xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision 2bb116c7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22 
23 static void set_offsets(u32 *regs,
24 			const u8 *data,
25 			const struct intel_engine_cs *engine,
26 			bool close)
27 #define NOP(x) (BIT(7) | (x))
28 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
29 #define POSTED BIT(0)
30 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
31 #define REG16(x) \
32 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
33 	(((x) >> 2) & 0x7f)
34 #define END 0
35 {
36 	const u32 base = engine->mmio_base;
37 
38 	while (*data) {
39 		u8 count, flags;
40 
41 		if (*data & BIT(7)) { /* skip */
42 			count = *data++ & ~BIT(7);
43 			regs += count;
44 			continue;
45 		}
46 
47 		count = *data & 0x3f;
48 		flags = *data >> 6;
49 		data++;
50 
51 		*regs = MI_LOAD_REGISTER_IMM(count);
52 		if (flags & POSTED)
53 			*regs |= MI_LRI_FORCE_POSTED;
54 		if (GRAPHICS_VER(engine->i915) >= 11)
55 			*regs |= MI_LRI_LRM_CS_MMIO;
56 		regs++;
57 
58 		GEM_BUG_ON(!count);
59 		do {
60 			u32 offset = 0;
61 			u8 v;
62 
63 			do {
64 				v = *data++;
65 				offset <<= 7;
66 				offset |= v & ~BIT(7);
67 			} while (v & BIT(7));
68 
69 			regs[0] = base + (offset << 2);
70 			regs += 2;
71 		} while (--count);
72 	}
73 
74 	if (close) {
75 		/* Close the batch; used mainly by live_lrc_layout() */
76 		*regs = MI_BATCH_BUFFER_END;
77 		if (GRAPHICS_VER(engine->i915) >= 11)
78 			*regs |= BIT(0);
79 	}
80 }
81 
82 static const u8 gen8_xcs_offsets[] = {
83 	NOP(1),
84 	LRI(11, 0),
85 	REG16(0x244),
86 	REG(0x034),
87 	REG(0x030),
88 	REG(0x038),
89 	REG(0x03c),
90 	REG(0x168),
91 	REG(0x140),
92 	REG(0x110),
93 	REG(0x11c),
94 	REG(0x114),
95 	REG(0x118),
96 
97 	NOP(9),
98 	LRI(9, 0),
99 	REG16(0x3a8),
100 	REG16(0x28c),
101 	REG16(0x288),
102 	REG16(0x284),
103 	REG16(0x280),
104 	REG16(0x27c),
105 	REG16(0x278),
106 	REG16(0x274),
107 	REG16(0x270),
108 
109 	NOP(13),
110 	LRI(2, 0),
111 	REG16(0x200),
112 	REG(0x028),
113 
114 	END
115 };
116 
117 static const u8 gen9_xcs_offsets[] = {
118 	NOP(1),
119 	LRI(14, POSTED),
120 	REG16(0x244),
121 	REG(0x034),
122 	REG(0x030),
123 	REG(0x038),
124 	REG(0x03c),
125 	REG(0x168),
126 	REG(0x140),
127 	REG(0x110),
128 	REG(0x11c),
129 	REG(0x114),
130 	REG(0x118),
131 	REG(0x1c0),
132 	REG(0x1c4),
133 	REG(0x1c8),
134 
135 	NOP(3),
136 	LRI(9, POSTED),
137 	REG16(0x3a8),
138 	REG16(0x28c),
139 	REG16(0x288),
140 	REG16(0x284),
141 	REG16(0x280),
142 	REG16(0x27c),
143 	REG16(0x278),
144 	REG16(0x274),
145 	REG16(0x270),
146 
147 	NOP(13),
148 	LRI(1, POSTED),
149 	REG16(0x200),
150 
151 	NOP(13),
152 	LRI(44, POSTED),
153 	REG(0x028),
154 	REG(0x09c),
155 	REG(0x0c0),
156 	REG(0x178),
157 	REG(0x17c),
158 	REG16(0x358),
159 	REG(0x170),
160 	REG(0x150),
161 	REG(0x154),
162 	REG(0x158),
163 	REG16(0x41c),
164 	REG16(0x600),
165 	REG16(0x604),
166 	REG16(0x608),
167 	REG16(0x60c),
168 	REG16(0x610),
169 	REG16(0x614),
170 	REG16(0x618),
171 	REG16(0x61c),
172 	REG16(0x620),
173 	REG16(0x624),
174 	REG16(0x628),
175 	REG16(0x62c),
176 	REG16(0x630),
177 	REG16(0x634),
178 	REG16(0x638),
179 	REG16(0x63c),
180 	REG16(0x640),
181 	REG16(0x644),
182 	REG16(0x648),
183 	REG16(0x64c),
184 	REG16(0x650),
185 	REG16(0x654),
186 	REG16(0x658),
187 	REG16(0x65c),
188 	REG16(0x660),
189 	REG16(0x664),
190 	REG16(0x668),
191 	REG16(0x66c),
192 	REG16(0x670),
193 	REG16(0x674),
194 	REG16(0x678),
195 	REG16(0x67c),
196 	REG(0x068),
197 
198 	END
199 };
200 
201 static const u8 gen12_xcs_offsets[] = {
202 	NOP(1),
203 	LRI(13, POSTED),
204 	REG16(0x244),
205 	REG(0x034),
206 	REG(0x030),
207 	REG(0x038),
208 	REG(0x03c),
209 	REG(0x168),
210 	REG(0x140),
211 	REG(0x110),
212 	REG(0x1c0),
213 	REG(0x1c4),
214 	REG(0x1c8),
215 	REG(0x180),
216 	REG16(0x2b4),
217 
218 	NOP(5),
219 	LRI(9, POSTED),
220 	REG16(0x3a8),
221 	REG16(0x28c),
222 	REG16(0x288),
223 	REG16(0x284),
224 	REG16(0x280),
225 	REG16(0x27c),
226 	REG16(0x278),
227 	REG16(0x274),
228 	REG16(0x270),
229 
230 	END
231 };
232 
233 static const u8 dg2_xcs_offsets[] = {
234 	NOP(1),
235 	LRI(15, POSTED),
236 	REG16(0x244),
237 	REG(0x034),
238 	REG(0x030),
239 	REG(0x038),
240 	REG(0x03c),
241 	REG(0x168),
242 	REG(0x140),
243 	REG(0x110),
244 	REG(0x1c0),
245 	REG(0x1c4),
246 	REG(0x1c8),
247 	REG(0x180),
248 	REG16(0x2b4),
249 	REG(0x120),
250 	REG(0x124),
251 
252 	NOP(1),
253 	LRI(9, POSTED),
254 	REG16(0x3a8),
255 	REG16(0x28c),
256 	REG16(0x288),
257 	REG16(0x284),
258 	REG16(0x280),
259 	REG16(0x27c),
260 	REG16(0x278),
261 	REG16(0x274),
262 	REG16(0x270),
263 
264 	END
265 };
266 
267 static const u8 gen8_rcs_offsets[] = {
268 	NOP(1),
269 	LRI(14, POSTED),
270 	REG16(0x244),
271 	REG(0x034),
272 	REG(0x030),
273 	REG(0x038),
274 	REG(0x03c),
275 	REG(0x168),
276 	REG(0x140),
277 	REG(0x110),
278 	REG(0x11c),
279 	REG(0x114),
280 	REG(0x118),
281 	REG(0x1c0),
282 	REG(0x1c4),
283 	REG(0x1c8),
284 
285 	NOP(3),
286 	LRI(9, POSTED),
287 	REG16(0x3a8),
288 	REG16(0x28c),
289 	REG16(0x288),
290 	REG16(0x284),
291 	REG16(0x280),
292 	REG16(0x27c),
293 	REG16(0x278),
294 	REG16(0x274),
295 	REG16(0x270),
296 
297 	NOP(13),
298 	LRI(1, 0),
299 	REG(0x0c8),
300 
301 	END
302 };
303 
304 static const u8 gen9_rcs_offsets[] = {
305 	NOP(1),
306 	LRI(14, POSTED),
307 	REG16(0x244),
308 	REG(0x34),
309 	REG(0x30),
310 	REG(0x38),
311 	REG(0x3c),
312 	REG(0x168),
313 	REG(0x140),
314 	REG(0x110),
315 	REG(0x11c),
316 	REG(0x114),
317 	REG(0x118),
318 	REG(0x1c0),
319 	REG(0x1c4),
320 	REG(0x1c8),
321 
322 	NOP(3),
323 	LRI(9, POSTED),
324 	REG16(0x3a8),
325 	REG16(0x28c),
326 	REG16(0x288),
327 	REG16(0x284),
328 	REG16(0x280),
329 	REG16(0x27c),
330 	REG16(0x278),
331 	REG16(0x274),
332 	REG16(0x270),
333 
334 	NOP(13),
335 	LRI(1, 0),
336 	REG(0xc8),
337 
338 	NOP(13),
339 	LRI(44, POSTED),
340 	REG(0x28),
341 	REG(0x9c),
342 	REG(0xc0),
343 	REG(0x178),
344 	REG(0x17c),
345 	REG16(0x358),
346 	REG(0x170),
347 	REG(0x150),
348 	REG(0x154),
349 	REG(0x158),
350 	REG16(0x41c),
351 	REG16(0x600),
352 	REG16(0x604),
353 	REG16(0x608),
354 	REG16(0x60c),
355 	REG16(0x610),
356 	REG16(0x614),
357 	REG16(0x618),
358 	REG16(0x61c),
359 	REG16(0x620),
360 	REG16(0x624),
361 	REG16(0x628),
362 	REG16(0x62c),
363 	REG16(0x630),
364 	REG16(0x634),
365 	REG16(0x638),
366 	REG16(0x63c),
367 	REG16(0x640),
368 	REG16(0x644),
369 	REG16(0x648),
370 	REG16(0x64c),
371 	REG16(0x650),
372 	REG16(0x654),
373 	REG16(0x658),
374 	REG16(0x65c),
375 	REG16(0x660),
376 	REG16(0x664),
377 	REG16(0x668),
378 	REG16(0x66c),
379 	REG16(0x670),
380 	REG16(0x674),
381 	REG16(0x678),
382 	REG16(0x67c),
383 	REG(0x68),
384 
385 	END
386 };
387 
388 static const u8 gen11_rcs_offsets[] = {
389 	NOP(1),
390 	LRI(15, POSTED),
391 	REG16(0x244),
392 	REG(0x034),
393 	REG(0x030),
394 	REG(0x038),
395 	REG(0x03c),
396 	REG(0x168),
397 	REG(0x140),
398 	REG(0x110),
399 	REG(0x11c),
400 	REG(0x114),
401 	REG(0x118),
402 	REG(0x1c0),
403 	REG(0x1c4),
404 	REG(0x1c8),
405 	REG(0x180),
406 
407 	NOP(1),
408 	LRI(9, POSTED),
409 	REG16(0x3a8),
410 	REG16(0x28c),
411 	REG16(0x288),
412 	REG16(0x284),
413 	REG16(0x280),
414 	REG16(0x27c),
415 	REG16(0x278),
416 	REG16(0x274),
417 	REG16(0x270),
418 
419 	LRI(1, POSTED),
420 	REG(0x1b0),
421 
422 	NOP(10),
423 	LRI(1, 0),
424 	REG(0x0c8),
425 
426 	END
427 };
428 
429 static const u8 gen12_rcs_offsets[] = {
430 	NOP(1),
431 	LRI(13, POSTED),
432 	REG16(0x244),
433 	REG(0x034),
434 	REG(0x030),
435 	REG(0x038),
436 	REG(0x03c),
437 	REG(0x168),
438 	REG(0x140),
439 	REG(0x110),
440 	REG(0x1c0),
441 	REG(0x1c4),
442 	REG(0x1c8),
443 	REG(0x180),
444 	REG16(0x2b4),
445 
446 	NOP(5),
447 	LRI(9, POSTED),
448 	REG16(0x3a8),
449 	REG16(0x28c),
450 	REG16(0x288),
451 	REG16(0x284),
452 	REG16(0x280),
453 	REG16(0x27c),
454 	REG16(0x278),
455 	REG16(0x274),
456 	REG16(0x270),
457 
458 	LRI(3, POSTED),
459 	REG(0x1b0),
460 	REG16(0x5a8),
461 	REG16(0x5ac),
462 
463 	NOP(6),
464 	LRI(1, 0),
465 	REG(0x0c8),
466 	NOP(3 + 9 + 1),
467 
468 	LRI(51, POSTED),
469 	REG16(0x588),
470 	REG16(0x588),
471 	REG16(0x588),
472 	REG16(0x588),
473 	REG16(0x588),
474 	REG16(0x588),
475 	REG(0x028),
476 	REG(0x09c),
477 	REG(0x0c0),
478 	REG(0x178),
479 	REG(0x17c),
480 	REG16(0x358),
481 	REG(0x170),
482 	REG(0x150),
483 	REG(0x154),
484 	REG(0x158),
485 	REG16(0x41c),
486 	REG16(0x600),
487 	REG16(0x604),
488 	REG16(0x608),
489 	REG16(0x60c),
490 	REG16(0x610),
491 	REG16(0x614),
492 	REG16(0x618),
493 	REG16(0x61c),
494 	REG16(0x620),
495 	REG16(0x624),
496 	REG16(0x628),
497 	REG16(0x62c),
498 	REG16(0x630),
499 	REG16(0x634),
500 	REG16(0x638),
501 	REG16(0x63c),
502 	REG16(0x640),
503 	REG16(0x644),
504 	REG16(0x648),
505 	REG16(0x64c),
506 	REG16(0x650),
507 	REG16(0x654),
508 	REG16(0x658),
509 	REG16(0x65c),
510 	REG16(0x660),
511 	REG16(0x664),
512 	REG16(0x668),
513 	REG16(0x66c),
514 	REG16(0x670),
515 	REG16(0x674),
516 	REG16(0x678),
517 	REG16(0x67c),
518 	REG(0x068),
519 	REG(0x084),
520 	NOP(1),
521 
522 	END
523 };
524 
525 static const u8 xehp_rcs_offsets[] = {
526 	NOP(1),
527 	LRI(13, POSTED),
528 	REG16(0x244),
529 	REG(0x034),
530 	REG(0x030),
531 	REG(0x038),
532 	REG(0x03c),
533 	REG(0x168),
534 	REG(0x140),
535 	REG(0x110),
536 	REG(0x1c0),
537 	REG(0x1c4),
538 	REG(0x1c8),
539 	REG(0x180),
540 	REG16(0x2b4),
541 
542 	NOP(5),
543 	LRI(9, POSTED),
544 	REG16(0x3a8),
545 	REG16(0x28c),
546 	REG16(0x288),
547 	REG16(0x284),
548 	REG16(0x280),
549 	REG16(0x27c),
550 	REG16(0x278),
551 	REG16(0x274),
552 	REG16(0x270),
553 
554 	LRI(3, POSTED),
555 	REG(0x1b0),
556 	REG16(0x5a8),
557 	REG16(0x5ac),
558 
559 	NOP(6),
560 	LRI(1, 0),
561 	REG(0x0c8),
562 
563 	END
564 };
565 
566 static const u8 dg2_rcs_offsets[] = {
567 	NOP(1),
568 	LRI(15, POSTED),
569 	REG16(0x244),
570 	REG(0x034),
571 	REG(0x030),
572 	REG(0x038),
573 	REG(0x03c),
574 	REG(0x168),
575 	REG(0x140),
576 	REG(0x110),
577 	REG(0x1c0),
578 	REG(0x1c4),
579 	REG(0x1c8),
580 	REG(0x180),
581 	REG16(0x2b4),
582 	REG(0x120),
583 	REG(0x124),
584 
585 	NOP(1),
586 	LRI(9, POSTED),
587 	REG16(0x3a8),
588 	REG16(0x28c),
589 	REG16(0x288),
590 	REG16(0x284),
591 	REG16(0x280),
592 	REG16(0x27c),
593 	REG16(0x278),
594 	REG16(0x274),
595 	REG16(0x270),
596 
597 	LRI(3, POSTED),
598 	REG(0x1b0),
599 	REG16(0x5a8),
600 	REG16(0x5ac),
601 
602 	NOP(6),
603 	LRI(1, 0),
604 	REG(0x0c8),
605 
606 	END
607 };
608 
609 #undef END
610 #undef REG16
611 #undef REG
612 #undef LRI
613 #undef NOP
614 
615 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
616 {
617 	/*
618 	 * The gen12+ lists only have the registers we program in the basic
619 	 * default state. We rely on the context image using relative
620 	 * addressing to automatic fixup the register state between the
621 	 * physical engines for virtual engine.
622 	 */
623 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
624 		   !intel_engine_has_relative_mmio(engine));
625 
626 	if (engine->class == RENDER_CLASS) {
627 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
628 			return dg2_rcs_offsets;
629 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
630 			return xehp_rcs_offsets;
631 		else if (GRAPHICS_VER(engine->i915) >= 12)
632 			return gen12_rcs_offsets;
633 		else if (GRAPHICS_VER(engine->i915) >= 11)
634 			return gen11_rcs_offsets;
635 		else if (GRAPHICS_VER(engine->i915) >= 9)
636 			return gen9_rcs_offsets;
637 		else
638 			return gen8_rcs_offsets;
639 	} else {
640 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
641 			return dg2_xcs_offsets;
642 		else if (GRAPHICS_VER(engine->i915) >= 12)
643 			return gen12_xcs_offsets;
644 		else if (GRAPHICS_VER(engine->i915) >= 9)
645 			return gen9_xcs_offsets;
646 		else
647 			return gen8_xcs_offsets;
648 	}
649 }
650 
651 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
652 {
653 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
654 		return 0x70;
655 	else if (GRAPHICS_VER(engine->i915) >= 12)
656 		return 0x60;
657 	else if (GRAPHICS_VER(engine->i915) >= 9)
658 		return 0x54;
659 	else if (engine->class == RENDER_CLASS)
660 		return 0x58;
661 	else
662 		return -1;
663 }
664 
665 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
666 {
667 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
668 		return 0x84;
669 	else if (GRAPHICS_VER(engine->i915) >= 12)
670 		return 0x74;
671 	else if (GRAPHICS_VER(engine->i915) >= 9)
672 		return 0x68;
673 	else if (engine->class == RENDER_CLASS)
674 		return 0xd8;
675 	else
676 		return -1;
677 }
678 
679 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
680 {
681 	if (GRAPHICS_VER(engine->i915) >= 12)
682 		return 0x12;
683 	else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
684 		return 0x18;
685 	else
686 		return -1;
687 }
688 
689 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
690 {
691 	int x;
692 
693 	x = lrc_ring_wa_bb_per_ctx(engine);
694 	if (x < 0)
695 		return x;
696 
697 	return x + 2;
698 }
699 
700 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
701 {
702 	int x;
703 
704 	x = lrc_ring_indirect_ptr(engine);
705 	if (x < 0)
706 		return x;
707 
708 	return x + 2;
709 }
710 
711 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
712 {
713 
714 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
715 		/*
716 		 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
717 		 * simply to match the RCS context image layout.
718 		 */
719 		return 0xc6;
720 	else if (engine->class != RENDER_CLASS)
721 		return -1;
722 	else if (GRAPHICS_VER(engine->i915) >= 12)
723 		return 0xb6;
724 	else if (GRAPHICS_VER(engine->i915) >= 11)
725 		return 0xaa;
726 	else
727 		return -1;
728 }
729 
730 static u32
731 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
732 {
733 	switch (GRAPHICS_VER(engine->i915)) {
734 	default:
735 		MISSING_CASE(GRAPHICS_VER(engine->i915));
736 		fallthrough;
737 	case 12:
738 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
739 	case 11:
740 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
741 	case 9:
742 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
743 	case 8:
744 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
745 	}
746 }
747 
748 static void
749 lrc_setup_indirect_ctx(u32 *regs,
750 		       const struct intel_engine_cs *engine,
751 		       u32 ctx_bb_ggtt_addr,
752 		       u32 size)
753 {
754 	GEM_BUG_ON(!size);
755 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
756 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
757 	regs[lrc_ring_indirect_ptr(engine) + 1] =
758 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
759 
760 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
761 	regs[lrc_ring_indirect_offset(engine) + 1] =
762 		lrc_ring_indirect_offset_default(engine) << 6;
763 }
764 
765 static void init_common_regs(u32 * const regs,
766 			     const struct intel_context *ce,
767 			     const struct intel_engine_cs *engine,
768 			     bool inhibit)
769 {
770 	u32 ctl;
771 
772 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
773 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
774 	if (inhibit)
775 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
776 	if (GRAPHICS_VER(engine->i915) < 11)
777 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
778 					   CTX_CTRL_RS_CTX_ENABLE);
779 	regs[CTX_CONTEXT_CONTROL] = ctl;
780 
781 	regs[CTX_TIMESTAMP] = ce->runtime.last;
782 }
783 
784 static void init_wa_bb_regs(u32 * const regs,
785 			    const struct intel_engine_cs *engine)
786 {
787 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
788 
789 	if (wa_ctx->per_ctx.size) {
790 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
791 
792 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
793 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
794 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
795 	}
796 
797 	if (wa_ctx->indirect_ctx.size) {
798 		lrc_setup_indirect_ctx(regs, engine,
799 				       i915_ggtt_offset(wa_ctx->vma) +
800 				       wa_ctx->indirect_ctx.offset,
801 				       wa_ctx->indirect_ctx.size);
802 	}
803 }
804 
805 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
806 {
807 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
808 		/* 64b PPGTT (48bit canonical)
809 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
810 		 * other PDP Descriptors are ignored.
811 		 */
812 		ASSIGN_CTX_PML4(ppgtt, regs);
813 	} else {
814 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
815 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
816 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
817 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
818 	}
819 }
820 
821 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
822 {
823 	if (i915_is_ggtt(vm))
824 		return i915_vm_to_ggtt(vm)->alias;
825 	else
826 		return i915_vm_to_ppgtt(vm);
827 }
828 
829 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
830 {
831 	int x;
832 
833 	x = lrc_ring_mi_mode(engine);
834 	if (x != -1) {
835 		regs[x + 1] &= ~STOP_RING;
836 		regs[x + 1] |= STOP_RING << 16;
837 	}
838 }
839 
840 static void __lrc_init_regs(u32 *regs,
841 			    const struct intel_context *ce,
842 			    const struct intel_engine_cs *engine,
843 			    bool inhibit)
844 {
845 	/*
846 	 * A context is actually a big batch buffer with several
847 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
848 	 * values we are setting here are only for the first context restore:
849 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
850 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
851 	 * we are not initializing here).
852 	 *
853 	 * Must keep consistent with virtual_update_register_offsets().
854 	 */
855 
856 	if (inhibit)
857 		memset(regs, 0, PAGE_SIZE);
858 
859 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
860 
861 	init_common_regs(regs, ce, engine, inhibit);
862 	init_ppgtt_regs(regs, vm_alias(ce->vm));
863 
864 	init_wa_bb_regs(regs, engine);
865 
866 	__reset_stop_ring(regs, engine);
867 }
868 
869 void lrc_init_regs(const struct intel_context *ce,
870 		   const struct intel_engine_cs *engine,
871 		   bool inhibit)
872 {
873 	__lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
874 }
875 
876 void lrc_reset_regs(const struct intel_context *ce,
877 		    const struct intel_engine_cs *engine)
878 {
879 	__reset_stop_ring(ce->lrc_reg_state, engine);
880 }
881 
882 static void
883 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
884 {
885 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
886 		return;
887 
888 	vaddr += engine->context_size;
889 
890 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
891 }
892 
893 static void
894 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
895 {
896 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
897 		return;
898 
899 	vaddr += engine->context_size;
900 
901 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
902 		drm_err_once(&engine->i915->drm,
903 			     "%s context redzone overwritten!\n",
904 			     engine->name);
905 }
906 
907 void lrc_init_state(struct intel_context *ce,
908 		    struct intel_engine_cs *engine,
909 		    void *state)
910 {
911 	bool inhibit = true;
912 
913 	set_redzone(state, engine);
914 
915 	if (engine->default_state) {
916 		shmem_read(engine->default_state, 0,
917 			   state, engine->context_size);
918 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
919 		inhibit = false;
920 	}
921 
922 	/* Clear the ppHWSP (inc. per-context counters) */
923 	memset(state, 0, PAGE_SIZE);
924 
925 	/*
926 	 * The second page of the context object contains some registers which
927 	 * must be set up prior to the first execution.
928 	 */
929 	__lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
930 }
931 
932 static struct i915_vma *
933 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
934 {
935 	struct drm_i915_gem_object *obj;
936 	struct i915_vma *vma;
937 	u32 context_size;
938 
939 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
940 
941 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
942 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
943 
944 	if (GRAPHICS_VER(engine->i915) == 12) {
945 		ce->wa_bb_page = context_size / PAGE_SIZE;
946 		context_size += PAGE_SIZE;
947 	}
948 
949 	if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
950 		ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
951 		context_size += PARENT_SCRATCH_SIZE;
952 	}
953 
954 	obj = i915_gem_object_create_lmem(engine->i915, context_size,
955 					  I915_BO_ALLOC_PM_VOLATILE);
956 	if (IS_ERR(obj))
957 		obj = i915_gem_object_create_shmem(engine->i915, context_size);
958 	if (IS_ERR(obj))
959 		return ERR_CAST(obj);
960 
961 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
962 	if (IS_ERR(vma)) {
963 		i915_gem_object_put(obj);
964 		return vma;
965 	}
966 
967 	return vma;
968 }
969 
970 static struct intel_timeline *
971 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
972 {
973 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
974 
975 	return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
976 }
977 
978 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
979 {
980 	struct intel_ring *ring;
981 	struct i915_vma *vma;
982 	int err;
983 
984 	GEM_BUG_ON(ce->state);
985 
986 	vma = __lrc_alloc_state(ce, engine);
987 	if (IS_ERR(vma))
988 		return PTR_ERR(vma);
989 
990 	ring = intel_engine_create_ring(engine, ce->ring_size);
991 	if (IS_ERR(ring)) {
992 		err = PTR_ERR(ring);
993 		goto err_vma;
994 	}
995 
996 	if (!page_mask_bits(ce->timeline)) {
997 		struct intel_timeline *tl;
998 
999 		/*
1000 		 * Use the static global HWSP for the kernel context, and
1001 		 * a dynamically allocated cacheline for everyone else.
1002 		 */
1003 		if (unlikely(ce->timeline))
1004 			tl = pinned_timeline(ce, engine);
1005 		else
1006 			tl = intel_timeline_create(engine->gt);
1007 		if (IS_ERR(tl)) {
1008 			err = PTR_ERR(tl);
1009 			goto err_ring;
1010 		}
1011 
1012 		ce->timeline = tl;
1013 	}
1014 
1015 	ce->ring = ring;
1016 	ce->state = vma;
1017 
1018 	return 0;
1019 
1020 err_ring:
1021 	intel_ring_put(ring);
1022 err_vma:
1023 	i915_vma_put(vma);
1024 	return err;
1025 }
1026 
1027 void lrc_reset(struct intel_context *ce)
1028 {
1029 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1030 
1031 	intel_ring_reset(ce->ring, ce->ring->emit);
1032 
1033 	/* Scrub away the garbage */
1034 	lrc_init_regs(ce, ce->engine, true);
1035 	ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1036 }
1037 
1038 int
1039 lrc_pre_pin(struct intel_context *ce,
1040 	    struct intel_engine_cs *engine,
1041 	    struct i915_gem_ww_ctx *ww,
1042 	    void **vaddr)
1043 {
1044 	GEM_BUG_ON(!ce->state);
1045 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1046 
1047 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
1048 					 i915_coherent_map_type(ce->engine->i915,
1049 								ce->state->obj,
1050 								false) |
1051 					 I915_MAP_OVERRIDE);
1052 
1053 	return PTR_ERR_OR_ZERO(*vaddr);
1054 }
1055 
1056 int
1057 lrc_pin(struct intel_context *ce,
1058 	struct intel_engine_cs *engine,
1059 	void *vaddr)
1060 {
1061 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1062 
1063 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1064 		lrc_init_state(ce, engine, vaddr);
1065 
1066 	ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1067 	return 0;
1068 }
1069 
1070 void lrc_unpin(struct intel_context *ce)
1071 {
1072 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1073 		      ce->engine);
1074 }
1075 
1076 void lrc_post_unpin(struct intel_context *ce)
1077 {
1078 	i915_gem_object_unpin_map(ce->state->obj);
1079 }
1080 
1081 void lrc_fini(struct intel_context *ce)
1082 {
1083 	if (!ce->state)
1084 		return;
1085 
1086 	intel_ring_put(fetch_and_zero(&ce->ring));
1087 	i915_vma_put(fetch_and_zero(&ce->state));
1088 }
1089 
1090 void lrc_destroy(struct kref *kref)
1091 {
1092 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1093 
1094 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1095 	GEM_BUG_ON(intel_context_is_pinned(ce));
1096 
1097 	lrc_fini(ce);
1098 
1099 	intel_context_fini(ce);
1100 	intel_context_free(ce);
1101 }
1102 
1103 static u32 *
1104 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1105 {
1106 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1107 		MI_SRM_LRM_GLOBAL_GTT |
1108 		MI_LRI_LRM_CS_MMIO;
1109 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1110 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1111 		CTX_TIMESTAMP * sizeof(u32);
1112 	*cs++ = 0;
1113 
1114 	*cs++ = MI_LOAD_REGISTER_REG |
1115 		MI_LRR_SOURCE_CS_MMIO |
1116 		MI_LRI_LRM_CS_MMIO;
1117 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1118 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1119 
1120 	*cs++ = MI_LOAD_REGISTER_REG |
1121 		MI_LRR_SOURCE_CS_MMIO |
1122 		MI_LRI_LRM_CS_MMIO;
1123 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1124 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1125 
1126 	return cs;
1127 }
1128 
1129 static u32 *
1130 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1131 {
1132 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1133 
1134 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1135 		MI_SRM_LRM_GLOBAL_GTT |
1136 		MI_LRI_LRM_CS_MMIO;
1137 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1138 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1139 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1140 	*cs++ = 0;
1141 
1142 	return cs;
1143 }
1144 
1145 static u32 *
1146 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1147 {
1148 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1149 
1150 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1151 		MI_SRM_LRM_GLOBAL_GTT |
1152 		MI_LRI_LRM_CS_MMIO;
1153 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1154 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1155 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1156 	*cs++ = 0;
1157 
1158 	*cs++ = MI_LOAD_REGISTER_REG |
1159 		MI_LRR_SOURCE_CS_MMIO |
1160 		MI_LRI_LRM_CS_MMIO;
1161 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1162 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1163 
1164 	return cs;
1165 }
1166 
1167 static u32 *
1168 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1169 {
1170 	cs = gen12_emit_timestamp_wa(ce, cs);
1171 	cs = gen12_emit_cmd_buf_wa(ce, cs);
1172 	cs = gen12_emit_restore_scratch(ce, cs);
1173 
1174 	/* Wa_16013000631:dg2 */
1175 	if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) ||
1176 	    IS_DG2_G11(ce->engine->i915))
1177 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1178 
1179 	return cs;
1180 }
1181 
1182 static u32 *
1183 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1184 {
1185 	cs = gen12_emit_timestamp_wa(ce, cs);
1186 	cs = gen12_emit_restore_scratch(ce, cs);
1187 
1188 	return cs;
1189 }
1190 
1191 static u32 context_wa_bb_offset(const struct intel_context *ce)
1192 {
1193 	return PAGE_SIZE * ce->wa_bb_page;
1194 }
1195 
1196 static u32 *context_indirect_bb(const struct intel_context *ce)
1197 {
1198 	void *ptr;
1199 
1200 	GEM_BUG_ON(!ce->wa_bb_page);
1201 
1202 	ptr = ce->lrc_reg_state;
1203 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1204 	ptr += context_wa_bb_offset(ce);
1205 
1206 	return ptr;
1207 }
1208 
1209 static void
1210 setup_indirect_ctx_bb(const struct intel_context *ce,
1211 		      const struct intel_engine_cs *engine,
1212 		      u32 *(*emit)(const struct intel_context *, u32 *))
1213 {
1214 	u32 * const start = context_indirect_bb(ce);
1215 	u32 *cs;
1216 
1217 	cs = emit(ce, start);
1218 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1219 	while ((unsigned long)cs % CACHELINE_BYTES)
1220 		*cs++ = MI_NOOP;
1221 
1222 	lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1223 			       i915_ggtt_offset(ce->state) +
1224 			       context_wa_bb_offset(ce),
1225 			       (cs - start) * sizeof(*cs));
1226 }
1227 
1228 /*
1229  * The context descriptor encodes various attributes of a context,
1230  * including its GTT address and some flags. Because it's fairly
1231  * expensive to calculate, we'll just do it once and cache the result,
1232  * which remains valid until the context is unpinned.
1233  *
1234  * This is what a descriptor looks like, from LSB to MSB::
1235  *
1236  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
1237  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
1238  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
1239  *      bits 53-54:    mbz, reserved for use by hardware
1240  *      bits 55-63:    group ID, currently unused and set to 0
1241  *
1242  * Starting from Gen11, the upper dword of the descriptor has a new format:
1243  *
1244  *      bits 32-36:    reserved
1245  *      bits 37-47:    SW context ID
1246  *      bits 48:53:    engine instance
1247  *      bit 54:        mbz, reserved for use by hardware
1248  *      bits 55-60:    SW counter
1249  *      bits 61-63:    engine class
1250  *
1251  * On Xe_HP, the upper dword of the descriptor has a new format:
1252  *
1253  *      bits 32-37:    virtual function number
1254  *      bit 38:        mbz, reserved for use by hardware
1255  *      bits 39-54:    SW context ID
1256  *      bits 55-57:    reserved
1257  *      bits 58-63:    SW counter
1258  *
1259  * engine info, SW context ID and SW counter need to form a unique number
1260  * (Context ID) per lrc.
1261  */
1262 static u32 lrc_descriptor(const struct intel_context *ce)
1263 {
1264 	u32 desc;
1265 
1266 	desc = INTEL_LEGACY_32B_CONTEXT;
1267 	if (i915_vm_is_4lvl(ce->vm))
1268 		desc = INTEL_LEGACY_64B_CONTEXT;
1269 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1270 
1271 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1272 	if (GRAPHICS_VER(ce->vm->i915) == 8)
1273 		desc |= GEN8_CTX_L3LLC_COHERENT;
1274 
1275 	return i915_ggtt_offset(ce->state) | desc;
1276 }
1277 
1278 u32 lrc_update_regs(const struct intel_context *ce,
1279 		    const struct intel_engine_cs *engine,
1280 		    u32 head)
1281 {
1282 	struct intel_ring *ring = ce->ring;
1283 	u32 *regs = ce->lrc_reg_state;
1284 
1285 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1286 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1287 
1288 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1289 	regs[CTX_RING_HEAD] = head;
1290 	regs[CTX_RING_TAIL] = ring->tail;
1291 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1292 
1293 	/* RPCS */
1294 	if (engine->class == RENDER_CLASS) {
1295 		regs[CTX_R_PWR_CLK_STATE] =
1296 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1297 
1298 		i915_oa_init_reg_state(ce, engine);
1299 	}
1300 
1301 	if (ce->wa_bb_page) {
1302 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1303 
1304 		fn = gen12_emit_indirect_ctx_xcs;
1305 		if (ce->engine->class == RENDER_CLASS)
1306 			fn = gen12_emit_indirect_ctx_rcs;
1307 
1308 		/* Mutually exclusive wrt to global indirect bb */
1309 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1310 		setup_indirect_ctx_bb(ce, engine, fn);
1311 	}
1312 
1313 	return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1314 }
1315 
1316 void lrc_update_offsets(struct intel_context *ce,
1317 			struct intel_engine_cs *engine)
1318 {
1319 	set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1320 }
1321 
1322 void lrc_check_regs(const struct intel_context *ce,
1323 		    const struct intel_engine_cs *engine,
1324 		    const char *when)
1325 {
1326 	const struct intel_ring *ring = ce->ring;
1327 	u32 *regs = ce->lrc_reg_state;
1328 	bool valid = true;
1329 	int x;
1330 
1331 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1332 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1333 		       engine->name,
1334 		       regs[CTX_RING_START],
1335 		       i915_ggtt_offset(ring->vma));
1336 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1337 		valid = false;
1338 	}
1339 
1340 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1341 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1342 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1343 		       engine->name,
1344 		       regs[CTX_RING_CTL],
1345 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1346 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1347 		valid = false;
1348 	}
1349 
1350 	x = lrc_ring_mi_mode(engine);
1351 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1352 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1353 		       engine->name, regs[x + 1]);
1354 		regs[x + 1] &= ~STOP_RING;
1355 		regs[x + 1] |= STOP_RING << 16;
1356 		valid = false;
1357 	}
1358 
1359 	WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1360 }
1361 
1362 /*
1363  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1364  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1365  * but there is a slight complication as this is applied in WA batch where the
1366  * values are only initialized once so we cannot take register value at the
1367  * beginning and reuse it further; hence we save its value to memory, upload a
1368  * constant value with bit21 set and then we restore it back with the saved value.
1369  * To simplify the WA, a constant value is formed by using the default value
1370  * of this register. This shouldn't be a problem because we are only modifying
1371  * it for a short period and this batch in non-premptible. We can ofcourse
1372  * use additional instructions that read the actual value of the register
1373  * at that time and set our bit of interest but it makes the WA complicated.
1374  *
1375  * This WA is also required for Gen9 so extracting as a function avoids
1376  * code duplication.
1377  */
1378 static u32 *
1379 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1380 {
1381 	/* NB no one else is allowed to scribble over scratch + 256! */
1382 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1383 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1384 	*batch++ = intel_gt_scratch_offset(engine->gt,
1385 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1386 	*batch++ = 0;
1387 
1388 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1389 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1390 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1391 
1392 	batch = gen8_emit_pipe_control(batch,
1393 				       PIPE_CONTROL_CS_STALL |
1394 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1395 				       0);
1396 
1397 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1398 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1399 	*batch++ = intel_gt_scratch_offset(engine->gt,
1400 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1401 	*batch++ = 0;
1402 
1403 	return batch;
1404 }
1405 
1406 /*
1407  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1408  * initialized at the beginning and shared across all contexts but this field
1409  * helps us to have multiple batches at different offsets and select them based
1410  * on a criteria. At the moment this batch always start at the beginning of the page
1411  * and at this point we don't have multiple wa_ctx batch buffers.
1412  *
1413  * The number of WA applied are not known at the beginning; we use this field
1414  * to return the no of DWORDS written.
1415  *
1416  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1417  * so it adds NOOPs as padding to make it cacheline aligned.
1418  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1419  * makes a complete batch buffer.
1420  */
1421 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1422 {
1423 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1424 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1425 
1426 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1427 	if (IS_BROADWELL(engine->i915))
1428 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1429 
1430 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1431 	/* Actual scratch location is at 128 bytes offset */
1432 	batch = gen8_emit_pipe_control(batch,
1433 				       PIPE_CONTROL_FLUSH_L3 |
1434 				       PIPE_CONTROL_STORE_DATA_INDEX |
1435 				       PIPE_CONTROL_CS_STALL |
1436 				       PIPE_CONTROL_QW_WRITE,
1437 				       LRC_PPHWSP_SCRATCH_ADDR);
1438 
1439 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1440 
1441 	/* Pad to end of cacheline */
1442 	while ((unsigned long)batch % CACHELINE_BYTES)
1443 		*batch++ = MI_NOOP;
1444 
1445 	/*
1446 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1447 	 * execution depends on the length specified in terms of cache lines
1448 	 * in the register CTX_RCS_INDIRECT_CTX
1449 	 */
1450 
1451 	return batch;
1452 }
1453 
1454 struct lri {
1455 	i915_reg_t reg;
1456 	u32 value;
1457 };
1458 
1459 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1460 {
1461 	GEM_BUG_ON(!count || count > 63);
1462 
1463 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1464 	do {
1465 		*batch++ = i915_mmio_reg_offset(lri->reg);
1466 		*batch++ = lri->value;
1467 	} while (lri++, --count);
1468 	*batch++ = MI_NOOP;
1469 
1470 	return batch;
1471 }
1472 
1473 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1474 {
1475 	static const struct lri lri[] = {
1476 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1477 		{
1478 			COMMON_SLICE_CHICKEN2,
1479 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1480 				       0),
1481 		},
1482 
1483 		/* BSpec: 11391 */
1484 		{
1485 			FF_SLICE_CHICKEN,
1486 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1487 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1488 		},
1489 
1490 		/* BSpec: 11299 */
1491 		{
1492 			_3D_CHICKEN3,
1493 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1494 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1495 		}
1496 	};
1497 
1498 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1499 
1500 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1501 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1502 
1503 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1504 	batch = gen8_emit_pipe_control(batch,
1505 				       PIPE_CONTROL_FLUSH_L3 |
1506 				       PIPE_CONTROL_STORE_DATA_INDEX |
1507 				       PIPE_CONTROL_CS_STALL |
1508 				       PIPE_CONTROL_QW_WRITE,
1509 				       LRC_PPHWSP_SCRATCH_ADDR);
1510 
1511 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1512 
1513 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1514 	if (HAS_POOLED_EU(engine->i915)) {
1515 		/*
1516 		 * EU pool configuration is setup along with golden context
1517 		 * during context initialization. This value depends on
1518 		 * device type (2x6 or 3x6) and needs to be updated based
1519 		 * on which subslice is disabled especially for 2x6
1520 		 * devices, however it is safe to load default
1521 		 * configuration of 3x6 device instead of masking off
1522 		 * corresponding bits because HW ignores bits of a disabled
1523 		 * subslice and drops down to appropriate config. Please
1524 		 * see render_state_setup() in i915_gem_render_state.c for
1525 		 * possible configurations, to avoid duplication they are
1526 		 * not shown here again.
1527 		 */
1528 		*batch++ = GEN9_MEDIA_POOL_STATE;
1529 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1530 		*batch++ = 0x00777000;
1531 		*batch++ = 0;
1532 		*batch++ = 0;
1533 		*batch++ = 0;
1534 	}
1535 
1536 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1537 
1538 	/* Pad to end of cacheline */
1539 	while ((unsigned long)batch % CACHELINE_BYTES)
1540 		*batch++ = MI_NOOP;
1541 
1542 	return batch;
1543 }
1544 
1545 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1546 
1547 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1548 {
1549 	struct drm_i915_gem_object *obj;
1550 	struct i915_vma *vma;
1551 	int err;
1552 
1553 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1554 	if (IS_ERR(obj))
1555 		return PTR_ERR(obj);
1556 
1557 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1558 	if (IS_ERR(vma)) {
1559 		err = PTR_ERR(vma);
1560 		goto err;
1561 	}
1562 
1563 	engine->wa_ctx.vma = vma;
1564 	return 0;
1565 
1566 err:
1567 	i915_gem_object_put(obj);
1568 	return err;
1569 }
1570 
1571 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1572 {
1573 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1574 }
1575 
1576 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1577 
1578 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1579 {
1580 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1581 	struct i915_wa_ctx_bb *wa_bb[] = {
1582 		&wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1583 	};
1584 	wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1585 	struct i915_gem_ww_ctx ww;
1586 	void *batch, *batch_ptr;
1587 	unsigned int i;
1588 	int err;
1589 
1590 	if (engine->class != RENDER_CLASS)
1591 		return;
1592 
1593 	switch (GRAPHICS_VER(engine->i915)) {
1594 	case 12:
1595 	case 11:
1596 		return;
1597 	case 9:
1598 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1599 		wa_bb_fn[1] = NULL;
1600 		break;
1601 	case 8:
1602 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1603 		wa_bb_fn[1] = NULL;
1604 		break;
1605 	default:
1606 		MISSING_CASE(GRAPHICS_VER(engine->i915));
1607 		return;
1608 	}
1609 
1610 	err = lrc_create_wa_ctx(engine);
1611 	if (err) {
1612 		/*
1613 		 * We continue even if we fail to initialize WA batch
1614 		 * because we only expect rare glitches but nothing
1615 		 * critical to prevent us from using GPU
1616 		 */
1617 		drm_err(&engine->i915->drm,
1618 			"Ignoring context switch w/a allocation error:%d\n",
1619 			err);
1620 		return;
1621 	}
1622 
1623 	if (!engine->wa_ctx.vma)
1624 		return;
1625 
1626 	i915_gem_ww_ctx_init(&ww, true);
1627 retry:
1628 	err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1629 	if (!err)
1630 		err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1631 	if (err)
1632 		goto err;
1633 
1634 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1635 	if (IS_ERR(batch)) {
1636 		err = PTR_ERR(batch);
1637 		goto err_unpin;
1638 	}
1639 
1640 	/*
1641 	 * Emit the two workaround batch buffers, recording the offset from the
1642 	 * start of the workaround batch buffer object for each and their
1643 	 * respective sizes.
1644 	 */
1645 	batch_ptr = batch;
1646 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1647 		wa_bb[i]->offset = batch_ptr - batch;
1648 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1649 						  CACHELINE_BYTES))) {
1650 			err = -EINVAL;
1651 			break;
1652 		}
1653 		if (wa_bb_fn[i])
1654 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1655 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1656 	}
1657 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1658 
1659 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1660 	__i915_gem_object_release_map(wa_ctx->vma->obj);
1661 
1662 	/* Verify that we can handle failure to setup the wa_ctx */
1663 	if (!err)
1664 		err = i915_inject_probe_error(engine->i915, -ENODEV);
1665 
1666 err_unpin:
1667 	if (err)
1668 		i915_vma_unpin(wa_ctx->vma);
1669 err:
1670 	if (err == -EDEADLK) {
1671 		err = i915_gem_ww_ctx_backoff(&ww);
1672 		if (!err)
1673 			goto retry;
1674 	}
1675 	i915_gem_ww_ctx_fini(&ww);
1676 
1677 	if (err) {
1678 		i915_vma_put(engine->wa_ctx.vma);
1679 
1680 		/* Clear all flags to prevent further use */
1681 		memset(wa_ctx, 0, sizeof(*wa_ctx));
1682 	}
1683 }
1684 
1685 static void st_update_runtime_underflow(struct intel_context *ce, s32 dt)
1686 {
1687 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1688 	ce->runtime.num_underflow++;
1689 	ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt);
1690 #endif
1691 }
1692 
1693 static u32 lrc_get_runtime(const struct intel_context *ce)
1694 {
1695 	/*
1696 	 * We can use either ppHWSP[16] which is recorded before the context
1697 	 * switch (and so excludes the cost of context switches) or use the
1698 	 * value from the context image itself, which is saved/restored earlier
1699 	 * and so includes the cost of the save.
1700 	 */
1701 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1702 }
1703 
1704 void lrc_update_runtime(struct intel_context *ce)
1705 {
1706 	u32 old;
1707 	s32 dt;
1708 
1709 	if (intel_context_is_barrier(ce))
1710 		return;
1711 
1712 	old = ce->runtime.last;
1713 	ce->runtime.last = lrc_get_runtime(ce);
1714 	dt = ce->runtime.last - old;
1715 
1716 	if (unlikely(dt < 0)) {
1717 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1718 			 old, ce->runtime.last, dt);
1719 		st_update_runtime_underflow(ce, dt);
1720 		return;
1721 	}
1722 
1723 	ewma_runtime_add(&ce->runtime.avg, dt);
1724 	ce->runtime.total += dt;
1725 }
1726 
1727 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1728 #include "selftest_lrc.c"
1729 #endif
1730