1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * Michel Thierry <michel.thierry@intel.com> 26 * Thomas Daniel <thomas.daniel@intel.com> 27 * Oscar Mateo <oscar.mateo@intel.com> 28 * 29 */ 30 31 /** 32 * DOC: Logical Rings, Logical Ring Contexts and Execlists 33 * 34 * Motivation: 35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". 36 * These expanded contexts enable a number of new abilities, especially 37 * "Execlists" (also implemented in this file). 38 * 39 * One of the main differences with the legacy HW contexts is that logical 40 * ring contexts incorporate many more things to the context's state, like 41 * PDPs or ringbuffer control registers: 42 * 43 * The reason why PDPs are included in the context is straightforward: as 44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs 45 * contained there mean you don't need to do a ppgtt->switch_mm yourself, 46 * instead, the GPU will do it for you on the context switch. 47 * 48 * But, what about the ringbuffer control registers (head, tail, etc..)? 49 * shouldn't we just need a set of those per engine command streamer? This is 50 * where the name "Logical Rings" starts to make sense: by virtualizing the 51 * rings, the engine cs shifts to a new "ring buffer" with every context 52 * switch. When you want to submit a workload to the GPU you: A) choose your 53 * context, B) find its appropriate virtualized ring, C) write commands to it 54 * and then, finally, D) tell the GPU to switch to that context. 55 * 56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch 57 * to a contexts is via a context execution list, ergo "Execlists". 58 * 59 * LRC implementation: 60 * Regarding the creation of contexts, we have: 61 * 62 * - One global default context. 63 * - One local default context for each opened fd. 64 * - One local extra context for each context create ioctl call. 65 * 66 * Now that ringbuffers belong per-context (and not per-engine, like before) 67 * and that contexts are uniquely tied to a given engine (and not reusable, 68 * like before) we need: 69 * 70 * - One ringbuffer per-engine inside each context. 71 * - One backing object per-engine inside each context. 72 * 73 * The global default context starts its life with these new objects fully 74 * allocated and populated. The local default context for each opened fd is 75 * more complex, because we don't know at creation time which engine is going 76 * to use them. To handle this, we have implemented a deferred creation of LR 77 * contexts: 78 * 79 * The local context starts its life as a hollow or blank holder, that only 80 * gets populated for a given engine once we receive an execbuffer. If later 81 * on we receive another execbuffer ioctl for the same context but a different 82 * engine, we allocate/populate a new ringbuffer and context backing object and 83 * so on. 84 * 85 * Finally, regarding local contexts created using the ioctl call: as they are 86 * only allowed with the render ring, we can allocate & populate them right 87 * away (no need to defer anything, at least for now). 88 * 89 * Execlists implementation: 90 * Execlists are the new method by which, on gen8+ hardware, workloads are 91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method). 92 * This method works as follows: 93 * 94 * When a request is committed, its commands (the BB start and any leading or 95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer 96 * for the appropriate context. The tail pointer in the hardware context is not 97 * updated at this time, but instead, kept by the driver in the ringbuffer 98 * structure. A structure representing this request is added to a request queue 99 * for the appropriate engine: this structure contains a copy of the context's 100 * tail after the request was written to the ring buffer and a pointer to the 101 * context itself. 102 * 103 * If the engine's request queue was empty before the request was added, the 104 * queue is processed immediately. Otherwise the queue will be processed during 105 * a context switch interrupt. In any case, elements on the queue will get sent 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a 107 * globally unique 20-bits submission ID. 108 * 109 * When execution of a request completes, the GPU updates the context status 110 * buffer with a context complete event and generates a context switch interrupt. 111 * During the interrupt handling, the driver examines the events in the buffer: 112 * for each context complete event, if the announced ID matches that on the head 113 * of the request queue, then that request is retired and removed from the queue. 114 * 115 * After processing, if any requests were retired and the queue is not empty 116 * then a new execution list can be submitted. The two requests at the front of 117 * the queue are next to be submitted but since a context may not occur twice in 118 * an execution list, if subsequent requests have the same ID as the first then 119 * the two requests must be combined. This is done simply by discarding requests 120 * at the head of the queue until either only one requests is left (in which case 121 * we use a NULL second context) or the first two requests have unique IDs. 122 * 123 * By always executing the first two requests in the queue the driver ensures 124 * that the GPU is kept as busy as possible. In the case where a single context 125 * completes but a second context is still executing, the request for this second 126 * context will be at the head of the queue when we remove the first one. This 127 * request will then be resubmitted along with a new request for a different context, 128 * which will cause the hardware to continue executing the second request and queue 129 * the new request (the GPU detects the condition of a context getting preempted 130 * with the same context and optimizes the context switch flow by not doing 131 * preemption, but just sampling the new tail pointer). 132 * 133 */ 134 #include <linux/interrupt.h> 135 136 #include "gem/i915_gem_context.h" 137 138 #include "i915_drv.h" 139 #include "i915_gem_render_state.h" 140 #include "i915_vgpu.h" 141 #include "intel_engine_pm.h" 142 #include "intel_lrc_reg.h" 143 #include "intel_mocs.h" 144 #include "intel_reset.h" 145 #include "intel_workarounds.h" 146 147 #define RING_EXECLIST_QFULL (1 << 0x2) 148 #define RING_EXECLIST1_VALID (1 << 0x3) 149 #define RING_EXECLIST0_VALID (1 << 0x4) 150 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) 151 #define RING_EXECLIST1_ACTIVE (1 << 0x11) 152 #define RING_EXECLIST0_ACTIVE (1 << 0x12) 153 154 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) 155 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) 156 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) 157 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) 158 #define GEN8_CTX_STATUS_COMPLETE (1 << 4) 159 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) 160 161 #define GEN8_CTX_STATUS_COMPLETED_MASK \ 162 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) 163 164 /* Typical size of the average request (2 pipecontrols and a MI_BB) */ 165 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ 166 #define WA_TAIL_DWORDS 2 167 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS) 168 169 struct virtual_engine { 170 struct intel_engine_cs base; 171 struct intel_context context; 172 173 /* 174 * We allow only a single request through the virtual engine at a time 175 * (each request in the timeline waits for the completion fence of 176 * the previous before being submitted). By restricting ourselves to 177 * only submitting a single request, each request is placed on to a 178 * physical to maximise load spreading (by virtue of the late greedy 179 * scheduling -- each real engine takes the next available request 180 * upon idling). 181 */ 182 struct i915_request *request; 183 184 /* 185 * We keep a rbtree of available virtual engines inside each physical 186 * engine, sorted by priority. Here we preallocate the nodes we need 187 * for the virtual engine, indexed by physical_engine->id. 188 */ 189 struct ve_node { 190 struct rb_node rb; 191 int prio; 192 } nodes[I915_NUM_ENGINES]; 193 194 /* 195 * Keep track of bonded pairs -- restrictions upon on our selection 196 * of physical engines any particular request may be submitted to. 197 * If we receive a submit-fence from a master engine, we will only 198 * use one of sibling_mask physical engines. 199 */ 200 struct ve_bond { 201 const struct intel_engine_cs *master; 202 intel_engine_mask_t sibling_mask; 203 } *bonds; 204 unsigned int num_bonds; 205 206 /* And finally, which physical engines this virtual engine maps onto. */ 207 unsigned int num_siblings; 208 struct intel_engine_cs *siblings[0]; 209 }; 210 211 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) 212 { 213 GEM_BUG_ON(!intel_engine_is_virtual(engine)); 214 return container_of(engine, struct virtual_engine, base); 215 } 216 217 static int execlists_context_deferred_alloc(struct intel_context *ce, 218 struct intel_engine_cs *engine); 219 static void execlists_init_reg_state(u32 *reg_state, 220 struct intel_context *ce, 221 struct intel_engine_cs *engine, 222 struct intel_ring *ring); 223 224 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 225 { 226 return rb_entry(rb, struct i915_priolist, node); 227 } 228 229 static inline int rq_prio(const struct i915_request *rq) 230 { 231 return rq->sched.attr.priority; 232 } 233 234 static int effective_prio(const struct i915_request *rq) 235 { 236 int prio = rq_prio(rq); 237 238 /* 239 * On unwinding the active request, we give it a priority bump 240 * if it has completed waiting on any semaphore. If we know that 241 * the request has already started, we can prevent an unwanted 242 * preempt-to-idle cycle by taking that into account now. 243 */ 244 if (__i915_request_has_started(rq)) 245 prio |= I915_PRIORITY_NOSEMAPHORE; 246 247 /* Restrict mere WAIT boosts from triggering preemption */ 248 return prio | __NO_PREEMPTION; 249 } 250 251 static int queue_prio(const struct intel_engine_execlists *execlists) 252 { 253 struct i915_priolist *p; 254 struct rb_node *rb; 255 256 rb = rb_first_cached(&execlists->queue); 257 if (!rb) 258 return INT_MIN; 259 260 /* 261 * As the priolist[] are inverted, with the highest priority in [0], 262 * we have to flip the index value to become priority. 263 */ 264 p = to_priolist(rb); 265 return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used); 266 } 267 268 static inline bool need_preempt(const struct intel_engine_cs *engine, 269 const struct i915_request *rq, 270 struct rb_node *rb) 271 { 272 int last_prio; 273 274 if (!engine->preempt_context) 275 return false; 276 277 if (i915_request_completed(rq)) 278 return false; 279 280 /* 281 * Check if the current priority hint merits a preemption attempt. 282 * 283 * We record the highest value priority we saw during rescheduling 284 * prior to this dequeue, therefore we know that if it is strictly 285 * less than the current tail of ESLP[0], we do not need to force 286 * a preempt-to-idle cycle. 287 * 288 * However, the priority hint is a mere hint that we may need to 289 * preempt. If that hint is stale or we may be trying to preempt 290 * ourselves, ignore the request. 291 */ 292 last_prio = effective_prio(rq); 293 if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint, 294 last_prio)) 295 return false; 296 297 /* 298 * Check against the first request in ELSP[1], it will, thanks to the 299 * power of PI, be the highest priority of that context. 300 */ 301 if (!list_is_last(&rq->sched.link, &engine->active.requests) && 302 rq_prio(list_next_entry(rq, sched.link)) > last_prio) 303 return true; 304 305 if (rb) { 306 struct virtual_engine *ve = 307 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 308 bool preempt = false; 309 310 if (engine == ve->siblings[0]) { /* only preempt one sibling */ 311 struct i915_request *next; 312 313 rcu_read_lock(); 314 next = READ_ONCE(ve->request); 315 if (next) 316 preempt = rq_prio(next) > last_prio; 317 rcu_read_unlock(); 318 } 319 320 if (preempt) 321 return preempt; 322 } 323 324 /* 325 * If the inflight context did not trigger the preemption, then maybe 326 * it was the set of queued requests? Pick the highest priority in 327 * the queue (the first active priolist) and see if it deserves to be 328 * running instead of ELSP[0]. 329 * 330 * The highest priority request in the queue can not be either 331 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same 332 * context, it's priority would not exceed ELSP[0] aka last_prio. 333 */ 334 return queue_prio(&engine->execlists) > last_prio; 335 } 336 337 __maybe_unused static inline bool 338 assert_priority_queue(const struct i915_request *prev, 339 const struct i915_request *next) 340 { 341 const struct intel_engine_execlists *execlists = 342 &prev->engine->execlists; 343 344 /* 345 * Without preemption, the prev may refer to the still active element 346 * which we refuse to let go. 347 * 348 * Even with preemption, there are times when we think it is better not 349 * to preempt and leave an ostensibly lower priority request in flight. 350 */ 351 if (port_request(execlists->port) == prev) 352 return true; 353 354 return rq_prio(prev) >= rq_prio(next); 355 } 356 357 /* 358 * The context descriptor encodes various attributes of a context, 359 * including its GTT address and some flags. Because it's fairly 360 * expensive to calculate, we'll just do it once and cache the result, 361 * which remains valid until the context is unpinned. 362 * 363 * This is what a descriptor looks like, from LSB to MSB:: 364 * 365 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) 366 * bits 12-31: LRCA, GTT address of (the HWSP of) this context 367 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) 368 * bits 53-54: mbz, reserved for use by hardware 369 * bits 55-63: group ID, currently unused and set to 0 370 * 371 * Starting from Gen11, the upper dword of the descriptor has a new format: 372 * 373 * bits 32-36: reserved 374 * bits 37-47: SW context ID 375 * bits 48:53: engine instance 376 * bit 54: mbz, reserved for use by hardware 377 * bits 55-60: SW counter 378 * bits 61-63: engine class 379 * 380 * engine info, SW context ID and SW counter need to form a unique number 381 * (Context ID) per lrc. 382 */ 383 static u64 384 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine) 385 { 386 struct i915_gem_context *ctx = ce->gem_context; 387 u64 desc; 388 389 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH))); 390 BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH))); 391 392 desc = ctx->desc_template; /* bits 0-11 */ 393 GEM_BUG_ON(desc & GENMASK_ULL(63, 12)); 394 395 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE; 396 /* bits 12-31 */ 397 GEM_BUG_ON(desc & GENMASK_ULL(63, 32)); 398 399 /* 400 * The following 32bits are copied into the OA reports (dword 2). 401 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing 402 * anything below. 403 */ 404 if (INTEL_GEN(engine->i915) >= 11) { 405 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH)); 406 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT; 407 /* bits 37-47 */ 408 409 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT; 410 /* bits 48-53 */ 411 412 /* TODO: decide what to do with SW counter (bits 55-60) */ 413 414 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT; 415 /* bits 61-63 */ 416 } else { 417 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH)); 418 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */ 419 } 420 421 return desc; 422 } 423 424 static void unwind_wa_tail(struct i915_request *rq) 425 { 426 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES); 427 assert_ring_tail_valid(rq->ring, rq->tail); 428 } 429 430 static struct i915_request * 431 __unwind_incomplete_requests(struct intel_engine_cs *engine) 432 { 433 struct i915_request *rq, *rn, *active = NULL; 434 struct list_head *uninitialized_var(pl); 435 int prio = I915_PRIORITY_INVALID; 436 437 lockdep_assert_held(&engine->active.lock); 438 439 list_for_each_entry_safe_reverse(rq, rn, 440 &engine->active.requests, 441 sched.link) { 442 struct intel_engine_cs *owner; 443 444 if (i915_request_completed(rq)) 445 break; 446 447 __i915_request_unsubmit(rq); 448 unwind_wa_tail(rq); 449 450 GEM_BUG_ON(rq->hw_context->inflight); 451 452 /* 453 * Push the request back into the queue for later resubmission. 454 * If this request is not native to this physical engine (i.e. 455 * it came from a virtual source), push it back onto the virtual 456 * engine so that it can be moved across onto another physical 457 * engine as load dictates. 458 */ 459 owner = rq->hw_context->engine; 460 if (likely(owner == engine)) { 461 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 462 if (rq_prio(rq) != prio) { 463 prio = rq_prio(rq); 464 pl = i915_sched_lookup_priolist(engine, prio); 465 } 466 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); 467 468 list_move(&rq->sched.link, pl); 469 active = rq; 470 } else { 471 rq->engine = owner; 472 owner->submit_request(rq); 473 active = NULL; 474 } 475 } 476 477 return active; 478 } 479 480 struct i915_request * 481 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) 482 { 483 struct intel_engine_cs *engine = 484 container_of(execlists, typeof(*engine), execlists); 485 486 return __unwind_incomplete_requests(engine); 487 } 488 489 static inline void 490 execlists_context_status_change(struct i915_request *rq, unsigned long status) 491 { 492 /* 493 * Only used when GVT-g is enabled now. When GVT-g is disabled, 494 * The compiler should eliminate this function as dead-code. 495 */ 496 if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) 497 return; 498 499 atomic_notifier_call_chain(&rq->engine->context_status_notifier, 500 status, rq); 501 } 502 503 inline void 504 execlists_user_begin(struct intel_engine_execlists *execlists, 505 const struct execlist_port *port) 506 { 507 execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER); 508 } 509 510 inline void 511 execlists_user_end(struct intel_engine_execlists *execlists) 512 { 513 execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER); 514 } 515 516 static inline void 517 execlists_context_schedule_in(struct i915_request *rq) 518 { 519 GEM_BUG_ON(rq->hw_context->inflight); 520 521 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); 522 intel_engine_context_in(rq->engine); 523 rq->hw_context->inflight = rq->engine; 524 } 525 526 static void kick_siblings(struct i915_request *rq) 527 { 528 struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine); 529 struct i915_request *next = READ_ONCE(ve->request); 530 531 if (next && next->execution_mask & ~rq->execution_mask) 532 tasklet_schedule(&ve->base.execlists.tasklet); 533 } 534 535 static inline void 536 execlists_context_schedule_out(struct i915_request *rq, unsigned long status) 537 { 538 rq->hw_context->inflight = NULL; 539 intel_engine_context_out(rq->engine); 540 execlists_context_status_change(rq, status); 541 trace_i915_request_out(rq); 542 543 /* 544 * If this is part of a virtual engine, its next request may have 545 * been blocked waiting for access to the active context. We have 546 * to kick all the siblings again in case we need to switch (e.g. 547 * the next request is not runnable on this engine). Hopefully, 548 * we will already have submitted the next request before the 549 * tasklet runs and do not need to rebuild each virtual tree 550 * and kick everyone again. 551 */ 552 if (rq->engine != rq->hw_context->engine) 553 kick_siblings(rq); 554 } 555 556 static u64 execlists_update_context(struct i915_request *rq) 557 { 558 struct intel_context *ce = rq->hw_context; 559 560 ce->lrc_reg_state[CTX_RING_TAIL + 1] = 561 intel_ring_set_tail(rq->ring, rq->tail); 562 563 /* 564 * Make sure the context image is complete before we submit it to HW. 565 * 566 * Ostensibly, writes (including the WCB) should be flushed prior to 567 * an uncached write such as our mmio register access, the empirical 568 * evidence (esp. on Braswell) suggests that the WC write into memory 569 * may not be visible to the HW prior to the completion of the UC 570 * register write and that we may begin execution from the context 571 * before its image is complete leading to invalid PD chasing. 572 * 573 * Furthermore, Braswell, at least, wants a full mb to be sure that 574 * the writes are coherent in memory (visible to the GPU) prior to 575 * execution, and not just visible to other CPUs (as is the result of 576 * wmb). 577 */ 578 mb(); 579 return ce->lrc_desc; 580 } 581 582 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) 583 { 584 if (execlists->ctrl_reg) { 585 writel(lower_32_bits(desc), execlists->submit_reg + port * 2); 586 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); 587 } else { 588 writel(upper_32_bits(desc), execlists->submit_reg); 589 writel(lower_32_bits(desc), execlists->submit_reg); 590 } 591 } 592 593 static void execlists_submit_ports(struct intel_engine_cs *engine) 594 { 595 struct intel_engine_execlists *execlists = &engine->execlists; 596 struct execlist_port *port = execlists->port; 597 unsigned int n; 598 599 /* 600 * We can skip acquiring intel_runtime_pm_get() here as it was taken 601 * on our behalf by the request (see i915_gem_mark_busy()) and it will 602 * not be relinquished until the device is idle (see 603 * i915_gem_idle_work_handler()). As a precaution, we make sure 604 * that all ELSP are drained i.e. we have processed the CSB, 605 * before allowing ourselves to idle and calling intel_runtime_pm_put(). 606 */ 607 GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref)); 608 609 /* 610 * ELSQ note: the submit queue is not cleared after being submitted 611 * to the HW so we need to make sure we always clean it up. This is 612 * currently ensured by the fact that we always write the same number 613 * of elsq entries, keep this in mind before changing the loop below. 614 */ 615 for (n = execlists_num_ports(execlists); n--; ) { 616 struct i915_request *rq; 617 unsigned int count; 618 u64 desc; 619 620 rq = port_unpack(&port[n], &count); 621 if (rq) { 622 GEM_BUG_ON(count > !n); 623 if (!count++) 624 execlists_context_schedule_in(rq); 625 port_set(&port[n], port_pack(rq, count)); 626 desc = execlists_update_context(rq); 627 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc)); 628 629 GEM_TRACE("%s in[%d]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n", 630 engine->name, n, 631 port[n].context_id, count, 632 rq->fence.context, rq->fence.seqno, 633 hwsp_seqno(rq), 634 rq_prio(rq)); 635 } else { 636 GEM_BUG_ON(!n); 637 desc = 0; 638 } 639 640 write_desc(execlists, desc, n); 641 } 642 643 /* we need to manually load the submit queue */ 644 if (execlists->ctrl_reg) 645 writel(EL_CTRL_LOAD, execlists->ctrl_reg); 646 647 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK); 648 } 649 650 static bool ctx_single_port_submission(const struct intel_context *ce) 651 { 652 return (IS_ENABLED(CONFIG_DRM_I915_GVT) && 653 i915_gem_context_force_single_submission(ce->gem_context)); 654 } 655 656 static bool can_merge_ctx(const struct intel_context *prev, 657 const struct intel_context *next) 658 { 659 if (prev != next) 660 return false; 661 662 if (ctx_single_port_submission(prev)) 663 return false; 664 665 return true; 666 } 667 668 static bool can_merge_rq(const struct i915_request *prev, 669 const struct i915_request *next) 670 { 671 GEM_BUG_ON(!assert_priority_queue(prev, next)); 672 673 if (!can_merge_ctx(prev->hw_context, next->hw_context)) 674 return false; 675 676 return true; 677 } 678 679 static void port_assign(struct execlist_port *port, struct i915_request *rq) 680 { 681 GEM_BUG_ON(rq == port_request(port)); 682 683 if (port_isset(port)) 684 i915_request_put(port_request(port)); 685 686 port_set(port, port_pack(i915_request_get(rq), port_count(port))); 687 } 688 689 static void inject_preempt_context(struct intel_engine_cs *engine) 690 { 691 struct intel_engine_execlists *execlists = &engine->execlists; 692 struct intel_context *ce = engine->preempt_context; 693 unsigned int n; 694 695 GEM_BUG_ON(execlists->preempt_complete_status != 696 upper_32_bits(ce->lrc_desc)); 697 698 /* 699 * Switch to our empty preempt context so 700 * the state of the GPU is known (idle). 701 */ 702 GEM_TRACE("%s\n", engine->name); 703 for (n = execlists_num_ports(execlists); --n; ) 704 write_desc(execlists, 0, n); 705 706 write_desc(execlists, ce->lrc_desc, n); 707 708 /* we need to manually load the submit queue */ 709 if (execlists->ctrl_reg) 710 writel(EL_CTRL_LOAD, execlists->ctrl_reg); 711 712 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK); 713 execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT); 714 715 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); 716 } 717 718 static void complete_preempt_context(struct intel_engine_execlists *execlists) 719 { 720 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT)); 721 722 if (inject_preempt_hang(execlists)) 723 return; 724 725 execlists_cancel_port_requests(execlists); 726 __unwind_incomplete_requests(container_of(execlists, 727 struct intel_engine_cs, 728 execlists)); 729 } 730 731 static void virtual_update_register_offsets(u32 *regs, 732 struct intel_engine_cs *engine) 733 { 734 u32 base = engine->mmio_base; 735 736 /* Must match execlists_init_reg_state()! */ 737 738 regs[CTX_CONTEXT_CONTROL] = 739 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base)); 740 regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base)); 741 regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base)); 742 regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base)); 743 regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base)); 744 745 regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base)); 746 regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base)); 747 regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base)); 748 regs[CTX_SECOND_BB_HEAD_U] = 749 i915_mmio_reg_offset(RING_SBBADDR_UDW(base)); 750 regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base)); 751 regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base)); 752 753 regs[CTX_CTX_TIMESTAMP] = 754 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base)); 755 regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3)); 756 regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3)); 757 regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2)); 758 regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2)); 759 regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1)); 760 regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1)); 761 regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0)); 762 regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0)); 763 764 if (engine->class == RENDER_CLASS) { 765 regs[CTX_RCS_INDIRECT_CTX] = 766 i915_mmio_reg_offset(RING_INDIRECT_CTX(base)); 767 regs[CTX_RCS_INDIRECT_CTX_OFFSET] = 768 i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base)); 769 regs[CTX_BB_PER_CTX_PTR] = 770 i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base)); 771 772 regs[CTX_R_PWR_CLK_STATE] = 773 i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE); 774 } 775 } 776 777 static bool virtual_matches(const struct virtual_engine *ve, 778 const struct i915_request *rq, 779 const struct intel_engine_cs *engine) 780 { 781 const struct intel_engine_cs *inflight; 782 783 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ 784 return false; 785 786 /* 787 * We track when the HW has completed saving the context image 788 * (i.e. when we have seen the final CS event switching out of 789 * the context) and must not overwrite the context image before 790 * then. This restricts us to only using the active engine 791 * while the previous virtualized request is inflight (so 792 * we reuse the register offsets). This is a very small 793 * hystersis on the greedy seelction algorithm. 794 */ 795 inflight = READ_ONCE(ve->context.inflight); 796 if (inflight && inflight != engine) 797 return false; 798 799 return true; 800 } 801 802 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve, 803 struct intel_engine_cs *engine) 804 { 805 struct intel_engine_cs *old = ve->siblings[0]; 806 807 /* All unattached (rq->engine == old) must already be completed */ 808 809 spin_lock(&old->breadcrumbs.irq_lock); 810 if (!list_empty(&ve->context.signal_link)) { 811 list_move_tail(&ve->context.signal_link, 812 &engine->breadcrumbs.signalers); 813 intel_engine_queue_breadcrumbs(engine); 814 } 815 spin_unlock(&old->breadcrumbs.irq_lock); 816 } 817 818 static void execlists_dequeue(struct intel_engine_cs *engine) 819 { 820 struct intel_engine_execlists * const execlists = &engine->execlists; 821 struct execlist_port *port = execlists->port; 822 const struct execlist_port * const last_port = 823 &execlists->port[execlists->port_mask]; 824 struct i915_request *last = port_request(port); 825 struct rb_node *rb; 826 bool submit = false; 827 828 /* 829 * Hardware submission is through 2 ports. Conceptually each port 830 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is 831 * static for a context, and unique to each, so we only execute 832 * requests belonging to a single context from each ring. RING_HEAD 833 * is maintained by the CS in the context image, it marks the place 834 * where it got up to last time, and through RING_TAIL we tell the CS 835 * where we want to execute up to this time. 836 * 837 * In this list the requests are in order of execution. Consecutive 838 * requests from the same context are adjacent in the ringbuffer. We 839 * can combine these requests into a single RING_TAIL update: 840 * 841 * RING_HEAD...req1...req2 842 * ^- RING_TAIL 843 * since to execute req2 the CS must first execute req1. 844 * 845 * Our goal then is to point each port to the end of a consecutive 846 * sequence of requests as being the most optimal (fewest wake ups 847 * and context switches) submission. 848 */ 849 850 for (rb = rb_first_cached(&execlists->virtual); rb; ) { 851 struct virtual_engine *ve = 852 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 853 struct i915_request *rq = READ_ONCE(ve->request); 854 855 if (!rq) { /* lazily cleanup after another engine handled rq */ 856 rb_erase_cached(rb, &execlists->virtual); 857 RB_CLEAR_NODE(rb); 858 rb = rb_first_cached(&execlists->virtual); 859 continue; 860 } 861 862 if (!virtual_matches(ve, rq, engine)) { 863 rb = rb_next(rb); 864 continue; 865 } 866 867 break; 868 } 869 870 if (last) { 871 /* 872 * Don't resubmit or switch until all outstanding 873 * preemptions (lite-restore) are seen. Then we 874 * know the next preemption status we see corresponds 875 * to this ELSP update. 876 */ 877 GEM_BUG_ON(!execlists_is_active(execlists, 878 EXECLISTS_ACTIVE_USER)); 879 GEM_BUG_ON(!port_count(&port[0])); 880 881 /* 882 * If we write to ELSP a second time before the HW has had 883 * a chance to respond to the previous write, we can confuse 884 * the HW and hit "undefined behaviour". After writing to ELSP, 885 * we must then wait until we see a context-switch event from 886 * the HW to indicate that it has had a chance to respond. 887 */ 888 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK)) 889 return; 890 891 if (need_preempt(engine, last, rb)) { 892 inject_preempt_context(engine); 893 return; 894 } 895 896 /* 897 * In theory, we could coalesce more requests onto 898 * the second port (the first port is active, with 899 * no preemptions pending). However, that means we 900 * then have to deal with the possible lite-restore 901 * of the second port (as we submit the ELSP, there 902 * may be a context-switch) but also we may complete 903 * the resubmission before the context-switch. Ergo, 904 * coalescing onto the second port will cause a 905 * preemption event, but we cannot predict whether 906 * that will affect port[0] or port[1]. 907 * 908 * If the second port is already active, we can wait 909 * until the next context-switch before contemplating 910 * new requests. The GPU will be busy and we should be 911 * able to resubmit the new ELSP before it idles, 912 * avoiding pipeline bubbles (momentary pauses where 913 * the driver is unable to keep up the supply of new 914 * work). However, we have to double check that the 915 * priorities of the ports haven't been switch. 916 */ 917 if (port_count(&port[1])) 918 return; 919 920 /* 921 * WaIdleLiteRestore:bdw,skl 922 * Apply the wa NOOPs to prevent 923 * ring:HEAD == rq:TAIL as we resubmit the 924 * request. See gen8_emit_fini_breadcrumb() for 925 * where we prepare the padding after the 926 * end of the request. 927 */ 928 last->tail = last->wa_tail; 929 } 930 931 while (rb) { /* XXX virtual is always taking precedence */ 932 struct virtual_engine *ve = 933 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 934 struct i915_request *rq; 935 936 spin_lock(&ve->base.active.lock); 937 938 rq = ve->request; 939 if (unlikely(!rq)) { /* lost the race to a sibling */ 940 spin_unlock(&ve->base.active.lock); 941 rb_erase_cached(rb, &execlists->virtual); 942 RB_CLEAR_NODE(rb); 943 rb = rb_first_cached(&execlists->virtual); 944 continue; 945 } 946 947 GEM_BUG_ON(rq != ve->request); 948 GEM_BUG_ON(rq->engine != &ve->base); 949 GEM_BUG_ON(rq->hw_context != &ve->context); 950 951 if (rq_prio(rq) >= queue_prio(execlists)) { 952 if (!virtual_matches(ve, rq, engine)) { 953 spin_unlock(&ve->base.active.lock); 954 rb = rb_next(rb); 955 continue; 956 } 957 958 if (last && !can_merge_rq(last, rq)) { 959 spin_unlock(&ve->base.active.lock); 960 return; /* leave this rq for another engine */ 961 } 962 963 GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n", 964 engine->name, 965 rq->fence.context, 966 rq->fence.seqno, 967 i915_request_completed(rq) ? "!" : 968 i915_request_started(rq) ? "*" : 969 "", 970 yesno(engine != ve->siblings[0])); 971 972 ve->request = NULL; 973 ve->base.execlists.queue_priority_hint = INT_MIN; 974 rb_erase_cached(rb, &execlists->virtual); 975 RB_CLEAR_NODE(rb); 976 977 GEM_BUG_ON(!(rq->execution_mask & engine->mask)); 978 rq->engine = engine; 979 980 if (engine != ve->siblings[0]) { 981 u32 *regs = ve->context.lrc_reg_state; 982 unsigned int n; 983 984 GEM_BUG_ON(READ_ONCE(ve->context.inflight)); 985 virtual_update_register_offsets(regs, engine); 986 987 if (!list_empty(&ve->context.signals)) 988 virtual_xfer_breadcrumbs(ve, engine); 989 990 /* 991 * Move the bound engine to the top of the list 992 * for future execution. We then kick this 993 * tasklet first before checking others, so that 994 * we preferentially reuse this set of bound 995 * registers. 996 */ 997 for (n = 1; n < ve->num_siblings; n++) { 998 if (ve->siblings[n] == engine) { 999 swap(ve->siblings[n], 1000 ve->siblings[0]); 1001 break; 1002 } 1003 } 1004 1005 GEM_BUG_ON(ve->siblings[0] != engine); 1006 } 1007 1008 __i915_request_submit(rq); 1009 trace_i915_request_in(rq, port_index(port, execlists)); 1010 submit = true; 1011 last = rq; 1012 } 1013 1014 spin_unlock(&ve->base.active.lock); 1015 break; 1016 } 1017 1018 while ((rb = rb_first_cached(&execlists->queue))) { 1019 struct i915_priolist *p = to_priolist(rb); 1020 struct i915_request *rq, *rn; 1021 int i; 1022 1023 priolist_for_each_request_consume(rq, rn, p, i) { 1024 /* 1025 * Can we combine this request with the current port? 1026 * It has to be the same context/ringbuffer and not 1027 * have any exceptions (e.g. GVT saying never to 1028 * combine contexts). 1029 * 1030 * If we can combine the requests, we can execute both 1031 * by updating the RING_TAIL to point to the end of the 1032 * second request, and so we never need to tell the 1033 * hardware about the first. 1034 */ 1035 if (last && !can_merge_rq(last, rq)) { 1036 /* 1037 * If we are on the second port and cannot 1038 * combine this request with the last, then we 1039 * are done. 1040 */ 1041 if (port == last_port) 1042 goto done; 1043 1044 /* 1045 * We must not populate both ELSP[] with the 1046 * same LRCA, i.e. we must submit 2 different 1047 * contexts if we submit 2 ELSP. 1048 */ 1049 if (last->hw_context == rq->hw_context) 1050 goto done; 1051 1052 /* 1053 * If GVT overrides us we only ever submit 1054 * port[0], leaving port[1] empty. Note that we 1055 * also have to be careful that we don't queue 1056 * the same context (even though a different 1057 * request) to the second port. 1058 */ 1059 if (ctx_single_port_submission(last->hw_context) || 1060 ctx_single_port_submission(rq->hw_context)) 1061 goto done; 1062 1063 1064 if (submit) 1065 port_assign(port, last); 1066 port++; 1067 1068 GEM_BUG_ON(port_isset(port)); 1069 } 1070 1071 __i915_request_submit(rq); 1072 trace_i915_request_in(rq, port_index(port, execlists)); 1073 1074 last = rq; 1075 submit = true; 1076 } 1077 1078 rb_erase_cached(&p->node, &execlists->queue); 1079 i915_priolist_free(p); 1080 } 1081 1082 done: 1083 /* 1084 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. 1085 * 1086 * We choose the priority hint such that if we add a request of greater 1087 * priority than this, we kick the submission tasklet to decide on 1088 * the right order of submitting the requests to hardware. We must 1089 * also be prepared to reorder requests as they are in-flight on the 1090 * HW. We derive the priority hint then as the first "hole" in 1091 * the HW submission ports and if there are no available slots, 1092 * the priority of the lowest executing request, i.e. last. 1093 * 1094 * When we do receive a higher priority request ready to run from the 1095 * user, see queue_request(), the priority hint is bumped to that 1096 * request triggering preemption on the next dequeue (or subsequent 1097 * interrupt for secondary ports). 1098 */ 1099 execlists->queue_priority_hint = queue_prio(execlists); 1100 1101 if (submit) { 1102 port_assign(port, last); 1103 execlists_submit_ports(engine); 1104 } 1105 1106 /* We must always keep the beast fed if we have work piled up */ 1107 GEM_BUG_ON(rb_first_cached(&execlists->queue) && 1108 !port_isset(execlists->port)); 1109 1110 /* Re-evaluate the executing context setup after each preemptive kick */ 1111 if (last) 1112 execlists_user_begin(execlists, execlists->port); 1113 1114 /* If the engine is now idle, so should be the flag; and vice versa. */ 1115 GEM_BUG_ON(execlists_is_active(&engine->execlists, 1116 EXECLISTS_ACTIVE_USER) == 1117 !port_isset(engine->execlists.port)); 1118 } 1119 1120 void 1121 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists) 1122 { 1123 struct execlist_port *port = execlists->port; 1124 unsigned int num_ports = execlists_num_ports(execlists); 1125 1126 while (num_ports-- && port_isset(port)) { 1127 struct i915_request *rq = port_request(port); 1128 1129 GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n", 1130 rq->engine->name, 1131 (unsigned int)(port - execlists->port), 1132 rq->fence.context, rq->fence.seqno, 1133 hwsp_seqno(rq)); 1134 1135 GEM_BUG_ON(!execlists->active); 1136 execlists_context_schedule_out(rq, 1137 i915_request_completed(rq) ? 1138 INTEL_CONTEXT_SCHEDULE_OUT : 1139 INTEL_CONTEXT_SCHEDULE_PREEMPTED); 1140 1141 i915_request_put(rq); 1142 1143 memset(port, 0, sizeof(*port)); 1144 port++; 1145 } 1146 1147 execlists_clear_all_active(execlists); 1148 } 1149 1150 static inline void 1151 invalidate_csb_entries(const u32 *first, const u32 *last) 1152 { 1153 clflush((void *)first); 1154 clflush((void *)last); 1155 } 1156 1157 static inline bool 1158 reset_in_progress(const struct intel_engine_execlists *execlists) 1159 { 1160 return unlikely(!__tasklet_is_enabled(&execlists->tasklet)); 1161 } 1162 1163 static void process_csb(struct intel_engine_cs *engine) 1164 { 1165 struct intel_engine_execlists * const execlists = &engine->execlists; 1166 struct execlist_port *port = execlists->port; 1167 const u32 * const buf = execlists->csb_status; 1168 const u8 num_entries = execlists->csb_size; 1169 u8 head, tail; 1170 1171 lockdep_assert_held(&engine->active.lock); 1172 GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915)); 1173 1174 /* 1175 * Note that csb_write, csb_status may be either in HWSP or mmio. 1176 * When reading from the csb_write mmio register, we have to be 1177 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is 1178 * the low 4bits. As it happens we know the next 4bits are always 1179 * zero and so we can simply masked off the low u8 of the register 1180 * and treat it identically to reading from the HWSP (without having 1181 * to use explicit shifting and masking, and probably bifurcating 1182 * the code to handle the legacy mmio read). 1183 */ 1184 head = execlists->csb_head; 1185 tail = READ_ONCE(*execlists->csb_write); 1186 GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail); 1187 if (unlikely(head == tail)) 1188 return; 1189 1190 /* 1191 * Hopefully paired with a wmb() in HW! 1192 * 1193 * We must complete the read of the write pointer before any reads 1194 * from the CSB, so that we do not see stale values. Without an rmb 1195 * (lfence) the HW may speculatively perform the CSB[] reads *before* 1196 * we perform the READ_ONCE(*csb_write). 1197 */ 1198 rmb(); 1199 1200 do { 1201 struct i915_request *rq; 1202 unsigned int status; 1203 unsigned int count; 1204 1205 if (++head == num_entries) 1206 head = 0; 1207 1208 /* 1209 * We are flying near dragons again. 1210 * 1211 * We hold a reference to the request in execlist_port[] 1212 * but no more than that. We are operating in softirq 1213 * context and so cannot hold any mutex or sleep. That 1214 * prevents us stopping the requests we are processing 1215 * in port[] from being retired simultaneously (the 1216 * breadcrumb will be complete before we see the 1217 * context-switch). As we only hold the reference to the 1218 * request, any pointer chasing underneath the request 1219 * is subject to a potential use-after-free. Thus we 1220 * store all of the bookkeeping within port[] as 1221 * required, and avoid using unguarded pointers beneath 1222 * request itself. The same applies to the atomic 1223 * status notifier. 1224 */ 1225 1226 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n", 1227 engine->name, head, 1228 buf[2 * head + 0], buf[2 * head + 1], 1229 execlists->active); 1230 1231 status = buf[2 * head]; 1232 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE | 1233 GEN8_CTX_STATUS_PREEMPTED)) 1234 execlists_set_active(execlists, 1235 EXECLISTS_ACTIVE_HWACK); 1236 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE) 1237 execlists_clear_active(execlists, 1238 EXECLISTS_ACTIVE_HWACK); 1239 1240 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK)) 1241 continue; 1242 1243 /* We should never get a COMPLETED | IDLE_ACTIVE! */ 1244 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE); 1245 1246 if (status & GEN8_CTX_STATUS_COMPLETE && 1247 buf[2*head + 1] == execlists->preempt_complete_status) { 1248 GEM_TRACE("%s preempt-idle\n", engine->name); 1249 complete_preempt_context(execlists); 1250 continue; 1251 } 1252 1253 if (status & GEN8_CTX_STATUS_PREEMPTED && 1254 execlists_is_active(execlists, 1255 EXECLISTS_ACTIVE_PREEMPT)) 1256 continue; 1257 1258 GEM_BUG_ON(!execlists_is_active(execlists, 1259 EXECLISTS_ACTIVE_USER)); 1260 1261 rq = port_unpack(port, &count); 1262 GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n", 1263 engine->name, 1264 port->context_id, count, 1265 rq ? rq->fence.context : 0, 1266 rq ? rq->fence.seqno : 0, 1267 rq ? hwsp_seqno(rq) : 0, 1268 rq ? rq_prio(rq) : 0); 1269 1270 /* Check the context/desc id for this event matches */ 1271 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id); 1272 1273 GEM_BUG_ON(count == 0); 1274 if (--count == 0) { 1275 /* 1276 * On the final event corresponding to the 1277 * submission of this context, we expect either 1278 * an element-switch event or a completion 1279 * event (and on completion, the active-idle 1280 * marker). No more preemptions, lite-restore 1281 * or otherwise. 1282 */ 1283 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED); 1284 GEM_BUG_ON(port_isset(&port[1]) && 1285 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH)); 1286 GEM_BUG_ON(!port_isset(&port[1]) && 1287 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE)); 1288 1289 /* 1290 * We rely on the hardware being strongly 1291 * ordered, that the breadcrumb write is 1292 * coherent (visible from the CPU) before the 1293 * user interrupt and CSB is processed. 1294 */ 1295 GEM_BUG_ON(!i915_request_completed(rq)); 1296 1297 execlists_context_schedule_out(rq, 1298 INTEL_CONTEXT_SCHEDULE_OUT); 1299 i915_request_put(rq); 1300 1301 GEM_TRACE("%s completed ctx=%d\n", 1302 engine->name, port->context_id); 1303 1304 port = execlists_port_complete(execlists, port); 1305 if (port_isset(port)) 1306 execlists_user_begin(execlists, port); 1307 else 1308 execlists_user_end(execlists); 1309 } else { 1310 port_set(port, port_pack(rq, count)); 1311 } 1312 } while (head != tail); 1313 1314 execlists->csb_head = head; 1315 1316 /* 1317 * Gen11 has proven to fail wrt global observation point between 1318 * entry and tail update, failing on the ordering and thus 1319 * we see an old entry in the context status buffer. 1320 * 1321 * Forcibly evict out entries for the next gpu csb update, 1322 * to increase the odds that we get a fresh entries with non 1323 * working hardware. The cost for doing so comes out mostly with 1324 * the wash as hardware, working or not, will need to do the 1325 * invalidation before. 1326 */ 1327 invalidate_csb_entries(&buf[0], &buf[num_entries - 1]); 1328 } 1329 1330 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine) 1331 { 1332 lockdep_assert_held(&engine->active.lock); 1333 1334 process_csb(engine); 1335 if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT)) 1336 execlists_dequeue(engine); 1337 } 1338 1339 /* 1340 * Check the unread Context Status Buffers and manage the submission of new 1341 * contexts to the ELSP accordingly. 1342 */ 1343 static void execlists_submission_tasklet(unsigned long data) 1344 { 1345 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; 1346 unsigned long flags; 1347 1348 GEM_TRACE("%s awake?=%d, active=%x\n", 1349 engine->name, 1350 !!intel_wakeref_active(&engine->wakeref), 1351 engine->execlists.active); 1352 1353 spin_lock_irqsave(&engine->active.lock, flags); 1354 __execlists_submission_tasklet(engine); 1355 spin_unlock_irqrestore(&engine->active.lock, flags); 1356 } 1357 1358 static void queue_request(struct intel_engine_cs *engine, 1359 struct i915_sched_node *node, 1360 int prio) 1361 { 1362 GEM_BUG_ON(!list_empty(&node->link)); 1363 list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio)); 1364 } 1365 1366 static void __submit_queue_imm(struct intel_engine_cs *engine) 1367 { 1368 struct intel_engine_execlists * const execlists = &engine->execlists; 1369 1370 if (reset_in_progress(execlists)) 1371 return; /* defer until we restart the engine following reset */ 1372 1373 if (execlists->tasklet.func == execlists_submission_tasklet) 1374 __execlists_submission_tasklet(engine); 1375 else 1376 tasklet_hi_schedule(&execlists->tasklet); 1377 } 1378 1379 static void submit_queue(struct intel_engine_cs *engine, int prio) 1380 { 1381 if (prio > engine->execlists.queue_priority_hint) { 1382 engine->execlists.queue_priority_hint = prio; 1383 __submit_queue_imm(engine); 1384 } 1385 } 1386 1387 static void execlists_submit_request(struct i915_request *request) 1388 { 1389 struct intel_engine_cs *engine = request->engine; 1390 unsigned long flags; 1391 1392 /* Will be called from irq-context when using foreign fences. */ 1393 spin_lock_irqsave(&engine->active.lock, flags); 1394 1395 queue_request(engine, &request->sched, rq_prio(request)); 1396 1397 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); 1398 GEM_BUG_ON(list_empty(&request->sched.link)); 1399 1400 submit_queue(engine, rq_prio(request)); 1401 1402 spin_unlock_irqrestore(&engine->active.lock, flags); 1403 } 1404 1405 static void __execlists_context_fini(struct intel_context *ce) 1406 { 1407 intel_ring_put(ce->ring); 1408 1409 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj)); 1410 i915_gem_object_put(ce->state->obj); 1411 } 1412 1413 static void execlists_context_destroy(struct kref *kref) 1414 { 1415 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 1416 1417 GEM_BUG_ON(!i915_active_is_idle(&ce->active)); 1418 GEM_BUG_ON(intel_context_is_pinned(ce)); 1419 1420 if (ce->state) 1421 __execlists_context_fini(ce); 1422 1423 intel_context_free(ce); 1424 } 1425 1426 static void execlists_context_unpin(struct intel_context *ce) 1427 { 1428 i915_gem_context_unpin_hw_id(ce->gem_context); 1429 i915_gem_object_unpin_map(ce->state->obj); 1430 } 1431 1432 static void 1433 __execlists_update_reg_state(struct intel_context *ce, 1434 struct intel_engine_cs *engine) 1435 { 1436 struct intel_ring *ring = ce->ring; 1437 u32 *regs = ce->lrc_reg_state; 1438 1439 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head)); 1440 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); 1441 1442 regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma); 1443 regs[CTX_RING_HEAD + 1] = ring->head; 1444 regs[CTX_RING_TAIL + 1] = ring->tail; 1445 1446 /* RPCS */ 1447 if (engine->class == RENDER_CLASS) 1448 regs[CTX_R_PWR_CLK_STATE + 1] = 1449 intel_sseu_make_rpcs(engine->i915, &ce->sseu); 1450 } 1451 1452 static int 1453 __execlists_context_pin(struct intel_context *ce, 1454 struct intel_engine_cs *engine) 1455 { 1456 void *vaddr; 1457 int ret; 1458 1459 GEM_BUG_ON(!ce->gem_context->vm); 1460 1461 ret = execlists_context_deferred_alloc(ce, engine); 1462 if (ret) 1463 goto err; 1464 GEM_BUG_ON(!ce->state); 1465 1466 ret = intel_context_active_acquire(ce, 1467 engine->i915->ggtt.pin_bias | 1468 PIN_OFFSET_BIAS | 1469 PIN_HIGH); 1470 if (ret) 1471 goto err; 1472 1473 vaddr = i915_gem_object_pin_map(ce->state->obj, 1474 i915_coherent_map_type(engine->i915) | 1475 I915_MAP_OVERRIDE); 1476 if (IS_ERR(vaddr)) { 1477 ret = PTR_ERR(vaddr); 1478 goto unpin_active; 1479 } 1480 1481 ret = i915_gem_context_pin_hw_id(ce->gem_context); 1482 if (ret) 1483 goto unpin_map; 1484 1485 ce->lrc_desc = lrc_descriptor(ce, engine); 1486 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; 1487 __execlists_update_reg_state(ce, engine); 1488 1489 return 0; 1490 1491 unpin_map: 1492 i915_gem_object_unpin_map(ce->state->obj); 1493 unpin_active: 1494 intel_context_active_release(ce); 1495 err: 1496 return ret; 1497 } 1498 1499 static int execlists_context_pin(struct intel_context *ce) 1500 { 1501 return __execlists_context_pin(ce, ce->engine); 1502 } 1503 1504 static void execlists_context_reset(struct intel_context *ce) 1505 { 1506 /* 1507 * Because we emit WA_TAIL_DWORDS there may be a disparity 1508 * between our bookkeeping in ce->ring->head and ce->ring->tail and 1509 * that stored in context. As we only write new commands from 1510 * ce->ring->tail onwards, everything before that is junk. If the GPU 1511 * starts reading from its RING_HEAD from the context, it may try to 1512 * execute that junk and die. 1513 * 1514 * The contexts that are stilled pinned on resume belong to the 1515 * kernel, and are local to each engine. All other contexts will 1516 * have their head/tail sanitized upon pinning before use, so they 1517 * will never see garbage, 1518 * 1519 * So to avoid that we reset the context images upon resume. For 1520 * simplicity, we just zero everything out. 1521 */ 1522 intel_ring_reset(ce->ring, 0); 1523 __execlists_update_reg_state(ce, ce->engine); 1524 } 1525 1526 static const struct intel_context_ops execlists_context_ops = { 1527 .pin = execlists_context_pin, 1528 .unpin = execlists_context_unpin, 1529 1530 .enter = intel_context_enter_engine, 1531 .exit = intel_context_exit_engine, 1532 1533 .reset = execlists_context_reset, 1534 .destroy = execlists_context_destroy, 1535 }; 1536 1537 static int gen8_emit_init_breadcrumb(struct i915_request *rq) 1538 { 1539 u32 *cs; 1540 1541 GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb); 1542 1543 cs = intel_ring_begin(rq, 6); 1544 if (IS_ERR(cs)) 1545 return PTR_ERR(cs); 1546 1547 /* 1548 * Check if we have been preempted before we even get started. 1549 * 1550 * After this point i915_request_started() reports true, even if 1551 * we get preempted and so are no longer running. 1552 */ 1553 *cs++ = MI_ARB_CHECK; 1554 *cs++ = MI_NOOP; 1555 1556 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1557 *cs++ = rq->timeline->hwsp_offset; 1558 *cs++ = 0; 1559 *cs++ = rq->fence.seqno - 1; 1560 1561 intel_ring_advance(rq, cs); 1562 1563 /* Record the updated position of the request's payload */ 1564 rq->infix = intel_ring_offset(rq, cs); 1565 1566 return 0; 1567 } 1568 1569 static int emit_pdps(struct i915_request *rq) 1570 { 1571 const struct intel_engine_cs * const engine = rq->engine; 1572 struct i915_ppgtt * const ppgtt = 1573 i915_vm_to_ppgtt(rq->gem_context->vm); 1574 int err, i; 1575 u32 *cs; 1576 1577 GEM_BUG_ON(intel_vgpu_active(rq->i915)); 1578 1579 /* 1580 * Beware ye of the dragons, this sequence is magic! 1581 * 1582 * Small changes to this sequence can cause anything from 1583 * GPU hangs to forcewake errors and machine lockups! 1584 */ 1585 1586 /* Flush any residual operations from the context load */ 1587 err = engine->emit_flush(rq, EMIT_FLUSH); 1588 if (err) 1589 return err; 1590 1591 /* Magic required to prevent forcewake errors! */ 1592 err = engine->emit_flush(rq, EMIT_INVALIDATE); 1593 if (err) 1594 return err; 1595 1596 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); 1597 if (IS_ERR(cs)) 1598 return PTR_ERR(cs); 1599 1600 /* Ensure the LRI have landed before we invalidate & continue */ 1601 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; 1602 for (i = GEN8_3LVL_PDPES; i--; ) { 1603 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 1604 u32 base = engine->mmio_base; 1605 1606 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); 1607 *cs++ = upper_32_bits(pd_daddr); 1608 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); 1609 *cs++ = lower_32_bits(pd_daddr); 1610 } 1611 *cs++ = MI_NOOP; 1612 1613 intel_ring_advance(rq, cs); 1614 1615 /* Be doubly sure the LRI have landed before proceeding */ 1616 err = engine->emit_flush(rq, EMIT_FLUSH); 1617 if (err) 1618 return err; 1619 1620 /* Re-invalidate the TLB for luck */ 1621 return engine->emit_flush(rq, EMIT_INVALIDATE); 1622 } 1623 1624 static int execlists_request_alloc(struct i915_request *request) 1625 { 1626 int ret; 1627 1628 GEM_BUG_ON(!intel_context_is_pinned(request->hw_context)); 1629 1630 /* 1631 * Flush enough space to reduce the likelihood of waiting after 1632 * we start building the request - in which case we will just 1633 * have to repeat work. 1634 */ 1635 request->reserved_space += EXECLISTS_REQUEST_SIZE; 1636 1637 /* 1638 * Note that after this point, we have committed to using 1639 * this request as it is being used to both track the 1640 * state of engine initialisation and liveness of the 1641 * golden renderstate above. Think twice before you try 1642 * to cancel/unwind this request now. 1643 */ 1644 1645 /* Unconditionally invalidate GPU caches and TLBs. */ 1646 if (i915_vm_is_4lvl(request->gem_context->vm)) 1647 ret = request->engine->emit_flush(request, EMIT_INVALIDATE); 1648 else 1649 ret = emit_pdps(request); 1650 if (ret) 1651 return ret; 1652 1653 request->reserved_space -= EXECLISTS_REQUEST_SIZE; 1654 return 0; 1655 } 1656 1657 /* 1658 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after 1659 * PIPE_CONTROL instruction. This is required for the flush to happen correctly 1660 * but there is a slight complication as this is applied in WA batch where the 1661 * values are only initialized once so we cannot take register value at the 1662 * beginning and reuse it further; hence we save its value to memory, upload a 1663 * constant value with bit21 set and then we restore it back with the saved value. 1664 * To simplify the WA, a constant value is formed by using the default value 1665 * of this register. This shouldn't be a problem because we are only modifying 1666 * it for a short period and this batch in non-premptible. We can ofcourse 1667 * use additional instructions that read the actual value of the register 1668 * at that time and set our bit of interest but it makes the WA complicated. 1669 * 1670 * This WA is also required for Gen9 so extracting as a function avoids 1671 * code duplication. 1672 */ 1673 static u32 * 1674 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) 1675 { 1676 /* NB no one else is allowed to scribble over scratch + 256! */ 1677 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1678 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1679 *batch++ = i915_scratch_offset(engine->i915) + 256; 1680 *batch++ = 0; 1681 1682 *batch++ = MI_LOAD_REGISTER_IMM(1); 1683 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1684 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; 1685 1686 batch = gen8_emit_pipe_control(batch, 1687 PIPE_CONTROL_CS_STALL | 1688 PIPE_CONTROL_DC_FLUSH_ENABLE, 1689 0); 1690 1691 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1692 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1693 *batch++ = i915_scratch_offset(engine->i915) + 256; 1694 *batch++ = 0; 1695 1696 return batch; 1697 } 1698 1699 /* 1700 * Typically we only have one indirect_ctx and per_ctx batch buffer which are 1701 * initialized at the beginning and shared across all contexts but this field 1702 * helps us to have multiple batches at different offsets and select them based 1703 * on a criteria. At the moment this batch always start at the beginning of the page 1704 * and at this point we don't have multiple wa_ctx batch buffers. 1705 * 1706 * The number of WA applied are not known at the beginning; we use this field 1707 * to return the no of DWORDS written. 1708 * 1709 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END 1710 * so it adds NOOPs as padding to make it cacheline aligned. 1711 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together 1712 * makes a complete batch buffer. 1713 */ 1714 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1715 { 1716 /* WaDisableCtxRestoreArbitration:bdw,chv */ 1717 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1718 1719 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ 1720 if (IS_BROADWELL(engine->i915)) 1721 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1722 1723 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ 1724 /* Actual scratch location is at 128 bytes offset */ 1725 batch = gen8_emit_pipe_control(batch, 1726 PIPE_CONTROL_FLUSH_L3 | 1727 PIPE_CONTROL_GLOBAL_GTT_IVB | 1728 PIPE_CONTROL_CS_STALL | 1729 PIPE_CONTROL_QW_WRITE, 1730 i915_scratch_offset(engine->i915) + 1731 2 * CACHELINE_BYTES); 1732 1733 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1734 1735 /* Pad to end of cacheline */ 1736 while ((unsigned long)batch % CACHELINE_BYTES) 1737 *batch++ = MI_NOOP; 1738 1739 /* 1740 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because 1741 * execution depends on the length specified in terms of cache lines 1742 * in the register CTX_RCS_INDIRECT_CTX 1743 */ 1744 1745 return batch; 1746 } 1747 1748 struct lri { 1749 i915_reg_t reg; 1750 u32 value; 1751 }; 1752 1753 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) 1754 { 1755 GEM_BUG_ON(!count || count > 63); 1756 1757 *batch++ = MI_LOAD_REGISTER_IMM(count); 1758 do { 1759 *batch++ = i915_mmio_reg_offset(lri->reg); 1760 *batch++ = lri->value; 1761 } while (lri++, --count); 1762 *batch++ = MI_NOOP; 1763 1764 return batch; 1765 } 1766 1767 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1768 { 1769 static const struct lri lri[] = { 1770 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ 1771 { 1772 COMMON_SLICE_CHICKEN2, 1773 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 1774 0), 1775 }, 1776 1777 /* BSpec: 11391 */ 1778 { 1779 FF_SLICE_CHICKEN, 1780 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, 1781 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), 1782 }, 1783 1784 /* BSpec: 11299 */ 1785 { 1786 _3D_CHICKEN3, 1787 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, 1788 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), 1789 } 1790 }; 1791 1792 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1793 1794 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ 1795 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1796 1797 batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); 1798 1799 /* WaMediaPoolStateCmdInWABB:bxt,glk */ 1800 if (HAS_POOLED_EU(engine->i915)) { 1801 /* 1802 * EU pool configuration is setup along with golden context 1803 * during context initialization. This value depends on 1804 * device type (2x6 or 3x6) and needs to be updated based 1805 * on which subslice is disabled especially for 2x6 1806 * devices, however it is safe to load default 1807 * configuration of 3x6 device instead of masking off 1808 * corresponding bits because HW ignores bits of a disabled 1809 * subslice and drops down to appropriate config. Please 1810 * see render_state_setup() in i915_gem_render_state.c for 1811 * possible configurations, to avoid duplication they are 1812 * not shown here again. 1813 */ 1814 *batch++ = GEN9_MEDIA_POOL_STATE; 1815 *batch++ = GEN9_MEDIA_POOL_ENABLE; 1816 *batch++ = 0x00777000; 1817 *batch++ = 0; 1818 *batch++ = 0; 1819 *batch++ = 0; 1820 } 1821 1822 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1823 1824 /* Pad to end of cacheline */ 1825 while ((unsigned long)batch % CACHELINE_BYTES) 1826 *batch++ = MI_NOOP; 1827 1828 return batch; 1829 } 1830 1831 static u32 * 1832 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1833 { 1834 int i; 1835 1836 /* 1837 * WaPipeControlBefore3DStateSamplePattern: cnl 1838 * 1839 * Ensure the engine is idle prior to programming a 1840 * 3DSTATE_SAMPLE_PATTERN during a context restore. 1841 */ 1842 batch = gen8_emit_pipe_control(batch, 1843 PIPE_CONTROL_CS_STALL, 1844 0); 1845 /* 1846 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for 1847 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in 1848 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is 1849 * confusing. Since gen8_emit_pipe_control() already advances the 1850 * batch by 6 dwords, we advance the other 10 here, completing a 1851 * cacheline. It's not clear if the workaround requires this padding 1852 * before other commands, or if it's just the regular padding we would 1853 * already have for the workaround bb, so leave it here for now. 1854 */ 1855 for (i = 0; i < 10; i++) 1856 *batch++ = MI_NOOP; 1857 1858 /* Pad to end of cacheline */ 1859 while ((unsigned long)batch % CACHELINE_BYTES) 1860 *batch++ = MI_NOOP; 1861 1862 return batch; 1863 } 1864 1865 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE) 1866 1867 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine) 1868 { 1869 struct drm_i915_gem_object *obj; 1870 struct i915_vma *vma; 1871 int err; 1872 1873 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE); 1874 if (IS_ERR(obj)) 1875 return PTR_ERR(obj); 1876 1877 vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL); 1878 if (IS_ERR(vma)) { 1879 err = PTR_ERR(vma); 1880 goto err; 1881 } 1882 1883 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1884 if (err) 1885 goto err; 1886 1887 engine->wa_ctx.vma = vma; 1888 return 0; 1889 1890 err: 1891 i915_gem_object_put(obj); 1892 return err; 1893 } 1894 1895 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine) 1896 { 1897 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); 1898 } 1899 1900 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); 1901 1902 static int intel_init_workaround_bb(struct intel_engine_cs *engine) 1903 { 1904 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 1905 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx, 1906 &wa_ctx->per_ctx }; 1907 wa_bb_func_t wa_bb_fn[2]; 1908 struct page *page; 1909 void *batch, *batch_ptr; 1910 unsigned int i; 1911 int ret; 1912 1913 if (engine->class != RENDER_CLASS) 1914 return 0; 1915 1916 switch (INTEL_GEN(engine->i915)) { 1917 case 11: 1918 return 0; 1919 case 10: 1920 wa_bb_fn[0] = gen10_init_indirectctx_bb; 1921 wa_bb_fn[1] = NULL; 1922 break; 1923 case 9: 1924 wa_bb_fn[0] = gen9_init_indirectctx_bb; 1925 wa_bb_fn[1] = NULL; 1926 break; 1927 case 8: 1928 wa_bb_fn[0] = gen8_init_indirectctx_bb; 1929 wa_bb_fn[1] = NULL; 1930 break; 1931 default: 1932 MISSING_CASE(INTEL_GEN(engine->i915)); 1933 return 0; 1934 } 1935 1936 ret = lrc_setup_wa_ctx(engine); 1937 if (ret) { 1938 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); 1939 return ret; 1940 } 1941 1942 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0); 1943 batch = batch_ptr = kmap_atomic(page); 1944 1945 /* 1946 * Emit the two workaround batch buffers, recording the offset from the 1947 * start of the workaround batch buffer object for each and their 1948 * respective sizes. 1949 */ 1950 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { 1951 wa_bb[i]->offset = batch_ptr - batch; 1952 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, 1953 CACHELINE_BYTES))) { 1954 ret = -EINVAL; 1955 break; 1956 } 1957 if (wa_bb_fn[i]) 1958 batch_ptr = wa_bb_fn[i](engine, batch_ptr); 1959 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); 1960 } 1961 1962 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE); 1963 1964 kunmap_atomic(batch); 1965 if (ret) 1966 lrc_destroy_wa_ctx(engine); 1967 1968 return ret; 1969 } 1970 1971 static void enable_execlists(struct intel_engine_cs *engine) 1972 { 1973 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 1974 1975 if (INTEL_GEN(engine->i915) >= 11) 1976 ENGINE_WRITE(engine, 1977 RING_MODE_GEN7, 1978 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 1979 else 1980 ENGINE_WRITE(engine, 1981 RING_MODE_GEN7, 1982 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)); 1983 1984 ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1985 1986 ENGINE_WRITE(engine, 1987 RING_HWS_PGA, 1988 i915_ggtt_offset(engine->status_page.vma)); 1989 ENGINE_POSTING_READ(engine, RING_HWS_PGA); 1990 } 1991 1992 static bool unexpected_starting_state(struct intel_engine_cs *engine) 1993 { 1994 bool unexpected = false; 1995 1996 if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) { 1997 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n"); 1998 unexpected = true; 1999 } 2000 2001 return unexpected; 2002 } 2003 2004 static int execlists_resume(struct intel_engine_cs *engine) 2005 { 2006 intel_engine_apply_workarounds(engine); 2007 intel_engine_apply_whitelist(engine); 2008 2009 intel_mocs_init_engine(engine); 2010 2011 intel_engine_reset_breadcrumbs(engine); 2012 2013 if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) { 2014 struct drm_printer p = drm_debug_printer(__func__); 2015 2016 intel_engine_dump(engine, &p, NULL); 2017 } 2018 2019 enable_execlists(engine); 2020 2021 return 0; 2022 } 2023 2024 static void execlists_reset_prepare(struct intel_engine_cs *engine) 2025 { 2026 struct intel_engine_execlists * const execlists = &engine->execlists; 2027 unsigned long flags; 2028 2029 GEM_TRACE("%s: depth<-%d\n", engine->name, 2030 atomic_read(&execlists->tasklet.count)); 2031 2032 /* 2033 * Prevent request submission to the hardware until we have 2034 * completed the reset in i915_gem_reset_finish(). If a request 2035 * is completed by one engine, it may then queue a request 2036 * to a second via its execlists->tasklet *just* as we are 2037 * calling engine->resume() and also writing the ELSP. 2038 * Turning off the execlists->tasklet until the reset is over 2039 * prevents the race. 2040 */ 2041 __tasklet_disable_sync_once(&execlists->tasklet); 2042 GEM_BUG_ON(!reset_in_progress(execlists)); 2043 2044 intel_engine_stop_cs(engine); 2045 2046 /* And flush any current direct submission. */ 2047 spin_lock_irqsave(&engine->active.lock, flags); 2048 spin_unlock_irqrestore(&engine->active.lock, flags); 2049 } 2050 2051 static bool lrc_regs_ok(const struct i915_request *rq) 2052 { 2053 const struct intel_ring *ring = rq->ring; 2054 const u32 *regs = rq->hw_context->lrc_reg_state; 2055 2056 /* Quick spot check for the common signs of context corruption */ 2057 2058 if (regs[CTX_RING_BUFFER_CONTROL + 1] != 2059 (RING_CTL_SIZE(ring->size) | RING_VALID)) 2060 return false; 2061 2062 if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma)) 2063 return false; 2064 2065 return true; 2066 } 2067 2068 static void reset_csb_pointers(struct intel_engine_execlists *execlists) 2069 { 2070 const unsigned int reset_value = execlists->csb_size - 1; 2071 2072 /* 2073 * After a reset, the HW starts writing into CSB entry [0]. We 2074 * therefore have to set our HEAD pointer back one entry so that 2075 * the *first* entry we check is entry 0. To complicate this further, 2076 * as we don't wait for the first interrupt after reset, we have to 2077 * fake the HW write to point back to the last entry so that our 2078 * inline comparison of our cached head position against the last HW 2079 * write works even before the first interrupt. 2080 */ 2081 execlists->csb_head = reset_value; 2082 WRITE_ONCE(*execlists->csb_write, reset_value); 2083 wmb(); /* Make sure this is visible to HW (paranoia?) */ 2084 2085 invalidate_csb_entries(&execlists->csb_status[0], 2086 &execlists->csb_status[reset_value]); 2087 } 2088 2089 static struct i915_request *active_request(struct i915_request *rq) 2090 { 2091 const struct list_head * const list = &rq->engine->active.requests; 2092 const struct intel_context * const context = rq->hw_context; 2093 struct i915_request *active = NULL; 2094 2095 list_for_each_entry_from_reverse(rq, list, sched.link) { 2096 if (i915_request_completed(rq)) 2097 break; 2098 2099 if (rq->hw_context != context) 2100 break; 2101 2102 active = rq; 2103 } 2104 2105 return active; 2106 } 2107 2108 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled) 2109 { 2110 struct intel_engine_execlists * const execlists = &engine->execlists; 2111 struct intel_context *ce; 2112 struct i915_request *rq; 2113 u32 *regs; 2114 2115 process_csb(engine); /* drain preemption events */ 2116 2117 /* Following the reset, we need to reload the CSB read/write pointers */ 2118 reset_csb_pointers(&engine->execlists); 2119 2120 /* 2121 * Save the currently executing context, even if we completed 2122 * its request, it was still running at the time of the 2123 * reset and will have been clobbered. 2124 */ 2125 if (!port_isset(execlists->port)) 2126 goto out_clear; 2127 2128 rq = port_request(execlists->port); 2129 ce = rq->hw_context; 2130 2131 /* 2132 * Catch up with any missed context-switch interrupts. 2133 * 2134 * Ideally we would just read the remaining CSB entries now that we 2135 * know the gpu is idle. However, the CSB registers are sometimes^W 2136 * often trashed across a GPU reset! Instead we have to rely on 2137 * guessing the missed context-switch events by looking at what 2138 * requests were completed. 2139 */ 2140 execlists_cancel_port_requests(execlists); 2141 2142 rq = active_request(rq); 2143 if (!rq) 2144 goto out_replay; 2145 2146 /* 2147 * If this request hasn't started yet, e.g. it is waiting on a 2148 * semaphore, we need to avoid skipping the request or else we 2149 * break the signaling chain. However, if the context is corrupt 2150 * the request will not restart and we will be stuck with a wedged 2151 * device. It is quite often the case that if we issue a reset 2152 * while the GPU is loading the context image, that the context 2153 * image becomes corrupt. 2154 * 2155 * Otherwise, if we have not started yet, the request should replay 2156 * perfectly and we do not need to flag the result as being erroneous. 2157 */ 2158 if (!i915_request_started(rq) && lrc_regs_ok(rq)) 2159 goto out_replay; 2160 2161 /* 2162 * If the request was innocent, we leave the request in the ELSP 2163 * and will try to replay it on restarting. The context image may 2164 * have been corrupted by the reset, in which case we may have 2165 * to service a new GPU hang, but more likely we can continue on 2166 * without impact. 2167 * 2168 * If the request was guilty, we presume the context is corrupt 2169 * and have to at least restore the RING register in the context 2170 * image back to the expected values to skip over the guilty request. 2171 */ 2172 i915_reset_request(rq, stalled); 2173 if (!stalled && lrc_regs_ok(rq)) 2174 goto out_replay; 2175 2176 /* 2177 * We want a simple context + ring to execute the breadcrumb update. 2178 * We cannot rely on the context being intact across the GPU hang, 2179 * so clear it and rebuild just what we need for the breadcrumb. 2180 * All pending requests for this context will be zapped, and any 2181 * future request will be after userspace has had the opportunity 2182 * to recreate its own state. 2183 */ 2184 regs = ce->lrc_reg_state; 2185 if (engine->pinned_default_state) { 2186 memcpy(regs, /* skip restoring the vanilla PPHWSP */ 2187 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, 2188 engine->context_size - PAGE_SIZE); 2189 } 2190 execlists_init_reg_state(regs, ce, engine, ce->ring); 2191 2192 out_replay: 2193 /* Rerun the request; its payload has been neutered (if guilty). */ 2194 ce->ring->head = 2195 rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail; 2196 intel_ring_update_space(ce->ring); 2197 __execlists_update_reg_state(ce, engine); 2198 2199 /* Push back any incomplete requests for replay after the reset. */ 2200 __unwind_incomplete_requests(engine); 2201 2202 out_clear: 2203 execlists_clear_all_active(execlists); 2204 } 2205 2206 static void execlists_reset(struct intel_engine_cs *engine, bool stalled) 2207 { 2208 unsigned long flags; 2209 2210 GEM_TRACE("%s\n", engine->name); 2211 2212 spin_lock_irqsave(&engine->active.lock, flags); 2213 2214 __execlists_reset(engine, stalled); 2215 2216 spin_unlock_irqrestore(&engine->active.lock, flags); 2217 } 2218 2219 static void nop_submission_tasklet(unsigned long data) 2220 { 2221 /* The driver is wedged; don't process any more events. */ 2222 } 2223 2224 static void execlists_cancel_requests(struct intel_engine_cs *engine) 2225 { 2226 struct intel_engine_execlists * const execlists = &engine->execlists; 2227 struct i915_request *rq, *rn; 2228 struct rb_node *rb; 2229 unsigned long flags; 2230 2231 GEM_TRACE("%s\n", engine->name); 2232 2233 /* 2234 * Before we call engine->cancel_requests(), we should have exclusive 2235 * access to the submission state. This is arranged for us by the 2236 * caller disabling the interrupt generation, the tasklet and other 2237 * threads that may then access the same state, giving us a free hand 2238 * to reset state. However, we still need to let lockdep be aware that 2239 * we know this state may be accessed in hardirq context, so we 2240 * disable the irq around this manipulation and we want to keep 2241 * the spinlock focused on its duties and not accidentally conflate 2242 * coverage to the submission's irq state. (Similarly, although we 2243 * shouldn't need to disable irq around the manipulation of the 2244 * submission's irq state, we also wish to remind ourselves that 2245 * it is irq state.) 2246 */ 2247 spin_lock_irqsave(&engine->active.lock, flags); 2248 2249 __execlists_reset(engine, true); 2250 2251 /* Mark all executing requests as skipped. */ 2252 list_for_each_entry(rq, &engine->active.requests, sched.link) { 2253 if (!i915_request_signaled(rq)) 2254 dma_fence_set_error(&rq->fence, -EIO); 2255 2256 i915_request_mark_complete(rq); 2257 } 2258 2259 /* Flush the queued requests to the timeline list (for retiring). */ 2260 while ((rb = rb_first_cached(&execlists->queue))) { 2261 struct i915_priolist *p = to_priolist(rb); 2262 int i; 2263 2264 priolist_for_each_request_consume(rq, rn, p, i) { 2265 list_del_init(&rq->sched.link); 2266 __i915_request_submit(rq); 2267 dma_fence_set_error(&rq->fence, -EIO); 2268 i915_request_mark_complete(rq); 2269 } 2270 2271 rb_erase_cached(&p->node, &execlists->queue); 2272 i915_priolist_free(p); 2273 } 2274 2275 /* Cancel all attached virtual engines */ 2276 while ((rb = rb_first_cached(&execlists->virtual))) { 2277 struct virtual_engine *ve = 2278 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 2279 2280 rb_erase_cached(rb, &execlists->virtual); 2281 RB_CLEAR_NODE(rb); 2282 2283 spin_lock(&ve->base.active.lock); 2284 if (ve->request) { 2285 ve->request->engine = engine; 2286 __i915_request_submit(ve->request); 2287 dma_fence_set_error(&ve->request->fence, -EIO); 2288 i915_request_mark_complete(ve->request); 2289 ve->base.execlists.queue_priority_hint = INT_MIN; 2290 ve->request = NULL; 2291 } 2292 spin_unlock(&ve->base.active.lock); 2293 } 2294 2295 /* Remaining _unready_ requests will be nop'ed when submitted */ 2296 2297 execlists->queue_priority_hint = INT_MIN; 2298 execlists->queue = RB_ROOT_CACHED; 2299 GEM_BUG_ON(port_isset(execlists->port)); 2300 2301 GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet)); 2302 execlists->tasklet.func = nop_submission_tasklet; 2303 2304 spin_unlock_irqrestore(&engine->active.lock, flags); 2305 } 2306 2307 static void execlists_reset_finish(struct intel_engine_cs *engine) 2308 { 2309 struct intel_engine_execlists * const execlists = &engine->execlists; 2310 2311 /* 2312 * After a GPU reset, we may have requests to replay. Do so now while 2313 * we still have the forcewake to be sure that the GPU is not allowed 2314 * to sleep before we restart and reload a context. 2315 */ 2316 GEM_BUG_ON(!reset_in_progress(execlists)); 2317 if (!RB_EMPTY_ROOT(&execlists->queue.rb_root)) 2318 execlists->tasklet.func(execlists->tasklet.data); 2319 2320 if (__tasklet_enable(&execlists->tasklet)) 2321 /* And kick in case we missed a new request submission. */ 2322 tasklet_hi_schedule(&execlists->tasklet); 2323 GEM_TRACE("%s: depth->%d\n", engine->name, 2324 atomic_read(&execlists->tasklet.count)); 2325 } 2326 2327 static int gen8_emit_bb_start(struct i915_request *rq, 2328 u64 offset, u32 len, 2329 const unsigned int flags) 2330 { 2331 u32 *cs; 2332 2333 cs = intel_ring_begin(rq, 4); 2334 if (IS_ERR(cs)) 2335 return PTR_ERR(cs); 2336 2337 /* 2338 * WaDisableCtxRestoreArbitration:bdw,chv 2339 * 2340 * We don't need to perform MI_ARB_ENABLE as often as we do (in 2341 * particular all the gen that do not need the w/a at all!), if we 2342 * took care to make sure that on every switch into this context 2343 * (both ordinary and for preemption) that arbitrartion was enabled 2344 * we would be fine. However, for gen8 there is another w/a that 2345 * requires us to not preempt inside GPGPU execution, so we keep 2346 * arbitration disabled for gen8 batches. Arbitration will be 2347 * re-enabled before we close the request 2348 * (engine->emit_fini_breadcrumb). 2349 */ 2350 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 2351 2352 /* FIXME(BDW+): Address space and security selectors. */ 2353 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 2354 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 2355 *cs++ = lower_32_bits(offset); 2356 *cs++ = upper_32_bits(offset); 2357 2358 intel_ring_advance(rq, cs); 2359 2360 return 0; 2361 } 2362 2363 static int gen9_emit_bb_start(struct i915_request *rq, 2364 u64 offset, u32 len, 2365 const unsigned int flags) 2366 { 2367 u32 *cs; 2368 2369 cs = intel_ring_begin(rq, 6); 2370 if (IS_ERR(cs)) 2371 return PTR_ERR(cs); 2372 2373 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2374 2375 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 2376 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 2377 *cs++ = lower_32_bits(offset); 2378 *cs++ = upper_32_bits(offset); 2379 2380 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 2381 *cs++ = MI_NOOP; 2382 2383 intel_ring_advance(rq, cs); 2384 2385 return 0; 2386 } 2387 2388 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) 2389 { 2390 ENGINE_WRITE(engine, RING_IMR, 2391 ~(engine->irq_enable_mask | engine->irq_keep_mask)); 2392 ENGINE_POSTING_READ(engine, RING_IMR); 2393 } 2394 2395 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) 2396 { 2397 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); 2398 } 2399 2400 static int gen8_emit_flush(struct i915_request *request, u32 mode) 2401 { 2402 u32 cmd, *cs; 2403 2404 cs = intel_ring_begin(request, 4); 2405 if (IS_ERR(cs)) 2406 return PTR_ERR(cs); 2407 2408 cmd = MI_FLUSH_DW + 1; 2409 2410 /* We always require a command barrier so that subsequent 2411 * commands, such as breadcrumb interrupts, are strictly ordered 2412 * wrt the contents of the write cache being flushed to memory 2413 * (and thus being coherent from the CPU). 2414 */ 2415 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 2416 2417 if (mode & EMIT_INVALIDATE) { 2418 cmd |= MI_INVALIDATE_TLB; 2419 if (request->engine->class == VIDEO_DECODE_CLASS) 2420 cmd |= MI_INVALIDATE_BSD; 2421 } 2422 2423 *cs++ = cmd; 2424 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT; 2425 *cs++ = 0; /* upper addr */ 2426 *cs++ = 0; /* value */ 2427 intel_ring_advance(request, cs); 2428 2429 return 0; 2430 } 2431 2432 static int gen8_emit_flush_render(struct i915_request *request, 2433 u32 mode) 2434 { 2435 struct intel_engine_cs *engine = request->engine; 2436 u32 scratch_addr = 2437 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES; 2438 bool vf_flush_wa = false, dc_flush_wa = false; 2439 u32 *cs, flags = 0; 2440 int len; 2441 2442 flags |= PIPE_CONTROL_CS_STALL; 2443 2444 if (mode & EMIT_FLUSH) { 2445 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 2446 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 2447 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 2448 flags |= PIPE_CONTROL_FLUSH_ENABLE; 2449 } 2450 2451 if (mode & EMIT_INVALIDATE) { 2452 flags |= PIPE_CONTROL_TLB_INVALIDATE; 2453 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 2454 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 2455 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 2456 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 2457 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 2458 flags |= PIPE_CONTROL_QW_WRITE; 2459 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; 2460 2461 /* 2462 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL 2463 * pipe control. 2464 */ 2465 if (IS_GEN(request->i915, 9)) 2466 vf_flush_wa = true; 2467 2468 /* WaForGAMHang:kbl */ 2469 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0)) 2470 dc_flush_wa = true; 2471 } 2472 2473 len = 6; 2474 2475 if (vf_flush_wa) 2476 len += 6; 2477 2478 if (dc_flush_wa) 2479 len += 12; 2480 2481 cs = intel_ring_begin(request, len); 2482 if (IS_ERR(cs)) 2483 return PTR_ERR(cs); 2484 2485 if (vf_flush_wa) 2486 cs = gen8_emit_pipe_control(cs, 0, 0); 2487 2488 if (dc_flush_wa) 2489 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 2490 0); 2491 2492 cs = gen8_emit_pipe_control(cs, flags, scratch_addr); 2493 2494 if (dc_flush_wa) 2495 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); 2496 2497 intel_ring_advance(request, cs); 2498 2499 return 0; 2500 } 2501 2502 /* 2503 * Reserve space for 2 NOOPs at the end of each request to be 2504 * used as a workaround for not being allowed to do lite 2505 * restore with HEAD==TAIL (WaIdleLiteRestore). 2506 */ 2507 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs) 2508 { 2509 /* Ensure there's always at least one preemption point per-request. */ 2510 *cs++ = MI_ARB_CHECK; 2511 *cs++ = MI_NOOP; 2512 request->wa_tail = intel_ring_offset(request, cs); 2513 2514 return cs; 2515 } 2516 2517 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) 2518 { 2519 cs = gen8_emit_ggtt_write(cs, 2520 request->fence.seqno, 2521 request->timeline->hwsp_offset, 2522 0); 2523 2524 *cs++ = MI_USER_INTERRUPT; 2525 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2526 2527 request->tail = intel_ring_offset(request, cs); 2528 assert_ring_tail_valid(request->ring, request->tail); 2529 2530 return gen8_emit_wa_tail(request, cs); 2531 } 2532 2533 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) 2534 { 2535 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ 2536 cs = gen8_emit_ggtt_write_rcs(cs, 2537 request->fence.seqno, 2538 request->timeline->hwsp_offset, 2539 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 2540 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 2541 PIPE_CONTROL_DC_FLUSH_ENABLE); 2542 cs = gen8_emit_pipe_control(cs, 2543 PIPE_CONTROL_FLUSH_ENABLE | 2544 PIPE_CONTROL_CS_STALL, 2545 0); 2546 2547 *cs++ = MI_USER_INTERRUPT; 2548 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2549 2550 request->tail = intel_ring_offset(request, cs); 2551 assert_ring_tail_valid(request->ring, request->tail); 2552 2553 return gen8_emit_wa_tail(request, cs); 2554 } 2555 2556 static int gen8_init_rcs_context(struct i915_request *rq) 2557 { 2558 int ret; 2559 2560 ret = intel_engine_emit_ctx_wa(rq); 2561 if (ret) 2562 return ret; 2563 2564 ret = intel_rcs_context_init_mocs(rq); 2565 /* 2566 * Failing to program the MOCS is non-fatal.The system will not 2567 * run at peak performance. So generate an error and carry on. 2568 */ 2569 if (ret) 2570 DRM_ERROR("MOCS failed to program: expect performance issues.\n"); 2571 2572 return i915_gem_render_state_emit(rq); 2573 } 2574 2575 static void execlists_park(struct intel_engine_cs *engine) 2576 { 2577 intel_engine_park(engine); 2578 } 2579 2580 void intel_execlists_set_default_submission(struct intel_engine_cs *engine) 2581 { 2582 engine->submit_request = execlists_submit_request; 2583 engine->cancel_requests = execlists_cancel_requests; 2584 engine->schedule = i915_schedule; 2585 engine->execlists.tasklet.func = execlists_submission_tasklet; 2586 2587 engine->reset.prepare = execlists_reset_prepare; 2588 engine->reset.reset = execlists_reset; 2589 engine->reset.finish = execlists_reset_finish; 2590 2591 engine->park = execlists_park; 2592 engine->unpark = NULL; 2593 2594 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 2595 if (!intel_vgpu_active(engine->i915)) 2596 engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 2597 if (engine->preempt_context && 2598 HAS_LOGICAL_RING_PREEMPTION(engine->i915)) 2599 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 2600 } 2601 2602 static void execlists_destroy(struct intel_engine_cs *engine) 2603 { 2604 intel_engine_cleanup_common(engine); 2605 lrc_destroy_wa_ctx(engine); 2606 kfree(engine); 2607 } 2608 2609 static void 2610 logical_ring_default_vfuncs(struct intel_engine_cs *engine) 2611 { 2612 /* Default vfuncs which can be overriden by each engine. */ 2613 2614 engine->destroy = execlists_destroy; 2615 engine->resume = execlists_resume; 2616 2617 engine->reset.prepare = execlists_reset_prepare; 2618 engine->reset.reset = execlists_reset; 2619 engine->reset.finish = execlists_reset_finish; 2620 2621 engine->cops = &execlists_context_ops; 2622 engine->request_alloc = execlists_request_alloc; 2623 2624 engine->emit_flush = gen8_emit_flush; 2625 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 2626 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb; 2627 2628 engine->set_default_submission = intel_execlists_set_default_submission; 2629 2630 if (INTEL_GEN(engine->i915) < 11) { 2631 engine->irq_enable = gen8_logical_ring_enable_irq; 2632 engine->irq_disable = gen8_logical_ring_disable_irq; 2633 } else { 2634 /* 2635 * TODO: On Gen11 interrupt masks need to be clear 2636 * to allow C6 entry. Keep interrupts enabled at 2637 * and take the hit of generating extra interrupts 2638 * until a more refined solution exists. 2639 */ 2640 } 2641 if (IS_GEN(engine->i915, 8)) 2642 engine->emit_bb_start = gen8_emit_bb_start; 2643 else 2644 engine->emit_bb_start = gen9_emit_bb_start; 2645 } 2646 2647 static inline void 2648 logical_ring_default_irqs(struct intel_engine_cs *engine) 2649 { 2650 unsigned int shift = 0; 2651 2652 if (INTEL_GEN(engine->i915) < 11) { 2653 const u8 irq_shifts[] = { 2654 [RCS0] = GEN8_RCS_IRQ_SHIFT, 2655 [BCS0] = GEN8_BCS_IRQ_SHIFT, 2656 [VCS0] = GEN8_VCS0_IRQ_SHIFT, 2657 [VCS1] = GEN8_VCS1_IRQ_SHIFT, 2658 [VECS0] = GEN8_VECS_IRQ_SHIFT, 2659 }; 2660 2661 shift = irq_shifts[engine->id]; 2662 } 2663 2664 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; 2665 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; 2666 } 2667 2668 int intel_execlists_submission_setup(struct intel_engine_cs *engine) 2669 { 2670 /* Intentionally left blank. */ 2671 engine->buffer = NULL; 2672 2673 tasklet_init(&engine->execlists.tasklet, 2674 execlists_submission_tasklet, (unsigned long)engine); 2675 2676 logical_ring_default_vfuncs(engine); 2677 logical_ring_default_irqs(engine); 2678 2679 if (engine->class == RENDER_CLASS) { 2680 engine->init_context = gen8_init_rcs_context; 2681 engine->emit_flush = gen8_emit_flush_render; 2682 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 2683 } 2684 2685 return 0; 2686 } 2687 2688 int intel_execlists_submission_init(struct intel_engine_cs *engine) 2689 { 2690 struct intel_engine_execlists * const execlists = &engine->execlists; 2691 struct drm_i915_private *i915 = engine->i915; 2692 struct intel_uncore *uncore = engine->uncore; 2693 u32 base = engine->mmio_base; 2694 int ret; 2695 2696 ret = intel_engine_init_common(engine); 2697 if (ret) 2698 return ret; 2699 2700 intel_engine_init_workarounds(engine); 2701 intel_engine_init_whitelist(engine); 2702 2703 if (intel_init_workaround_bb(engine)) 2704 /* 2705 * We continue even if we fail to initialize WA batch 2706 * because we only expect rare glitches but nothing 2707 * critical to prevent us from using GPU 2708 */ 2709 DRM_ERROR("WA batch buffer initialization failed\n"); 2710 2711 if (HAS_LOGICAL_RING_ELSQ(i915)) { 2712 execlists->submit_reg = uncore->regs + 2713 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); 2714 execlists->ctrl_reg = uncore->regs + 2715 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); 2716 } else { 2717 execlists->submit_reg = uncore->regs + 2718 i915_mmio_reg_offset(RING_ELSP(base)); 2719 } 2720 2721 execlists->preempt_complete_status = ~0u; 2722 if (engine->preempt_context) 2723 execlists->preempt_complete_status = 2724 upper_32_bits(engine->preempt_context->lrc_desc); 2725 2726 execlists->csb_status = 2727 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2728 2729 execlists->csb_write = 2730 &engine->status_page.addr[intel_hws_csb_write_index(i915)]; 2731 2732 if (INTEL_GEN(i915) < 11) 2733 execlists->csb_size = GEN8_CSB_ENTRIES; 2734 else 2735 execlists->csb_size = GEN11_CSB_ENTRIES; 2736 2737 reset_csb_pointers(execlists); 2738 2739 return 0; 2740 } 2741 2742 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine) 2743 { 2744 u32 indirect_ctx_offset; 2745 2746 switch (INTEL_GEN(engine->i915)) { 2747 default: 2748 MISSING_CASE(INTEL_GEN(engine->i915)); 2749 /* fall through */ 2750 case 11: 2751 indirect_ctx_offset = 2752 GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2753 break; 2754 case 10: 2755 indirect_ctx_offset = 2756 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2757 break; 2758 case 9: 2759 indirect_ctx_offset = 2760 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2761 break; 2762 case 8: 2763 indirect_ctx_offset = 2764 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2765 break; 2766 } 2767 2768 return indirect_ctx_offset; 2769 } 2770 2771 static void execlists_init_reg_state(u32 *regs, 2772 struct intel_context *ce, 2773 struct intel_engine_cs *engine, 2774 struct intel_ring *ring) 2775 { 2776 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm); 2777 bool rcs = engine->class == RENDER_CLASS; 2778 u32 base = engine->mmio_base; 2779 2780 /* 2781 * A context is actually a big batch buffer with several 2782 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The 2783 * values we are setting here are only for the first context restore: 2784 * on a subsequent save, the GPU will recreate this batchbuffer with new 2785 * values (including all the missing MI_LOAD_REGISTER_IMM commands that 2786 * we are not initializing here). 2787 * 2788 * Must keep consistent with virtual_update_register_offsets(). 2789 */ 2790 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) | 2791 MI_LRI_FORCE_POSTED; 2792 2793 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base), 2794 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) | 2795 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH)); 2796 if (INTEL_GEN(engine->i915) < 11) { 2797 regs[CTX_CONTEXT_CONTROL + 1] |= 2798 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | 2799 CTX_CTRL_RS_CTX_ENABLE); 2800 } 2801 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0); 2802 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0); 2803 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0); 2804 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base), 2805 RING_CTL_SIZE(ring->size) | RING_VALID); 2806 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0); 2807 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0); 2808 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT); 2809 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0); 2810 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0); 2811 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0); 2812 if (rcs) { 2813 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 2814 2815 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0); 2816 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET, 2817 RING_INDIRECT_CTX_OFFSET(base), 0); 2818 if (wa_ctx->indirect_ctx.size) { 2819 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 2820 2821 regs[CTX_RCS_INDIRECT_CTX + 1] = 2822 (ggtt_offset + wa_ctx->indirect_ctx.offset) | 2823 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES); 2824 2825 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] = 2826 intel_lr_indirect_ctx_offset(engine) << 6; 2827 } 2828 2829 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0); 2830 if (wa_ctx->per_ctx.size) { 2831 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 2832 2833 regs[CTX_BB_PER_CTX_PTR + 1] = 2834 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; 2835 } 2836 } 2837 2838 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED; 2839 2840 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0); 2841 /* PDP values well be assigned later if needed */ 2842 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0); 2843 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0); 2844 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0); 2845 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0); 2846 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0); 2847 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0); 2848 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0); 2849 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0); 2850 2851 if (i915_vm_is_4lvl(&ppgtt->vm)) { 2852 /* 64b PPGTT (48bit canonical) 2853 * PDP0_DESCRIPTOR contains the base address to PML4 and 2854 * other PDP Descriptors are ignored. 2855 */ 2856 ASSIGN_CTX_PML4(ppgtt, regs); 2857 } else { 2858 ASSIGN_CTX_PDP(ppgtt, regs, 3); 2859 ASSIGN_CTX_PDP(ppgtt, regs, 2); 2860 ASSIGN_CTX_PDP(ppgtt, regs, 1); 2861 ASSIGN_CTX_PDP(ppgtt, regs, 0); 2862 } 2863 2864 if (rcs) { 2865 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1); 2866 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0); 2867 2868 i915_oa_init_reg_state(engine, ce, regs); 2869 } 2870 2871 regs[CTX_END] = MI_BATCH_BUFFER_END; 2872 if (INTEL_GEN(engine->i915) >= 10) 2873 regs[CTX_END] |= BIT(0); 2874 } 2875 2876 static int 2877 populate_lr_context(struct intel_context *ce, 2878 struct drm_i915_gem_object *ctx_obj, 2879 struct intel_engine_cs *engine, 2880 struct intel_ring *ring) 2881 { 2882 void *vaddr; 2883 u32 *regs; 2884 int ret; 2885 2886 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB); 2887 if (IS_ERR(vaddr)) { 2888 ret = PTR_ERR(vaddr); 2889 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret); 2890 return ret; 2891 } 2892 2893 if (engine->default_state) { 2894 /* 2895 * We only want to copy over the template context state; 2896 * skipping over the headers reserved for GuC communication, 2897 * leaving those as zero. 2898 */ 2899 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE; 2900 void *defaults; 2901 2902 defaults = i915_gem_object_pin_map(engine->default_state, 2903 I915_MAP_WB); 2904 if (IS_ERR(defaults)) { 2905 ret = PTR_ERR(defaults); 2906 goto err_unpin_ctx; 2907 } 2908 2909 memcpy(vaddr + start, defaults + start, engine->context_size); 2910 i915_gem_object_unpin_map(engine->default_state); 2911 } 2912 2913 /* The second page of the context object contains some fields which must 2914 * be set up prior to the first execution. */ 2915 regs = vaddr + LRC_STATE_PN * PAGE_SIZE; 2916 execlists_init_reg_state(regs, ce, engine, ring); 2917 if (!engine->default_state) 2918 regs[CTX_CONTEXT_CONTROL + 1] |= 2919 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); 2920 if (ce->gem_context == engine->i915->preempt_context && 2921 INTEL_GEN(engine->i915) < 11) 2922 regs[CTX_CONTEXT_CONTROL + 1] |= 2923 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | 2924 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT); 2925 2926 ret = 0; 2927 err_unpin_ctx: 2928 __i915_gem_object_flush_map(ctx_obj, 2929 LRC_HEADER_PAGES * PAGE_SIZE, 2930 engine->context_size); 2931 i915_gem_object_unpin_map(ctx_obj); 2932 return ret; 2933 } 2934 2935 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx) 2936 { 2937 if (ctx->timeline) 2938 return i915_timeline_get(ctx->timeline); 2939 else 2940 return i915_timeline_create(ctx->i915, NULL); 2941 } 2942 2943 static int execlists_context_deferred_alloc(struct intel_context *ce, 2944 struct intel_engine_cs *engine) 2945 { 2946 struct drm_i915_gem_object *ctx_obj; 2947 struct i915_vma *vma; 2948 u32 context_size; 2949 struct intel_ring *ring; 2950 struct i915_timeline *timeline; 2951 int ret; 2952 2953 if (ce->state) 2954 return 0; 2955 2956 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); 2957 2958 /* 2959 * Before the actual start of the context image, we insert a few pages 2960 * for our own use and for sharing with the GuC. 2961 */ 2962 context_size += LRC_HEADER_PAGES * PAGE_SIZE; 2963 2964 ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size); 2965 if (IS_ERR(ctx_obj)) 2966 return PTR_ERR(ctx_obj); 2967 2968 vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL); 2969 if (IS_ERR(vma)) { 2970 ret = PTR_ERR(vma); 2971 goto error_deref_obj; 2972 } 2973 2974 timeline = get_timeline(ce->gem_context); 2975 if (IS_ERR(timeline)) { 2976 ret = PTR_ERR(timeline); 2977 goto error_deref_obj; 2978 } 2979 2980 ring = intel_engine_create_ring(engine, 2981 timeline, 2982 ce->gem_context->ring_size); 2983 i915_timeline_put(timeline); 2984 if (IS_ERR(ring)) { 2985 ret = PTR_ERR(ring); 2986 goto error_deref_obj; 2987 } 2988 2989 ret = populate_lr_context(ce, ctx_obj, engine, ring); 2990 if (ret) { 2991 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); 2992 goto error_ring_free; 2993 } 2994 2995 ce->ring = ring; 2996 ce->state = vma; 2997 2998 return 0; 2999 3000 error_ring_free: 3001 intel_ring_put(ring); 3002 error_deref_obj: 3003 i915_gem_object_put(ctx_obj); 3004 return ret; 3005 } 3006 3007 static struct list_head *virtual_queue(struct virtual_engine *ve) 3008 { 3009 return &ve->base.execlists.default_priolist.requests[0]; 3010 } 3011 3012 static void virtual_context_destroy(struct kref *kref) 3013 { 3014 struct virtual_engine *ve = 3015 container_of(kref, typeof(*ve), context.ref); 3016 unsigned int n; 3017 3018 GEM_BUG_ON(!list_empty(virtual_queue(ve))); 3019 GEM_BUG_ON(ve->request); 3020 GEM_BUG_ON(ve->context.inflight); 3021 3022 for (n = 0; n < ve->num_siblings; n++) { 3023 struct intel_engine_cs *sibling = ve->siblings[n]; 3024 struct rb_node *node = &ve->nodes[sibling->id].rb; 3025 3026 if (RB_EMPTY_NODE(node)) 3027 continue; 3028 3029 spin_lock_irq(&sibling->active.lock); 3030 3031 /* Detachment is lazily performed in the execlists tasklet */ 3032 if (!RB_EMPTY_NODE(node)) 3033 rb_erase_cached(node, &sibling->execlists.virtual); 3034 3035 spin_unlock_irq(&sibling->active.lock); 3036 } 3037 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet)); 3038 3039 if (ve->context.state) 3040 __execlists_context_fini(&ve->context); 3041 3042 kfree(ve->bonds); 3043 kfree(ve); 3044 } 3045 3046 static void virtual_engine_initial_hint(struct virtual_engine *ve) 3047 { 3048 int swp; 3049 3050 /* 3051 * Pick a random sibling on starting to help spread the load around. 3052 * 3053 * New contexts are typically created with exactly the same order 3054 * of siblings, and often started in batches. Due to the way we iterate 3055 * the array of sibling when submitting requests, sibling[0] is 3056 * prioritised for dequeuing. If we make sure that sibling[0] is fairly 3057 * randomised across the system, we also help spread the load by the 3058 * first engine we inspect being different each time. 3059 * 3060 * NB This does not force us to execute on this engine, it will just 3061 * typically be the first we inspect for submission. 3062 */ 3063 swp = prandom_u32_max(ve->num_siblings); 3064 if (!swp) 3065 return; 3066 3067 swap(ve->siblings[swp], ve->siblings[0]); 3068 virtual_update_register_offsets(ve->context.lrc_reg_state, 3069 ve->siblings[0]); 3070 } 3071 3072 static int virtual_context_pin(struct intel_context *ce) 3073 { 3074 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3075 int err; 3076 3077 /* Note: we must use a real engine class for setting up reg state */ 3078 err = __execlists_context_pin(ce, ve->siblings[0]); 3079 if (err) 3080 return err; 3081 3082 virtual_engine_initial_hint(ve); 3083 return 0; 3084 } 3085 3086 static void virtual_context_enter(struct intel_context *ce) 3087 { 3088 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3089 unsigned int n; 3090 3091 for (n = 0; n < ve->num_siblings; n++) 3092 intel_engine_pm_get(ve->siblings[n]); 3093 } 3094 3095 static void virtual_context_exit(struct intel_context *ce) 3096 { 3097 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3098 unsigned int n; 3099 3100 for (n = 0; n < ve->num_siblings; n++) 3101 intel_engine_pm_put(ve->siblings[n]); 3102 } 3103 3104 static const struct intel_context_ops virtual_context_ops = { 3105 .pin = virtual_context_pin, 3106 .unpin = execlists_context_unpin, 3107 3108 .enter = virtual_context_enter, 3109 .exit = virtual_context_exit, 3110 3111 .destroy = virtual_context_destroy, 3112 }; 3113 3114 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) 3115 { 3116 struct i915_request *rq; 3117 intel_engine_mask_t mask; 3118 3119 rq = READ_ONCE(ve->request); 3120 if (!rq) 3121 return 0; 3122 3123 /* The rq is ready for submission; rq->execution_mask is now stable. */ 3124 mask = rq->execution_mask; 3125 if (unlikely(!mask)) { 3126 /* Invalid selection, submit to a random engine in error */ 3127 i915_request_skip(rq, -ENODEV); 3128 mask = ve->siblings[0]->mask; 3129 } 3130 3131 GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n", 3132 ve->base.name, 3133 rq->fence.context, rq->fence.seqno, 3134 mask, ve->base.execlists.queue_priority_hint); 3135 3136 return mask; 3137 } 3138 3139 static void virtual_submission_tasklet(unsigned long data) 3140 { 3141 struct virtual_engine * const ve = (struct virtual_engine *)data; 3142 const int prio = ve->base.execlists.queue_priority_hint; 3143 intel_engine_mask_t mask; 3144 unsigned int n; 3145 3146 rcu_read_lock(); 3147 mask = virtual_submission_mask(ve); 3148 rcu_read_unlock(); 3149 if (unlikely(!mask)) 3150 return; 3151 3152 local_irq_disable(); 3153 for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) { 3154 struct intel_engine_cs *sibling = ve->siblings[n]; 3155 struct ve_node * const node = &ve->nodes[sibling->id]; 3156 struct rb_node **parent, *rb; 3157 bool first; 3158 3159 if (unlikely(!(mask & sibling->mask))) { 3160 if (!RB_EMPTY_NODE(&node->rb)) { 3161 spin_lock(&sibling->active.lock); 3162 rb_erase_cached(&node->rb, 3163 &sibling->execlists.virtual); 3164 RB_CLEAR_NODE(&node->rb); 3165 spin_unlock(&sibling->active.lock); 3166 } 3167 continue; 3168 } 3169 3170 spin_lock(&sibling->active.lock); 3171 3172 if (!RB_EMPTY_NODE(&node->rb)) { 3173 /* 3174 * Cheat and avoid rebalancing the tree if we can 3175 * reuse this node in situ. 3176 */ 3177 first = rb_first_cached(&sibling->execlists.virtual) == 3178 &node->rb; 3179 if (prio == node->prio || (prio > node->prio && first)) 3180 goto submit_engine; 3181 3182 rb_erase_cached(&node->rb, &sibling->execlists.virtual); 3183 } 3184 3185 rb = NULL; 3186 first = true; 3187 parent = &sibling->execlists.virtual.rb_root.rb_node; 3188 while (*parent) { 3189 struct ve_node *other; 3190 3191 rb = *parent; 3192 other = rb_entry(rb, typeof(*other), rb); 3193 if (prio > other->prio) { 3194 parent = &rb->rb_left; 3195 } else { 3196 parent = &rb->rb_right; 3197 first = false; 3198 } 3199 } 3200 3201 rb_link_node(&node->rb, rb, parent); 3202 rb_insert_color_cached(&node->rb, 3203 &sibling->execlists.virtual, 3204 first); 3205 3206 submit_engine: 3207 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); 3208 node->prio = prio; 3209 if (first && prio > sibling->execlists.queue_priority_hint) { 3210 sibling->execlists.queue_priority_hint = prio; 3211 tasklet_hi_schedule(&sibling->execlists.tasklet); 3212 } 3213 3214 spin_unlock(&sibling->active.lock); 3215 } 3216 local_irq_enable(); 3217 } 3218 3219 static void virtual_submit_request(struct i915_request *rq) 3220 { 3221 struct virtual_engine *ve = to_virtual_engine(rq->engine); 3222 3223 GEM_TRACE("%s: rq=%llx:%lld\n", 3224 ve->base.name, 3225 rq->fence.context, 3226 rq->fence.seqno); 3227 3228 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); 3229 3230 GEM_BUG_ON(ve->request); 3231 GEM_BUG_ON(!list_empty(virtual_queue(ve))); 3232 3233 ve->base.execlists.queue_priority_hint = rq_prio(rq); 3234 WRITE_ONCE(ve->request, rq); 3235 3236 list_move_tail(&rq->sched.link, virtual_queue(ve)); 3237 3238 tasklet_schedule(&ve->base.execlists.tasklet); 3239 } 3240 3241 static struct ve_bond * 3242 virtual_find_bond(struct virtual_engine *ve, 3243 const struct intel_engine_cs *master) 3244 { 3245 int i; 3246 3247 for (i = 0; i < ve->num_bonds; i++) { 3248 if (ve->bonds[i].master == master) 3249 return &ve->bonds[i]; 3250 } 3251 3252 return NULL; 3253 } 3254 3255 static void 3256 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal) 3257 { 3258 struct virtual_engine *ve = to_virtual_engine(rq->engine); 3259 struct ve_bond *bond; 3260 3261 bond = virtual_find_bond(ve, to_request(signal)->engine); 3262 if (bond) { 3263 intel_engine_mask_t old, new, cmp; 3264 3265 cmp = READ_ONCE(rq->execution_mask); 3266 do { 3267 old = cmp; 3268 new = cmp & bond->sibling_mask; 3269 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old); 3270 } 3271 } 3272 3273 struct intel_context * 3274 intel_execlists_create_virtual(struct i915_gem_context *ctx, 3275 struct intel_engine_cs **siblings, 3276 unsigned int count) 3277 { 3278 struct virtual_engine *ve; 3279 unsigned int n; 3280 int err; 3281 3282 if (count == 0) 3283 return ERR_PTR(-EINVAL); 3284 3285 if (count == 1) 3286 return intel_context_create(ctx, siblings[0]); 3287 3288 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); 3289 if (!ve) 3290 return ERR_PTR(-ENOMEM); 3291 3292 ve->base.i915 = ctx->i915; 3293 ve->base.id = -1; 3294 ve->base.class = OTHER_CLASS; 3295 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 3296 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 3297 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 3298 3299 /* 3300 * The decision on whether to submit a request using semaphores 3301 * depends on the saturated state of the engine. We only compute 3302 * this during HW submission of the request, and we need for this 3303 * state to be globally applied to all requests being submitted 3304 * to this engine. Virtual engines encompass more than one physical 3305 * engine and so we cannot accurately tell in advance if one of those 3306 * engines is already saturated and so cannot afford to use a semaphore 3307 * and be pessimized in priority for doing so -- if we are the only 3308 * context using semaphores after all other clients have stopped, we 3309 * will be starved on the saturated system. Such a global switch for 3310 * semaphores is less than ideal, but alas is the current compromise. 3311 */ 3312 ve->base.saturated = ALL_ENGINES; 3313 3314 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 3315 3316 intel_engine_init_active(&ve->base, ENGINE_VIRTUAL); 3317 3318 intel_engine_init_execlists(&ve->base); 3319 3320 ve->base.cops = &virtual_context_ops; 3321 ve->base.request_alloc = execlists_request_alloc; 3322 3323 ve->base.schedule = i915_schedule; 3324 ve->base.submit_request = virtual_submit_request; 3325 ve->base.bond_execute = virtual_bond_execute; 3326 3327 INIT_LIST_HEAD(virtual_queue(ve)); 3328 ve->base.execlists.queue_priority_hint = INT_MIN; 3329 tasklet_init(&ve->base.execlists.tasklet, 3330 virtual_submission_tasklet, 3331 (unsigned long)ve); 3332 3333 intel_context_init(&ve->context, ctx, &ve->base); 3334 3335 for (n = 0; n < count; n++) { 3336 struct intel_engine_cs *sibling = siblings[n]; 3337 3338 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 3339 if (sibling->mask & ve->base.mask) { 3340 DRM_DEBUG("duplicate %s entry in load balancer\n", 3341 sibling->name); 3342 err = -EINVAL; 3343 goto err_put; 3344 } 3345 3346 /* 3347 * The virtual engine implementation is tightly coupled to 3348 * the execlists backend -- we push out request directly 3349 * into a tree inside each physical engine. We could support 3350 * layering if we handle cloning of the requests and 3351 * submitting a copy into each backend. 3352 */ 3353 if (sibling->execlists.tasklet.func != 3354 execlists_submission_tasklet) { 3355 err = -ENODEV; 3356 goto err_put; 3357 } 3358 3359 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); 3360 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); 3361 3362 ve->siblings[ve->num_siblings++] = sibling; 3363 ve->base.mask |= sibling->mask; 3364 3365 /* 3366 * All physical engines must be compatible for their emission 3367 * functions (as we build the instructions during request 3368 * construction and do not alter them before submission 3369 * on the physical engine). We use the engine class as a guide 3370 * here, although that could be refined. 3371 */ 3372 if (ve->base.class != OTHER_CLASS) { 3373 if (ve->base.class != sibling->class) { 3374 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 3375 sibling->class, ve->base.class); 3376 err = -EINVAL; 3377 goto err_put; 3378 } 3379 continue; 3380 } 3381 3382 ve->base.class = sibling->class; 3383 ve->base.uabi_class = sibling->uabi_class; 3384 snprintf(ve->base.name, sizeof(ve->base.name), 3385 "v%dx%d", ve->base.class, count); 3386 ve->base.context_size = sibling->context_size; 3387 3388 ve->base.emit_bb_start = sibling->emit_bb_start; 3389 ve->base.emit_flush = sibling->emit_flush; 3390 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; 3391 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; 3392 ve->base.emit_fini_breadcrumb_dw = 3393 sibling->emit_fini_breadcrumb_dw; 3394 } 3395 3396 return &ve->context; 3397 3398 err_put: 3399 intel_context_put(&ve->context); 3400 return ERR_PTR(err); 3401 } 3402 3403 struct intel_context * 3404 intel_execlists_clone_virtual(struct i915_gem_context *ctx, 3405 struct intel_engine_cs *src) 3406 { 3407 struct virtual_engine *se = to_virtual_engine(src); 3408 struct intel_context *dst; 3409 3410 dst = intel_execlists_create_virtual(ctx, 3411 se->siblings, 3412 se->num_siblings); 3413 if (IS_ERR(dst)) 3414 return dst; 3415 3416 if (se->num_bonds) { 3417 struct virtual_engine *de = to_virtual_engine(dst->engine); 3418 3419 de->bonds = kmemdup(se->bonds, 3420 sizeof(*se->bonds) * se->num_bonds, 3421 GFP_KERNEL); 3422 if (!de->bonds) { 3423 intel_context_put(dst); 3424 return ERR_PTR(-ENOMEM); 3425 } 3426 3427 de->num_bonds = se->num_bonds; 3428 } 3429 3430 return dst; 3431 } 3432 3433 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine, 3434 const struct intel_engine_cs *master, 3435 const struct intel_engine_cs *sibling) 3436 { 3437 struct virtual_engine *ve = to_virtual_engine(engine); 3438 struct ve_bond *bond; 3439 int n; 3440 3441 /* Sanity check the sibling is part of the virtual engine */ 3442 for (n = 0; n < ve->num_siblings; n++) 3443 if (sibling == ve->siblings[n]) 3444 break; 3445 if (n == ve->num_siblings) 3446 return -EINVAL; 3447 3448 bond = virtual_find_bond(ve, master); 3449 if (bond) { 3450 bond->sibling_mask |= sibling->mask; 3451 return 0; 3452 } 3453 3454 bond = krealloc(ve->bonds, 3455 sizeof(*bond) * (ve->num_bonds + 1), 3456 GFP_KERNEL); 3457 if (!bond) 3458 return -ENOMEM; 3459 3460 bond[ve->num_bonds].master = master; 3461 bond[ve->num_bonds].sibling_mask = sibling->mask; 3462 3463 ve->bonds = bond; 3464 ve->num_bonds++; 3465 3466 return 0; 3467 } 3468 3469 void intel_execlists_show_requests(struct intel_engine_cs *engine, 3470 struct drm_printer *m, 3471 void (*show_request)(struct drm_printer *m, 3472 struct i915_request *rq, 3473 const char *prefix), 3474 unsigned int max) 3475 { 3476 const struct intel_engine_execlists *execlists = &engine->execlists; 3477 struct i915_request *rq, *last; 3478 unsigned long flags; 3479 unsigned int count; 3480 struct rb_node *rb; 3481 3482 spin_lock_irqsave(&engine->active.lock, flags); 3483 3484 last = NULL; 3485 count = 0; 3486 list_for_each_entry(rq, &engine->active.requests, sched.link) { 3487 if (count++ < max - 1) 3488 show_request(m, rq, "\t\tE "); 3489 else 3490 last = rq; 3491 } 3492 if (last) { 3493 if (count > max) { 3494 drm_printf(m, 3495 "\t\t...skipping %d executing requests...\n", 3496 count - max); 3497 } 3498 show_request(m, last, "\t\tE "); 3499 } 3500 3501 last = NULL; 3502 count = 0; 3503 if (execlists->queue_priority_hint != INT_MIN) 3504 drm_printf(m, "\t\tQueue priority hint: %d\n", 3505 execlists->queue_priority_hint); 3506 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 3507 struct i915_priolist *p = rb_entry(rb, typeof(*p), node); 3508 int i; 3509 3510 priolist_for_each_request(rq, p, i) { 3511 if (count++ < max - 1) 3512 show_request(m, rq, "\t\tQ "); 3513 else 3514 last = rq; 3515 } 3516 } 3517 if (last) { 3518 if (count > max) { 3519 drm_printf(m, 3520 "\t\t...skipping %d queued requests...\n", 3521 count - max); 3522 } 3523 show_request(m, last, "\t\tQ "); 3524 } 3525 3526 last = NULL; 3527 count = 0; 3528 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { 3529 struct virtual_engine *ve = 3530 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 3531 struct i915_request *rq = READ_ONCE(ve->request); 3532 3533 if (rq) { 3534 if (count++ < max - 1) 3535 show_request(m, rq, "\t\tV "); 3536 else 3537 last = rq; 3538 } 3539 } 3540 if (last) { 3541 if (count > max) { 3542 drm_printf(m, 3543 "\t\t...skipping %d virtual requests...\n", 3544 count - max); 3545 } 3546 show_request(m, last, "\t\tV "); 3547 } 3548 3549 spin_unlock_irqrestore(&engine->active.lock, flags); 3550 } 3551 3552 void intel_lr_context_reset(struct intel_engine_cs *engine, 3553 struct intel_context *ce, 3554 u32 head, 3555 bool scrub) 3556 { 3557 /* 3558 * We want a simple context + ring to execute the breadcrumb update. 3559 * We cannot rely on the context being intact across the GPU hang, 3560 * so clear it and rebuild just what we need for the breadcrumb. 3561 * All pending requests for this context will be zapped, and any 3562 * future request will be after userspace has had the opportunity 3563 * to recreate its own state. 3564 */ 3565 if (scrub) { 3566 u32 *regs = ce->lrc_reg_state; 3567 3568 if (engine->pinned_default_state) { 3569 memcpy(regs, /* skip restoring the vanilla PPHWSP */ 3570 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, 3571 engine->context_size - PAGE_SIZE); 3572 } 3573 execlists_init_reg_state(regs, ce, engine, ce->ring); 3574 } 3575 3576 /* Rerun the request; its payload has been neutered (if guilty). */ 3577 ce->ring->head = head; 3578 intel_ring_update_space(ce->ring); 3579 3580 __execlists_update_reg_state(ce, engine); 3581 } 3582 3583 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3584 #include "selftest_lrc.c" 3585 #endif 3586