m, rq, "\t\tQ ");
5956 			else
5957 				last = rq;
5958 		}
5959 	}
5960 	if (last) {
5961 		if (count > max) {
5962 			drm_printf(m,
5963 				   "\t\t...skipping %d queued requests...\n",
5964 				   count - max);
5965 		}
5966 		show_request(m, last, "\t\tQ ");
5967 	}
5968 
5969 	last = NULL;
5970 	count = 0;
5971 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
5972 		struct virtual_engine *ve =
5973 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
5974 		struct i915_request *rq = READ_ONCE(ve->request);
5975 
5976 		if (rq) {
5977 			if (count++ < max - 1)
5978 				show_request(m, rq, "\t\tV ");
5979 			else
5980 				last = rq;
5981 		}
5982 	}
5983 	if (last) {
5984 		if (count > max) {
5985 			drm_printf(m,
5986 				   "\t\t...skipping %d virtual requests...\n",
5987 				   count - max);
5988 		}
5989 		show_request(m, last, "\t\tV ");
5990 	}
5991 
5992 	spin_unlock_irqrestore(&engine->active.lock, flags);
5993 }
5994 
5995 void intel_lr_context_reset(struct intel_engine_cs *engine,
5996 			    struct intel_context *ce,
5997 			    u32 head,
5998 			    bool scrub)
5999 {
6000 	GEM_BUG_ON(!intel_context_is_pinned(ce));
6001 
6002 	/*
6003 	 * We want a simple context + ring to execute the breadcrumb update.
6004 	 * We cannot rely on the context being intact across the GPU hang,
6005 	 * so clear it and rebuild just what we need for the breadcrumb.
6006 	 * All pending requests for this context will be zapped, and any
6007 	 * future request will be after userspace has had the opportunity
6008 	 * to recreate its own state.
6009 	 */
6010 	if (scrub)
6011 		restore_default_state(ce, engine);
6012 
6013 	/* Rerun the request; its payload has been neutered (if guilty). */
6014 	__execlists_update_reg_state(ce, engine, head);
6015 }
6016 
6017 bool
6018 intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
6019 {
6020 	return engine->set_default_submission ==
6021 	       intel_execlists_set_default_submission;
6022 }
6023 
6024 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6025 #include "selftest_lrc.c"
6026 #endif
6027