1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 8 #include "gen8_engine_cs.h" 9 #include "i915_drv.h" 10 #include "i915_perf.h" 11 #include "i915_reg.h" 12 #include "intel_context.h" 13 #include "intel_engine.h" 14 #include "intel_engine_regs.h" 15 #include "intel_gpu_commands.h" 16 #include "intel_gt.h" 17 #include "intel_gt_regs.h" 18 #include "intel_lrc.h" 19 #include "intel_lrc_reg.h" 20 #include "intel_ring.h" 21 #include "shmem_utils.h" 22 23 static void set_offsets(u32 *regs, 24 const u8 *data, 25 const struct intel_engine_cs *engine, 26 bool close) 27 #define NOP(x) (BIT(7) | (x)) 28 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6))) 29 #define POSTED BIT(0) 30 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200)) 31 #define REG16(x) \ 32 (((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \ 33 (((x) >> 2) & 0x7f) 34 #define END 0 35 { 36 const u32 base = engine->mmio_base; 37 38 while (*data) { 39 u8 count, flags; 40 41 if (*data & BIT(7)) { /* skip */ 42 count = *data++ & ~BIT(7); 43 regs += count; 44 continue; 45 } 46 47 count = *data & 0x3f; 48 flags = *data >> 6; 49 data++; 50 51 *regs = MI_LOAD_REGISTER_IMM(count); 52 if (flags & POSTED) 53 *regs |= MI_LRI_FORCE_POSTED; 54 if (GRAPHICS_VER(engine->i915) >= 11) 55 *regs |= MI_LRI_LRM_CS_MMIO; 56 regs++; 57 58 GEM_BUG_ON(!count); 59 do { 60 u32 offset = 0; 61 u8 v; 62 63 do { 64 v = *data++; 65 offset <<= 7; 66 offset |= v & ~BIT(7); 67 } while (v & BIT(7)); 68 69 regs[0] = base + (offset << 2); 70 regs += 2; 71 } while (--count); 72 } 73 74 if (close) { 75 /* Close the batch; used mainly by live_lrc_layout() */ 76 *regs = MI_BATCH_BUFFER_END; 77 if (GRAPHICS_VER(engine->i915) >= 11) 78 *regs |= BIT(0); 79 } 80 } 81 82 static const u8 gen8_xcs_offsets[] = { 83 NOP(1), 84 LRI(11, 0), 85 REG16(0x244), 86 REG(0x034), 87 REG(0x030), 88 REG(0x038), 89 REG(0x03c), 90 REG(0x168), 91 REG(0x140), 92 REG(0x110), 93 REG(0x11c), 94 REG(0x114), 95 REG(0x118), 96 97 NOP(9), 98 LRI(9, 0), 99 REG16(0x3a8), 100 REG16(0x28c), 101 REG16(0x288), 102 REG16(0x284), 103 REG16(0x280), 104 REG16(0x27c), 105 REG16(0x278), 106 REG16(0x274), 107 REG16(0x270), 108 109 NOP(13), 110 LRI(2, 0), 111 REG16(0x200), 112 REG(0x028), 113 114 END 115 }; 116 117 static const u8 gen9_xcs_offsets[] = { 118 NOP(1), 119 LRI(14, POSTED), 120 REG16(0x244), 121 REG(0x034), 122 REG(0x030), 123 REG(0x038), 124 REG(0x03c), 125 REG(0x168), 126 REG(0x140), 127 REG(0x110), 128 REG(0x11c), 129 REG(0x114), 130 REG(0x118), 131 REG(0x1c0), 132 REG(0x1c4), 133 REG(0x1c8), 134 135 NOP(3), 136 LRI(9, POSTED), 137 REG16(0x3a8), 138 REG16(0x28c), 139 REG16(0x288), 140 REG16(0x284), 141 REG16(0x280), 142 REG16(0x27c), 143 REG16(0x278), 144 REG16(0x274), 145 REG16(0x270), 146 147 NOP(13), 148 LRI(1, POSTED), 149 REG16(0x200), 150 151 NOP(13), 152 LRI(44, POSTED), 153 REG(0x028), 154 REG(0x09c), 155 REG(0x0c0), 156 REG(0x178), 157 REG(0x17c), 158 REG16(0x358), 159 REG(0x170), 160 REG(0x150), 161 REG(0x154), 162 REG(0x158), 163 REG16(0x41c), 164 REG16(0x600), 165 REG16(0x604), 166 REG16(0x608), 167 REG16(0x60c), 168 REG16(0x610), 169 REG16(0x614), 170 REG16(0x618), 171 REG16(0x61c), 172 REG16(0x620), 173 REG16(0x624), 174 REG16(0x628), 175 REG16(0x62c), 176 REG16(0x630), 177 REG16(0x634), 178 REG16(0x638), 179 REG16(0x63c), 180 REG16(0x640), 181 REG16(0x644), 182 REG16(0x648), 183 REG16(0x64c), 184 REG16(0x650), 185 REG16(0x654), 186 REG16(0x658), 187 REG16(0x65c), 188 REG16(0x660), 189 REG16(0x664), 190 REG16(0x668), 191 REG16(0x66c), 192 REG16(0x670), 193 REG16(0x674), 194 REG16(0x678), 195 REG16(0x67c), 196 REG(0x068), 197 198 END 199 }; 200 201 static const u8 gen12_xcs_offsets[] = { 202 NOP(1), 203 LRI(13, POSTED), 204 REG16(0x244), 205 REG(0x034), 206 REG(0x030), 207 REG(0x038), 208 REG(0x03c), 209 REG(0x168), 210 REG(0x140), 211 REG(0x110), 212 REG(0x1c0), 213 REG(0x1c4), 214 REG(0x1c8), 215 REG(0x180), 216 REG16(0x2b4), 217 218 NOP(5), 219 LRI(9, POSTED), 220 REG16(0x3a8), 221 REG16(0x28c), 222 REG16(0x288), 223 REG16(0x284), 224 REG16(0x280), 225 REG16(0x27c), 226 REG16(0x278), 227 REG16(0x274), 228 REG16(0x270), 229 230 END 231 }; 232 233 static const u8 dg2_xcs_offsets[] = { 234 NOP(1), 235 LRI(15, POSTED), 236 REG16(0x244), 237 REG(0x034), 238 REG(0x030), 239 REG(0x038), 240 REG(0x03c), 241 REG(0x168), 242 REG(0x140), 243 REG(0x110), 244 REG(0x1c0), 245 REG(0x1c4), 246 REG(0x1c8), 247 REG(0x180), 248 REG16(0x2b4), 249 REG(0x120), 250 REG(0x124), 251 252 NOP(1), 253 LRI(9, POSTED), 254 REG16(0x3a8), 255 REG16(0x28c), 256 REG16(0x288), 257 REG16(0x284), 258 REG16(0x280), 259 REG16(0x27c), 260 REG16(0x278), 261 REG16(0x274), 262 REG16(0x270), 263 264 END 265 }; 266 267 static const u8 gen8_rcs_offsets[] = { 268 NOP(1), 269 LRI(14, POSTED), 270 REG16(0x244), 271 REG(0x034), 272 REG(0x030), 273 REG(0x038), 274 REG(0x03c), 275 REG(0x168), 276 REG(0x140), 277 REG(0x110), 278 REG(0x11c), 279 REG(0x114), 280 REG(0x118), 281 REG(0x1c0), 282 REG(0x1c4), 283 REG(0x1c8), 284 285 NOP(3), 286 LRI(9, POSTED), 287 REG16(0x3a8), 288 REG16(0x28c), 289 REG16(0x288), 290 REG16(0x284), 291 REG16(0x280), 292 REG16(0x27c), 293 REG16(0x278), 294 REG16(0x274), 295 REG16(0x270), 296 297 NOP(13), 298 LRI(1, 0), 299 REG(0x0c8), 300 301 END 302 }; 303 304 static const u8 gen9_rcs_offsets[] = { 305 NOP(1), 306 LRI(14, POSTED), 307 REG16(0x244), 308 REG(0x34), 309 REG(0x30), 310 REG(0x38), 311 REG(0x3c), 312 REG(0x168), 313 REG(0x140), 314 REG(0x110), 315 REG(0x11c), 316 REG(0x114), 317 REG(0x118), 318 REG(0x1c0), 319 REG(0x1c4), 320 REG(0x1c8), 321 322 NOP(3), 323 LRI(9, POSTED), 324 REG16(0x3a8), 325 REG16(0x28c), 326 REG16(0x288), 327 REG16(0x284), 328 REG16(0x280), 329 REG16(0x27c), 330 REG16(0x278), 331 REG16(0x274), 332 REG16(0x270), 333 334 NOP(13), 335 LRI(1, 0), 336 REG(0xc8), 337 338 NOP(13), 339 LRI(44, POSTED), 340 REG(0x28), 341 REG(0x9c), 342 REG(0xc0), 343 REG(0x178), 344 REG(0x17c), 345 REG16(0x358), 346 REG(0x170), 347 REG(0x150), 348 REG(0x154), 349 REG(0x158), 350 REG16(0x41c), 351 REG16(0x600), 352 REG16(0x604), 353 REG16(0x608), 354 REG16(0x60c), 355 REG16(0x610), 356 REG16(0x614), 357 REG16(0x618), 358 REG16(0x61c), 359 REG16(0x620), 360 REG16(0x624), 361 REG16(0x628), 362 REG16(0x62c), 363 REG16(0x630), 364 REG16(0x634), 365 REG16(0x638), 366 REG16(0x63c), 367 REG16(0x640), 368 REG16(0x644), 369 REG16(0x648), 370 REG16(0x64c), 371 REG16(0x650), 372 REG16(0x654), 373 REG16(0x658), 374 REG16(0x65c), 375 REG16(0x660), 376 REG16(0x664), 377 REG16(0x668), 378 REG16(0x66c), 379 REG16(0x670), 380 REG16(0x674), 381 REG16(0x678), 382 REG16(0x67c), 383 REG(0x68), 384 385 END 386 }; 387 388 static const u8 gen11_rcs_offsets[] = { 389 NOP(1), 390 LRI(15, POSTED), 391 REG16(0x244), 392 REG(0x034), 393 REG(0x030), 394 REG(0x038), 395 REG(0x03c), 396 REG(0x168), 397 REG(0x140), 398 REG(0x110), 399 REG(0x11c), 400 REG(0x114), 401 REG(0x118), 402 REG(0x1c0), 403 REG(0x1c4), 404 REG(0x1c8), 405 REG(0x180), 406 407 NOP(1), 408 LRI(9, POSTED), 409 REG16(0x3a8), 410 REG16(0x28c), 411 REG16(0x288), 412 REG16(0x284), 413 REG16(0x280), 414 REG16(0x27c), 415 REG16(0x278), 416 REG16(0x274), 417 REG16(0x270), 418 419 LRI(1, POSTED), 420 REG(0x1b0), 421 422 NOP(10), 423 LRI(1, 0), 424 REG(0x0c8), 425 426 END 427 }; 428 429 static const u8 gen12_rcs_offsets[] = { 430 NOP(1), 431 LRI(13, POSTED), 432 REG16(0x244), 433 REG(0x034), 434 REG(0x030), 435 REG(0x038), 436 REG(0x03c), 437 REG(0x168), 438 REG(0x140), 439 REG(0x110), 440 REG(0x1c0), 441 REG(0x1c4), 442 REG(0x1c8), 443 REG(0x180), 444 REG16(0x2b4), 445 446 NOP(5), 447 LRI(9, POSTED), 448 REG16(0x3a8), 449 REG16(0x28c), 450 REG16(0x288), 451 REG16(0x284), 452 REG16(0x280), 453 REG16(0x27c), 454 REG16(0x278), 455 REG16(0x274), 456 REG16(0x270), 457 458 LRI(3, POSTED), 459 REG(0x1b0), 460 REG16(0x5a8), 461 REG16(0x5ac), 462 463 NOP(6), 464 LRI(1, 0), 465 REG(0x0c8), 466 NOP(3 + 9 + 1), 467 468 LRI(51, POSTED), 469 REG16(0x588), 470 REG16(0x588), 471 REG16(0x588), 472 REG16(0x588), 473 REG16(0x588), 474 REG16(0x588), 475 REG(0x028), 476 REG(0x09c), 477 REG(0x0c0), 478 REG(0x178), 479 REG(0x17c), 480 REG16(0x358), 481 REG(0x170), 482 REG(0x150), 483 REG(0x154), 484 REG(0x158), 485 REG16(0x41c), 486 REG16(0x600), 487 REG16(0x604), 488 REG16(0x608), 489 REG16(0x60c), 490 REG16(0x610), 491 REG16(0x614), 492 REG16(0x618), 493 REG16(0x61c), 494 REG16(0x620), 495 REG16(0x624), 496 REG16(0x628), 497 REG16(0x62c), 498 REG16(0x630), 499 REG16(0x634), 500 REG16(0x638), 501 REG16(0x63c), 502 REG16(0x640), 503 REG16(0x644), 504 REG16(0x648), 505 REG16(0x64c), 506 REG16(0x650), 507 REG16(0x654), 508 REG16(0x658), 509 REG16(0x65c), 510 REG16(0x660), 511 REG16(0x664), 512 REG16(0x668), 513 REG16(0x66c), 514 REG16(0x670), 515 REG16(0x674), 516 REG16(0x678), 517 REG16(0x67c), 518 REG(0x068), 519 REG(0x084), 520 NOP(1), 521 522 END 523 }; 524 525 static const u8 xehp_rcs_offsets[] = { 526 NOP(1), 527 LRI(13, POSTED), 528 REG16(0x244), 529 REG(0x034), 530 REG(0x030), 531 REG(0x038), 532 REG(0x03c), 533 REG(0x168), 534 REG(0x140), 535 REG(0x110), 536 REG(0x1c0), 537 REG(0x1c4), 538 REG(0x1c8), 539 REG(0x180), 540 REG16(0x2b4), 541 542 NOP(5), 543 LRI(9, POSTED), 544 REG16(0x3a8), 545 REG16(0x28c), 546 REG16(0x288), 547 REG16(0x284), 548 REG16(0x280), 549 REG16(0x27c), 550 REG16(0x278), 551 REG16(0x274), 552 REG16(0x270), 553 554 LRI(3, POSTED), 555 REG(0x1b0), 556 REG16(0x5a8), 557 REG16(0x5ac), 558 559 NOP(6), 560 LRI(1, 0), 561 REG(0x0c8), 562 563 END 564 }; 565 566 static const u8 dg2_rcs_offsets[] = { 567 NOP(1), 568 LRI(15, POSTED), 569 REG16(0x244), 570 REG(0x034), 571 REG(0x030), 572 REG(0x038), 573 REG(0x03c), 574 REG(0x168), 575 REG(0x140), 576 REG(0x110), 577 REG(0x1c0), 578 REG(0x1c4), 579 REG(0x1c8), 580 REG(0x180), 581 REG16(0x2b4), 582 REG(0x120), 583 REG(0x124), 584 585 NOP(1), 586 LRI(9, POSTED), 587 REG16(0x3a8), 588 REG16(0x28c), 589 REG16(0x288), 590 REG16(0x284), 591 REG16(0x280), 592 REG16(0x27c), 593 REG16(0x278), 594 REG16(0x274), 595 REG16(0x270), 596 597 LRI(3, POSTED), 598 REG(0x1b0), 599 REG16(0x5a8), 600 REG16(0x5ac), 601 602 NOP(6), 603 LRI(1, 0), 604 REG(0x0c8), 605 606 END 607 }; 608 609 #undef END 610 #undef REG16 611 #undef REG 612 #undef LRI 613 #undef NOP 614 615 static const u8 *reg_offsets(const struct intel_engine_cs *engine) 616 { 617 /* 618 * The gen12+ lists only have the registers we program in the basic 619 * default state. We rely on the context image using relative 620 * addressing to automatic fixup the register state between the 621 * physical engines for virtual engine. 622 */ 623 GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 && 624 !intel_engine_has_relative_mmio(engine)); 625 626 if (engine->class == RENDER_CLASS) { 627 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 628 return dg2_rcs_offsets; 629 else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 630 return xehp_rcs_offsets; 631 else if (GRAPHICS_VER(engine->i915) >= 12) 632 return gen12_rcs_offsets; 633 else if (GRAPHICS_VER(engine->i915) >= 11) 634 return gen11_rcs_offsets; 635 else if (GRAPHICS_VER(engine->i915) >= 9) 636 return gen9_rcs_offsets; 637 else 638 return gen8_rcs_offsets; 639 } else { 640 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 641 return dg2_xcs_offsets; 642 else if (GRAPHICS_VER(engine->i915) >= 12) 643 return gen12_xcs_offsets; 644 else if (GRAPHICS_VER(engine->i915) >= 9) 645 return gen9_xcs_offsets; 646 else 647 return gen8_xcs_offsets; 648 } 649 } 650 651 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine) 652 { 653 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 654 return 0x70; 655 else if (GRAPHICS_VER(engine->i915) >= 12) 656 return 0x60; 657 else if (GRAPHICS_VER(engine->i915) >= 9) 658 return 0x54; 659 else if (engine->class == RENDER_CLASS) 660 return 0x58; 661 else 662 return -1; 663 } 664 665 static int lrc_ring_gpr0(const struct intel_engine_cs *engine) 666 { 667 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 668 return 0x84; 669 else if (GRAPHICS_VER(engine->i915) >= 12) 670 return 0x74; 671 else if (GRAPHICS_VER(engine->i915) >= 9) 672 return 0x68; 673 else if (engine->class == RENDER_CLASS) 674 return 0xd8; 675 else 676 return -1; 677 } 678 679 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine) 680 { 681 if (GRAPHICS_VER(engine->i915) >= 12) 682 return 0x12; 683 else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS) 684 return 0x18; 685 else 686 return -1; 687 } 688 689 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine) 690 { 691 int x; 692 693 x = lrc_ring_wa_bb_per_ctx(engine); 694 if (x < 0) 695 return x; 696 697 return x + 2; 698 } 699 700 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine) 701 { 702 int x; 703 704 x = lrc_ring_indirect_ptr(engine); 705 if (x < 0) 706 return x; 707 708 return x + 2; 709 } 710 711 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine) 712 { 713 714 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 715 /* 716 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL 717 * simply to match the RCS context image layout. 718 */ 719 return 0xc6; 720 else if (engine->class != RENDER_CLASS) 721 return -1; 722 else if (GRAPHICS_VER(engine->i915) >= 12) 723 return 0xb6; 724 else if (GRAPHICS_VER(engine->i915) >= 11) 725 return 0xaa; 726 else 727 return -1; 728 } 729 730 static u32 731 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine) 732 { 733 switch (GRAPHICS_VER(engine->i915)) { 734 default: 735 MISSING_CASE(GRAPHICS_VER(engine->i915)); 736 fallthrough; 737 case 12: 738 return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 739 case 11: 740 return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 741 case 9: 742 return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 743 case 8: 744 return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 745 } 746 } 747 748 static void 749 lrc_setup_indirect_ctx(u32 *regs, 750 const struct intel_engine_cs *engine, 751 u32 ctx_bb_ggtt_addr, 752 u32 size) 753 { 754 GEM_BUG_ON(!size); 755 GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES)); 756 GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1); 757 regs[lrc_ring_indirect_ptr(engine) + 1] = 758 ctx_bb_ggtt_addr | (size / CACHELINE_BYTES); 759 760 GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1); 761 regs[lrc_ring_indirect_offset(engine) + 1] = 762 lrc_ring_indirect_offset_default(engine) << 6; 763 } 764 765 static void init_common_regs(u32 * const regs, 766 const struct intel_context *ce, 767 const struct intel_engine_cs *engine, 768 bool inhibit) 769 { 770 u32 ctl; 771 772 ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH); 773 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); 774 if (inhibit) 775 ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT; 776 if (GRAPHICS_VER(engine->i915) < 11) 777 ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | 778 CTX_CTRL_RS_CTX_ENABLE); 779 regs[CTX_CONTEXT_CONTROL] = ctl; 780 781 regs[CTX_TIMESTAMP] = ce->runtime.last; 782 } 783 784 static void init_wa_bb_regs(u32 * const regs, 785 const struct intel_engine_cs *engine) 786 { 787 const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx; 788 789 if (wa_ctx->per_ctx.size) { 790 const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 791 792 GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1); 793 regs[lrc_ring_wa_bb_per_ctx(engine) + 1] = 794 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; 795 } 796 797 if (wa_ctx->indirect_ctx.size) { 798 lrc_setup_indirect_ctx(regs, engine, 799 i915_ggtt_offset(wa_ctx->vma) + 800 wa_ctx->indirect_ctx.offset, 801 wa_ctx->indirect_ctx.size); 802 } 803 } 804 805 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt) 806 { 807 if (i915_vm_is_4lvl(&ppgtt->vm)) { 808 /* 64b PPGTT (48bit canonical) 809 * PDP0_DESCRIPTOR contains the base address to PML4 and 810 * other PDP Descriptors are ignored. 811 */ 812 ASSIGN_CTX_PML4(ppgtt, regs); 813 } else { 814 ASSIGN_CTX_PDP(ppgtt, regs, 3); 815 ASSIGN_CTX_PDP(ppgtt, regs, 2); 816 ASSIGN_CTX_PDP(ppgtt, regs, 1); 817 ASSIGN_CTX_PDP(ppgtt, regs, 0); 818 } 819 } 820 821 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm) 822 { 823 if (i915_is_ggtt(vm)) 824 return i915_vm_to_ggtt(vm)->alias; 825 else 826 return i915_vm_to_ppgtt(vm); 827 } 828 829 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine) 830 { 831 int x; 832 833 x = lrc_ring_mi_mode(engine); 834 if (x != -1) { 835 regs[x + 1] &= ~STOP_RING; 836 regs[x + 1] |= STOP_RING << 16; 837 } 838 } 839 840 static void __lrc_init_regs(u32 *regs, 841 const struct intel_context *ce, 842 const struct intel_engine_cs *engine, 843 bool inhibit) 844 { 845 /* 846 * A context is actually a big batch buffer with several 847 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The 848 * values we are setting here are only for the first context restore: 849 * on a subsequent save, the GPU will recreate this batchbuffer with new 850 * values (including all the missing MI_LOAD_REGISTER_IMM commands that 851 * we are not initializing here). 852 * 853 * Must keep consistent with virtual_update_register_offsets(). 854 */ 855 856 if (inhibit) 857 memset(regs, 0, PAGE_SIZE); 858 859 set_offsets(regs, reg_offsets(engine), engine, inhibit); 860 861 init_common_regs(regs, ce, engine, inhibit); 862 init_ppgtt_regs(regs, vm_alias(ce->vm)); 863 864 init_wa_bb_regs(regs, engine); 865 866 __reset_stop_ring(regs, engine); 867 } 868 869 void lrc_init_regs(const struct intel_context *ce, 870 const struct intel_engine_cs *engine, 871 bool inhibit) 872 { 873 __lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit); 874 } 875 876 void lrc_reset_regs(const struct intel_context *ce, 877 const struct intel_engine_cs *engine) 878 { 879 __reset_stop_ring(ce->lrc_reg_state, engine); 880 } 881 882 static void 883 set_redzone(void *vaddr, const struct intel_engine_cs *engine) 884 { 885 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 886 return; 887 888 vaddr += engine->context_size; 889 890 memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE); 891 } 892 893 static void 894 check_redzone(const void *vaddr, const struct intel_engine_cs *engine) 895 { 896 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 897 return; 898 899 vaddr += engine->context_size; 900 901 if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE)) 902 drm_err_once(&engine->i915->drm, 903 "%s context redzone overwritten!\n", 904 engine->name); 905 } 906 907 void lrc_init_state(struct intel_context *ce, 908 struct intel_engine_cs *engine, 909 void *state) 910 { 911 bool inhibit = true; 912 913 set_redzone(state, engine); 914 915 if (engine->default_state) { 916 shmem_read(engine->default_state, 0, 917 state, engine->context_size); 918 __set_bit(CONTEXT_VALID_BIT, &ce->flags); 919 inhibit = false; 920 } 921 922 /* Clear the ppHWSP (inc. per-context counters) */ 923 memset(state, 0, PAGE_SIZE); 924 925 /* 926 * The second page of the context object contains some registers which 927 * must be set up prior to the first execution. 928 */ 929 __lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit); 930 } 931 932 static struct i915_vma * 933 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine) 934 { 935 struct drm_i915_gem_object *obj; 936 struct i915_vma *vma; 937 u32 context_size; 938 939 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); 940 941 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 942 context_size += I915_GTT_PAGE_SIZE; /* for redzone */ 943 944 if (GRAPHICS_VER(engine->i915) == 12) { 945 ce->wa_bb_page = context_size / PAGE_SIZE; 946 context_size += PAGE_SIZE; 947 } 948 949 if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) { 950 ce->parallel.guc.parent_page = context_size / PAGE_SIZE; 951 context_size += PARENT_SCRATCH_SIZE; 952 } 953 954 obj = i915_gem_object_create_lmem(engine->i915, context_size, 955 I915_BO_ALLOC_PM_VOLATILE); 956 if (IS_ERR(obj)) 957 obj = i915_gem_object_create_shmem(engine->i915, context_size); 958 if (IS_ERR(obj)) 959 return ERR_CAST(obj); 960 961 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 962 if (IS_ERR(vma)) { 963 i915_gem_object_put(obj); 964 return vma; 965 } 966 967 return vma; 968 } 969 970 static struct intel_timeline * 971 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine) 972 { 973 struct intel_timeline *tl = fetch_and_zero(&ce->timeline); 974 975 return intel_timeline_create_from_engine(engine, page_unmask_bits(tl)); 976 } 977 978 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine) 979 { 980 struct intel_ring *ring; 981 struct i915_vma *vma; 982 int err; 983 984 GEM_BUG_ON(ce->state); 985 986 vma = __lrc_alloc_state(ce, engine); 987 if (IS_ERR(vma)) 988 return PTR_ERR(vma); 989 990 ring = intel_engine_create_ring(engine, ce->ring_size); 991 if (IS_ERR(ring)) { 992 err = PTR_ERR(ring); 993 goto err_vma; 994 } 995 996 if (!page_mask_bits(ce->timeline)) { 997 struct intel_timeline *tl; 998 999 /* 1000 * Use the static global HWSP for the kernel context, and 1001 * a dynamically allocated cacheline for everyone else. 1002 */ 1003 if (unlikely(ce->timeline)) 1004 tl = pinned_timeline(ce, engine); 1005 else 1006 tl = intel_timeline_create(engine->gt); 1007 if (IS_ERR(tl)) { 1008 err = PTR_ERR(tl); 1009 goto err_ring; 1010 } 1011 1012 ce->timeline = tl; 1013 } 1014 1015 ce->ring = ring; 1016 ce->state = vma; 1017 1018 return 0; 1019 1020 err_ring: 1021 intel_ring_put(ring); 1022 err_vma: 1023 i915_vma_put(vma); 1024 return err; 1025 } 1026 1027 void lrc_reset(struct intel_context *ce) 1028 { 1029 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1030 1031 intel_ring_reset(ce->ring, ce->ring->emit); 1032 1033 /* Scrub away the garbage */ 1034 lrc_init_regs(ce, ce->engine, true); 1035 ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail); 1036 } 1037 1038 int 1039 lrc_pre_pin(struct intel_context *ce, 1040 struct intel_engine_cs *engine, 1041 struct i915_gem_ww_ctx *ww, 1042 void **vaddr) 1043 { 1044 GEM_BUG_ON(!ce->state); 1045 GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); 1046 1047 *vaddr = i915_gem_object_pin_map(ce->state->obj, 1048 i915_coherent_map_type(ce->engine->i915, 1049 ce->state->obj, 1050 false) | 1051 I915_MAP_OVERRIDE); 1052 1053 return PTR_ERR_OR_ZERO(*vaddr); 1054 } 1055 1056 int 1057 lrc_pin(struct intel_context *ce, 1058 struct intel_engine_cs *engine, 1059 void *vaddr) 1060 { 1061 ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET; 1062 1063 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) 1064 lrc_init_state(ce, engine, vaddr); 1065 1066 ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail); 1067 return 0; 1068 } 1069 1070 void lrc_unpin(struct intel_context *ce) 1071 { 1072 if (unlikely(ce->parallel.last_rq)) { 1073 i915_request_put(ce->parallel.last_rq); 1074 ce->parallel.last_rq = NULL; 1075 } 1076 check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET, 1077 ce->engine); 1078 } 1079 1080 void lrc_post_unpin(struct intel_context *ce) 1081 { 1082 i915_gem_object_unpin_map(ce->state->obj); 1083 } 1084 1085 void lrc_fini(struct intel_context *ce) 1086 { 1087 if (!ce->state) 1088 return; 1089 1090 intel_ring_put(fetch_and_zero(&ce->ring)); 1091 i915_vma_put(fetch_and_zero(&ce->state)); 1092 } 1093 1094 void lrc_destroy(struct kref *kref) 1095 { 1096 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 1097 1098 GEM_BUG_ON(!i915_active_is_idle(&ce->active)); 1099 GEM_BUG_ON(intel_context_is_pinned(ce)); 1100 1101 lrc_fini(ce); 1102 1103 intel_context_fini(ce); 1104 intel_context_free(ce); 1105 } 1106 1107 static u32 * 1108 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs) 1109 { 1110 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1111 MI_SRM_LRM_GLOBAL_GTT | 1112 MI_LRI_LRM_CS_MMIO; 1113 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1114 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1115 CTX_TIMESTAMP * sizeof(u32); 1116 *cs++ = 0; 1117 1118 *cs++ = MI_LOAD_REGISTER_REG | 1119 MI_LRR_SOURCE_CS_MMIO | 1120 MI_LRI_LRM_CS_MMIO; 1121 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1122 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0)); 1123 1124 *cs++ = MI_LOAD_REGISTER_REG | 1125 MI_LRR_SOURCE_CS_MMIO | 1126 MI_LRI_LRM_CS_MMIO; 1127 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1128 *cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0)); 1129 1130 return cs; 1131 } 1132 1133 static u32 * 1134 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs) 1135 { 1136 GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1); 1137 1138 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1139 MI_SRM_LRM_GLOBAL_GTT | 1140 MI_LRI_LRM_CS_MMIO; 1141 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1142 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1143 (lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32); 1144 *cs++ = 0; 1145 1146 return cs; 1147 } 1148 1149 static u32 * 1150 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs) 1151 { 1152 GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1); 1153 1154 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | 1155 MI_SRM_LRM_GLOBAL_GTT | 1156 MI_LRI_LRM_CS_MMIO; 1157 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1158 *cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET + 1159 (lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32); 1160 *cs++ = 0; 1161 1162 *cs++ = MI_LOAD_REGISTER_REG | 1163 MI_LRR_SOURCE_CS_MMIO | 1164 MI_LRI_LRM_CS_MMIO; 1165 *cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0)); 1166 *cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0)); 1167 1168 return cs; 1169 } 1170 1171 /* 1172 * On DG2 during context restore of a preempted context in GPGPU mode, 1173 * RCS restore hang is detected. This is extremely timing dependent. 1174 * To address this below sw wabb is implemented for DG2 A steppings. 1175 */ 1176 static u32 * 1177 dg2_emit_rcs_hang_wabb(const struct intel_context *ce, u32 *cs) 1178 { 1179 *cs++ = MI_LOAD_REGISTER_IMM(1); 1180 *cs++ = i915_mmio_reg_offset(GEN12_STATE_ACK_DEBUG); 1181 *cs++ = 0x21; 1182 1183 *cs++ = MI_LOAD_REGISTER_REG; 1184 *cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base)); 1185 *cs++ = i915_mmio_reg_offset(GEN12_CULLBIT1); 1186 1187 *cs++ = MI_LOAD_REGISTER_REG; 1188 *cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base)); 1189 *cs++ = i915_mmio_reg_offset(GEN12_CULLBIT2); 1190 1191 return cs; 1192 } 1193 1194 static u32 * 1195 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs) 1196 { 1197 cs = gen12_emit_timestamp_wa(ce, cs); 1198 cs = gen12_emit_cmd_buf_wa(ce, cs); 1199 cs = gen12_emit_restore_scratch(ce, cs); 1200 1201 /* Wa_22011450934:dg2 */ 1202 if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_A0, STEP_B0) || 1203 IS_DG2_GRAPHICS_STEP(ce->engine->i915, G11, STEP_A0, STEP_B0)) 1204 cs = dg2_emit_rcs_hang_wabb(ce, cs); 1205 1206 /* Wa_16013000631:dg2 */ 1207 if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) || 1208 IS_DG2_G11(ce->engine->i915)) 1209 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0); 1210 1211 return cs; 1212 } 1213 1214 static u32 * 1215 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs) 1216 { 1217 cs = gen12_emit_timestamp_wa(ce, cs); 1218 cs = gen12_emit_restore_scratch(ce, cs); 1219 1220 return cs; 1221 } 1222 1223 static u32 context_wa_bb_offset(const struct intel_context *ce) 1224 { 1225 return PAGE_SIZE * ce->wa_bb_page; 1226 } 1227 1228 static u32 *context_indirect_bb(const struct intel_context *ce) 1229 { 1230 void *ptr; 1231 1232 GEM_BUG_ON(!ce->wa_bb_page); 1233 1234 ptr = ce->lrc_reg_state; 1235 ptr -= LRC_STATE_OFFSET; /* back to start of context image */ 1236 ptr += context_wa_bb_offset(ce); 1237 1238 return ptr; 1239 } 1240 1241 static void 1242 setup_indirect_ctx_bb(const struct intel_context *ce, 1243 const struct intel_engine_cs *engine, 1244 u32 *(*emit)(const struct intel_context *, u32 *)) 1245 { 1246 u32 * const start = context_indirect_bb(ce); 1247 u32 *cs; 1248 1249 cs = emit(ce, start); 1250 GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs)); 1251 while ((unsigned long)cs % CACHELINE_BYTES) 1252 *cs++ = MI_NOOP; 1253 1254 lrc_setup_indirect_ctx(ce->lrc_reg_state, engine, 1255 i915_ggtt_offset(ce->state) + 1256 context_wa_bb_offset(ce), 1257 (cs - start) * sizeof(*cs)); 1258 } 1259 1260 /* 1261 * The context descriptor encodes various attributes of a context, 1262 * including its GTT address and some flags. Because it's fairly 1263 * expensive to calculate, we'll just do it once and cache the result, 1264 * which remains valid until the context is unpinned. 1265 * 1266 * This is what a descriptor looks like, from LSB to MSB:: 1267 * 1268 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) 1269 * bits 12-31: LRCA, GTT address of (the HWSP of) this context 1270 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) 1271 * bits 53-54: mbz, reserved for use by hardware 1272 * bits 55-63: group ID, currently unused and set to 0 1273 * 1274 * Starting from Gen11, the upper dword of the descriptor has a new format: 1275 * 1276 * bits 32-36: reserved 1277 * bits 37-47: SW context ID 1278 * bits 48:53: engine instance 1279 * bit 54: mbz, reserved for use by hardware 1280 * bits 55-60: SW counter 1281 * bits 61-63: engine class 1282 * 1283 * On Xe_HP, the upper dword of the descriptor has a new format: 1284 * 1285 * bits 32-37: virtual function number 1286 * bit 38: mbz, reserved for use by hardware 1287 * bits 39-54: SW context ID 1288 * bits 55-57: reserved 1289 * bits 58-63: SW counter 1290 * 1291 * engine info, SW context ID and SW counter need to form a unique number 1292 * (Context ID) per lrc. 1293 */ 1294 static u32 lrc_descriptor(const struct intel_context *ce) 1295 { 1296 u32 desc; 1297 1298 desc = INTEL_LEGACY_32B_CONTEXT; 1299 if (i915_vm_is_4lvl(ce->vm)) 1300 desc = INTEL_LEGACY_64B_CONTEXT; 1301 desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT; 1302 1303 desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE; 1304 if (GRAPHICS_VER(ce->vm->i915) == 8) 1305 desc |= GEN8_CTX_L3LLC_COHERENT; 1306 1307 return i915_ggtt_offset(ce->state) | desc; 1308 } 1309 1310 u32 lrc_update_regs(const struct intel_context *ce, 1311 const struct intel_engine_cs *engine, 1312 u32 head) 1313 { 1314 struct intel_ring *ring = ce->ring; 1315 u32 *regs = ce->lrc_reg_state; 1316 1317 GEM_BUG_ON(!intel_ring_offset_valid(ring, head)); 1318 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); 1319 1320 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); 1321 regs[CTX_RING_HEAD] = head; 1322 regs[CTX_RING_TAIL] = ring->tail; 1323 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 1324 1325 /* RPCS */ 1326 if (engine->class == RENDER_CLASS) { 1327 regs[CTX_R_PWR_CLK_STATE] = 1328 intel_sseu_make_rpcs(engine->gt, &ce->sseu); 1329 1330 i915_oa_init_reg_state(ce, engine); 1331 } 1332 1333 if (ce->wa_bb_page) { 1334 u32 *(*fn)(const struct intel_context *ce, u32 *cs); 1335 1336 fn = gen12_emit_indirect_ctx_xcs; 1337 if (ce->engine->class == RENDER_CLASS) 1338 fn = gen12_emit_indirect_ctx_rcs; 1339 1340 /* Mutually exclusive wrt to global indirect bb */ 1341 GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size); 1342 setup_indirect_ctx_bb(ce, engine, fn); 1343 } 1344 1345 return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE; 1346 } 1347 1348 void lrc_update_offsets(struct intel_context *ce, 1349 struct intel_engine_cs *engine) 1350 { 1351 set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false); 1352 } 1353 1354 void lrc_check_regs(const struct intel_context *ce, 1355 const struct intel_engine_cs *engine, 1356 const char *when) 1357 { 1358 const struct intel_ring *ring = ce->ring; 1359 u32 *regs = ce->lrc_reg_state; 1360 bool valid = true; 1361 int x; 1362 1363 if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) { 1364 pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n", 1365 engine->name, 1366 regs[CTX_RING_START], 1367 i915_ggtt_offset(ring->vma)); 1368 regs[CTX_RING_START] = i915_ggtt_offset(ring->vma); 1369 valid = false; 1370 } 1371 1372 if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) != 1373 (RING_CTL_SIZE(ring->size) | RING_VALID)) { 1374 pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n", 1375 engine->name, 1376 regs[CTX_RING_CTL], 1377 (u32)(RING_CTL_SIZE(ring->size) | RING_VALID)); 1378 regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID; 1379 valid = false; 1380 } 1381 1382 x = lrc_ring_mi_mode(engine); 1383 if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) { 1384 pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n", 1385 engine->name, regs[x + 1]); 1386 regs[x + 1] &= ~STOP_RING; 1387 regs[x + 1] |= STOP_RING << 16; 1388 valid = false; 1389 } 1390 1391 WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when); 1392 } 1393 1394 /* 1395 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after 1396 * PIPE_CONTROL instruction. This is required for the flush to happen correctly 1397 * but there is a slight complication as this is applied in WA batch where the 1398 * values are only initialized once so we cannot take register value at the 1399 * beginning and reuse it further; hence we save its value to memory, upload a 1400 * constant value with bit21 set and then we restore it back with the saved value. 1401 * To simplify the WA, a constant value is formed by using the default value 1402 * of this register. This shouldn't be a problem because we are only modifying 1403 * it for a short period and this batch in non-premptible. We can ofcourse 1404 * use additional instructions that read the actual value of the register 1405 * at that time and set our bit of interest but it makes the WA complicated. 1406 * 1407 * This WA is also required for Gen9 so extracting as a function avoids 1408 * code duplication. 1409 */ 1410 static u32 * 1411 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) 1412 { 1413 /* NB no one else is allowed to scribble over scratch + 256! */ 1414 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1415 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1416 *batch++ = intel_gt_scratch_offset(engine->gt, 1417 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); 1418 *batch++ = 0; 1419 1420 *batch++ = MI_LOAD_REGISTER_IMM(1); 1421 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1422 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; 1423 1424 batch = gen8_emit_pipe_control(batch, 1425 PIPE_CONTROL_CS_STALL | 1426 PIPE_CONTROL_DC_FLUSH_ENABLE, 1427 0); 1428 1429 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1430 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1431 *batch++ = intel_gt_scratch_offset(engine->gt, 1432 INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA); 1433 *batch++ = 0; 1434 1435 return batch; 1436 } 1437 1438 /* 1439 * Typically we only have one indirect_ctx and per_ctx batch buffer which are 1440 * initialized at the beginning and shared across all contexts but this field 1441 * helps us to have multiple batches at different offsets and select them based 1442 * on a criteria. At the moment this batch always start at the beginning of the page 1443 * and at this point we don't have multiple wa_ctx batch buffers. 1444 * 1445 * The number of WA applied are not known at the beginning; we use this field 1446 * to return the no of DWORDS written. 1447 * 1448 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END 1449 * so it adds NOOPs as padding to make it cacheline aligned. 1450 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together 1451 * makes a complete batch buffer. 1452 */ 1453 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1454 { 1455 /* WaDisableCtxRestoreArbitration:bdw,chv */ 1456 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1457 1458 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ 1459 if (IS_BROADWELL(engine->i915)) 1460 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1461 1462 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ 1463 /* Actual scratch location is at 128 bytes offset */ 1464 batch = gen8_emit_pipe_control(batch, 1465 PIPE_CONTROL_FLUSH_L3 | 1466 PIPE_CONTROL_STORE_DATA_INDEX | 1467 PIPE_CONTROL_CS_STALL | 1468 PIPE_CONTROL_QW_WRITE, 1469 LRC_PPHWSP_SCRATCH_ADDR); 1470 1471 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1472 1473 /* Pad to end of cacheline */ 1474 while ((unsigned long)batch % CACHELINE_BYTES) 1475 *batch++ = MI_NOOP; 1476 1477 /* 1478 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because 1479 * execution depends on the length specified in terms of cache lines 1480 * in the register CTX_RCS_INDIRECT_CTX 1481 */ 1482 1483 return batch; 1484 } 1485 1486 struct lri { 1487 i915_reg_t reg; 1488 u32 value; 1489 }; 1490 1491 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) 1492 { 1493 GEM_BUG_ON(!count || count > 63); 1494 1495 *batch++ = MI_LOAD_REGISTER_IMM(count); 1496 do { 1497 *batch++ = i915_mmio_reg_offset(lri->reg); 1498 *batch++ = lri->value; 1499 } while (lri++, --count); 1500 *batch++ = MI_NOOP; 1501 1502 return batch; 1503 } 1504 1505 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1506 { 1507 static const struct lri lri[] = { 1508 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ 1509 { 1510 COMMON_SLICE_CHICKEN2, 1511 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 1512 0), 1513 }, 1514 1515 /* BSpec: 11391 */ 1516 { 1517 FF_SLICE_CHICKEN, 1518 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, 1519 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), 1520 }, 1521 1522 /* BSpec: 11299 */ 1523 { 1524 _3D_CHICKEN3, 1525 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, 1526 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), 1527 } 1528 }; 1529 1530 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1531 1532 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ 1533 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1534 1535 /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */ 1536 batch = gen8_emit_pipe_control(batch, 1537 PIPE_CONTROL_FLUSH_L3 | 1538 PIPE_CONTROL_STORE_DATA_INDEX | 1539 PIPE_CONTROL_CS_STALL | 1540 PIPE_CONTROL_QW_WRITE, 1541 LRC_PPHWSP_SCRATCH_ADDR); 1542 1543 batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); 1544 1545 /* WaMediaPoolStateCmdInWABB:bxt,glk */ 1546 if (HAS_POOLED_EU(engine->i915)) { 1547 /* 1548 * EU pool configuration is setup along with golden context 1549 * during context initialization. This value depends on 1550 * device type (2x6 or 3x6) and needs to be updated based 1551 * on which subslice is disabled especially for 2x6 1552 * devices, however it is safe to load default 1553 * configuration of 3x6 device instead of masking off 1554 * corresponding bits because HW ignores bits of a disabled 1555 * subslice and drops down to appropriate config. Please 1556 * see render_state_setup() in i915_gem_render_state.c for 1557 * possible configurations, to avoid duplication they are 1558 * not shown here again. 1559 */ 1560 *batch++ = GEN9_MEDIA_POOL_STATE; 1561 *batch++ = GEN9_MEDIA_POOL_ENABLE; 1562 *batch++ = 0x00777000; 1563 *batch++ = 0; 1564 *batch++ = 0; 1565 *batch++ = 0; 1566 } 1567 1568 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1569 1570 /* Pad to end of cacheline */ 1571 while ((unsigned long)batch % CACHELINE_BYTES) 1572 *batch++ = MI_NOOP; 1573 1574 return batch; 1575 } 1576 1577 #define CTX_WA_BB_SIZE (PAGE_SIZE) 1578 1579 static int lrc_create_wa_ctx(struct intel_engine_cs *engine) 1580 { 1581 struct drm_i915_gem_object *obj; 1582 struct i915_vma *vma; 1583 int err; 1584 1585 obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE); 1586 if (IS_ERR(obj)) 1587 return PTR_ERR(obj); 1588 1589 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1590 if (IS_ERR(vma)) { 1591 err = PTR_ERR(vma); 1592 goto err; 1593 } 1594 1595 engine->wa_ctx.vma = vma; 1596 return 0; 1597 1598 err: 1599 i915_gem_object_put(obj); 1600 return err; 1601 } 1602 1603 void lrc_fini_wa_ctx(struct intel_engine_cs *engine) 1604 { 1605 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); 1606 } 1607 1608 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); 1609 1610 void lrc_init_wa_ctx(struct intel_engine_cs *engine) 1611 { 1612 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 1613 struct i915_wa_ctx_bb *wa_bb[] = { 1614 &wa_ctx->indirect_ctx, &wa_ctx->per_ctx 1615 }; 1616 wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)]; 1617 struct i915_gem_ww_ctx ww; 1618 void *batch, *batch_ptr; 1619 unsigned int i; 1620 int err; 1621 1622 if (engine->class != RENDER_CLASS) 1623 return; 1624 1625 switch (GRAPHICS_VER(engine->i915)) { 1626 case 12: 1627 case 11: 1628 return; 1629 case 9: 1630 wa_bb_fn[0] = gen9_init_indirectctx_bb; 1631 wa_bb_fn[1] = NULL; 1632 break; 1633 case 8: 1634 wa_bb_fn[0] = gen8_init_indirectctx_bb; 1635 wa_bb_fn[1] = NULL; 1636 break; 1637 default: 1638 MISSING_CASE(GRAPHICS_VER(engine->i915)); 1639 return; 1640 } 1641 1642 err = lrc_create_wa_ctx(engine); 1643 if (err) { 1644 /* 1645 * We continue even if we fail to initialize WA batch 1646 * because we only expect rare glitches but nothing 1647 * critical to prevent us from using GPU 1648 */ 1649 drm_err(&engine->i915->drm, 1650 "Ignoring context switch w/a allocation error:%d\n", 1651 err); 1652 return; 1653 } 1654 1655 if (!engine->wa_ctx.vma) 1656 return; 1657 1658 i915_gem_ww_ctx_init(&ww, true); 1659 retry: 1660 err = i915_gem_object_lock(wa_ctx->vma->obj, &ww); 1661 if (!err) 1662 err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH); 1663 if (err) 1664 goto err; 1665 1666 batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB); 1667 if (IS_ERR(batch)) { 1668 err = PTR_ERR(batch); 1669 goto err_unpin; 1670 } 1671 1672 /* 1673 * Emit the two workaround batch buffers, recording the offset from the 1674 * start of the workaround batch buffer object for each and their 1675 * respective sizes. 1676 */ 1677 batch_ptr = batch; 1678 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { 1679 wa_bb[i]->offset = batch_ptr - batch; 1680 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, 1681 CACHELINE_BYTES))) { 1682 err = -EINVAL; 1683 break; 1684 } 1685 if (wa_bb_fn[i]) 1686 batch_ptr = wa_bb_fn[i](engine, batch_ptr); 1687 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); 1688 } 1689 GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE); 1690 1691 __i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch); 1692 __i915_gem_object_release_map(wa_ctx->vma->obj); 1693 1694 /* Verify that we can handle failure to setup the wa_ctx */ 1695 if (!err) 1696 err = i915_inject_probe_error(engine->i915, -ENODEV); 1697 1698 err_unpin: 1699 if (err) 1700 i915_vma_unpin(wa_ctx->vma); 1701 err: 1702 if (err == -EDEADLK) { 1703 err = i915_gem_ww_ctx_backoff(&ww); 1704 if (!err) 1705 goto retry; 1706 } 1707 i915_gem_ww_ctx_fini(&ww); 1708 1709 if (err) { 1710 i915_vma_put(engine->wa_ctx.vma); 1711 1712 /* Clear all flags to prevent further use */ 1713 memset(wa_ctx, 0, sizeof(*wa_ctx)); 1714 } 1715 } 1716 1717 static void st_update_runtime_underflow(struct intel_context *ce, s32 dt) 1718 { 1719 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1720 ce->runtime.num_underflow++; 1721 ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt); 1722 #endif 1723 } 1724 1725 static u32 lrc_get_runtime(const struct intel_context *ce) 1726 { 1727 /* 1728 * We can use either ppHWSP[16] which is recorded before the context 1729 * switch (and so excludes the cost of context switches) or use the 1730 * value from the context image itself, which is saved/restored earlier 1731 * and so includes the cost of the save. 1732 */ 1733 return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]); 1734 } 1735 1736 void lrc_update_runtime(struct intel_context *ce) 1737 { 1738 u32 old; 1739 s32 dt; 1740 1741 if (intel_context_is_barrier(ce)) 1742 return; 1743 1744 old = ce->runtime.last; 1745 ce->runtime.last = lrc_get_runtime(ce); 1746 dt = ce->runtime.last - old; 1747 1748 if (unlikely(dt < 0)) { 1749 CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n", 1750 old, ce->runtime.last, dt); 1751 st_update_runtime_underflow(ce, dt); 1752 return; 1753 } 1754 1755 ewma_runtime_add(&ce->runtime.avg, dt); 1756 ce->runtime.total += dt; 1757 } 1758 1759 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1760 #include "selftest_lrc.c" 1761 #endif 1762