xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision 6cc23ed2)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include "gem/i915_gem_context.h"
137 
138 #include "i915_drv.h"
139 #include "i915_perf.h"
140 #include "i915_trace.h"
141 #include "i915_vgpu.h"
142 #include "intel_engine_pm.h"
143 #include "intel_gt.h"
144 #include "intel_gt_pm.h"
145 #include "intel_lrc_reg.h"
146 #include "intel_mocs.h"
147 #include "intel_reset.h"
148 #include "intel_workarounds.h"
149 
150 #define RING_EXECLIST_QFULL		(1 << 0x2)
151 #define RING_EXECLIST1_VALID		(1 << 0x3)
152 #define RING_EXECLIST0_VALID		(1 << 0x4)
153 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
154 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
155 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
156 
157 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
158 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
159 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
160 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
161 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
162 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
163 
164 #define GEN8_CTX_STATUS_COMPLETED_MASK \
165 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
166 
167 #define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
168 
169 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
170 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
171 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
172 #define GEN12_IDLE_CTX_ID		0x7FF
173 #define GEN12_CSB_CTX_VALID(csb_dw) \
174 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
175 
176 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
177 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
178 #define WA_TAIL_DWORDS 2
179 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
180 
181 struct virtual_engine {
182 	struct intel_engine_cs base;
183 	struct intel_context context;
184 
185 	/*
186 	 * We allow only a single request through the virtual engine at a time
187 	 * (each request in the timeline waits for the completion fence of
188 	 * the previous before being submitted). By restricting ourselves to
189 	 * only submitting a single request, each request is placed on to a
190 	 * physical to maximise load spreading (by virtue of the late greedy
191 	 * scheduling -- each real engine takes the next available request
192 	 * upon idling).
193 	 */
194 	struct i915_request *request;
195 
196 	/*
197 	 * We keep a rbtree of available virtual engines inside each physical
198 	 * engine, sorted by priority. Here we preallocate the nodes we need
199 	 * for the virtual engine, indexed by physical_engine->id.
200 	 */
201 	struct ve_node {
202 		struct rb_node rb;
203 		int prio;
204 	} nodes[I915_NUM_ENGINES];
205 
206 	/*
207 	 * Keep track of bonded pairs -- restrictions upon on our selection
208 	 * of physical engines any particular request may be submitted to.
209 	 * If we receive a submit-fence from a master engine, we will only
210 	 * use one of sibling_mask physical engines.
211 	 */
212 	struct ve_bond {
213 		const struct intel_engine_cs *master;
214 		intel_engine_mask_t sibling_mask;
215 	} *bonds;
216 	unsigned int num_bonds;
217 
218 	/* And finally, which physical engines this virtual engine maps onto. */
219 	unsigned int num_siblings;
220 	struct intel_engine_cs *siblings[0];
221 };
222 
223 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
224 {
225 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
226 	return container_of(engine, struct virtual_engine, base);
227 }
228 
229 static int __execlists_context_alloc(struct intel_context *ce,
230 				     struct intel_engine_cs *engine);
231 
232 static void execlists_init_reg_state(u32 *reg_state,
233 				     struct intel_context *ce,
234 				     struct intel_engine_cs *engine,
235 				     struct intel_ring *ring);
236 
237 static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
238 {
239 	return (i915_ggtt_offset(engine->status_page.vma) +
240 		I915_GEM_HWS_PREEMPT_ADDR);
241 }
242 
243 static inline void
244 ring_set_paused(const struct intel_engine_cs *engine, int state)
245 {
246 	/*
247 	 * We inspect HWS_PREEMPT with a semaphore inside
248 	 * engine->emit_fini_breadcrumb. If the dword is true,
249 	 * the ring is paused as the semaphore will busywait
250 	 * until the dword is false.
251 	 */
252 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
253 	if (state)
254 		wmb();
255 }
256 
257 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
258 {
259 	return rb_entry(rb, struct i915_priolist, node);
260 }
261 
262 static inline int rq_prio(const struct i915_request *rq)
263 {
264 	return rq->sched.attr.priority;
265 }
266 
267 static int effective_prio(const struct i915_request *rq)
268 {
269 	int prio = rq_prio(rq);
270 
271 	/*
272 	 * If this request is special and must not be interrupted at any
273 	 * cost, so be it. Note we are only checking the most recent request
274 	 * in the context and so may be masking an earlier vip request. It
275 	 * is hoped that under the conditions where nopreempt is used, this
276 	 * will not matter (i.e. all requests to that context will be
277 	 * nopreempt for as long as desired).
278 	 */
279 	if (i915_request_has_nopreempt(rq))
280 		prio = I915_PRIORITY_UNPREEMPTABLE;
281 
282 	/*
283 	 * On unwinding the active request, we give it a priority bump
284 	 * if it has completed waiting on any semaphore. If we know that
285 	 * the request has already started, we can prevent an unwanted
286 	 * preempt-to-idle cycle by taking that into account now.
287 	 */
288 	if (__i915_request_has_started(rq))
289 		prio |= I915_PRIORITY_NOSEMAPHORE;
290 
291 	/* Restrict mere WAIT boosts from triggering preemption */
292 	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
293 	return prio | __NO_PREEMPTION;
294 }
295 
296 static int queue_prio(const struct intel_engine_execlists *execlists)
297 {
298 	struct i915_priolist *p;
299 	struct rb_node *rb;
300 
301 	rb = rb_first_cached(&execlists->queue);
302 	if (!rb)
303 		return INT_MIN;
304 
305 	/*
306 	 * As the priolist[] are inverted, with the highest priority in [0],
307 	 * we have to flip the index value to become priority.
308 	 */
309 	p = to_priolist(rb);
310 	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
311 }
312 
313 static inline bool need_preempt(const struct intel_engine_cs *engine,
314 				const struct i915_request *rq,
315 				struct rb_node *rb)
316 {
317 	int last_prio;
318 
319 	if (!intel_engine_has_semaphores(engine))
320 		return false;
321 
322 	/*
323 	 * Check if the current priority hint merits a preemption attempt.
324 	 *
325 	 * We record the highest value priority we saw during rescheduling
326 	 * prior to this dequeue, therefore we know that if it is strictly
327 	 * less than the current tail of ESLP[0], we do not need to force
328 	 * a preempt-to-idle cycle.
329 	 *
330 	 * However, the priority hint is a mere hint that we may need to
331 	 * preempt. If that hint is stale or we may be trying to preempt
332 	 * ourselves, ignore the request.
333 	 */
334 	last_prio = effective_prio(rq);
335 	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
336 					 last_prio))
337 		return false;
338 
339 	/*
340 	 * Check against the first request in ELSP[1], it will, thanks to the
341 	 * power of PI, be the highest priority of that context.
342 	 */
343 	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
344 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
345 		return true;
346 
347 	if (rb) {
348 		struct virtual_engine *ve =
349 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
350 		bool preempt = false;
351 
352 		if (engine == ve->siblings[0]) { /* only preempt one sibling */
353 			struct i915_request *next;
354 
355 			rcu_read_lock();
356 			next = READ_ONCE(ve->request);
357 			if (next)
358 				preempt = rq_prio(next) > last_prio;
359 			rcu_read_unlock();
360 		}
361 
362 		if (preempt)
363 			return preempt;
364 	}
365 
366 	/*
367 	 * If the inflight context did not trigger the preemption, then maybe
368 	 * it was the set of queued requests? Pick the highest priority in
369 	 * the queue (the first active priolist) and see if it deserves to be
370 	 * running instead of ELSP[0].
371 	 *
372 	 * The highest priority request in the queue can not be either
373 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
374 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
375 	 */
376 	return queue_prio(&engine->execlists) > last_prio;
377 }
378 
379 __maybe_unused static inline bool
380 assert_priority_queue(const struct i915_request *prev,
381 		      const struct i915_request *next)
382 {
383 	/*
384 	 * Without preemption, the prev may refer to the still active element
385 	 * which we refuse to let go.
386 	 *
387 	 * Even with preemption, there are times when we think it is better not
388 	 * to preempt and leave an ostensibly lower priority request in flight.
389 	 */
390 	if (i915_request_is_active(prev))
391 		return true;
392 
393 	return rq_prio(prev) >= rq_prio(next);
394 }
395 
396 /*
397  * The context descriptor encodes various attributes of a context,
398  * including its GTT address and some flags. Because it's fairly
399  * expensive to calculate, we'll just do it once and cache the result,
400  * which remains valid until the context is unpinned.
401  *
402  * This is what a descriptor looks like, from LSB to MSB::
403  *
404  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
405  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
406  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
407  *      bits 53-54:    mbz, reserved for use by hardware
408  *      bits 55-63:    group ID, currently unused and set to 0
409  *
410  * Starting from Gen11, the upper dword of the descriptor has a new format:
411  *
412  *      bits 32-36:    reserved
413  *      bits 37-47:    SW context ID
414  *      bits 48:53:    engine instance
415  *      bit 54:        mbz, reserved for use by hardware
416  *      bits 55-60:    SW counter
417  *      bits 61-63:    engine class
418  *
419  * engine info, SW context ID and SW counter need to form a unique number
420  * (Context ID) per lrc.
421  */
422 static u64
423 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
424 {
425 	struct i915_gem_context *ctx = ce->gem_context;
426 	u64 desc;
427 
428 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
429 	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
430 
431 	desc = INTEL_LEGACY_32B_CONTEXT;
432 	if (i915_vm_is_4lvl(ce->vm))
433 		desc = INTEL_LEGACY_64B_CONTEXT;
434 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
435 
436 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
437 	if (IS_GEN(engine->i915, 8))
438 		desc |= GEN8_CTX_L3LLC_COHERENT;
439 
440 	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
441 								/* bits 12-31 */
442 	/*
443 	 * The following 32bits are copied into the OA reports (dword 2).
444 	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
445 	 * anything below.
446 	 */
447 	if (INTEL_GEN(engine->i915) >= 11) {
448 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
449 		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
450 								/* bits 37-47 */
451 
452 		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
453 								/* bits 48-53 */
454 
455 		/* TODO: decide what to do with SW counter (bits 55-60) */
456 
457 		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
458 								/* bits 61-63 */
459 	} else {
460 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
461 		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
462 	}
463 
464 	return desc;
465 }
466 
467 static void unwind_wa_tail(struct i915_request *rq)
468 {
469 	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
470 	assert_ring_tail_valid(rq->ring, rq->tail);
471 }
472 
473 static struct i915_request *
474 __unwind_incomplete_requests(struct intel_engine_cs *engine)
475 {
476 	struct i915_request *rq, *rn, *active = NULL;
477 	struct list_head *uninitialized_var(pl);
478 	int prio = I915_PRIORITY_INVALID;
479 
480 	lockdep_assert_held(&engine->active.lock);
481 
482 	list_for_each_entry_safe_reverse(rq, rn,
483 					 &engine->active.requests,
484 					 sched.link) {
485 		struct intel_engine_cs *owner;
486 
487 		if (i915_request_completed(rq))
488 			continue; /* XXX */
489 
490 		__i915_request_unsubmit(rq);
491 		unwind_wa_tail(rq);
492 
493 		/*
494 		 * Push the request back into the queue for later resubmission.
495 		 * If this request is not native to this physical engine (i.e.
496 		 * it came from a virtual source), push it back onto the virtual
497 		 * engine so that it can be moved across onto another physical
498 		 * engine as load dictates.
499 		 */
500 		owner = rq->hw_context->engine;
501 		if (likely(owner == engine)) {
502 			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
503 			if (rq_prio(rq) != prio) {
504 				prio = rq_prio(rq);
505 				pl = i915_sched_lookup_priolist(engine, prio);
506 			}
507 			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
508 
509 			list_move(&rq->sched.link, pl);
510 			active = rq;
511 		} else {
512 			/*
513 			 * Decouple the virtual breadcrumb before moving it
514 			 * back to the virtual engine -- we don't want the
515 			 * request to complete in the background and try
516 			 * and cancel the breadcrumb on the virtual engine
517 			 * (instead of the old engine where it is linked)!
518 			 */
519 			if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
520 				     &rq->fence.flags)) {
521 				spin_lock(&rq->lock);
522 				i915_request_cancel_breadcrumb(rq);
523 				spin_unlock(&rq->lock);
524 			}
525 			rq->engine = owner;
526 			owner->submit_request(rq);
527 			active = NULL;
528 		}
529 	}
530 
531 	return active;
532 }
533 
534 struct i915_request *
535 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
536 {
537 	struct intel_engine_cs *engine =
538 		container_of(execlists, typeof(*engine), execlists);
539 
540 	return __unwind_incomplete_requests(engine);
541 }
542 
543 static inline void
544 execlists_context_status_change(struct i915_request *rq, unsigned long status)
545 {
546 	/*
547 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
548 	 * The compiler should eliminate this function as dead-code.
549 	 */
550 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
551 		return;
552 
553 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
554 				   status, rq);
555 }
556 
557 static inline struct intel_engine_cs *
558 __execlists_schedule_in(struct i915_request *rq)
559 {
560 	struct intel_engine_cs * const engine = rq->engine;
561 	struct intel_context * const ce = rq->hw_context;
562 
563 	intel_context_get(ce);
564 
565 	intel_gt_pm_get(engine->gt);
566 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
567 	intel_engine_context_in(engine);
568 
569 	return engine;
570 }
571 
572 static inline struct i915_request *
573 execlists_schedule_in(struct i915_request *rq, int idx)
574 {
575 	struct intel_context * const ce = rq->hw_context;
576 	struct intel_engine_cs *old;
577 
578 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
579 	trace_i915_request_in(rq, idx);
580 
581 	old = READ_ONCE(ce->inflight);
582 	do {
583 		if (!old) {
584 			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
585 			break;
586 		}
587 	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
588 
589 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
590 	return i915_request_get(rq);
591 }
592 
593 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
594 {
595 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
596 	struct i915_request *next = READ_ONCE(ve->request);
597 
598 	if (next && next->execution_mask & ~rq->execution_mask)
599 		tasklet_schedule(&ve->base.execlists.tasklet);
600 }
601 
602 static inline void
603 __execlists_schedule_out(struct i915_request *rq,
604 			 struct intel_engine_cs * const engine)
605 {
606 	struct intel_context * const ce = rq->hw_context;
607 
608 	intel_engine_context_out(engine);
609 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
610 	intel_gt_pm_put(engine->gt);
611 
612 	/*
613 	 * If this is part of a virtual engine, its next request may
614 	 * have been blocked waiting for access to the active context.
615 	 * We have to kick all the siblings again in case we need to
616 	 * switch (e.g. the next request is not runnable on this
617 	 * engine). Hopefully, we will already have submitted the next
618 	 * request before the tasklet runs and do not need to rebuild
619 	 * each virtual tree and kick everyone again.
620 	 */
621 	if (ce->engine != engine)
622 		kick_siblings(rq, ce);
623 
624 	intel_context_put(ce);
625 }
626 
627 static inline void
628 execlists_schedule_out(struct i915_request *rq)
629 {
630 	struct intel_context * const ce = rq->hw_context;
631 	struct intel_engine_cs *cur, *old;
632 
633 	trace_i915_request_out(rq);
634 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
635 
636 	old = READ_ONCE(ce->inflight);
637 	do
638 		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
639 	while (!try_cmpxchg(&ce->inflight, &old, cur));
640 	if (!cur)
641 		__execlists_schedule_out(rq, old);
642 
643 	i915_request_put(rq);
644 }
645 
646 static u64 execlists_update_context(const struct i915_request *rq)
647 {
648 	struct intel_context *ce = rq->hw_context;
649 	u64 desc;
650 
651 	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
652 		intel_ring_set_tail(rq->ring, rq->tail);
653 
654 	/*
655 	 * Make sure the context image is complete before we submit it to HW.
656 	 *
657 	 * Ostensibly, writes (including the WCB) should be flushed prior to
658 	 * an uncached write such as our mmio register access, the empirical
659 	 * evidence (esp. on Braswell) suggests that the WC write into memory
660 	 * may not be visible to the HW prior to the completion of the UC
661 	 * register write and that we may begin execution from the context
662 	 * before its image is complete leading to invalid PD chasing.
663 	 *
664 	 * Furthermore, Braswell, at least, wants a full mb to be sure that
665 	 * the writes are coherent in memory (visible to the GPU) prior to
666 	 * execution, and not just visible to other CPUs (as is the result of
667 	 * wmb).
668 	 */
669 	mb();
670 
671 	desc = ce->lrc_desc;
672 	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
673 
674 	return desc;
675 }
676 
677 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
678 {
679 	if (execlists->ctrl_reg) {
680 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
681 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
682 	} else {
683 		writel(upper_32_bits(desc), execlists->submit_reg);
684 		writel(lower_32_bits(desc), execlists->submit_reg);
685 	}
686 }
687 
688 static __maybe_unused void
689 trace_ports(const struct intel_engine_execlists *execlists,
690 	    const char *msg,
691 	    struct i915_request * const *ports)
692 {
693 	const struct intel_engine_cs *engine =
694 		container_of(execlists, typeof(*engine), execlists);
695 
696 	GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
697 		  engine->name, msg,
698 		  ports[0]->fence.context,
699 		  ports[0]->fence.seqno,
700 		  i915_request_completed(ports[0]) ? "!" :
701 		  i915_request_started(ports[0]) ? "*" :
702 		  "",
703 		  ports[1] ? ports[1]->fence.context : 0,
704 		  ports[1] ? ports[1]->fence.seqno : 0);
705 }
706 
707 static __maybe_unused bool
708 assert_pending_valid(const struct intel_engine_execlists *execlists,
709 		     const char *msg)
710 {
711 	struct i915_request * const *port, *rq;
712 	struct intel_context *ce = NULL;
713 
714 	trace_ports(execlists, msg, execlists->pending);
715 
716 	if (!execlists->pending[0])
717 		return false;
718 
719 	if (execlists->pending[execlists_num_ports(execlists)])
720 		return false;
721 
722 	for (port = execlists->pending; (rq = *port); port++) {
723 		if (ce == rq->hw_context)
724 			return false;
725 
726 		ce = rq->hw_context;
727 		if (i915_request_completed(rq))
728 			continue;
729 
730 		if (i915_active_is_idle(&ce->active))
731 			return false;
732 
733 		if (!i915_vma_is_pinned(ce->state))
734 			return false;
735 	}
736 
737 	return ce;
738 }
739 
740 static void execlists_submit_ports(struct intel_engine_cs *engine)
741 {
742 	struct intel_engine_execlists *execlists = &engine->execlists;
743 	unsigned int n;
744 
745 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
746 
747 	/*
748 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
749 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
750 	 * not be relinquished until the device is idle (see
751 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
752 	 * that all ELSP are drained i.e. we have processed the CSB,
753 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
754 	 */
755 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
756 
757 	/*
758 	 * ELSQ note: the submit queue is not cleared after being submitted
759 	 * to the HW so we need to make sure we always clean it up. This is
760 	 * currently ensured by the fact that we always write the same number
761 	 * of elsq entries, keep this in mind before changing the loop below.
762 	 */
763 	for (n = execlists_num_ports(execlists); n--; ) {
764 		struct i915_request *rq = execlists->pending[n];
765 
766 		write_desc(execlists,
767 			   rq ? execlists_update_context(rq) : 0,
768 			   n);
769 	}
770 
771 	/* we need to manually load the submit queue */
772 	if (execlists->ctrl_reg)
773 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
774 }
775 
776 static bool ctx_single_port_submission(const struct intel_context *ce)
777 {
778 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
779 		i915_gem_context_force_single_submission(ce->gem_context));
780 }
781 
782 static bool can_merge_ctx(const struct intel_context *prev,
783 			  const struct intel_context *next)
784 {
785 	if (prev != next)
786 		return false;
787 
788 	if (ctx_single_port_submission(prev))
789 		return false;
790 
791 	return true;
792 }
793 
794 static bool can_merge_rq(const struct i915_request *prev,
795 			 const struct i915_request *next)
796 {
797 	GEM_BUG_ON(prev == next);
798 	GEM_BUG_ON(!assert_priority_queue(prev, next));
799 
800 	if (!can_merge_ctx(prev->hw_context, next->hw_context))
801 		return false;
802 
803 	return true;
804 }
805 
806 static void virtual_update_register_offsets(u32 *regs,
807 					    struct intel_engine_cs *engine)
808 {
809 	u32 base = engine->mmio_base;
810 
811 	/* Must match execlists_init_reg_state()! */
812 
813 	regs[CTX_CONTEXT_CONTROL] =
814 		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
815 	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
816 	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
817 	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
818 	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
819 
820 	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
821 	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
822 	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
823 	regs[CTX_SECOND_BB_HEAD_U] =
824 		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
825 	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
826 	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
827 
828 	regs[CTX_CTX_TIMESTAMP] =
829 		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
830 	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
831 	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
832 	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
833 	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
834 	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
835 	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
836 	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
837 	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
838 
839 	if (engine->class == RENDER_CLASS) {
840 		regs[CTX_RCS_INDIRECT_CTX] =
841 			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
842 		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
843 			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
844 		regs[CTX_BB_PER_CTX_PTR] =
845 			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
846 
847 		regs[CTX_R_PWR_CLK_STATE] =
848 			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
849 	}
850 }
851 
852 static bool virtual_matches(const struct virtual_engine *ve,
853 			    const struct i915_request *rq,
854 			    const struct intel_engine_cs *engine)
855 {
856 	const struct intel_engine_cs *inflight;
857 
858 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
859 		return false;
860 
861 	/*
862 	 * We track when the HW has completed saving the context image
863 	 * (i.e. when we have seen the final CS event switching out of
864 	 * the context) and must not overwrite the context image before
865 	 * then. This restricts us to only using the active engine
866 	 * while the previous virtualized request is inflight (so
867 	 * we reuse the register offsets). This is a very small
868 	 * hystersis on the greedy seelction algorithm.
869 	 */
870 	inflight = intel_context_inflight(&ve->context);
871 	if (inflight && inflight != engine)
872 		return false;
873 
874 	return true;
875 }
876 
877 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
878 				     struct intel_engine_cs *engine)
879 {
880 	struct intel_engine_cs *old = ve->siblings[0];
881 
882 	/* All unattached (rq->engine == old) must already be completed */
883 
884 	spin_lock(&old->breadcrumbs.irq_lock);
885 	if (!list_empty(&ve->context.signal_link)) {
886 		list_move_tail(&ve->context.signal_link,
887 			       &engine->breadcrumbs.signalers);
888 		intel_engine_queue_breadcrumbs(engine);
889 	}
890 	spin_unlock(&old->breadcrumbs.irq_lock);
891 }
892 
893 static struct i915_request *
894 last_active(const struct intel_engine_execlists *execlists)
895 {
896 	struct i915_request * const *last = execlists->active;
897 
898 	while (*last && i915_request_completed(*last))
899 		last++;
900 
901 	return *last;
902 }
903 
904 static void defer_request(struct i915_request *rq, struct list_head * const pl)
905 {
906 	LIST_HEAD(list);
907 
908 	/*
909 	 * We want to move the interrupted request to the back of
910 	 * the round-robin list (i.e. its priority level), but
911 	 * in doing so, we must then move all requests that were in
912 	 * flight and were waiting for the interrupted request to
913 	 * be run after it again.
914 	 */
915 	do {
916 		struct i915_dependency *p;
917 
918 		GEM_BUG_ON(i915_request_is_active(rq));
919 		list_move_tail(&rq->sched.link, pl);
920 
921 		list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
922 			struct i915_request *w =
923 				container_of(p->waiter, typeof(*w), sched);
924 
925 			/* Leave semaphores spinning on the other engines */
926 			if (w->engine != rq->engine)
927 				continue;
928 
929 			/* No waiter should start before its signaler */
930 			GEM_BUG_ON(i915_request_started(w) &&
931 				   !i915_request_completed(rq));
932 
933 			GEM_BUG_ON(i915_request_is_active(w));
934 			if (list_empty(&w->sched.link))
935 				continue; /* Not yet submitted; unready */
936 
937 			if (rq_prio(w) < rq_prio(rq))
938 				continue;
939 
940 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
941 			list_move_tail(&w->sched.link, &list);
942 		}
943 
944 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
945 	} while (rq);
946 }
947 
948 static void defer_active(struct intel_engine_cs *engine)
949 {
950 	struct i915_request *rq;
951 
952 	rq = __unwind_incomplete_requests(engine);
953 	if (!rq)
954 		return;
955 
956 	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
957 }
958 
959 static bool
960 need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
961 {
962 	int hint;
963 
964 	if (!intel_engine_has_semaphores(engine))
965 		return false;
966 
967 	if (list_is_last(&rq->sched.link, &engine->active.requests))
968 		return false;
969 
970 	hint = max(rq_prio(list_next_entry(rq, sched.link)),
971 		   engine->execlists.queue_priority_hint);
972 
973 	return hint >= effective_prio(rq);
974 }
975 
976 static int
977 switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
978 {
979 	if (list_is_last(&rq->sched.link, &engine->active.requests))
980 		return INT_MIN;
981 
982 	return rq_prio(list_next_entry(rq, sched.link));
983 }
984 
985 static bool
986 enable_timeslice(const struct intel_engine_execlists *execlists)
987 {
988 	const struct i915_request *rq = *execlists->active;
989 
990 	if (i915_request_completed(rq))
991 		return false;
992 
993 	return execlists->switch_priority_hint >= effective_prio(rq);
994 }
995 
996 static void record_preemption(struct intel_engine_execlists *execlists)
997 {
998 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
999 }
1000 
1001 static void execlists_dequeue(struct intel_engine_cs *engine)
1002 {
1003 	struct intel_engine_execlists * const execlists = &engine->execlists;
1004 	struct i915_request **port = execlists->pending;
1005 	struct i915_request ** const last_port = port + execlists->port_mask;
1006 	struct i915_request *last;
1007 	struct rb_node *rb;
1008 	bool submit = false;
1009 
1010 	/*
1011 	 * Hardware submission is through 2 ports. Conceptually each port
1012 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1013 	 * static for a context, and unique to each, so we only execute
1014 	 * requests belonging to a single context from each ring. RING_HEAD
1015 	 * is maintained by the CS in the context image, it marks the place
1016 	 * where it got up to last time, and through RING_TAIL we tell the CS
1017 	 * where we want to execute up to this time.
1018 	 *
1019 	 * In this list the requests are in order of execution. Consecutive
1020 	 * requests from the same context are adjacent in the ringbuffer. We
1021 	 * can combine these requests into a single RING_TAIL update:
1022 	 *
1023 	 *              RING_HEAD...req1...req2
1024 	 *                                    ^- RING_TAIL
1025 	 * since to execute req2 the CS must first execute req1.
1026 	 *
1027 	 * Our goal then is to point each port to the end of a consecutive
1028 	 * sequence of requests as being the most optimal (fewest wake ups
1029 	 * and context switches) submission.
1030 	 */
1031 
1032 	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
1033 		struct virtual_engine *ve =
1034 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1035 		struct i915_request *rq = READ_ONCE(ve->request);
1036 
1037 		if (!rq) { /* lazily cleanup after another engine handled rq */
1038 			rb_erase_cached(rb, &execlists->virtual);
1039 			RB_CLEAR_NODE(rb);
1040 			rb = rb_first_cached(&execlists->virtual);
1041 			continue;
1042 		}
1043 
1044 		if (!virtual_matches(ve, rq, engine)) {
1045 			rb = rb_next(rb);
1046 			continue;
1047 		}
1048 
1049 		break;
1050 	}
1051 
1052 	/*
1053 	 * If the queue is higher priority than the last
1054 	 * request in the currently active context, submit afresh.
1055 	 * We will resubmit again afterwards in case we need to split
1056 	 * the active context to interject the preemption request,
1057 	 * i.e. we will retrigger preemption following the ack in case
1058 	 * of trouble.
1059 	 */
1060 	last = last_active(execlists);
1061 	if (last) {
1062 		if (need_preempt(engine, last, rb)) {
1063 			GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
1064 				  engine->name,
1065 				  last->fence.context,
1066 				  last->fence.seqno,
1067 				  last->sched.attr.priority,
1068 				  execlists->queue_priority_hint);
1069 			record_preemption(execlists);
1070 
1071 			/*
1072 			 * Don't let the RING_HEAD advance past the breadcrumb
1073 			 * as we unwind (and until we resubmit) so that we do
1074 			 * not accidentally tell it to go backwards.
1075 			 */
1076 			ring_set_paused(engine, 1);
1077 
1078 			/*
1079 			 * Note that we have not stopped the GPU at this point,
1080 			 * so we are unwinding the incomplete requests as they
1081 			 * remain inflight and so by the time we do complete
1082 			 * the preemption, some of the unwound requests may
1083 			 * complete!
1084 			 */
1085 			__unwind_incomplete_requests(engine);
1086 
1087 			/*
1088 			 * If we need to return to the preempted context, we
1089 			 * need to skip the lite-restore and force it to
1090 			 * reload the RING_TAIL. Otherwise, the HW has a
1091 			 * tendency to ignore us rewinding the TAIL to the
1092 			 * end of an earlier request.
1093 			 */
1094 			last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
1095 			last = NULL;
1096 		} else if (need_timeslice(engine, last) &&
1097 			   !timer_pending(&engine->execlists.timer)) {
1098 			GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
1099 				  engine->name,
1100 				  last->fence.context,
1101 				  last->fence.seqno,
1102 				  last->sched.attr.priority,
1103 				  execlists->queue_priority_hint);
1104 
1105 			ring_set_paused(engine, 1);
1106 			defer_active(engine);
1107 
1108 			/*
1109 			 * Unlike for preemption, if we rewind and continue
1110 			 * executing the same context as previously active,
1111 			 * the order of execution will remain the same and
1112 			 * the tail will only advance. We do not need to
1113 			 * force a full context restore, as a lite-restore
1114 			 * is sufficient to resample the monotonic TAIL.
1115 			 *
1116 			 * If we switch to any other context, similarly we
1117 			 * will not rewind TAIL of current context, and
1118 			 * normal save/restore will preserve state and allow
1119 			 * us to later continue executing the same request.
1120 			 */
1121 			last = NULL;
1122 		} else {
1123 			/*
1124 			 * Otherwise if we already have a request pending
1125 			 * for execution after the current one, we can
1126 			 * just wait until the next CS event before
1127 			 * queuing more. In either case we will force a
1128 			 * lite-restore preemption event, but if we wait
1129 			 * we hopefully coalesce several updates into a single
1130 			 * submission.
1131 			 */
1132 			if (!list_is_last(&last->sched.link,
1133 					  &engine->active.requests))
1134 				return;
1135 
1136 			/*
1137 			 * WaIdleLiteRestore:bdw,skl
1138 			 * Apply the wa NOOPs to prevent
1139 			 * ring:HEAD == rq:TAIL as we resubmit the
1140 			 * request. See gen8_emit_fini_breadcrumb() for
1141 			 * where we prepare the padding after the
1142 			 * end of the request.
1143 			 */
1144 			last->tail = last->wa_tail;
1145 		}
1146 	}
1147 
1148 	while (rb) { /* XXX virtual is always taking precedence */
1149 		struct virtual_engine *ve =
1150 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1151 		struct i915_request *rq;
1152 
1153 		spin_lock(&ve->base.active.lock);
1154 
1155 		rq = ve->request;
1156 		if (unlikely(!rq)) { /* lost the race to a sibling */
1157 			spin_unlock(&ve->base.active.lock);
1158 			rb_erase_cached(rb, &execlists->virtual);
1159 			RB_CLEAR_NODE(rb);
1160 			rb = rb_first_cached(&execlists->virtual);
1161 			continue;
1162 		}
1163 
1164 		GEM_BUG_ON(rq != ve->request);
1165 		GEM_BUG_ON(rq->engine != &ve->base);
1166 		GEM_BUG_ON(rq->hw_context != &ve->context);
1167 
1168 		if (rq_prio(rq) >= queue_prio(execlists)) {
1169 			if (!virtual_matches(ve, rq, engine)) {
1170 				spin_unlock(&ve->base.active.lock);
1171 				rb = rb_next(rb);
1172 				continue;
1173 			}
1174 
1175 			if (i915_request_completed(rq)) {
1176 				ve->request = NULL;
1177 				ve->base.execlists.queue_priority_hint = INT_MIN;
1178 				rb_erase_cached(rb, &execlists->virtual);
1179 				RB_CLEAR_NODE(rb);
1180 
1181 				rq->engine = engine;
1182 				__i915_request_submit(rq);
1183 
1184 				spin_unlock(&ve->base.active.lock);
1185 
1186 				rb = rb_first_cached(&execlists->virtual);
1187 				continue;
1188 			}
1189 
1190 			if (last && !can_merge_rq(last, rq)) {
1191 				spin_unlock(&ve->base.active.lock);
1192 				return; /* leave this for another */
1193 			}
1194 
1195 			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
1196 				  engine->name,
1197 				  rq->fence.context,
1198 				  rq->fence.seqno,
1199 				  i915_request_completed(rq) ? "!" :
1200 				  i915_request_started(rq) ? "*" :
1201 				  "",
1202 				  yesno(engine != ve->siblings[0]));
1203 
1204 			ve->request = NULL;
1205 			ve->base.execlists.queue_priority_hint = INT_MIN;
1206 			rb_erase_cached(rb, &execlists->virtual);
1207 			RB_CLEAR_NODE(rb);
1208 
1209 			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1210 			rq->engine = engine;
1211 
1212 			if (engine != ve->siblings[0]) {
1213 				u32 *regs = ve->context.lrc_reg_state;
1214 				unsigned int n;
1215 
1216 				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1217 				virtual_update_register_offsets(regs, engine);
1218 
1219 				if (!list_empty(&ve->context.signals))
1220 					virtual_xfer_breadcrumbs(ve, engine);
1221 
1222 				/*
1223 				 * Move the bound engine to the top of the list
1224 				 * for future execution. We then kick this
1225 				 * tasklet first before checking others, so that
1226 				 * we preferentially reuse this set of bound
1227 				 * registers.
1228 				 */
1229 				for (n = 1; n < ve->num_siblings; n++) {
1230 					if (ve->siblings[n] == engine) {
1231 						swap(ve->siblings[n],
1232 						     ve->siblings[0]);
1233 						break;
1234 					}
1235 				}
1236 
1237 				GEM_BUG_ON(ve->siblings[0] != engine);
1238 			}
1239 
1240 			__i915_request_submit(rq);
1241 			if (!i915_request_completed(rq)) {
1242 				submit = true;
1243 				last = rq;
1244 			}
1245 		}
1246 
1247 		spin_unlock(&ve->base.active.lock);
1248 		break;
1249 	}
1250 
1251 	while ((rb = rb_first_cached(&execlists->queue))) {
1252 		struct i915_priolist *p = to_priolist(rb);
1253 		struct i915_request *rq, *rn;
1254 		int i;
1255 
1256 		priolist_for_each_request_consume(rq, rn, p, i) {
1257 			if (i915_request_completed(rq))
1258 				goto skip;
1259 
1260 			/*
1261 			 * Can we combine this request with the current port?
1262 			 * It has to be the same context/ringbuffer and not
1263 			 * have any exceptions (e.g. GVT saying never to
1264 			 * combine contexts).
1265 			 *
1266 			 * If we can combine the requests, we can execute both
1267 			 * by updating the RING_TAIL to point to the end of the
1268 			 * second request, and so we never need to tell the
1269 			 * hardware about the first.
1270 			 */
1271 			if (last && !can_merge_rq(last, rq)) {
1272 				/*
1273 				 * If we are on the second port and cannot
1274 				 * combine this request with the last, then we
1275 				 * are done.
1276 				 */
1277 				if (port == last_port)
1278 					goto done;
1279 
1280 				/*
1281 				 * We must not populate both ELSP[] with the
1282 				 * same LRCA, i.e. we must submit 2 different
1283 				 * contexts if we submit 2 ELSP.
1284 				 */
1285 				if (last->hw_context == rq->hw_context)
1286 					goto done;
1287 
1288 				/*
1289 				 * If GVT overrides us we only ever submit
1290 				 * port[0], leaving port[1] empty. Note that we
1291 				 * also have to be careful that we don't queue
1292 				 * the same context (even though a different
1293 				 * request) to the second port.
1294 				 */
1295 				if (ctx_single_port_submission(last->hw_context) ||
1296 				    ctx_single_port_submission(rq->hw_context))
1297 					goto done;
1298 
1299 				*port = execlists_schedule_in(last, port - execlists->pending);
1300 				port++;
1301 			}
1302 
1303 			last = rq;
1304 			submit = true;
1305 skip:
1306 			__i915_request_submit(rq);
1307 		}
1308 
1309 		rb_erase_cached(&p->node, &execlists->queue);
1310 		i915_priolist_free(p);
1311 	}
1312 
1313 done:
1314 	/*
1315 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1316 	 *
1317 	 * We choose the priority hint such that if we add a request of greater
1318 	 * priority than this, we kick the submission tasklet to decide on
1319 	 * the right order of submitting the requests to hardware. We must
1320 	 * also be prepared to reorder requests as they are in-flight on the
1321 	 * HW. We derive the priority hint then as the first "hole" in
1322 	 * the HW submission ports and if there are no available slots,
1323 	 * the priority of the lowest executing request, i.e. last.
1324 	 *
1325 	 * When we do receive a higher priority request ready to run from the
1326 	 * user, see queue_request(), the priority hint is bumped to that
1327 	 * request triggering preemption on the next dequeue (or subsequent
1328 	 * interrupt for secondary ports).
1329 	 */
1330 	execlists->queue_priority_hint = queue_prio(execlists);
1331 	GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
1332 		  engine->name, execlists->queue_priority_hint,
1333 		  yesno(submit));
1334 
1335 	if (submit) {
1336 		*port = execlists_schedule_in(last, port - execlists->pending);
1337 		memset(port + 1, 0, (last_port - port) * sizeof(*port));
1338 		execlists->switch_priority_hint =
1339 			switch_prio(engine, *execlists->pending);
1340 		execlists_submit_ports(engine);
1341 	} else {
1342 		ring_set_paused(engine, 0);
1343 	}
1344 }
1345 
1346 static void
1347 cancel_port_requests(struct intel_engine_execlists * const execlists)
1348 {
1349 	struct i915_request * const *port, *rq;
1350 
1351 	for (port = execlists->pending; (rq = *port); port++)
1352 		execlists_schedule_out(rq);
1353 	memset(execlists->pending, 0, sizeof(execlists->pending));
1354 
1355 	for (port = execlists->active; (rq = *port); port++)
1356 		execlists_schedule_out(rq);
1357 	execlists->active =
1358 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1359 }
1360 
1361 static inline void
1362 invalidate_csb_entries(const u32 *first, const u32 *last)
1363 {
1364 	clflush((void *)first);
1365 	clflush((void *)last);
1366 }
1367 
1368 static inline bool
1369 reset_in_progress(const struct intel_engine_execlists *execlists)
1370 {
1371 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1372 }
1373 
1374 enum csb_step {
1375 	CSB_NOP,
1376 	CSB_PROMOTE,
1377 	CSB_PREEMPT,
1378 	CSB_COMPLETE,
1379 };
1380 
1381 /*
1382  * Starting with Gen12, the status has a new format:
1383  *
1384  *     bit  0:     switched to new queue
1385  *     bit  1:     reserved
1386  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1387  *                 switch detail is set to "wait on semaphore"
1388  *     bits 3-5:   engine class
1389  *     bits 6-11:  engine instance
1390  *     bits 12-14: reserved
1391  *     bits 15-25: sw context id of the lrc the GT switched to
1392  *     bits 26-31: sw counter of the lrc the GT switched to
1393  *     bits 32-35: context switch detail
1394  *                  - 0: ctx complete
1395  *                  - 1: wait on sync flip
1396  *                  - 2: wait on vblank
1397  *                  - 3: wait on scanline
1398  *                  - 4: wait on semaphore
1399  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1400  *                       WAIT_FOR_EVENT)
1401  *     bit  36:    reserved
1402  *     bits 37-43: wait detail (for switch detail 1 to 4)
1403  *     bits 44-46: reserved
1404  *     bits 47-57: sw context id of the lrc the GT switched away from
1405  *     bits 58-63: sw counter of the lrc the GT switched away from
1406  */
1407 static inline enum csb_step
1408 gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
1409 {
1410 	u32 lower_dw = csb[0];
1411 	u32 upper_dw = csb[1];
1412 	bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
1413 	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
1414 	bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
1415 
1416 	if (!ctx_away_valid && ctx_to_valid)
1417 		return CSB_PROMOTE;
1418 
1419 	/*
1420 	 * The context switch detail is not guaranteed to be 5 when a preemption
1421 	 * occurs, so we can't just check for that. The check below works for
1422 	 * all the cases we care about, including preemptions of WAIT
1423 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1424 	 * would require some extra handling, but we don't support that.
1425 	 */
1426 	if (new_queue && ctx_away_valid)
1427 		return CSB_PREEMPT;
1428 
1429 	/*
1430 	 * switch detail = 5 is covered by the case above and we do not expect a
1431 	 * context switch on an unsuccessful wait instruction since we always
1432 	 * use polling mode.
1433 	 */
1434 	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
1435 
1436 	if (*execlists->active) {
1437 		GEM_BUG_ON(!ctx_away_valid);
1438 		return CSB_COMPLETE;
1439 	}
1440 
1441 	return CSB_NOP;
1442 }
1443 
1444 static inline enum csb_step
1445 gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
1446 {
1447 	unsigned int status = *csb;
1448 
1449 	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
1450 		return CSB_PROMOTE;
1451 
1452 	if (status & GEN8_CTX_STATUS_PREEMPTED)
1453 		return CSB_PREEMPT;
1454 
1455 	if (*execlists->active)
1456 		return CSB_COMPLETE;
1457 
1458 	return CSB_NOP;
1459 }
1460 
1461 static void process_csb(struct intel_engine_cs *engine)
1462 {
1463 	struct intel_engine_execlists * const execlists = &engine->execlists;
1464 	const u32 * const buf = execlists->csb_status;
1465 	const u8 num_entries = execlists->csb_size;
1466 	u8 head, tail;
1467 
1468 	GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1469 
1470 	/*
1471 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1472 	 * When reading from the csb_write mmio register, we have to be
1473 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1474 	 * the low 4bits. As it happens we know the next 4bits are always
1475 	 * zero and so we can simply masked off the low u8 of the register
1476 	 * and treat it identically to reading from the HWSP (without having
1477 	 * to use explicit shifting and masking, and probably bifurcating
1478 	 * the code to handle the legacy mmio read).
1479 	 */
1480 	head = execlists->csb_head;
1481 	tail = READ_ONCE(*execlists->csb_write);
1482 	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1483 	if (unlikely(head == tail))
1484 		return;
1485 
1486 	/*
1487 	 * Hopefully paired with a wmb() in HW!
1488 	 *
1489 	 * We must complete the read of the write pointer before any reads
1490 	 * from the CSB, so that we do not see stale values. Without an rmb
1491 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1492 	 * we perform the READ_ONCE(*csb_write).
1493 	 */
1494 	rmb();
1495 
1496 	do {
1497 		enum csb_step csb_step;
1498 
1499 		if (++head == num_entries)
1500 			head = 0;
1501 
1502 		/*
1503 		 * We are flying near dragons again.
1504 		 *
1505 		 * We hold a reference to the request in execlist_port[]
1506 		 * but no more than that. We are operating in softirq
1507 		 * context and so cannot hold any mutex or sleep. That
1508 		 * prevents us stopping the requests we are processing
1509 		 * in port[] from being retired simultaneously (the
1510 		 * breadcrumb will be complete before we see the
1511 		 * context-switch). As we only hold the reference to the
1512 		 * request, any pointer chasing underneath the request
1513 		 * is subject to a potential use-after-free. Thus we
1514 		 * store all of the bookkeeping within port[] as
1515 		 * required, and avoid using unguarded pointers beneath
1516 		 * request itself. The same applies to the atomic
1517 		 * status notifier.
1518 		 */
1519 
1520 		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1521 			  engine->name, head,
1522 			  buf[2 * head + 0], buf[2 * head + 1]);
1523 
1524 		if (INTEL_GEN(engine->i915) >= 12)
1525 			csb_step = gen12_csb_parse(execlists, buf + 2 * head);
1526 		else
1527 			csb_step = gen8_csb_parse(execlists, buf + 2 * head);
1528 
1529 		switch (csb_step) {
1530 		case CSB_PREEMPT: /* cancel old inflight, prepare for switch */
1531 			trace_ports(execlists, "preempted", execlists->active);
1532 
1533 			while (*execlists->active)
1534 				execlists_schedule_out(*execlists->active++);
1535 
1536 			/* fallthrough */
1537 		case CSB_PROMOTE: /* switch pending to inflight */
1538 			GEM_BUG_ON(*execlists->active);
1539 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1540 			execlists->active =
1541 				memcpy(execlists->inflight,
1542 				       execlists->pending,
1543 				       execlists_num_ports(execlists) *
1544 				       sizeof(*execlists->pending));
1545 
1546 			if (enable_timeslice(execlists))
1547 				mod_timer(&execlists->timer, jiffies + 1);
1548 
1549 			if (!inject_preempt_hang(execlists))
1550 				ring_set_paused(engine, 0);
1551 
1552 			WRITE_ONCE(execlists->pending[0], NULL);
1553 			break;
1554 
1555 		case CSB_COMPLETE: /* port0 completed, advanced to port1 */
1556 			trace_ports(execlists, "completed", execlists->active);
1557 
1558 			/*
1559 			 * We rely on the hardware being strongly
1560 			 * ordered, that the breadcrumb write is
1561 			 * coherent (visible from the CPU) before the
1562 			 * user interrupt and CSB is processed.
1563 			 */
1564 			GEM_BUG_ON(!i915_request_completed(*execlists->active) &&
1565 				   !reset_in_progress(execlists));
1566 			execlists_schedule_out(*execlists->active++);
1567 
1568 			GEM_BUG_ON(execlists->active - execlists->inflight >
1569 				   execlists_num_ports(execlists));
1570 			break;
1571 
1572 		case CSB_NOP:
1573 			break;
1574 		}
1575 	} while (head != tail);
1576 
1577 	execlists->csb_head = head;
1578 
1579 	/*
1580 	 * Gen11 has proven to fail wrt global observation point between
1581 	 * entry and tail update, failing on the ordering and thus
1582 	 * we see an old entry in the context status buffer.
1583 	 *
1584 	 * Forcibly evict out entries for the next gpu csb update,
1585 	 * to increase the odds that we get a fresh entries with non
1586 	 * working hardware. The cost for doing so comes out mostly with
1587 	 * the wash as hardware, working or not, will need to do the
1588 	 * invalidation before.
1589 	 */
1590 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1591 }
1592 
1593 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1594 {
1595 	lockdep_assert_held(&engine->active.lock);
1596 	if (!engine->execlists.pending[0])
1597 		execlists_dequeue(engine);
1598 }
1599 
1600 /*
1601  * Check the unread Context Status Buffers and manage the submission of new
1602  * contexts to the ELSP accordingly.
1603  */
1604 static void execlists_submission_tasklet(unsigned long data)
1605 {
1606 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1607 	unsigned long flags;
1608 
1609 	process_csb(engine);
1610 	if (!READ_ONCE(engine->execlists.pending[0])) {
1611 		spin_lock_irqsave(&engine->active.lock, flags);
1612 		__execlists_submission_tasklet(engine);
1613 		spin_unlock_irqrestore(&engine->active.lock, flags);
1614 	}
1615 }
1616 
1617 static void execlists_submission_timer(struct timer_list *timer)
1618 {
1619 	struct intel_engine_cs *engine =
1620 		from_timer(engine, timer, execlists.timer);
1621 
1622 	/* Kick the tasklet for some interrupt coalescing and reset handling */
1623 	tasklet_hi_schedule(&engine->execlists.tasklet);
1624 }
1625 
1626 static void queue_request(struct intel_engine_cs *engine,
1627 			  struct i915_sched_node *node,
1628 			  int prio)
1629 {
1630 	GEM_BUG_ON(!list_empty(&node->link));
1631 	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1632 }
1633 
1634 static void __submit_queue_imm(struct intel_engine_cs *engine)
1635 {
1636 	struct intel_engine_execlists * const execlists = &engine->execlists;
1637 
1638 	if (reset_in_progress(execlists))
1639 		return; /* defer until we restart the engine following reset */
1640 
1641 	if (execlists->tasklet.func == execlists_submission_tasklet)
1642 		__execlists_submission_tasklet(engine);
1643 	else
1644 		tasklet_hi_schedule(&execlists->tasklet);
1645 }
1646 
1647 static void submit_queue(struct intel_engine_cs *engine,
1648 			 const struct i915_request *rq)
1649 {
1650 	struct intel_engine_execlists *execlists = &engine->execlists;
1651 
1652 	if (rq_prio(rq) <= execlists->queue_priority_hint)
1653 		return;
1654 
1655 	execlists->queue_priority_hint = rq_prio(rq);
1656 	__submit_queue_imm(engine);
1657 }
1658 
1659 static void execlists_submit_request(struct i915_request *request)
1660 {
1661 	struct intel_engine_cs *engine = request->engine;
1662 	unsigned long flags;
1663 
1664 	/* Will be called from irq-context when using foreign fences. */
1665 	spin_lock_irqsave(&engine->active.lock, flags);
1666 
1667 	queue_request(engine, &request->sched, rq_prio(request));
1668 
1669 	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1670 	GEM_BUG_ON(list_empty(&request->sched.link));
1671 
1672 	submit_queue(engine, request);
1673 
1674 	spin_unlock_irqrestore(&engine->active.lock, flags);
1675 }
1676 
1677 static void __execlists_context_fini(struct intel_context *ce)
1678 {
1679 	intel_ring_put(ce->ring);
1680 	i915_vma_put(ce->state);
1681 }
1682 
1683 static void execlists_context_destroy(struct kref *kref)
1684 {
1685 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1686 
1687 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1688 	GEM_BUG_ON(intel_context_is_pinned(ce));
1689 
1690 	if (ce->state)
1691 		__execlists_context_fini(ce);
1692 
1693 	intel_context_fini(ce);
1694 	intel_context_free(ce);
1695 }
1696 
1697 static void
1698 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
1699 {
1700 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1701 		return;
1702 
1703 	vaddr += LRC_HEADER_PAGES * PAGE_SIZE;
1704 	vaddr += engine->context_size;
1705 
1706 	memset(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE);
1707 }
1708 
1709 static void
1710 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
1711 {
1712 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1713 		return;
1714 
1715 	vaddr += LRC_HEADER_PAGES * PAGE_SIZE;
1716 	vaddr += engine->context_size;
1717 
1718 	if (memchr_inv(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE))
1719 		dev_err_once(engine->i915->drm.dev,
1720 			     "%s context redzone overwritten!\n",
1721 			     engine->name);
1722 }
1723 
1724 static void execlists_context_unpin(struct intel_context *ce)
1725 {
1726 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
1727 		      ce->engine);
1728 
1729 	i915_gem_context_unpin_hw_id(ce->gem_context);
1730 	i915_gem_object_unpin_map(ce->state->obj);
1731 	intel_ring_reset(ce->ring, ce->ring->tail);
1732 }
1733 
1734 static void
1735 __execlists_update_reg_state(struct intel_context *ce,
1736 			     struct intel_engine_cs *engine)
1737 {
1738 	struct intel_ring *ring = ce->ring;
1739 	u32 *regs = ce->lrc_reg_state;
1740 
1741 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1742 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1743 
1744 	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1745 	regs[CTX_RING_HEAD + 1] = ring->head;
1746 	regs[CTX_RING_TAIL + 1] = ring->tail;
1747 
1748 	/* RPCS */
1749 	if (engine->class == RENDER_CLASS) {
1750 		regs[CTX_R_PWR_CLK_STATE + 1] =
1751 			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1752 
1753 		i915_oa_init_reg_state(engine, ce, regs);
1754 	}
1755 }
1756 
1757 static int
1758 __execlists_context_pin(struct intel_context *ce,
1759 			struct intel_engine_cs *engine)
1760 {
1761 	void *vaddr;
1762 	int ret;
1763 
1764 	GEM_BUG_ON(!ce->state);
1765 
1766 	ret = intel_context_active_acquire(ce);
1767 	if (ret)
1768 		goto err;
1769 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1770 
1771 	vaddr = i915_gem_object_pin_map(ce->state->obj,
1772 					i915_coherent_map_type(engine->i915) |
1773 					I915_MAP_OVERRIDE);
1774 	if (IS_ERR(vaddr)) {
1775 		ret = PTR_ERR(vaddr);
1776 		goto unpin_active;
1777 	}
1778 
1779 	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1780 	if (ret)
1781 		goto unpin_map;
1782 
1783 	ce->lrc_desc = lrc_descriptor(ce, engine);
1784 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1785 	__execlists_update_reg_state(ce, engine);
1786 
1787 	return 0;
1788 
1789 unpin_map:
1790 	i915_gem_object_unpin_map(ce->state->obj);
1791 unpin_active:
1792 	intel_context_active_release(ce);
1793 err:
1794 	return ret;
1795 }
1796 
1797 static int execlists_context_pin(struct intel_context *ce)
1798 {
1799 	return __execlists_context_pin(ce, ce->engine);
1800 }
1801 
1802 static int execlists_context_alloc(struct intel_context *ce)
1803 {
1804 	return __execlists_context_alloc(ce, ce->engine);
1805 }
1806 
1807 static void execlists_context_reset(struct intel_context *ce)
1808 {
1809 	/*
1810 	 * Because we emit WA_TAIL_DWORDS there may be a disparity
1811 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
1812 	 * that stored in context. As we only write new commands from
1813 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
1814 	 * starts reading from its RING_HEAD from the context, it may try to
1815 	 * execute that junk and die.
1816 	 *
1817 	 * The contexts that are stilled pinned on resume belong to the
1818 	 * kernel, and are local to each engine. All other contexts will
1819 	 * have their head/tail sanitized upon pinning before use, so they
1820 	 * will never see garbage,
1821 	 *
1822 	 * So to avoid that we reset the context images upon resume. For
1823 	 * simplicity, we just zero everything out.
1824 	 */
1825 	intel_ring_reset(ce->ring, 0);
1826 	__execlists_update_reg_state(ce, ce->engine);
1827 }
1828 
1829 static const struct intel_context_ops execlists_context_ops = {
1830 	.alloc = execlists_context_alloc,
1831 
1832 	.pin = execlists_context_pin,
1833 	.unpin = execlists_context_unpin,
1834 
1835 	.enter = intel_context_enter_engine,
1836 	.exit = intel_context_exit_engine,
1837 
1838 	.reset = execlists_context_reset,
1839 	.destroy = execlists_context_destroy,
1840 };
1841 
1842 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1843 {
1844 	u32 *cs;
1845 
1846 	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1847 
1848 	cs = intel_ring_begin(rq, 6);
1849 	if (IS_ERR(cs))
1850 		return PTR_ERR(cs);
1851 
1852 	/*
1853 	 * Check if we have been preempted before we even get started.
1854 	 *
1855 	 * After this point i915_request_started() reports true, even if
1856 	 * we get preempted and so are no longer running.
1857 	 */
1858 	*cs++ = MI_ARB_CHECK;
1859 	*cs++ = MI_NOOP;
1860 
1861 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1862 	*cs++ = rq->timeline->hwsp_offset;
1863 	*cs++ = 0;
1864 	*cs++ = rq->fence.seqno - 1;
1865 
1866 	intel_ring_advance(rq, cs);
1867 
1868 	/* Record the updated position of the request's payload */
1869 	rq->infix = intel_ring_offset(rq, cs);
1870 
1871 	return 0;
1872 }
1873 
1874 static int emit_pdps(struct i915_request *rq)
1875 {
1876 	const struct intel_engine_cs * const engine = rq->engine;
1877 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->hw_context->vm);
1878 	int err, i;
1879 	u32 *cs;
1880 
1881 	GEM_BUG_ON(intel_vgpu_active(rq->i915));
1882 
1883 	/*
1884 	 * Beware ye of the dragons, this sequence is magic!
1885 	 *
1886 	 * Small changes to this sequence can cause anything from
1887 	 * GPU hangs to forcewake errors and machine lockups!
1888 	 */
1889 
1890 	/* Flush any residual operations from the context load */
1891 	err = engine->emit_flush(rq, EMIT_FLUSH);
1892 	if (err)
1893 		return err;
1894 
1895 	/* Magic required to prevent forcewake errors! */
1896 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
1897 	if (err)
1898 		return err;
1899 
1900 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1901 	if (IS_ERR(cs))
1902 		return PTR_ERR(cs);
1903 
1904 	/* Ensure the LRI have landed before we invalidate & continue */
1905 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1906 	for (i = GEN8_3LVL_PDPES; i--; ) {
1907 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1908 		u32 base = engine->mmio_base;
1909 
1910 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1911 		*cs++ = upper_32_bits(pd_daddr);
1912 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1913 		*cs++ = lower_32_bits(pd_daddr);
1914 	}
1915 	*cs++ = MI_NOOP;
1916 
1917 	intel_ring_advance(rq, cs);
1918 
1919 	/* Be doubly sure the LRI have landed before proceeding */
1920 	err = engine->emit_flush(rq, EMIT_FLUSH);
1921 	if (err)
1922 		return err;
1923 
1924 	/* Re-invalidate the TLB for luck */
1925 	return engine->emit_flush(rq, EMIT_INVALIDATE);
1926 }
1927 
1928 static int execlists_request_alloc(struct i915_request *request)
1929 {
1930 	int ret;
1931 
1932 	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1933 
1934 	/*
1935 	 * Flush enough space to reduce the likelihood of waiting after
1936 	 * we start building the request - in which case we will just
1937 	 * have to repeat work.
1938 	 */
1939 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1940 
1941 	/*
1942 	 * Note that after this point, we have committed to using
1943 	 * this request as it is being used to both track the
1944 	 * state of engine initialisation and liveness of the
1945 	 * golden renderstate above. Think twice before you try
1946 	 * to cancel/unwind this request now.
1947 	 */
1948 
1949 	/* Unconditionally invalidate GPU caches and TLBs. */
1950 	if (i915_vm_is_4lvl(request->hw_context->vm))
1951 		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1952 	else
1953 		ret = emit_pdps(request);
1954 	if (ret)
1955 		return ret;
1956 
1957 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1958 	return 0;
1959 }
1960 
1961 /*
1962  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1963  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1964  * but there is a slight complication as this is applied in WA batch where the
1965  * values are only initialized once so we cannot take register value at the
1966  * beginning and reuse it further; hence we save its value to memory, upload a
1967  * constant value with bit21 set and then we restore it back with the saved value.
1968  * To simplify the WA, a constant value is formed by using the default value
1969  * of this register. This shouldn't be a problem because we are only modifying
1970  * it for a short period and this batch in non-premptible. We can ofcourse
1971  * use additional instructions that read the actual value of the register
1972  * at that time and set our bit of interest but it makes the WA complicated.
1973  *
1974  * This WA is also required for Gen9 so extracting as a function avoids
1975  * code duplication.
1976  */
1977 static u32 *
1978 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1979 {
1980 	/* NB no one else is allowed to scribble over scratch + 256! */
1981 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1982 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1983 	*batch++ = intel_gt_scratch_offset(engine->gt,
1984 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1985 	*batch++ = 0;
1986 
1987 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1988 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1989 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1990 
1991 	batch = gen8_emit_pipe_control(batch,
1992 				       PIPE_CONTROL_CS_STALL |
1993 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1994 				       0);
1995 
1996 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1997 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1998 	*batch++ = intel_gt_scratch_offset(engine->gt,
1999 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
2000 	*batch++ = 0;
2001 
2002 	return batch;
2003 }
2004 
2005 static u32 slm_offset(struct intel_engine_cs *engine)
2006 {
2007 	return intel_gt_scratch_offset(engine->gt,
2008 				       INTEL_GT_SCRATCH_FIELD_CLEAR_SLM_WA);
2009 }
2010 
2011 /*
2012  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
2013  * initialized at the beginning and shared across all contexts but this field
2014  * helps us to have multiple batches at different offsets and select them based
2015  * on a criteria. At the moment this batch always start at the beginning of the page
2016  * and at this point we don't have multiple wa_ctx batch buffers.
2017  *
2018  * The number of WA applied are not known at the beginning; we use this field
2019  * to return the no of DWORDS written.
2020  *
2021  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
2022  * so it adds NOOPs as padding to make it cacheline aligned.
2023  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
2024  * makes a complete batch buffer.
2025  */
2026 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2027 {
2028 	/* WaDisableCtxRestoreArbitration:bdw,chv */
2029 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2030 
2031 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
2032 	if (IS_BROADWELL(engine->i915))
2033 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
2034 
2035 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
2036 	/* Actual scratch location is at 128 bytes offset */
2037 	batch = gen8_emit_pipe_control(batch,
2038 				       PIPE_CONTROL_FLUSH_L3 |
2039 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
2040 				       PIPE_CONTROL_CS_STALL |
2041 				       PIPE_CONTROL_QW_WRITE,
2042 				       slm_offset(engine));
2043 
2044 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2045 
2046 	/* Pad to end of cacheline */
2047 	while ((unsigned long)batch % CACHELINE_BYTES)
2048 		*batch++ = MI_NOOP;
2049 
2050 	/*
2051 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
2052 	 * execution depends on the length specified in terms of cache lines
2053 	 * in the register CTX_RCS_INDIRECT_CTX
2054 	 */
2055 
2056 	return batch;
2057 }
2058 
2059 struct lri {
2060 	i915_reg_t reg;
2061 	u32 value;
2062 };
2063 
2064 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
2065 {
2066 	GEM_BUG_ON(!count || count > 63);
2067 
2068 	*batch++ = MI_LOAD_REGISTER_IMM(count);
2069 	do {
2070 		*batch++ = i915_mmio_reg_offset(lri->reg);
2071 		*batch++ = lri->value;
2072 	} while (lri++, --count);
2073 	*batch++ = MI_NOOP;
2074 
2075 	return batch;
2076 }
2077 
2078 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2079 {
2080 	static const struct lri lri[] = {
2081 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
2082 		{
2083 			COMMON_SLICE_CHICKEN2,
2084 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
2085 				       0),
2086 		},
2087 
2088 		/* BSpec: 11391 */
2089 		{
2090 			FF_SLICE_CHICKEN,
2091 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
2092 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
2093 		},
2094 
2095 		/* BSpec: 11299 */
2096 		{
2097 			_3D_CHICKEN3,
2098 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
2099 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
2100 		}
2101 	};
2102 
2103 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2104 
2105 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
2106 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
2107 
2108 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
2109 
2110 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
2111 	if (HAS_POOLED_EU(engine->i915)) {
2112 		/*
2113 		 * EU pool configuration is setup along with golden context
2114 		 * during context initialization. This value depends on
2115 		 * device type (2x6 or 3x6) and needs to be updated based
2116 		 * on which subslice is disabled especially for 2x6
2117 		 * devices, however it is safe to load default
2118 		 * configuration of 3x6 device instead of masking off
2119 		 * corresponding bits because HW ignores bits of a disabled
2120 		 * subslice and drops down to appropriate config. Please
2121 		 * see render_state_setup() in i915_gem_render_state.c for
2122 		 * possible configurations, to avoid duplication they are
2123 		 * not shown here again.
2124 		 */
2125 		*batch++ = GEN9_MEDIA_POOL_STATE;
2126 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
2127 		*batch++ = 0x00777000;
2128 		*batch++ = 0;
2129 		*batch++ = 0;
2130 		*batch++ = 0;
2131 	}
2132 
2133 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2134 
2135 	/* Pad to end of cacheline */
2136 	while ((unsigned long)batch % CACHELINE_BYTES)
2137 		*batch++ = MI_NOOP;
2138 
2139 	return batch;
2140 }
2141 
2142 static u32 *
2143 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
2144 {
2145 	int i;
2146 
2147 	/*
2148 	 * WaPipeControlBefore3DStateSamplePattern: cnl
2149 	 *
2150 	 * Ensure the engine is idle prior to programming a
2151 	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
2152 	 */
2153 	batch = gen8_emit_pipe_control(batch,
2154 				       PIPE_CONTROL_CS_STALL,
2155 				       0);
2156 	/*
2157 	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
2158 	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
2159 	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
2160 	 * confusing. Since gen8_emit_pipe_control() already advances the
2161 	 * batch by 6 dwords, we advance the other 10 here, completing a
2162 	 * cacheline. It's not clear if the workaround requires this padding
2163 	 * before other commands, or if it's just the regular padding we would
2164 	 * already have for the workaround bb, so leave it here for now.
2165 	 */
2166 	for (i = 0; i < 10; i++)
2167 		*batch++ = MI_NOOP;
2168 
2169 	/* Pad to end of cacheline */
2170 	while ((unsigned long)batch % CACHELINE_BYTES)
2171 		*batch++ = MI_NOOP;
2172 
2173 	return batch;
2174 }
2175 
2176 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
2177 
2178 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
2179 {
2180 	struct drm_i915_gem_object *obj;
2181 	struct i915_vma *vma;
2182 	int err;
2183 
2184 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
2185 	if (IS_ERR(obj))
2186 		return PTR_ERR(obj);
2187 
2188 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
2189 	if (IS_ERR(vma)) {
2190 		err = PTR_ERR(vma);
2191 		goto err;
2192 	}
2193 
2194 	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2195 	if (err)
2196 		goto err;
2197 
2198 	engine->wa_ctx.vma = vma;
2199 	return 0;
2200 
2201 err:
2202 	i915_gem_object_put(obj);
2203 	return err;
2204 }
2205 
2206 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
2207 {
2208 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
2209 }
2210 
2211 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
2212 
2213 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
2214 {
2215 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2216 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
2217 					    &wa_ctx->per_ctx };
2218 	wa_bb_func_t wa_bb_fn[2];
2219 	struct page *page;
2220 	void *batch, *batch_ptr;
2221 	unsigned int i;
2222 	int ret;
2223 
2224 	if (engine->class != RENDER_CLASS)
2225 		return 0;
2226 
2227 	switch (INTEL_GEN(engine->i915)) {
2228 	case 12:
2229 	case 11:
2230 		return 0;
2231 	case 10:
2232 		wa_bb_fn[0] = gen10_init_indirectctx_bb;
2233 		wa_bb_fn[1] = NULL;
2234 		break;
2235 	case 9:
2236 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
2237 		wa_bb_fn[1] = NULL;
2238 		break;
2239 	case 8:
2240 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
2241 		wa_bb_fn[1] = NULL;
2242 		break;
2243 	default:
2244 		MISSING_CASE(INTEL_GEN(engine->i915));
2245 		return 0;
2246 	}
2247 
2248 	ret = lrc_setup_wa_ctx(engine);
2249 	if (ret) {
2250 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
2251 		return ret;
2252 	}
2253 
2254 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2255 	batch = batch_ptr = kmap_atomic(page);
2256 
2257 	/*
2258 	 * Emit the two workaround batch buffers, recording the offset from the
2259 	 * start of the workaround batch buffer object for each and their
2260 	 * respective sizes.
2261 	 */
2262 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
2263 		wa_bb[i]->offset = batch_ptr - batch;
2264 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
2265 						  CACHELINE_BYTES))) {
2266 			ret = -EINVAL;
2267 			break;
2268 		}
2269 		if (wa_bb_fn[i])
2270 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2271 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2272 	}
2273 
2274 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
2275 
2276 	kunmap_atomic(batch);
2277 	if (ret)
2278 		lrc_destroy_wa_ctx(engine);
2279 
2280 	return ret;
2281 }
2282 
2283 static void enable_execlists(struct intel_engine_cs *engine)
2284 {
2285 	u32 mode;
2286 
2287 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2288 
2289 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2290 
2291 	if (INTEL_GEN(engine->i915) >= 11)
2292 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2293 	else
2294 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2295 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2296 
2297 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2298 
2299 	ENGINE_WRITE_FW(engine,
2300 			RING_HWS_PGA,
2301 			i915_ggtt_offset(engine->status_page.vma));
2302 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2303 }
2304 
2305 static bool unexpected_starting_state(struct intel_engine_cs *engine)
2306 {
2307 	bool unexpected = false;
2308 
2309 	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
2310 		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2311 		unexpected = true;
2312 	}
2313 
2314 	return unexpected;
2315 }
2316 
2317 static int execlists_resume(struct intel_engine_cs *engine)
2318 {
2319 	intel_engine_apply_workarounds(engine);
2320 	intel_engine_apply_whitelist(engine);
2321 
2322 	intel_mocs_init_engine(engine);
2323 
2324 	intel_engine_reset_breadcrumbs(engine);
2325 
2326 	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2327 		struct drm_printer p = drm_debug_printer(__func__);
2328 
2329 		intel_engine_dump(engine, &p, NULL);
2330 	}
2331 
2332 	enable_execlists(engine);
2333 
2334 	return 0;
2335 }
2336 
2337 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2338 {
2339 	struct intel_engine_execlists * const execlists = &engine->execlists;
2340 	unsigned long flags;
2341 
2342 	GEM_TRACE("%s: depth<-%d\n", engine->name,
2343 		  atomic_read(&execlists->tasklet.count));
2344 
2345 	/*
2346 	 * Prevent request submission to the hardware until we have
2347 	 * completed the reset in i915_gem_reset_finish(). If a request
2348 	 * is completed by one engine, it may then queue a request
2349 	 * to a second via its execlists->tasklet *just* as we are
2350 	 * calling engine->resume() and also writing the ELSP.
2351 	 * Turning off the execlists->tasklet until the reset is over
2352 	 * prevents the race.
2353 	 */
2354 	__tasklet_disable_sync_once(&execlists->tasklet);
2355 	GEM_BUG_ON(!reset_in_progress(execlists));
2356 
2357 	/* And flush any current direct submission. */
2358 	spin_lock_irqsave(&engine->active.lock, flags);
2359 	spin_unlock_irqrestore(&engine->active.lock, flags);
2360 
2361 	/*
2362 	 * We stop engines, otherwise we might get failed reset and a
2363 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2364 	 * from system hang if batchbuffer is progressing when
2365 	 * the reset is issued, regardless of READY_TO_RESET ack.
2366 	 * Thus assume it is best to stop engines on all gens
2367 	 * where we have a gpu reset.
2368 	 *
2369 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2370 	 *
2371 	 * FIXME: Wa for more modern gens needs to be validated
2372 	 */
2373 	intel_engine_stop_cs(engine);
2374 }
2375 
2376 static void reset_csb_pointers(struct intel_engine_cs *engine)
2377 {
2378 	struct intel_engine_execlists * const execlists = &engine->execlists;
2379 	const unsigned int reset_value = execlists->csb_size - 1;
2380 
2381 	ring_set_paused(engine, 0);
2382 
2383 	/*
2384 	 * After a reset, the HW starts writing into CSB entry [0]. We
2385 	 * therefore have to set our HEAD pointer back one entry so that
2386 	 * the *first* entry we check is entry 0. To complicate this further,
2387 	 * as we don't wait for the first interrupt after reset, we have to
2388 	 * fake the HW write to point back to the last entry so that our
2389 	 * inline comparison of our cached head position against the last HW
2390 	 * write works even before the first interrupt.
2391 	 */
2392 	execlists->csb_head = reset_value;
2393 	WRITE_ONCE(*execlists->csb_write, reset_value);
2394 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2395 
2396 	invalidate_csb_entries(&execlists->csb_status[0],
2397 			       &execlists->csb_status[reset_value]);
2398 }
2399 
2400 static struct i915_request *active_request(struct i915_request *rq)
2401 {
2402 	const struct list_head * const list = &rq->timeline->requests;
2403 	const struct intel_context * const ce = rq->hw_context;
2404 	struct i915_request *active = NULL;
2405 
2406 	list_for_each_entry_from_reverse(rq, list, link) {
2407 		if (i915_request_completed(rq))
2408 			break;
2409 
2410 		if (rq->hw_context != ce)
2411 			break;
2412 
2413 		active = rq;
2414 	}
2415 
2416 	return active;
2417 }
2418 
2419 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2420 {
2421 	struct intel_engine_execlists * const execlists = &engine->execlists;
2422 	struct intel_context *ce;
2423 	struct i915_request *rq;
2424 	u32 *regs;
2425 
2426 	process_csb(engine); /* drain preemption events */
2427 
2428 	/* Following the reset, we need to reload the CSB read/write pointers */
2429 	reset_csb_pointers(engine);
2430 
2431 	/*
2432 	 * Save the currently executing context, even if we completed
2433 	 * its request, it was still running at the time of the
2434 	 * reset and will have been clobbered.
2435 	 */
2436 	rq = execlists_active(execlists);
2437 	if (!rq)
2438 		goto unwind;
2439 
2440 	ce = rq->hw_context;
2441 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
2442 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2443 	rq = active_request(rq);
2444 	if (!rq) {
2445 		ce->ring->head = ce->ring->tail;
2446 		goto out_replay;
2447 	}
2448 
2449 	ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2450 
2451 	/*
2452 	 * If this request hasn't started yet, e.g. it is waiting on a
2453 	 * semaphore, we need to avoid skipping the request or else we
2454 	 * break the signaling chain. However, if the context is corrupt
2455 	 * the request will not restart and we will be stuck with a wedged
2456 	 * device. It is quite often the case that if we issue a reset
2457 	 * while the GPU is loading the context image, that the context
2458 	 * image becomes corrupt.
2459 	 *
2460 	 * Otherwise, if we have not started yet, the request should replay
2461 	 * perfectly and we do not need to flag the result as being erroneous.
2462 	 */
2463 	if (!i915_request_started(rq))
2464 		goto out_replay;
2465 
2466 	/*
2467 	 * If the request was innocent, we leave the request in the ELSP
2468 	 * and will try to replay it on restarting. The context image may
2469 	 * have been corrupted by the reset, in which case we may have
2470 	 * to service a new GPU hang, but more likely we can continue on
2471 	 * without impact.
2472 	 *
2473 	 * If the request was guilty, we presume the context is corrupt
2474 	 * and have to at least restore the RING register in the context
2475 	 * image back to the expected values to skip over the guilty request.
2476 	 */
2477 	__i915_request_reset(rq, stalled);
2478 	if (!stalled)
2479 		goto out_replay;
2480 
2481 	/*
2482 	 * We want a simple context + ring to execute the breadcrumb update.
2483 	 * We cannot rely on the context being intact across the GPU hang,
2484 	 * so clear it and rebuild just what we need for the breadcrumb.
2485 	 * All pending requests for this context will be zapped, and any
2486 	 * future request will be after userspace has had the opportunity
2487 	 * to recreate its own state.
2488 	 */
2489 	regs = ce->lrc_reg_state;
2490 	if (engine->pinned_default_state) {
2491 		memcpy(regs, /* skip restoring the vanilla PPHWSP */
2492 		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2493 		       engine->context_size - PAGE_SIZE);
2494 	}
2495 	execlists_init_reg_state(regs, ce, engine, ce->ring);
2496 
2497 out_replay:
2498 	GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
2499 		  engine->name, ce->ring->head, ce->ring->tail);
2500 	intel_ring_update_space(ce->ring);
2501 	__execlists_update_reg_state(ce, engine);
2502 
2503 unwind:
2504 	/* Push back any incomplete requests for replay after the reset. */
2505 	cancel_port_requests(execlists);
2506 	__unwind_incomplete_requests(engine);
2507 }
2508 
2509 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2510 {
2511 	unsigned long flags;
2512 
2513 	GEM_TRACE("%s\n", engine->name);
2514 
2515 	spin_lock_irqsave(&engine->active.lock, flags);
2516 
2517 	__execlists_reset(engine, stalled);
2518 
2519 	spin_unlock_irqrestore(&engine->active.lock, flags);
2520 }
2521 
2522 static void nop_submission_tasklet(unsigned long data)
2523 {
2524 	/* The driver is wedged; don't process any more events. */
2525 }
2526 
2527 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2528 {
2529 	struct intel_engine_execlists * const execlists = &engine->execlists;
2530 	struct i915_request *rq, *rn;
2531 	struct rb_node *rb;
2532 	unsigned long flags;
2533 
2534 	GEM_TRACE("%s\n", engine->name);
2535 
2536 	/*
2537 	 * Before we call engine->cancel_requests(), we should have exclusive
2538 	 * access to the submission state. This is arranged for us by the
2539 	 * caller disabling the interrupt generation, the tasklet and other
2540 	 * threads that may then access the same state, giving us a free hand
2541 	 * to reset state. However, we still need to let lockdep be aware that
2542 	 * we know this state may be accessed in hardirq context, so we
2543 	 * disable the irq around this manipulation and we want to keep
2544 	 * the spinlock focused on its duties and not accidentally conflate
2545 	 * coverage to the submission's irq state. (Similarly, although we
2546 	 * shouldn't need to disable irq around the manipulation of the
2547 	 * submission's irq state, we also wish to remind ourselves that
2548 	 * it is irq state.)
2549 	 */
2550 	spin_lock_irqsave(&engine->active.lock, flags);
2551 
2552 	__execlists_reset(engine, true);
2553 
2554 	/* Mark all executing requests as skipped. */
2555 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
2556 		if (!i915_request_signaled(rq))
2557 			dma_fence_set_error(&rq->fence, -EIO);
2558 
2559 		i915_request_mark_complete(rq);
2560 	}
2561 
2562 	/* Flush the queued requests to the timeline list (for retiring). */
2563 	while ((rb = rb_first_cached(&execlists->queue))) {
2564 		struct i915_priolist *p = to_priolist(rb);
2565 		int i;
2566 
2567 		priolist_for_each_request_consume(rq, rn, p, i) {
2568 			list_del_init(&rq->sched.link);
2569 			__i915_request_submit(rq);
2570 			dma_fence_set_error(&rq->fence, -EIO);
2571 			i915_request_mark_complete(rq);
2572 		}
2573 
2574 		rb_erase_cached(&p->node, &execlists->queue);
2575 		i915_priolist_free(p);
2576 	}
2577 
2578 	/* Cancel all attached virtual engines */
2579 	while ((rb = rb_first_cached(&execlists->virtual))) {
2580 		struct virtual_engine *ve =
2581 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2582 
2583 		rb_erase_cached(rb, &execlists->virtual);
2584 		RB_CLEAR_NODE(rb);
2585 
2586 		spin_lock(&ve->base.active.lock);
2587 		if (ve->request) {
2588 			ve->request->engine = engine;
2589 			__i915_request_submit(ve->request);
2590 			dma_fence_set_error(&ve->request->fence, -EIO);
2591 			i915_request_mark_complete(ve->request);
2592 			ve->base.execlists.queue_priority_hint = INT_MIN;
2593 			ve->request = NULL;
2594 		}
2595 		spin_unlock(&ve->base.active.lock);
2596 	}
2597 
2598 	/* Remaining _unready_ requests will be nop'ed when submitted */
2599 
2600 	execlists->queue_priority_hint = INT_MIN;
2601 	execlists->queue = RB_ROOT_CACHED;
2602 
2603 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2604 	execlists->tasklet.func = nop_submission_tasklet;
2605 
2606 	spin_unlock_irqrestore(&engine->active.lock, flags);
2607 }
2608 
2609 static void execlists_reset_finish(struct intel_engine_cs *engine)
2610 {
2611 	struct intel_engine_execlists * const execlists = &engine->execlists;
2612 
2613 	/*
2614 	 * After a GPU reset, we may have requests to replay. Do so now while
2615 	 * we still have the forcewake to be sure that the GPU is not allowed
2616 	 * to sleep before we restart and reload a context.
2617 	 */
2618 	GEM_BUG_ON(!reset_in_progress(execlists));
2619 	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2620 		execlists->tasklet.func(execlists->tasklet.data);
2621 
2622 	if (__tasklet_enable(&execlists->tasklet))
2623 		/* And kick in case we missed a new request submission. */
2624 		tasklet_hi_schedule(&execlists->tasklet);
2625 	GEM_TRACE("%s: depth->%d\n", engine->name,
2626 		  atomic_read(&execlists->tasklet.count));
2627 }
2628 
2629 static int gen8_emit_bb_start(struct i915_request *rq,
2630 			      u64 offset, u32 len,
2631 			      const unsigned int flags)
2632 {
2633 	u32 *cs;
2634 
2635 	cs = intel_ring_begin(rq, 4);
2636 	if (IS_ERR(cs))
2637 		return PTR_ERR(cs);
2638 
2639 	/*
2640 	 * WaDisableCtxRestoreArbitration:bdw,chv
2641 	 *
2642 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
2643 	 * particular all the gen that do not need the w/a at all!), if we
2644 	 * took care to make sure that on every switch into this context
2645 	 * (both ordinary and for preemption) that arbitrartion was enabled
2646 	 * we would be fine.  However, for gen8 there is another w/a that
2647 	 * requires us to not preempt inside GPGPU execution, so we keep
2648 	 * arbitration disabled for gen8 batches. Arbitration will be
2649 	 * re-enabled before we close the request
2650 	 * (engine->emit_fini_breadcrumb).
2651 	 */
2652 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2653 
2654 	/* FIXME(BDW+): Address space and security selectors. */
2655 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2656 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2657 	*cs++ = lower_32_bits(offset);
2658 	*cs++ = upper_32_bits(offset);
2659 
2660 	intel_ring_advance(rq, cs);
2661 
2662 	return 0;
2663 }
2664 
2665 static int gen9_emit_bb_start(struct i915_request *rq,
2666 			      u64 offset, u32 len,
2667 			      const unsigned int flags)
2668 {
2669 	u32 *cs;
2670 
2671 	cs = intel_ring_begin(rq, 6);
2672 	if (IS_ERR(cs))
2673 		return PTR_ERR(cs);
2674 
2675 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2676 
2677 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2678 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2679 	*cs++ = lower_32_bits(offset);
2680 	*cs++ = upper_32_bits(offset);
2681 
2682 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2683 	*cs++ = MI_NOOP;
2684 
2685 	intel_ring_advance(rq, cs);
2686 
2687 	return 0;
2688 }
2689 
2690 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2691 {
2692 	ENGINE_WRITE(engine, RING_IMR,
2693 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
2694 	ENGINE_POSTING_READ(engine, RING_IMR);
2695 }
2696 
2697 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2698 {
2699 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2700 }
2701 
2702 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2703 {
2704 	u32 cmd, *cs;
2705 
2706 	cs = intel_ring_begin(request, 4);
2707 	if (IS_ERR(cs))
2708 		return PTR_ERR(cs);
2709 
2710 	cmd = MI_FLUSH_DW + 1;
2711 
2712 	/* We always require a command barrier so that subsequent
2713 	 * commands, such as breadcrumb interrupts, are strictly ordered
2714 	 * wrt the contents of the write cache being flushed to memory
2715 	 * (and thus being coherent from the CPU).
2716 	 */
2717 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2718 
2719 	if (mode & EMIT_INVALIDATE) {
2720 		cmd |= MI_INVALIDATE_TLB;
2721 		if (request->engine->class == VIDEO_DECODE_CLASS)
2722 			cmd |= MI_INVALIDATE_BSD;
2723 	}
2724 
2725 	*cs++ = cmd;
2726 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2727 	*cs++ = 0; /* upper addr */
2728 	*cs++ = 0; /* value */
2729 	intel_ring_advance(request, cs);
2730 
2731 	return 0;
2732 }
2733 
2734 static int gen8_emit_flush_render(struct i915_request *request,
2735 				  u32 mode)
2736 {
2737 	struct intel_engine_cs *engine = request->engine;
2738 	u32 scratch_addr =
2739 		intel_gt_scratch_offset(engine->gt,
2740 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
2741 	bool vf_flush_wa = false, dc_flush_wa = false;
2742 	u32 *cs, flags = 0;
2743 	int len;
2744 
2745 	flags |= PIPE_CONTROL_CS_STALL;
2746 
2747 	if (mode & EMIT_FLUSH) {
2748 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2749 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2750 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2751 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2752 	}
2753 
2754 	if (mode & EMIT_INVALIDATE) {
2755 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2756 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2757 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2758 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2759 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2760 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2761 		flags |= PIPE_CONTROL_QW_WRITE;
2762 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2763 
2764 		/*
2765 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2766 		 * pipe control.
2767 		 */
2768 		if (IS_GEN(request->i915, 9))
2769 			vf_flush_wa = true;
2770 
2771 		/* WaForGAMHang:kbl */
2772 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2773 			dc_flush_wa = true;
2774 	}
2775 
2776 	len = 6;
2777 
2778 	if (vf_flush_wa)
2779 		len += 6;
2780 
2781 	if (dc_flush_wa)
2782 		len += 12;
2783 
2784 	cs = intel_ring_begin(request, len);
2785 	if (IS_ERR(cs))
2786 		return PTR_ERR(cs);
2787 
2788 	if (vf_flush_wa)
2789 		cs = gen8_emit_pipe_control(cs, 0, 0);
2790 
2791 	if (dc_flush_wa)
2792 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2793 					    0);
2794 
2795 	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2796 
2797 	if (dc_flush_wa)
2798 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2799 
2800 	intel_ring_advance(request, cs);
2801 
2802 	return 0;
2803 }
2804 
2805 static int gen11_emit_flush_render(struct i915_request *request,
2806 				   u32 mode)
2807 {
2808 	struct intel_engine_cs *engine = request->engine;
2809 	const u32 scratch_addr =
2810 		intel_gt_scratch_offset(engine->gt,
2811 					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
2812 
2813 	if (mode & EMIT_FLUSH) {
2814 		u32 *cs;
2815 		u32 flags = 0;
2816 
2817 		flags |= PIPE_CONTROL_CS_STALL;
2818 
2819 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
2820 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2821 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2822 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2823 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2824 		flags |= PIPE_CONTROL_QW_WRITE;
2825 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2826 
2827 		cs = intel_ring_begin(request, 6);
2828 		if (IS_ERR(cs))
2829 			return PTR_ERR(cs);
2830 
2831 		cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2832 		intel_ring_advance(request, cs);
2833 	}
2834 
2835 	if (mode & EMIT_INVALIDATE) {
2836 		u32 *cs;
2837 		u32 flags = 0;
2838 
2839 		flags |= PIPE_CONTROL_CS_STALL;
2840 
2841 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
2842 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2843 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2844 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2845 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2846 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2847 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2848 		flags |= PIPE_CONTROL_QW_WRITE;
2849 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2850 
2851 		cs = intel_ring_begin(request, 6);
2852 		if (IS_ERR(cs))
2853 			return PTR_ERR(cs);
2854 
2855 		cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2856 		intel_ring_advance(request, cs);
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 /*
2863  * Reserve space for 2 NOOPs at the end of each request to be
2864  * used as a workaround for not being allowed to do lite
2865  * restore with HEAD==TAIL (WaIdleLiteRestore).
2866  */
2867 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2868 {
2869 	/* Ensure there's always at least one preemption point per-request. */
2870 	*cs++ = MI_ARB_CHECK;
2871 	*cs++ = MI_NOOP;
2872 	request->wa_tail = intel_ring_offset(request, cs);
2873 
2874 	return cs;
2875 }
2876 
2877 static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
2878 {
2879 	*cs++ = MI_SEMAPHORE_WAIT |
2880 		MI_SEMAPHORE_GLOBAL_GTT |
2881 		MI_SEMAPHORE_POLL |
2882 		MI_SEMAPHORE_SAD_EQ_SDD;
2883 	*cs++ = 0;
2884 	*cs++ = intel_hws_preempt_address(request->engine);
2885 	*cs++ = 0;
2886 
2887 	return cs;
2888 }
2889 
2890 static __always_inline u32*
2891 gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
2892 				 u32 *cs)
2893 {
2894 	*cs++ = MI_USER_INTERRUPT;
2895 
2896 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2897 	if (intel_engine_has_semaphores(request->engine))
2898 		cs = emit_preempt_busywait(request, cs);
2899 
2900 	request->tail = intel_ring_offset(request, cs);
2901 	assert_ring_tail_valid(request->ring, request->tail);
2902 
2903 	return gen8_emit_wa_tail(request, cs);
2904 }
2905 
2906 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2907 {
2908 	cs = gen8_emit_ggtt_write(cs,
2909 				  request->fence.seqno,
2910 				  request->timeline->hwsp_offset,
2911 				  0);
2912 
2913 	return gen8_emit_fini_breadcrumb_footer(request, cs);
2914 }
2915 
2916 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2917 {
2918 	cs = gen8_emit_ggtt_write_rcs(cs,
2919 				      request->fence.seqno,
2920 				      request->timeline->hwsp_offset,
2921 				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2922 				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2923 				      PIPE_CONTROL_DC_FLUSH_ENABLE);
2924 
2925 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2926 	cs = gen8_emit_pipe_control(cs,
2927 				    PIPE_CONTROL_FLUSH_ENABLE |
2928 				    PIPE_CONTROL_CS_STALL,
2929 				    0);
2930 
2931 	return gen8_emit_fini_breadcrumb_footer(request, cs);
2932 }
2933 
2934 static u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *request,
2935 					   u32 *cs)
2936 {
2937 	cs = gen8_emit_ggtt_write_rcs(cs,
2938 				      request->fence.seqno,
2939 				      request->timeline->hwsp_offset,
2940 				      PIPE_CONTROL_CS_STALL |
2941 				      PIPE_CONTROL_TILE_CACHE_FLUSH |
2942 				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2943 				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2944 				      PIPE_CONTROL_DC_FLUSH_ENABLE |
2945 				      PIPE_CONTROL_FLUSH_ENABLE);
2946 
2947 	return gen8_emit_fini_breadcrumb_footer(request, cs);
2948 }
2949 
2950 static void execlists_park(struct intel_engine_cs *engine)
2951 {
2952 	del_timer(&engine->execlists.timer);
2953 }
2954 
2955 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2956 {
2957 	engine->submit_request = execlists_submit_request;
2958 	engine->cancel_requests = execlists_cancel_requests;
2959 	engine->schedule = i915_schedule;
2960 	engine->execlists.tasklet.func = execlists_submission_tasklet;
2961 
2962 	engine->reset.prepare = execlists_reset_prepare;
2963 	engine->reset.reset = execlists_reset;
2964 	engine->reset.finish = execlists_reset_finish;
2965 
2966 	engine->park = execlists_park;
2967 	engine->unpark = NULL;
2968 
2969 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2970 	if (!intel_vgpu_active(engine->i915)) {
2971 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2972 		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2973 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2974 	}
2975 }
2976 
2977 static void execlists_destroy(struct intel_engine_cs *engine)
2978 {
2979 	intel_engine_cleanup_common(engine);
2980 	lrc_destroy_wa_ctx(engine);
2981 	kfree(engine);
2982 }
2983 
2984 static void
2985 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2986 {
2987 	/* Default vfuncs which can be overriden by each engine. */
2988 
2989 	engine->destroy = execlists_destroy;
2990 	engine->resume = execlists_resume;
2991 
2992 	engine->reset.prepare = execlists_reset_prepare;
2993 	engine->reset.reset = execlists_reset;
2994 	engine->reset.finish = execlists_reset_finish;
2995 
2996 	engine->cops = &execlists_context_ops;
2997 	engine->request_alloc = execlists_request_alloc;
2998 
2999 	engine->emit_flush = gen8_emit_flush;
3000 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3001 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
3002 
3003 	engine->set_default_submission = intel_execlists_set_default_submission;
3004 
3005 	if (INTEL_GEN(engine->i915) < 11) {
3006 		engine->irq_enable = gen8_logical_ring_enable_irq;
3007 		engine->irq_disable = gen8_logical_ring_disable_irq;
3008 	} else {
3009 		/*
3010 		 * TODO: On Gen11 interrupt masks need to be clear
3011 		 * to allow C6 entry. Keep interrupts enabled at
3012 		 * and take the hit of generating extra interrupts
3013 		 * until a more refined solution exists.
3014 		 */
3015 	}
3016 	if (IS_GEN(engine->i915, 8))
3017 		engine->emit_bb_start = gen8_emit_bb_start;
3018 	else
3019 		engine->emit_bb_start = gen9_emit_bb_start;
3020 }
3021 
3022 static inline void
3023 logical_ring_default_irqs(struct intel_engine_cs *engine)
3024 {
3025 	unsigned int shift = 0;
3026 
3027 	if (INTEL_GEN(engine->i915) < 11) {
3028 		const u8 irq_shifts[] = {
3029 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3030 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3031 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3032 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3033 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3034 		};
3035 
3036 		shift = irq_shifts[engine->id];
3037 	}
3038 
3039 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3040 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3041 }
3042 
3043 static void rcs_submission_override(struct intel_engine_cs *engine)
3044 {
3045 	switch (INTEL_GEN(engine->i915)) {
3046 	case 12:
3047 	case 11:
3048 		engine->emit_flush = gen11_emit_flush_render;
3049 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3050 		break;
3051 	default:
3052 		engine->emit_flush = gen8_emit_flush_render;
3053 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3054 		break;
3055 	}
3056 }
3057 
3058 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3059 {
3060 	tasklet_init(&engine->execlists.tasklet,
3061 		     execlists_submission_tasklet, (unsigned long)engine);
3062 	timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
3063 
3064 	logical_ring_default_vfuncs(engine);
3065 	logical_ring_default_irqs(engine);
3066 
3067 	if (engine->class == RENDER_CLASS)
3068 		rcs_submission_override(engine);
3069 
3070 	return 0;
3071 }
3072 
3073 int intel_execlists_submission_init(struct intel_engine_cs *engine)
3074 {
3075 	struct intel_engine_execlists * const execlists = &engine->execlists;
3076 	struct drm_i915_private *i915 = engine->i915;
3077 	struct intel_uncore *uncore = engine->uncore;
3078 	u32 base = engine->mmio_base;
3079 	int ret;
3080 
3081 	ret = intel_engine_init_common(engine);
3082 	if (ret)
3083 		return ret;
3084 
3085 	if (intel_init_workaround_bb(engine))
3086 		/*
3087 		 * We continue even if we fail to initialize WA batch
3088 		 * because we only expect rare glitches but nothing
3089 		 * critical to prevent us from using GPU
3090 		 */
3091 		DRM_ERROR("WA batch buffer initialization failed\n");
3092 
3093 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3094 		execlists->submit_reg = uncore->regs +
3095 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3096 		execlists->ctrl_reg = uncore->regs +
3097 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3098 	} else {
3099 		execlists->submit_reg = uncore->regs +
3100 			i915_mmio_reg_offset(RING_ELSP(base));
3101 	}
3102 
3103 	execlists->csb_status =
3104 		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3105 
3106 	execlists->csb_write =
3107 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3108 
3109 	if (INTEL_GEN(i915) < 11)
3110 		execlists->csb_size = GEN8_CSB_ENTRIES;
3111 	else
3112 		execlists->csb_size = GEN11_CSB_ENTRIES;
3113 
3114 	reset_csb_pointers(engine);
3115 
3116 	return 0;
3117 }
3118 
3119 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
3120 {
3121 	u32 indirect_ctx_offset;
3122 
3123 	switch (INTEL_GEN(engine->i915)) {
3124 	default:
3125 		MISSING_CASE(INTEL_GEN(engine->i915));
3126 		/* fall through */
3127 	case 12:
3128 		indirect_ctx_offset =
3129 			GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3130 		break;
3131 	case 11:
3132 		indirect_ctx_offset =
3133 			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3134 		break;
3135 	case 10:
3136 		indirect_ctx_offset =
3137 			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3138 		break;
3139 	case 9:
3140 		indirect_ctx_offset =
3141 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3142 		break;
3143 	case 8:
3144 		indirect_ctx_offset =
3145 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
3146 		break;
3147 	}
3148 
3149 	return indirect_ctx_offset;
3150 }
3151 
3152 static void execlists_init_reg_state(u32 *regs,
3153 				     struct intel_context *ce,
3154 				     struct intel_engine_cs *engine,
3155 				     struct intel_ring *ring)
3156 {
3157 	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
3158 	bool rcs = engine->class == RENDER_CLASS;
3159 	u32 base = engine->mmio_base;
3160 
3161 	/*
3162 	 * A context is actually a big batch buffer with several
3163 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
3164 	 * values we are setting here are only for the first context restore:
3165 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
3166 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
3167 	 * we are not initializing here).
3168 	 *
3169 	 * Must keep consistent with virtual_update_register_offsets().
3170 	 */
3171 	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
3172 				 MI_LRI_FORCE_POSTED;
3173 
3174 	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
3175 		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
3176 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
3177 	if (INTEL_GEN(engine->i915) < 11) {
3178 		regs[CTX_CONTEXT_CONTROL + 1] |=
3179 			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
3180 					    CTX_CTRL_RS_CTX_ENABLE);
3181 	}
3182 	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
3183 	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
3184 	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
3185 	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
3186 		RING_CTL_SIZE(ring->size) | RING_VALID);
3187 	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
3188 	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
3189 	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
3190 	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
3191 	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
3192 	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
3193 	if (rcs) {
3194 		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3195 
3196 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
3197 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
3198 			RING_INDIRECT_CTX_OFFSET(base), 0);
3199 		if (wa_ctx->indirect_ctx.size) {
3200 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
3201 
3202 			regs[CTX_RCS_INDIRECT_CTX + 1] =
3203 				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
3204 				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
3205 
3206 			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
3207 				intel_lr_indirect_ctx_offset(engine) << 6;
3208 		}
3209 
3210 		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
3211 		if (wa_ctx->per_ctx.size) {
3212 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
3213 
3214 			regs[CTX_BB_PER_CTX_PTR + 1] =
3215 				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
3216 		}
3217 	}
3218 
3219 	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
3220 
3221 	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
3222 	/* PDP values well be assigned later if needed */
3223 	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
3224 	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
3225 	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
3226 	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
3227 	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
3228 	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
3229 	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
3230 	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
3231 
3232 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
3233 		/* 64b PPGTT (48bit canonical)
3234 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
3235 		 * other PDP Descriptors are ignored.
3236 		 */
3237 		ASSIGN_CTX_PML4(ppgtt, regs);
3238 	} else {
3239 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
3240 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
3241 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
3242 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
3243 	}
3244 
3245 	if (rcs) {
3246 		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
3247 		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
3248 	}
3249 
3250 	regs[CTX_END] = MI_BATCH_BUFFER_END;
3251 	if (INTEL_GEN(engine->i915) >= 10)
3252 		regs[CTX_END] |= BIT(0);
3253 }
3254 
3255 static int
3256 populate_lr_context(struct intel_context *ce,
3257 		    struct drm_i915_gem_object *ctx_obj,
3258 		    struct intel_engine_cs *engine,
3259 		    struct intel_ring *ring)
3260 {
3261 	void *vaddr;
3262 	u32 *regs;
3263 	int ret;
3264 
3265 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
3266 	if (IS_ERR(vaddr)) {
3267 		ret = PTR_ERR(vaddr);
3268 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
3269 		return ret;
3270 	}
3271 
3272 	set_redzone(vaddr, engine);
3273 
3274 	if (engine->default_state) {
3275 		/*
3276 		 * We only want to copy over the template context state;
3277 		 * skipping over the headers reserved for GuC communication,
3278 		 * leaving those as zero.
3279 		 */
3280 		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
3281 		void *defaults;
3282 
3283 		defaults = i915_gem_object_pin_map(engine->default_state,
3284 						   I915_MAP_WB);
3285 		if (IS_ERR(defaults)) {
3286 			ret = PTR_ERR(defaults);
3287 			goto err_unpin_ctx;
3288 		}
3289 
3290 		memcpy(vaddr + start, defaults + start, engine->context_size);
3291 		i915_gem_object_unpin_map(engine->default_state);
3292 	}
3293 
3294 	/* The second page of the context object contains some fields which must
3295 	 * be set up prior to the first execution. */
3296 	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
3297 	execlists_init_reg_state(regs, ce, engine, ring);
3298 	if (!engine->default_state)
3299 		regs[CTX_CONTEXT_CONTROL + 1] |=
3300 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
3301 
3302 	ret = 0;
3303 err_unpin_ctx:
3304 	__i915_gem_object_flush_map(ctx_obj,
3305 				    LRC_HEADER_PAGES * PAGE_SIZE,
3306 				    engine->context_size);
3307 	i915_gem_object_unpin_map(ctx_obj);
3308 	return ret;
3309 }
3310 
3311 static int __execlists_context_alloc(struct intel_context *ce,
3312 				     struct intel_engine_cs *engine)
3313 {
3314 	struct drm_i915_gem_object *ctx_obj;
3315 	struct intel_ring *ring;
3316 	struct i915_vma *vma;
3317 	u32 context_size;
3318 	int ret;
3319 
3320 	GEM_BUG_ON(ce->state);
3321 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3322 
3323 	/*
3324 	 * Before the actual start of the context image, we insert a few pages
3325 	 * for our own use and for sharing with the GuC.
3326 	 */
3327 	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3328 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3329 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
3330 
3331 	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3332 	if (IS_ERR(ctx_obj))
3333 		return PTR_ERR(ctx_obj);
3334 
3335 	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3336 	if (IS_ERR(vma)) {
3337 		ret = PTR_ERR(vma);
3338 		goto error_deref_obj;
3339 	}
3340 
3341 	if (!ce->timeline) {
3342 		struct intel_timeline *tl;
3343 
3344 		tl = intel_timeline_create(engine->gt, NULL);
3345 		if (IS_ERR(tl)) {
3346 			ret = PTR_ERR(tl);
3347 			goto error_deref_obj;
3348 		}
3349 
3350 		ce->timeline = tl;
3351 	}
3352 
3353 	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
3354 	if (IS_ERR(ring)) {
3355 		ret = PTR_ERR(ring);
3356 		goto error_deref_obj;
3357 	}
3358 
3359 	ret = populate_lr_context(ce, ctx_obj, engine, ring);
3360 	if (ret) {
3361 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3362 		goto error_ring_free;
3363 	}
3364 
3365 	ce->ring = ring;
3366 	ce->state = vma;
3367 
3368 	return 0;
3369 
3370 error_ring_free:
3371 	intel_ring_put(ring);
3372 error_deref_obj:
3373 	i915_gem_object_put(ctx_obj);
3374 	return ret;
3375 }
3376 
3377 static struct list_head *virtual_queue(struct virtual_engine *ve)
3378 {
3379 	return &ve->base.execlists.default_priolist.requests[0];
3380 }
3381 
3382 static void virtual_context_destroy(struct kref *kref)
3383 {
3384 	struct virtual_engine *ve =
3385 		container_of(kref, typeof(*ve), context.ref);
3386 	unsigned int n;
3387 
3388 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3389 	GEM_BUG_ON(ve->request);
3390 	GEM_BUG_ON(ve->context.inflight);
3391 
3392 	for (n = 0; n < ve->num_siblings; n++) {
3393 		struct intel_engine_cs *sibling = ve->siblings[n];
3394 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3395 
3396 		if (RB_EMPTY_NODE(node))
3397 			continue;
3398 
3399 		spin_lock_irq(&sibling->active.lock);
3400 
3401 		/* Detachment is lazily performed in the execlists tasklet */
3402 		if (!RB_EMPTY_NODE(node))
3403 			rb_erase_cached(node, &sibling->execlists.virtual);
3404 
3405 		spin_unlock_irq(&sibling->active.lock);
3406 	}
3407 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3408 
3409 	if (ve->context.state)
3410 		__execlists_context_fini(&ve->context);
3411 	intel_context_fini(&ve->context);
3412 
3413 	kfree(ve->bonds);
3414 	kfree(ve);
3415 }
3416 
3417 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3418 {
3419 	int swp;
3420 
3421 	/*
3422 	 * Pick a random sibling on starting to help spread the load around.
3423 	 *
3424 	 * New contexts are typically created with exactly the same order
3425 	 * of siblings, and often started in batches. Due to the way we iterate
3426 	 * the array of sibling when submitting requests, sibling[0] is
3427 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3428 	 * randomised across the system, we also help spread the load by the
3429 	 * first engine we inspect being different each time.
3430 	 *
3431 	 * NB This does not force us to execute on this engine, it will just
3432 	 * typically be the first we inspect for submission.
3433 	 */
3434 	swp = prandom_u32_max(ve->num_siblings);
3435 	if (!swp)
3436 		return;
3437 
3438 	swap(ve->siblings[swp], ve->siblings[0]);
3439 	virtual_update_register_offsets(ve->context.lrc_reg_state,
3440 					ve->siblings[0]);
3441 }
3442 
3443 static int virtual_context_pin(struct intel_context *ce)
3444 {
3445 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3446 	int err;
3447 
3448 	/* Note: we must use a real engine class for setting up reg state */
3449 	err = __execlists_context_pin(ce, ve->siblings[0]);
3450 	if (err)
3451 		return err;
3452 
3453 	virtual_engine_initial_hint(ve);
3454 	return 0;
3455 }
3456 
3457 static void virtual_context_enter(struct intel_context *ce)
3458 {
3459 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3460 	unsigned int n;
3461 
3462 	for (n = 0; n < ve->num_siblings; n++)
3463 		intel_engine_pm_get(ve->siblings[n]);
3464 
3465 	intel_timeline_enter(ce->timeline);
3466 }
3467 
3468 static void virtual_context_exit(struct intel_context *ce)
3469 {
3470 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3471 	unsigned int n;
3472 
3473 	intel_timeline_exit(ce->timeline);
3474 
3475 	for (n = 0; n < ve->num_siblings; n++)
3476 		intel_engine_pm_put(ve->siblings[n]);
3477 }
3478 
3479 static const struct intel_context_ops virtual_context_ops = {
3480 	.pin = virtual_context_pin,
3481 	.unpin = execlists_context_unpin,
3482 
3483 	.enter = virtual_context_enter,
3484 	.exit = virtual_context_exit,
3485 
3486 	.destroy = virtual_context_destroy,
3487 };
3488 
3489 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3490 {
3491 	struct i915_request *rq;
3492 	intel_engine_mask_t mask;
3493 
3494 	rq = READ_ONCE(ve->request);
3495 	if (!rq)
3496 		return 0;
3497 
3498 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3499 	mask = rq->execution_mask;
3500 	if (unlikely(!mask)) {
3501 		/* Invalid selection, submit to a random engine in error */
3502 		i915_request_skip(rq, -ENODEV);
3503 		mask = ve->siblings[0]->mask;
3504 	}
3505 
3506 	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3507 		  ve->base.name,
3508 		  rq->fence.context, rq->fence.seqno,
3509 		  mask, ve->base.execlists.queue_priority_hint);
3510 
3511 	return mask;
3512 }
3513 
3514 static void virtual_submission_tasklet(unsigned long data)
3515 {
3516 	struct virtual_engine * const ve = (struct virtual_engine *)data;
3517 	const int prio = ve->base.execlists.queue_priority_hint;
3518 	intel_engine_mask_t mask;
3519 	unsigned int n;
3520 
3521 	rcu_read_lock();
3522 	mask = virtual_submission_mask(ve);
3523 	rcu_read_unlock();
3524 	if (unlikely(!mask))
3525 		return;
3526 
3527 	local_irq_disable();
3528 	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3529 		struct intel_engine_cs *sibling = ve->siblings[n];
3530 		struct ve_node * const node = &ve->nodes[sibling->id];
3531 		struct rb_node **parent, *rb;
3532 		bool first;
3533 
3534 		if (unlikely(!(mask & sibling->mask))) {
3535 			if (!RB_EMPTY_NODE(&node->rb)) {
3536 				spin_lock(&sibling->active.lock);
3537 				rb_erase_cached(&node->rb,
3538 						&sibling->execlists.virtual);
3539 				RB_CLEAR_NODE(&node->rb);
3540 				spin_unlock(&sibling->active.lock);
3541 			}
3542 			continue;
3543 		}
3544 
3545 		spin_lock(&sibling->active.lock);
3546 
3547 		if (!RB_EMPTY_NODE(&node->rb)) {
3548 			/*
3549 			 * Cheat and avoid rebalancing the tree if we can
3550 			 * reuse this node in situ.
3551 			 */
3552 			first = rb_first_cached(&sibling->execlists.virtual) ==
3553 				&node->rb;
3554 			if (prio == node->prio || (prio > node->prio && first))
3555 				goto submit_engine;
3556 
3557 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3558 		}
3559 
3560 		rb = NULL;
3561 		first = true;
3562 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3563 		while (*parent) {
3564 			struct ve_node *other;
3565 
3566 			rb = *parent;
3567 			other = rb_entry(rb, typeof(*other), rb);
3568 			if (prio > other->prio) {
3569 				parent = &rb->rb_left;
3570 			} else {
3571 				parent = &rb->rb_right;
3572 				first = false;
3573 			}
3574 		}
3575 
3576 		rb_link_node(&node->rb, rb, parent);
3577 		rb_insert_color_cached(&node->rb,
3578 				       &sibling->execlists.virtual,
3579 				       first);
3580 
3581 submit_engine:
3582 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3583 		node->prio = prio;
3584 		if (first && prio > sibling->execlists.queue_priority_hint) {
3585 			sibling->execlists.queue_priority_hint = prio;
3586 			tasklet_hi_schedule(&sibling->execlists.tasklet);
3587 		}
3588 
3589 		spin_unlock(&sibling->active.lock);
3590 	}
3591 	local_irq_enable();
3592 }
3593 
3594 static void virtual_submit_request(struct i915_request *rq)
3595 {
3596 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3597 
3598 	GEM_TRACE("%s: rq=%llx:%lld\n",
3599 		  ve->base.name,
3600 		  rq->fence.context,
3601 		  rq->fence.seqno);
3602 
3603 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3604 
3605 	GEM_BUG_ON(ve->request);
3606 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3607 
3608 	ve->base.execlists.queue_priority_hint = rq_prio(rq);
3609 	WRITE_ONCE(ve->request, rq);
3610 
3611 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3612 
3613 	tasklet_schedule(&ve->base.execlists.tasklet);
3614 }
3615 
3616 static struct ve_bond *
3617 virtual_find_bond(struct virtual_engine *ve,
3618 		  const struct intel_engine_cs *master)
3619 {
3620 	int i;
3621 
3622 	for (i = 0; i < ve->num_bonds; i++) {
3623 		if (ve->bonds[i].master == master)
3624 			return &ve->bonds[i];
3625 	}
3626 
3627 	return NULL;
3628 }
3629 
3630 static void
3631 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3632 {
3633 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3634 	struct ve_bond *bond;
3635 
3636 	bond = virtual_find_bond(ve, to_request(signal)->engine);
3637 	if (bond) {
3638 		intel_engine_mask_t old, new, cmp;
3639 
3640 		cmp = READ_ONCE(rq->execution_mask);
3641 		do {
3642 			old = cmp;
3643 			new = cmp & bond->sibling_mask;
3644 		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3645 	}
3646 }
3647 
3648 struct intel_context *
3649 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3650 			       struct intel_engine_cs **siblings,
3651 			       unsigned int count)
3652 {
3653 	struct virtual_engine *ve;
3654 	unsigned int n;
3655 	int err;
3656 
3657 	if (count == 0)
3658 		return ERR_PTR(-EINVAL);
3659 
3660 	if (count == 1)
3661 		return intel_context_create(ctx, siblings[0]);
3662 
3663 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3664 	if (!ve)
3665 		return ERR_PTR(-ENOMEM);
3666 
3667 	ve->base.i915 = ctx->i915;
3668 	ve->base.gt = siblings[0]->gt;
3669 	ve->base.id = -1;
3670 	ve->base.class = OTHER_CLASS;
3671 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3672 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3673 
3674 	/*
3675 	 * The decision on whether to submit a request using semaphores
3676 	 * depends on the saturated state of the engine. We only compute
3677 	 * this during HW submission of the request, and we need for this
3678 	 * state to be globally applied to all requests being submitted
3679 	 * to this engine. Virtual engines encompass more than one physical
3680 	 * engine and so we cannot accurately tell in advance if one of those
3681 	 * engines is already saturated and so cannot afford to use a semaphore
3682 	 * and be pessimized in priority for doing so -- if we are the only
3683 	 * context using semaphores after all other clients have stopped, we
3684 	 * will be starved on the saturated system. Such a global switch for
3685 	 * semaphores is less than ideal, but alas is the current compromise.
3686 	 */
3687 	ve->base.saturated = ALL_ENGINES;
3688 
3689 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3690 
3691 	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3692 
3693 	intel_engine_init_execlists(&ve->base);
3694 
3695 	ve->base.cops = &virtual_context_ops;
3696 	ve->base.request_alloc = execlists_request_alloc;
3697 
3698 	ve->base.schedule = i915_schedule;
3699 	ve->base.submit_request = virtual_submit_request;
3700 	ve->base.bond_execute = virtual_bond_execute;
3701 
3702 	INIT_LIST_HEAD(virtual_queue(ve));
3703 	ve->base.execlists.queue_priority_hint = INT_MIN;
3704 	tasklet_init(&ve->base.execlists.tasklet,
3705 		     virtual_submission_tasklet,
3706 		     (unsigned long)ve);
3707 
3708 	intel_context_init(&ve->context, ctx, &ve->base);
3709 
3710 	for (n = 0; n < count; n++) {
3711 		struct intel_engine_cs *sibling = siblings[n];
3712 
3713 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3714 		if (sibling->mask & ve->base.mask) {
3715 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3716 				  sibling->name);
3717 			err = -EINVAL;
3718 			goto err_put;
3719 		}
3720 
3721 		/*
3722 		 * The virtual engine implementation is tightly coupled to
3723 		 * the execlists backend -- we push out request directly
3724 		 * into a tree inside each physical engine. We could support
3725 		 * layering if we handle cloning of the requests and
3726 		 * submitting a copy into each backend.
3727 		 */
3728 		if (sibling->execlists.tasklet.func !=
3729 		    execlists_submission_tasklet) {
3730 			err = -ENODEV;
3731 			goto err_put;
3732 		}
3733 
3734 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3735 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3736 
3737 		ve->siblings[ve->num_siblings++] = sibling;
3738 		ve->base.mask |= sibling->mask;
3739 
3740 		/*
3741 		 * All physical engines must be compatible for their emission
3742 		 * functions (as we build the instructions during request
3743 		 * construction and do not alter them before submission
3744 		 * on the physical engine). We use the engine class as a guide
3745 		 * here, although that could be refined.
3746 		 */
3747 		if (ve->base.class != OTHER_CLASS) {
3748 			if (ve->base.class != sibling->class) {
3749 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3750 					  sibling->class, ve->base.class);
3751 				err = -EINVAL;
3752 				goto err_put;
3753 			}
3754 			continue;
3755 		}
3756 
3757 		ve->base.class = sibling->class;
3758 		ve->base.uabi_class = sibling->uabi_class;
3759 		snprintf(ve->base.name, sizeof(ve->base.name),
3760 			 "v%dx%d", ve->base.class, count);
3761 		ve->base.context_size = sibling->context_size;
3762 
3763 		ve->base.emit_bb_start = sibling->emit_bb_start;
3764 		ve->base.emit_flush = sibling->emit_flush;
3765 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3766 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3767 		ve->base.emit_fini_breadcrumb_dw =
3768 			sibling->emit_fini_breadcrumb_dw;
3769 
3770 		ve->base.flags = sibling->flags;
3771 	}
3772 
3773 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3774 
3775 	err = __execlists_context_alloc(&ve->context, siblings[0]);
3776 	if (err)
3777 		goto err_put;
3778 
3779 	__set_bit(CONTEXT_ALLOC_BIT, &ve->context.flags);
3780 
3781 	return &ve->context;
3782 
3783 err_put:
3784 	intel_context_put(&ve->context);
3785 	return ERR_PTR(err);
3786 }
3787 
3788 struct intel_context *
3789 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3790 			      struct intel_engine_cs *src)
3791 {
3792 	struct virtual_engine *se = to_virtual_engine(src);
3793 	struct intel_context *dst;
3794 
3795 	dst = intel_execlists_create_virtual(ctx,
3796 					     se->siblings,
3797 					     se->num_siblings);
3798 	if (IS_ERR(dst))
3799 		return dst;
3800 
3801 	if (se->num_bonds) {
3802 		struct virtual_engine *de = to_virtual_engine(dst->engine);
3803 
3804 		de->bonds = kmemdup(se->bonds,
3805 				    sizeof(*se->bonds) * se->num_bonds,
3806 				    GFP_KERNEL);
3807 		if (!de->bonds) {
3808 			intel_context_put(dst);
3809 			return ERR_PTR(-ENOMEM);
3810 		}
3811 
3812 		de->num_bonds = se->num_bonds;
3813 	}
3814 
3815 	return dst;
3816 }
3817 
3818 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3819 				     const struct intel_engine_cs *master,
3820 				     const struct intel_engine_cs *sibling)
3821 {
3822 	struct virtual_engine *ve = to_virtual_engine(engine);
3823 	struct ve_bond *bond;
3824 	int n;
3825 
3826 	/* Sanity check the sibling is part of the virtual engine */
3827 	for (n = 0; n < ve->num_siblings; n++)
3828 		if (sibling == ve->siblings[n])
3829 			break;
3830 	if (n == ve->num_siblings)
3831 		return -EINVAL;
3832 
3833 	bond = virtual_find_bond(ve, master);
3834 	if (bond) {
3835 		bond->sibling_mask |= sibling->mask;
3836 		return 0;
3837 	}
3838 
3839 	bond = krealloc(ve->bonds,
3840 			sizeof(*bond) * (ve->num_bonds + 1),
3841 			GFP_KERNEL);
3842 	if (!bond)
3843 		return -ENOMEM;
3844 
3845 	bond[ve->num_bonds].master = master;
3846 	bond[ve->num_bonds].sibling_mask = sibling->mask;
3847 
3848 	ve->bonds = bond;
3849 	ve->num_bonds++;
3850 
3851 	return 0;
3852 }
3853 
3854 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3855 				   struct drm_printer *m,
3856 				   void (*show_request)(struct drm_printer *m,
3857 							struct i915_request *rq,
3858 							const char *prefix),
3859 				   unsigned int max)
3860 {
3861 	const struct intel_engine_execlists *execlists = &engine->execlists;
3862 	struct i915_request *rq, *last;
3863 	unsigned long flags;
3864 	unsigned int count;
3865 	struct rb_node *rb;
3866 
3867 	spin_lock_irqsave(&engine->active.lock, flags);
3868 
3869 	last = NULL;
3870 	count = 0;
3871 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3872 		if (count++ < max - 1)
3873 			show_request(m, rq, "\t\tE ");
3874 		else
3875 			last = rq;
3876 	}
3877 	if (last) {
3878 		if (count > max) {
3879 			drm_printf(m,
3880 				   "\t\t...skipping %d executing requests...\n",
3881 				   count - max);
3882 		}
3883 		show_request(m, last, "\t\tE ");
3884 	}
3885 
3886 	last = NULL;
3887 	count = 0;
3888 	if (execlists->queue_priority_hint != INT_MIN)
3889 		drm_printf(m, "\t\tQueue priority hint: %d\n",
3890 			   execlists->queue_priority_hint);
3891 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3892 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3893 		int i;
3894 
3895 		priolist_for_each_request(rq, p, i) {
3896 			if (count++ < max - 1)
3897 				show_request(m, rq, "\t\tQ ");
3898 			else
3899 				last = rq;
3900 		}
3901 	}
3902 	if (last) {
3903 		if (count > max) {
3904 			drm_printf(m,
3905 				   "\t\t...skipping %d queued requests...\n",
3906 				   count - max);
3907 		}
3908 		show_request(m, last, "\t\tQ ");
3909 	}
3910 
3911 	last = NULL;
3912 	count = 0;
3913 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3914 		struct virtual_engine *ve =
3915 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3916 		struct i915_request *rq = READ_ONCE(ve->request);
3917 
3918 		if (rq) {
3919 			if (count++ < max - 1)
3920 				show_request(m, rq, "\t\tV ");
3921 			else
3922 				last = rq;
3923 		}
3924 	}
3925 	if (last) {
3926 		if (count > max) {
3927 			drm_printf(m,
3928 				   "\t\t...skipping %d virtual requests...\n",
3929 				   count - max);
3930 		}
3931 		show_request(m, last, "\t\tV ");
3932 	}
3933 
3934 	spin_unlock_irqrestore(&engine->active.lock, flags);
3935 }
3936 
3937 void intel_lr_context_reset(struct intel_engine_cs *engine,
3938 			    struct intel_context *ce,
3939 			    u32 head,
3940 			    bool scrub)
3941 {
3942 	/*
3943 	 * We want a simple context + ring to execute the breadcrumb update.
3944 	 * We cannot rely on the context being intact across the GPU hang,
3945 	 * so clear it and rebuild just what we need for the breadcrumb.
3946 	 * All pending requests for this context will be zapped, and any
3947 	 * future request will be after userspace has had the opportunity
3948 	 * to recreate its own state.
3949 	 */
3950 	if (scrub) {
3951 		u32 *regs = ce->lrc_reg_state;
3952 
3953 		if (engine->pinned_default_state) {
3954 			memcpy(regs, /* skip restoring the vanilla PPHWSP */
3955 			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3956 			       engine->context_size - PAGE_SIZE);
3957 		}
3958 		execlists_init_reg_state(regs, ce, engine, ce->ring);
3959 	}
3960 
3961 	/* Rerun the request; its payload has been neutered (if guilty). */
3962 	ce->ring->head = head;
3963 	intel_ring_update_space(ce->ring);
3964 
3965 	__execlists_update_reg_state(ce, engine);
3966 }
3967 
3968 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3969 #include "selftest_lrc.c"
3970 #endif
3971