xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision 16c8d76a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22 
23 static void set_offsets(u32 *regs,
24 			const u8 *data,
25 			const struct intel_engine_cs *engine,
26 			bool close)
27 #define NOP(x) (BIT(7) | (x))
28 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
29 #define POSTED BIT(0)
30 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
31 #define REG16(x) \
32 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
33 	(((x) >> 2) & 0x7f)
34 #define END 0
35 {
36 	const u32 base = engine->mmio_base;
37 
38 	while (*data) {
39 		u8 count, flags;
40 
41 		if (*data & BIT(7)) { /* skip */
42 			count = *data++ & ~BIT(7);
43 			regs += count;
44 			continue;
45 		}
46 
47 		count = *data & 0x3f;
48 		flags = *data >> 6;
49 		data++;
50 
51 		*regs = MI_LOAD_REGISTER_IMM(count);
52 		if (flags & POSTED)
53 			*regs |= MI_LRI_FORCE_POSTED;
54 		if (GRAPHICS_VER(engine->i915) >= 11)
55 			*regs |= MI_LRI_LRM_CS_MMIO;
56 		regs++;
57 
58 		GEM_BUG_ON(!count);
59 		do {
60 			u32 offset = 0;
61 			u8 v;
62 
63 			do {
64 				v = *data++;
65 				offset <<= 7;
66 				offset |= v & ~BIT(7);
67 			} while (v & BIT(7));
68 
69 			regs[0] = base + (offset << 2);
70 			regs += 2;
71 		} while (--count);
72 	}
73 
74 	if (close) {
75 		/* Close the batch; used mainly by live_lrc_layout() */
76 		*regs = MI_BATCH_BUFFER_END;
77 		if (GRAPHICS_VER(engine->i915) >= 11)
78 			*regs |= BIT(0);
79 	}
80 }
81 
82 static const u8 gen8_xcs_offsets[] = {
83 	NOP(1),
84 	LRI(11, 0),
85 	REG16(0x244),
86 	REG(0x034),
87 	REG(0x030),
88 	REG(0x038),
89 	REG(0x03c),
90 	REG(0x168),
91 	REG(0x140),
92 	REG(0x110),
93 	REG(0x11c),
94 	REG(0x114),
95 	REG(0x118),
96 
97 	NOP(9),
98 	LRI(9, 0),
99 	REG16(0x3a8),
100 	REG16(0x28c),
101 	REG16(0x288),
102 	REG16(0x284),
103 	REG16(0x280),
104 	REG16(0x27c),
105 	REG16(0x278),
106 	REG16(0x274),
107 	REG16(0x270),
108 
109 	NOP(13),
110 	LRI(2, 0),
111 	REG16(0x200),
112 	REG(0x028),
113 
114 	END
115 };
116 
117 static const u8 gen9_xcs_offsets[] = {
118 	NOP(1),
119 	LRI(14, POSTED),
120 	REG16(0x244),
121 	REG(0x034),
122 	REG(0x030),
123 	REG(0x038),
124 	REG(0x03c),
125 	REG(0x168),
126 	REG(0x140),
127 	REG(0x110),
128 	REG(0x11c),
129 	REG(0x114),
130 	REG(0x118),
131 	REG(0x1c0),
132 	REG(0x1c4),
133 	REG(0x1c8),
134 
135 	NOP(3),
136 	LRI(9, POSTED),
137 	REG16(0x3a8),
138 	REG16(0x28c),
139 	REG16(0x288),
140 	REG16(0x284),
141 	REG16(0x280),
142 	REG16(0x27c),
143 	REG16(0x278),
144 	REG16(0x274),
145 	REG16(0x270),
146 
147 	NOP(13),
148 	LRI(1, POSTED),
149 	REG16(0x200),
150 
151 	NOP(13),
152 	LRI(44, POSTED),
153 	REG(0x028),
154 	REG(0x09c),
155 	REG(0x0c0),
156 	REG(0x178),
157 	REG(0x17c),
158 	REG16(0x358),
159 	REG(0x170),
160 	REG(0x150),
161 	REG(0x154),
162 	REG(0x158),
163 	REG16(0x41c),
164 	REG16(0x600),
165 	REG16(0x604),
166 	REG16(0x608),
167 	REG16(0x60c),
168 	REG16(0x610),
169 	REG16(0x614),
170 	REG16(0x618),
171 	REG16(0x61c),
172 	REG16(0x620),
173 	REG16(0x624),
174 	REG16(0x628),
175 	REG16(0x62c),
176 	REG16(0x630),
177 	REG16(0x634),
178 	REG16(0x638),
179 	REG16(0x63c),
180 	REG16(0x640),
181 	REG16(0x644),
182 	REG16(0x648),
183 	REG16(0x64c),
184 	REG16(0x650),
185 	REG16(0x654),
186 	REG16(0x658),
187 	REG16(0x65c),
188 	REG16(0x660),
189 	REG16(0x664),
190 	REG16(0x668),
191 	REG16(0x66c),
192 	REG16(0x670),
193 	REG16(0x674),
194 	REG16(0x678),
195 	REG16(0x67c),
196 	REG(0x068),
197 
198 	END
199 };
200 
201 static const u8 gen12_xcs_offsets[] = {
202 	NOP(1),
203 	LRI(13, POSTED),
204 	REG16(0x244),
205 	REG(0x034),
206 	REG(0x030),
207 	REG(0x038),
208 	REG(0x03c),
209 	REG(0x168),
210 	REG(0x140),
211 	REG(0x110),
212 	REG(0x1c0),
213 	REG(0x1c4),
214 	REG(0x1c8),
215 	REG(0x180),
216 	REG16(0x2b4),
217 
218 	NOP(5),
219 	LRI(9, POSTED),
220 	REG16(0x3a8),
221 	REG16(0x28c),
222 	REG16(0x288),
223 	REG16(0x284),
224 	REG16(0x280),
225 	REG16(0x27c),
226 	REG16(0x278),
227 	REG16(0x274),
228 	REG16(0x270),
229 
230 	END
231 };
232 
233 static const u8 dg2_xcs_offsets[] = {
234 	NOP(1),
235 	LRI(15, POSTED),
236 	REG16(0x244),
237 	REG(0x034),
238 	REG(0x030),
239 	REG(0x038),
240 	REG(0x03c),
241 	REG(0x168),
242 	REG(0x140),
243 	REG(0x110),
244 	REG(0x1c0),
245 	REG(0x1c4),
246 	REG(0x1c8),
247 	REG(0x180),
248 	REG16(0x2b4),
249 	REG(0x120),
250 	REG(0x124),
251 
252 	NOP(1),
253 	LRI(9, POSTED),
254 	REG16(0x3a8),
255 	REG16(0x28c),
256 	REG16(0x288),
257 	REG16(0x284),
258 	REG16(0x280),
259 	REG16(0x27c),
260 	REG16(0x278),
261 	REG16(0x274),
262 	REG16(0x270),
263 
264 	END
265 };
266 
267 static const u8 gen8_rcs_offsets[] = {
268 	NOP(1),
269 	LRI(14, POSTED),
270 	REG16(0x244),
271 	REG(0x034),
272 	REG(0x030),
273 	REG(0x038),
274 	REG(0x03c),
275 	REG(0x168),
276 	REG(0x140),
277 	REG(0x110),
278 	REG(0x11c),
279 	REG(0x114),
280 	REG(0x118),
281 	REG(0x1c0),
282 	REG(0x1c4),
283 	REG(0x1c8),
284 
285 	NOP(3),
286 	LRI(9, POSTED),
287 	REG16(0x3a8),
288 	REG16(0x28c),
289 	REG16(0x288),
290 	REG16(0x284),
291 	REG16(0x280),
292 	REG16(0x27c),
293 	REG16(0x278),
294 	REG16(0x274),
295 	REG16(0x270),
296 
297 	NOP(13),
298 	LRI(1, 0),
299 	REG(0x0c8),
300 
301 	END
302 };
303 
304 static const u8 gen9_rcs_offsets[] = {
305 	NOP(1),
306 	LRI(14, POSTED),
307 	REG16(0x244),
308 	REG(0x34),
309 	REG(0x30),
310 	REG(0x38),
311 	REG(0x3c),
312 	REG(0x168),
313 	REG(0x140),
314 	REG(0x110),
315 	REG(0x11c),
316 	REG(0x114),
317 	REG(0x118),
318 	REG(0x1c0),
319 	REG(0x1c4),
320 	REG(0x1c8),
321 
322 	NOP(3),
323 	LRI(9, POSTED),
324 	REG16(0x3a8),
325 	REG16(0x28c),
326 	REG16(0x288),
327 	REG16(0x284),
328 	REG16(0x280),
329 	REG16(0x27c),
330 	REG16(0x278),
331 	REG16(0x274),
332 	REG16(0x270),
333 
334 	NOP(13),
335 	LRI(1, 0),
336 	REG(0xc8),
337 
338 	NOP(13),
339 	LRI(44, POSTED),
340 	REG(0x28),
341 	REG(0x9c),
342 	REG(0xc0),
343 	REG(0x178),
344 	REG(0x17c),
345 	REG16(0x358),
346 	REG(0x170),
347 	REG(0x150),
348 	REG(0x154),
349 	REG(0x158),
350 	REG16(0x41c),
351 	REG16(0x600),
352 	REG16(0x604),
353 	REG16(0x608),
354 	REG16(0x60c),
355 	REG16(0x610),
356 	REG16(0x614),
357 	REG16(0x618),
358 	REG16(0x61c),
359 	REG16(0x620),
360 	REG16(0x624),
361 	REG16(0x628),
362 	REG16(0x62c),
363 	REG16(0x630),
364 	REG16(0x634),
365 	REG16(0x638),
366 	REG16(0x63c),
367 	REG16(0x640),
368 	REG16(0x644),
369 	REG16(0x648),
370 	REG16(0x64c),
371 	REG16(0x650),
372 	REG16(0x654),
373 	REG16(0x658),
374 	REG16(0x65c),
375 	REG16(0x660),
376 	REG16(0x664),
377 	REG16(0x668),
378 	REG16(0x66c),
379 	REG16(0x670),
380 	REG16(0x674),
381 	REG16(0x678),
382 	REG16(0x67c),
383 	REG(0x68),
384 
385 	END
386 };
387 
388 static const u8 gen11_rcs_offsets[] = {
389 	NOP(1),
390 	LRI(15, POSTED),
391 	REG16(0x244),
392 	REG(0x034),
393 	REG(0x030),
394 	REG(0x038),
395 	REG(0x03c),
396 	REG(0x168),
397 	REG(0x140),
398 	REG(0x110),
399 	REG(0x11c),
400 	REG(0x114),
401 	REG(0x118),
402 	REG(0x1c0),
403 	REG(0x1c4),
404 	REG(0x1c8),
405 	REG(0x180),
406 
407 	NOP(1),
408 	LRI(9, POSTED),
409 	REG16(0x3a8),
410 	REG16(0x28c),
411 	REG16(0x288),
412 	REG16(0x284),
413 	REG16(0x280),
414 	REG16(0x27c),
415 	REG16(0x278),
416 	REG16(0x274),
417 	REG16(0x270),
418 
419 	LRI(1, POSTED),
420 	REG(0x1b0),
421 
422 	NOP(10),
423 	LRI(1, 0),
424 	REG(0x0c8),
425 
426 	END
427 };
428 
429 static const u8 gen12_rcs_offsets[] = {
430 	NOP(1),
431 	LRI(13, POSTED),
432 	REG16(0x244),
433 	REG(0x034),
434 	REG(0x030),
435 	REG(0x038),
436 	REG(0x03c),
437 	REG(0x168),
438 	REG(0x140),
439 	REG(0x110),
440 	REG(0x1c0),
441 	REG(0x1c4),
442 	REG(0x1c8),
443 	REG(0x180),
444 	REG16(0x2b4),
445 
446 	NOP(5),
447 	LRI(9, POSTED),
448 	REG16(0x3a8),
449 	REG16(0x28c),
450 	REG16(0x288),
451 	REG16(0x284),
452 	REG16(0x280),
453 	REG16(0x27c),
454 	REG16(0x278),
455 	REG16(0x274),
456 	REG16(0x270),
457 
458 	LRI(3, POSTED),
459 	REG(0x1b0),
460 	REG16(0x5a8),
461 	REG16(0x5ac),
462 
463 	NOP(6),
464 	LRI(1, 0),
465 	REG(0x0c8),
466 	NOP(3 + 9 + 1),
467 
468 	LRI(51, POSTED),
469 	REG16(0x588),
470 	REG16(0x588),
471 	REG16(0x588),
472 	REG16(0x588),
473 	REG16(0x588),
474 	REG16(0x588),
475 	REG(0x028),
476 	REG(0x09c),
477 	REG(0x0c0),
478 	REG(0x178),
479 	REG(0x17c),
480 	REG16(0x358),
481 	REG(0x170),
482 	REG(0x150),
483 	REG(0x154),
484 	REG(0x158),
485 	REG16(0x41c),
486 	REG16(0x600),
487 	REG16(0x604),
488 	REG16(0x608),
489 	REG16(0x60c),
490 	REG16(0x610),
491 	REG16(0x614),
492 	REG16(0x618),
493 	REG16(0x61c),
494 	REG16(0x620),
495 	REG16(0x624),
496 	REG16(0x628),
497 	REG16(0x62c),
498 	REG16(0x630),
499 	REG16(0x634),
500 	REG16(0x638),
501 	REG16(0x63c),
502 	REG16(0x640),
503 	REG16(0x644),
504 	REG16(0x648),
505 	REG16(0x64c),
506 	REG16(0x650),
507 	REG16(0x654),
508 	REG16(0x658),
509 	REG16(0x65c),
510 	REG16(0x660),
511 	REG16(0x664),
512 	REG16(0x668),
513 	REG16(0x66c),
514 	REG16(0x670),
515 	REG16(0x674),
516 	REG16(0x678),
517 	REG16(0x67c),
518 	REG(0x068),
519 	REG(0x084),
520 	NOP(1),
521 
522 	END
523 };
524 
525 static const u8 xehp_rcs_offsets[] = {
526 	NOP(1),
527 	LRI(13, POSTED),
528 	REG16(0x244),
529 	REG(0x034),
530 	REG(0x030),
531 	REG(0x038),
532 	REG(0x03c),
533 	REG(0x168),
534 	REG(0x140),
535 	REG(0x110),
536 	REG(0x1c0),
537 	REG(0x1c4),
538 	REG(0x1c8),
539 	REG(0x180),
540 	REG16(0x2b4),
541 
542 	NOP(5),
543 	LRI(9, POSTED),
544 	REG16(0x3a8),
545 	REG16(0x28c),
546 	REG16(0x288),
547 	REG16(0x284),
548 	REG16(0x280),
549 	REG16(0x27c),
550 	REG16(0x278),
551 	REG16(0x274),
552 	REG16(0x270),
553 
554 	LRI(3, POSTED),
555 	REG(0x1b0),
556 	REG16(0x5a8),
557 	REG16(0x5ac),
558 
559 	NOP(6),
560 	LRI(1, 0),
561 	REG(0x0c8),
562 
563 	END
564 };
565 
566 static const u8 dg2_rcs_offsets[] = {
567 	NOP(1),
568 	LRI(15, POSTED),
569 	REG16(0x244),
570 	REG(0x034),
571 	REG(0x030),
572 	REG(0x038),
573 	REG(0x03c),
574 	REG(0x168),
575 	REG(0x140),
576 	REG(0x110),
577 	REG(0x1c0),
578 	REG(0x1c4),
579 	REG(0x1c8),
580 	REG(0x180),
581 	REG16(0x2b4),
582 	REG(0x120),
583 	REG(0x124),
584 
585 	NOP(1),
586 	LRI(9, POSTED),
587 	REG16(0x3a8),
588 	REG16(0x28c),
589 	REG16(0x288),
590 	REG16(0x284),
591 	REG16(0x280),
592 	REG16(0x27c),
593 	REG16(0x278),
594 	REG16(0x274),
595 	REG16(0x270),
596 
597 	LRI(3, POSTED),
598 	REG(0x1b0),
599 	REG16(0x5a8),
600 	REG16(0x5ac),
601 
602 	NOP(6),
603 	LRI(1, 0),
604 	REG(0x0c8),
605 
606 	END
607 };
608 
609 #undef END
610 #undef REG16
611 #undef REG
612 #undef LRI
613 #undef NOP
614 
615 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
616 {
617 	/*
618 	 * The gen12+ lists only have the registers we program in the basic
619 	 * default state. We rely on the context image using relative
620 	 * addressing to automatic fixup the register state between the
621 	 * physical engines for virtual engine.
622 	 */
623 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
624 		   !intel_engine_has_relative_mmio(engine));
625 
626 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) {
627 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
628 			return dg2_rcs_offsets;
629 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
630 			return xehp_rcs_offsets;
631 		else if (GRAPHICS_VER(engine->i915) >= 12)
632 			return gen12_rcs_offsets;
633 		else if (GRAPHICS_VER(engine->i915) >= 11)
634 			return gen11_rcs_offsets;
635 		else if (GRAPHICS_VER(engine->i915) >= 9)
636 			return gen9_rcs_offsets;
637 		else
638 			return gen8_rcs_offsets;
639 	} else {
640 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
641 			return dg2_xcs_offsets;
642 		else if (GRAPHICS_VER(engine->i915) >= 12)
643 			return gen12_xcs_offsets;
644 		else if (GRAPHICS_VER(engine->i915) >= 9)
645 			return gen9_xcs_offsets;
646 		else
647 			return gen8_xcs_offsets;
648 	}
649 }
650 
651 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
652 {
653 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
654 		return 0x70;
655 	else if (GRAPHICS_VER(engine->i915) >= 12)
656 		return 0x60;
657 	else if (GRAPHICS_VER(engine->i915) >= 9)
658 		return 0x54;
659 	else if (engine->class == RENDER_CLASS)
660 		return 0x58;
661 	else
662 		return -1;
663 }
664 
665 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
666 {
667 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
668 		return 0x84;
669 	else if (GRAPHICS_VER(engine->i915) >= 12)
670 		return 0x74;
671 	else if (GRAPHICS_VER(engine->i915) >= 9)
672 		return 0x68;
673 	else if (engine->class == RENDER_CLASS)
674 		return 0xd8;
675 	else
676 		return -1;
677 }
678 
679 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
680 {
681 	if (GRAPHICS_VER(engine->i915) >= 12)
682 		return 0x12;
683 	else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
684 		return 0x18;
685 	else
686 		return -1;
687 }
688 
689 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
690 {
691 	int x;
692 
693 	x = lrc_ring_wa_bb_per_ctx(engine);
694 	if (x < 0)
695 		return x;
696 
697 	return x + 2;
698 }
699 
700 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
701 {
702 	int x;
703 
704 	x = lrc_ring_indirect_ptr(engine);
705 	if (x < 0)
706 		return x;
707 
708 	return x + 2;
709 }
710 
711 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
712 {
713 
714 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
715 		/*
716 		 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
717 		 * simply to match the RCS context image layout.
718 		 */
719 		return 0xc6;
720 	else if (engine->class != RENDER_CLASS)
721 		return -1;
722 	else if (GRAPHICS_VER(engine->i915) >= 12)
723 		return 0xb6;
724 	else if (GRAPHICS_VER(engine->i915) >= 11)
725 		return 0xaa;
726 	else
727 		return -1;
728 }
729 
730 static u32
731 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
732 {
733 	switch (GRAPHICS_VER(engine->i915)) {
734 	default:
735 		MISSING_CASE(GRAPHICS_VER(engine->i915));
736 		fallthrough;
737 	case 12:
738 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
739 	case 11:
740 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
741 	case 9:
742 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
743 	case 8:
744 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
745 	}
746 }
747 
748 static void
749 lrc_setup_indirect_ctx(u32 *regs,
750 		       const struct intel_engine_cs *engine,
751 		       u32 ctx_bb_ggtt_addr,
752 		       u32 size)
753 {
754 	GEM_BUG_ON(!size);
755 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
756 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
757 	regs[lrc_ring_indirect_ptr(engine) + 1] =
758 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
759 
760 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
761 	regs[lrc_ring_indirect_offset(engine) + 1] =
762 		lrc_ring_indirect_offset_default(engine) << 6;
763 }
764 
765 static void init_common_regs(u32 * const regs,
766 			     const struct intel_context *ce,
767 			     const struct intel_engine_cs *engine,
768 			     bool inhibit)
769 {
770 	u32 ctl;
771 
772 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
773 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
774 	if (inhibit)
775 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
776 	if (GRAPHICS_VER(engine->i915) < 11)
777 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
778 					   CTX_CTRL_RS_CTX_ENABLE);
779 	regs[CTX_CONTEXT_CONTROL] = ctl;
780 
781 	regs[CTX_TIMESTAMP] = ce->stats.runtime.last;
782 }
783 
784 static void init_wa_bb_regs(u32 * const regs,
785 			    const struct intel_engine_cs *engine)
786 {
787 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
788 
789 	if (wa_ctx->per_ctx.size) {
790 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
791 
792 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
793 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
794 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
795 	}
796 
797 	if (wa_ctx->indirect_ctx.size) {
798 		lrc_setup_indirect_ctx(regs, engine,
799 				       i915_ggtt_offset(wa_ctx->vma) +
800 				       wa_ctx->indirect_ctx.offset,
801 				       wa_ctx->indirect_ctx.size);
802 	}
803 }
804 
805 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
806 {
807 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
808 		/* 64b PPGTT (48bit canonical)
809 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
810 		 * other PDP Descriptors are ignored.
811 		 */
812 		ASSIGN_CTX_PML4(ppgtt, regs);
813 	} else {
814 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
815 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
816 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
817 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
818 	}
819 }
820 
821 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
822 {
823 	if (i915_is_ggtt(vm))
824 		return i915_vm_to_ggtt(vm)->alias;
825 	else
826 		return i915_vm_to_ppgtt(vm);
827 }
828 
829 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
830 {
831 	int x;
832 
833 	x = lrc_ring_mi_mode(engine);
834 	if (x != -1) {
835 		regs[x + 1] &= ~STOP_RING;
836 		regs[x + 1] |= STOP_RING << 16;
837 	}
838 }
839 
840 static void __lrc_init_regs(u32 *regs,
841 			    const struct intel_context *ce,
842 			    const struct intel_engine_cs *engine,
843 			    bool inhibit)
844 {
845 	/*
846 	 * A context is actually a big batch buffer with several
847 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
848 	 * values we are setting here are only for the first context restore:
849 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
850 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
851 	 * we are not initializing here).
852 	 *
853 	 * Must keep consistent with virtual_update_register_offsets().
854 	 */
855 
856 	if (inhibit)
857 		memset(regs, 0, PAGE_SIZE);
858 
859 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
860 
861 	init_common_regs(regs, ce, engine, inhibit);
862 	init_ppgtt_regs(regs, vm_alias(ce->vm));
863 
864 	init_wa_bb_regs(regs, engine);
865 
866 	__reset_stop_ring(regs, engine);
867 }
868 
869 void lrc_init_regs(const struct intel_context *ce,
870 		   const struct intel_engine_cs *engine,
871 		   bool inhibit)
872 {
873 	__lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
874 }
875 
876 void lrc_reset_regs(const struct intel_context *ce,
877 		    const struct intel_engine_cs *engine)
878 {
879 	__reset_stop_ring(ce->lrc_reg_state, engine);
880 }
881 
882 static void
883 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
884 {
885 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
886 		return;
887 
888 	vaddr += engine->context_size;
889 
890 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
891 }
892 
893 static void
894 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
895 {
896 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
897 		return;
898 
899 	vaddr += engine->context_size;
900 
901 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
902 		drm_err_once(&engine->i915->drm,
903 			     "%s context redzone overwritten!\n",
904 			     engine->name);
905 }
906 
907 void lrc_init_state(struct intel_context *ce,
908 		    struct intel_engine_cs *engine,
909 		    void *state)
910 {
911 	bool inhibit = true;
912 
913 	set_redzone(state, engine);
914 
915 	if (engine->default_state) {
916 		shmem_read(engine->default_state, 0,
917 			   state, engine->context_size);
918 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
919 		inhibit = false;
920 	}
921 
922 	/* Clear the ppHWSP (inc. per-context counters) */
923 	memset(state, 0, PAGE_SIZE);
924 
925 	/*
926 	 * The second page of the context object contains some registers which
927 	 * must be set up prior to the first execution.
928 	 */
929 	__lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
930 }
931 
932 static struct i915_vma *
933 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
934 {
935 	struct drm_i915_gem_object *obj;
936 	struct i915_vma *vma;
937 	u32 context_size;
938 
939 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
940 
941 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
942 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
943 
944 	if (GRAPHICS_VER(engine->i915) == 12) {
945 		ce->wa_bb_page = context_size / PAGE_SIZE;
946 		context_size += PAGE_SIZE;
947 	}
948 
949 	if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
950 		ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
951 		context_size += PARENT_SCRATCH_SIZE;
952 	}
953 
954 	obj = i915_gem_object_create_lmem(engine->i915, context_size,
955 					  I915_BO_ALLOC_PM_VOLATILE);
956 	if (IS_ERR(obj))
957 		obj = i915_gem_object_create_shmem(engine->i915, context_size);
958 	if (IS_ERR(obj))
959 		return ERR_CAST(obj);
960 
961 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
962 	if (IS_ERR(vma)) {
963 		i915_gem_object_put(obj);
964 		return vma;
965 	}
966 
967 	return vma;
968 }
969 
970 static struct intel_timeline *
971 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
972 {
973 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
974 
975 	return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
976 }
977 
978 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
979 {
980 	struct intel_ring *ring;
981 	struct i915_vma *vma;
982 	int err;
983 
984 	GEM_BUG_ON(ce->state);
985 
986 	vma = __lrc_alloc_state(ce, engine);
987 	if (IS_ERR(vma))
988 		return PTR_ERR(vma);
989 
990 	ring = intel_engine_create_ring(engine, ce->ring_size);
991 	if (IS_ERR(ring)) {
992 		err = PTR_ERR(ring);
993 		goto err_vma;
994 	}
995 
996 	if (!page_mask_bits(ce->timeline)) {
997 		struct intel_timeline *tl;
998 
999 		/*
1000 		 * Use the static global HWSP for the kernel context, and
1001 		 * a dynamically allocated cacheline for everyone else.
1002 		 */
1003 		if (unlikely(ce->timeline))
1004 			tl = pinned_timeline(ce, engine);
1005 		else
1006 			tl = intel_timeline_create(engine->gt);
1007 		if (IS_ERR(tl)) {
1008 			err = PTR_ERR(tl);
1009 			goto err_ring;
1010 		}
1011 
1012 		ce->timeline = tl;
1013 	}
1014 
1015 	ce->ring = ring;
1016 	ce->state = vma;
1017 
1018 	return 0;
1019 
1020 err_ring:
1021 	intel_ring_put(ring);
1022 err_vma:
1023 	i915_vma_put(vma);
1024 	return err;
1025 }
1026 
1027 void lrc_reset(struct intel_context *ce)
1028 {
1029 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1030 
1031 	intel_ring_reset(ce->ring, ce->ring->emit);
1032 
1033 	/* Scrub away the garbage */
1034 	lrc_init_regs(ce, ce->engine, true);
1035 	ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1036 }
1037 
1038 int
1039 lrc_pre_pin(struct intel_context *ce,
1040 	    struct intel_engine_cs *engine,
1041 	    struct i915_gem_ww_ctx *ww,
1042 	    void **vaddr)
1043 {
1044 	GEM_BUG_ON(!ce->state);
1045 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1046 
1047 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
1048 					 i915_coherent_map_type(ce->engine->i915,
1049 								ce->state->obj,
1050 								false) |
1051 					 I915_MAP_OVERRIDE);
1052 
1053 	return PTR_ERR_OR_ZERO(*vaddr);
1054 }
1055 
1056 int
1057 lrc_pin(struct intel_context *ce,
1058 	struct intel_engine_cs *engine,
1059 	void *vaddr)
1060 {
1061 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1062 
1063 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1064 		lrc_init_state(ce, engine, vaddr);
1065 
1066 	ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1067 	return 0;
1068 }
1069 
1070 void lrc_unpin(struct intel_context *ce)
1071 {
1072 	if (unlikely(ce->parallel.last_rq)) {
1073 		i915_request_put(ce->parallel.last_rq);
1074 		ce->parallel.last_rq = NULL;
1075 	}
1076 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1077 		      ce->engine);
1078 }
1079 
1080 void lrc_post_unpin(struct intel_context *ce)
1081 {
1082 	i915_gem_object_unpin_map(ce->state->obj);
1083 }
1084 
1085 void lrc_fini(struct intel_context *ce)
1086 {
1087 	if (!ce->state)
1088 		return;
1089 
1090 	intel_ring_put(fetch_and_zero(&ce->ring));
1091 	i915_vma_put(fetch_and_zero(&ce->state));
1092 }
1093 
1094 void lrc_destroy(struct kref *kref)
1095 {
1096 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1097 
1098 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1099 	GEM_BUG_ON(intel_context_is_pinned(ce));
1100 
1101 	lrc_fini(ce);
1102 
1103 	intel_context_fini(ce);
1104 	intel_context_free(ce);
1105 }
1106 
1107 static u32 *
1108 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1109 {
1110 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1111 		MI_SRM_LRM_GLOBAL_GTT |
1112 		MI_LRI_LRM_CS_MMIO;
1113 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1114 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1115 		CTX_TIMESTAMP * sizeof(u32);
1116 	*cs++ = 0;
1117 
1118 	*cs++ = MI_LOAD_REGISTER_REG |
1119 		MI_LRR_SOURCE_CS_MMIO |
1120 		MI_LRI_LRM_CS_MMIO;
1121 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1122 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1123 
1124 	*cs++ = MI_LOAD_REGISTER_REG |
1125 		MI_LRR_SOURCE_CS_MMIO |
1126 		MI_LRI_LRM_CS_MMIO;
1127 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1128 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1129 
1130 	return cs;
1131 }
1132 
1133 static u32 *
1134 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1135 {
1136 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1137 
1138 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1139 		MI_SRM_LRM_GLOBAL_GTT |
1140 		MI_LRI_LRM_CS_MMIO;
1141 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1142 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1143 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1144 	*cs++ = 0;
1145 
1146 	return cs;
1147 }
1148 
1149 static u32 *
1150 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1151 {
1152 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1153 
1154 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1155 		MI_SRM_LRM_GLOBAL_GTT |
1156 		MI_LRI_LRM_CS_MMIO;
1157 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1158 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1159 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1160 	*cs++ = 0;
1161 
1162 	*cs++ = MI_LOAD_REGISTER_REG |
1163 		MI_LRR_SOURCE_CS_MMIO |
1164 		MI_LRI_LRM_CS_MMIO;
1165 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1166 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1167 
1168 	return cs;
1169 }
1170 
1171 /*
1172  * On DG2 during context restore of a preempted context in GPGPU mode,
1173  * RCS restore hang is detected. This is extremely timing dependent.
1174  * To address this below sw wabb is implemented for DG2 A steppings.
1175  */
1176 static u32 *
1177 dg2_emit_rcs_hang_wabb(const struct intel_context *ce, u32 *cs)
1178 {
1179 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1180 	*cs++ = i915_mmio_reg_offset(GEN12_STATE_ACK_DEBUG);
1181 	*cs++ = 0x21;
1182 
1183 	*cs++ = MI_LOAD_REGISTER_REG;
1184 	*cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base));
1185 	*cs++ = i915_mmio_reg_offset(GEN12_CULLBIT1);
1186 
1187 	*cs++ = MI_LOAD_REGISTER_REG;
1188 	*cs++ = i915_mmio_reg_offset(RING_NOPID(ce->engine->mmio_base));
1189 	*cs++ = i915_mmio_reg_offset(GEN12_CULLBIT2);
1190 
1191 	return cs;
1192 }
1193 
1194 static u32 *
1195 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1196 {
1197 	cs = gen12_emit_timestamp_wa(ce, cs);
1198 	cs = gen12_emit_cmd_buf_wa(ce, cs);
1199 	cs = gen12_emit_restore_scratch(ce, cs);
1200 
1201 	/* Wa_22011450934:dg2 */
1202 	if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_A0, STEP_B0) ||
1203 	    IS_DG2_GRAPHICS_STEP(ce->engine->i915, G11, STEP_A0, STEP_B0))
1204 		cs = dg2_emit_rcs_hang_wabb(ce, cs);
1205 
1206 	/* Wa_16013000631:dg2 */
1207 	if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) ||
1208 	    IS_DG2_G11(ce->engine->i915))
1209 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1210 
1211 	/* hsdes: 1809175790 */
1212 	if (!HAS_FLAT_CCS(ce->engine->i915))
1213 		cs = gen12_emit_aux_table_inv(cs, GEN12_GFX_CCS_AUX_NV);
1214 
1215 	return cs;
1216 }
1217 
1218 static u32 *
1219 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1220 {
1221 	cs = gen12_emit_timestamp_wa(ce, cs);
1222 	cs = gen12_emit_restore_scratch(ce, cs);
1223 
1224 	/* Wa_16013000631:dg2 */
1225 	if (IS_DG2_GRAPHICS_STEP(ce->engine->i915, G10, STEP_B0, STEP_C0) ||
1226 	    IS_DG2_G11(ce->engine->i915))
1227 		if (ce->engine->class == COMPUTE_CLASS)
1228 			cs = gen8_emit_pipe_control(cs,
1229 						    PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE,
1230 						    0);
1231 
1232 	/* hsdes: 1809175790 */
1233 	if (!HAS_FLAT_CCS(ce->engine->i915)) {
1234 		if (ce->engine->class == VIDEO_DECODE_CLASS)
1235 			cs = gen12_emit_aux_table_inv(cs, GEN12_VD0_AUX_NV);
1236 		else if (ce->engine->class == VIDEO_ENHANCEMENT_CLASS)
1237 			cs = gen12_emit_aux_table_inv(cs, GEN12_VE0_AUX_NV);
1238 	}
1239 
1240 	return cs;
1241 }
1242 
1243 static u32 context_wa_bb_offset(const struct intel_context *ce)
1244 {
1245 	return PAGE_SIZE * ce->wa_bb_page;
1246 }
1247 
1248 static u32 *context_indirect_bb(const struct intel_context *ce)
1249 {
1250 	void *ptr;
1251 
1252 	GEM_BUG_ON(!ce->wa_bb_page);
1253 
1254 	ptr = ce->lrc_reg_state;
1255 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1256 	ptr += context_wa_bb_offset(ce);
1257 
1258 	return ptr;
1259 }
1260 
1261 static void
1262 setup_indirect_ctx_bb(const struct intel_context *ce,
1263 		      const struct intel_engine_cs *engine,
1264 		      u32 *(*emit)(const struct intel_context *, u32 *))
1265 {
1266 	u32 * const start = context_indirect_bb(ce);
1267 	u32 *cs;
1268 
1269 	cs = emit(ce, start);
1270 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1271 	while ((unsigned long)cs % CACHELINE_BYTES)
1272 		*cs++ = MI_NOOP;
1273 
1274 	lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1275 			       i915_ggtt_offset(ce->state) +
1276 			       context_wa_bb_offset(ce),
1277 			       (cs - start) * sizeof(*cs));
1278 }
1279 
1280 /*
1281  * The context descriptor encodes various attributes of a context,
1282  * including its GTT address and some flags. Because it's fairly
1283  * expensive to calculate, we'll just do it once and cache the result,
1284  * which remains valid until the context is unpinned.
1285  *
1286  * This is what a descriptor looks like, from LSB to MSB::
1287  *
1288  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
1289  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
1290  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
1291  *      bits 53-54:    mbz, reserved for use by hardware
1292  *      bits 55-63:    group ID, currently unused and set to 0
1293  *
1294  * Starting from Gen11, the upper dword of the descriptor has a new format:
1295  *
1296  *      bits 32-36:    reserved
1297  *      bits 37-47:    SW context ID
1298  *      bits 48:53:    engine instance
1299  *      bit 54:        mbz, reserved for use by hardware
1300  *      bits 55-60:    SW counter
1301  *      bits 61-63:    engine class
1302  *
1303  * On Xe_HP, the upper dword of the descriptor has a new format:
1304  *
1305  *      bits 32-37:    virtual function number
1306  *      bit 38:        mbz, reserved for use by hardware
1307  *      bits 39-54:    SW context ID
1308  *      bits 55-57:    reserved
1309  *      bits 58-63:    SW counter
1310  *
1311  * engine info, SW context ID and SW counter need to form a unique number
1312  * (Context ID) per lrc.
1313  */
1314 static u32 lrc_descriptor(const struct intel_context *ce)
1315 {
1316 	u32 desc;
1317 
1318 	desc = INTEL_LEGACY_32B_CONTEXT;
1319 	if (i915_vm_is_4lvl(ce->vm))
1320 		desc = INTEL_LEGACY_64B_CONTEXT;
1321 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1322 
1323 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1324 	if (GRAPHICS_VER(ce->vm->i915) == 8)
1325 		desc |= GEN8_CTX_L3LLC_COHERENT;
1326 
1327 	return i915_ggtt_offset(ce->state) | desc;
1328 }
1329 
1330 u32 lrc_update_regs(const struct intel_context *ce,
1331 		    const struct intel_engine_cs *engine,
1332 		    u32 head)
1333 {
1334 	struct intel_ring *ring = ce->ring;
1335 	u32 *regs = ce->lrc_reg_state;
1336 
1337 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1338 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1339 
1340 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1341 	regs[CTX_RING_HEAD] = head;
1342 	regs[CTX_RING_TAIL] = ring->tail;
1343 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1344 
1345 	/* RPCS */
1346 	if (engine->class == RENDER_CLASS) {
1347 		regs[CTX_R_PWR_CLK_STATE] =
1348 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1349 
1350 		i915_oa_init_reg_state(ce, engine);
1351 	}
1352 
1353 	if (ce->wa_bb_page) {
1354 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1355 
1356 		fn = gen12_emit_indirect_ctx_xcs;
1357 		if (ce->engine->class == RENDER_CLASS)
1358 			fn = gen12_emit_indirect_ctx_rcs;
1359 
1360 		/* Mutually exclusive wrt to global indirect bb */
1361 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1362 		setup_indirect_ctx_bb(ce, engine, fn);
1363 	}
1364 
1365 	return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1366 }
1367 
1368 void lrc_update_offsets(struct intel_context *ce,
1369 			struct intel_engine_cs *engine)
1370 {
1371 	set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1372 }
1373 
1374 void lrc_check_regs(const struct intel_context *ce,
1375 		    const struct intel_engine_cs *engine,
1376 		    const char *when)
1377 {
1378 	const struct intel_ring *ring = ce->ring;
1379 	u32 *regs = ce->lrc_reg_state;
1380 	bool valid = true;
1381 	int x;
1382 
1383 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1384 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1385 		       engine->name,
1386 		       regs[CTX_RING_START],
1387 		       i915_ggtt_offset(ring->vma));
1388 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1389 		valid = false;
1390 	}
1391 
1392 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1393 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1394 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1395 		       engine->name,
1396 		       regs[CTX_RING_CTL],
1397 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1398 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1399 		valid = false;
1400 	}
1401 
1402 	x = lrc_ring_mi_mode(engine);
1403 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1404 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1405 		       engine->name, regs[x + 1]);
1406 		regs[x + 1] &= ~STOP_RING;
1407 		regs[x + 1] |= STOP_RING << 16;
1408 		valid = false;
1409 	}
1410 
1411 	WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1412 }
1413 
1414 /*
1415  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1416  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1417  * but there is a slight complication as this is applied in WA batch where the
1418  * values are only initialized once so we cannot take register value at the
1419  * beginning and reuse it further; hence we save its value to memory, upload a
1420  * constant value with bit21 set and then we restore it back with the saved value.
1421  * To simplify the WA, a constant value is formed by using the default value
1422  * of this register. This shouldn't be a problem because we are only modifying
1423  * it for a short period and this batch in non-premptible. We can ofcourse
1424  * use additional instructions that read the actual value of the register
1425  * at that time and set our bit of interest but it makes the WA complicated.
1426  *
1427  * This WA is also required for Gen9 so extracting as a function avoids
1428  * code duplication.
1429  */
1430 static u32 *
1431 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1432 {
1433 	/* NB no one else is allowed to scribble over scratch + 256! */
1434 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1435 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1436 	*batch++ = intel_gt_scratch_offset(engine->gt,
1437 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1438 	*batch++ = 0;
1439 
1440 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1441 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1442 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1443 
1444 	batch = gen8_emit_pipe_control(batch,
1445 				       PIPE_CONTROL_CS_STALL |
1446 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1447 				       0);
1448 
1449 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1450 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1451 	*batch++ = intel_gt_scratch_offset(engine->gt,
1452 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1453 	*batch++ = 0;
1454 
1455 	return batch;
1456 }
1457 
1458 /*
1459  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1460  * initialized at the beginning and shared across all contexts but this field
1461  * helps us to have multiple batches at different offsets and select them based
1462  * on a criteria. At the moment this batch always start at the beginning of the page
1463  * and at this point we don't have multiple wa_ctx batch buffers.
1464  *
1465  * The number of WA applied are not known at the beginning; we use this field
1466  * to return the no of DWORDS written.
1467  *
1468  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1469  * so it adds NOOPs as padding to make it cacheline aligned.
1470  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1471  * makes a complete batch buffer.
1472  */
1473 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1474 {
1475 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1476 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1477 
1478 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1479 	if (IS_BROADWELL(engine->i915))
1480 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1481 
1482 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1483 	/* Actual scratch location is at 128 bytes offset */
1484 	batch = gen8_emit_pipe_control(batch,
1485 				       PIPE_CONTROL_FLUSH_L3 |
1486 				       PIPE_CONTROL_STORE_DATA_INDEX |
1487 				       PIPE_CONTROL_CS_STALL |
1488 				       PIPE_CONTROL_QW_WRITE,
1489 				       LRC_PPHWSP_SCRATCH_ADDR);
1490 
1491 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1492 
1493 	/* Pad to end of cacheline */
1494 	while ((unsigned long)batch % CACHELINE_BYTES)
1495 		*batch++ = MI_NOOP;
1496 
1497 	/*
1498 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1499 	 * execution depends on the length specified in terms of cache lines
1500 	 * in the register CTX_RCS_INDIRECT_CTX
1501 	 */
1502 
1503 	return batch;
1504 }
1505 
1506 struct lri {
1507 	i915_reg_t reg;
1508 	u32 value;
1509 };
1510 
1511 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1512 {
1513 	GEM_BUG_ON(!count || count > 63);
1514 
1515 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1516 	do {
1517 		*batch++ = i915_mmio_reg_offset(lri->reg);
1518 		*batch++ = lri->value;
1519 	} while (lri++, --count);
1520 	*batch++ = MI_NOOP;
1521 
1522 	return batch;
1523 }
1524 
1525 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1526 {
1527 	static const struct lri lri[] = {
1528 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1529 		{
1530 			COMMON_SLICE_CHICKEN2,
1531 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1532 				       0),
1533 		},
1534 
1535 		/* BSpec: 11391 */
1536 		{
1537 			FF_SLICE_CHICKEN,
1538 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1539 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1540 		},
1541 
1542 		/* BSpec: 11299 */
1543 		{
1544 			_3D_CHICKEN3,
1545 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1546 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1547 		}
1548 	};
1549 
1550 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1551 
1552 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1553 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1554 
1555 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1556 	batch = gen8_emit_pipe_control(batch,
1557 				       PIPE_CONTROL_FLUSH_L3 |
1558 				       PIPE_CONTROL_STORE_DATA_INDEX |
1559 				       PIPE_CONTROL_CS_STALL |
1560 				       PIPE_CONTROL_QW_WRITE,
1561 				       LRC_PPHWSP_SCRATCH_ADDR);
1562 
1563 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1564 
1565 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1566 	if (HAS_POOLED_EU(engine->i915)) {
1567 		/*
1568 		 * EU pool configuration is setup along with golden context
1569 		 * during context initialization. This value depends on
1570 		 * device type (2x6 or 3x6) and needs to be updated based
1571 		 * on which subslice is disabled especially for 2x6
1572 		 * devices, however it is safe to load default
1573 		 * configuration of 3x6 device instead of masking off
1574 		 * corresponding bits because HW ignores bits of a disabled
1575 		 * subslice and drops down to appropriate config. Please
1576 		 * see render_state_setup() in i915_gem_render_state.c for
1577 		 * possible configurations, to avoid duplication they are
1578 		 * not shown here again.
1579 		 */
1580 		*batch++ = GEN9_MEDIA_POOL_STATE;
1581 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1582 		*batch++ = 0x00777000;
1583 		*batch++ = 0;
1584 		*batch++ = 0;
1585 		*batch++ = 0;
1586 	}
1587 
1588 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1589 
1590 	/* Pad to end of cacheline */
1591 	while ((unsigned long)batch % CACHELINE_BYTES)
1592 		*batch++ = MI_NOOP;
1593 
1594 	return batch;
1595 }
1596 
1597 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1598 
1599 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1600 {
1601 	struct drm_i915_gem_object *obj;
1602 	struct i915_vma *vma;
1603 	int err;
1604 
1605 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1606 	if (IS_ERR(obj))
1607 		return PTR_ERR(obj);
1608 
1609 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1610 	if (IS_ERR(vma)) {
1611 		err = PTR_ERR(vma);
1612 		goto err;
1613 	}
1614 
1615 	engine->wa_ctx.vma = vma;
1616 	return 0;
1617 
1618 err:
1619 	i915_gem_object_put(obj);
1620 	return err;
1621 }
1622 
1623 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1624 {
1625 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1626 }
1627 
1628 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1629 
1630 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1631 {
1632 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1633 	struct i915_wa_ctx_bb *wa_bb[] = {
1634 		&wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1635 	};
1636 	wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1637 	struct i915_gem_ww_ctx ww;
1638 	void *batch, *batch_ptr;
1639 	unsigned int i;
1640 	int err;
1641 
1642 	if (!(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
1643 		return;
1644 
1645 	switch (GRAPHICS_VER(engine->i915)) {
1646 	case 12:
1647 	case 11:
1648 		return;
1649 	case 9:
1650 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1651 		wa_bb_fn[1] = NULL;
1652 		break;
1653 	case 8:
1654 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1655 		wa_bb_fn[1] = NULL;
1656 		break;
1657 	default:
1658 		MISSING_CASE(GRAPHICS_VER(engine->i915));
1659 		return;
1660 	}
1661 
1662 	err = lrc_create_wa_ctx(engine);
1663 	if (err) {
1664 		/*
1665 		 * We continue even if we fail to initialize WA batch
1666 		 * because we only expect rare glitches but nothing
1667 		 * critical to prevent us from using GPU
1668 		 */
1669 		drm_err(&engine->i915->drm,
1670 			"Ignoring context switch w/a allocation error:%d\n",
1671 			err);
1672 		return;
1673 	}
1674 
1675 	if (!engine->wa_ctx.vma)
1676 		return;
1677 
1678 	i915_gem_ww_ctx_init(&ww, true);
1679 retry:
1680 	err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1681 	if (!err)
1682 		err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1683 	if (err)
1684 		goto err;
1685 
1686 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1687 	if (IS_ERR(batch)) {
1688 		err = PTR_ERR(batch);
1689 		goto err_unpin;
1690 	}
1691 
1692 	/*
1693 	 * Emit the two workaround batch buffers, recording the offset from the
1694 	 * start of the workaround batch buffer object for each and their
1695 	 * respective sizes.
1696 	 */
1697 	batch_ptr = batch;
1698 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1699 		wa_bb[i]->offset = batch_ptr - batch;
1700 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1701 						  CACHELINE_BYTES))) {
1702 			err = -EINVAL;
1703 			break;
1704 		}
1705 		if (wa_bb_fn[i])
1706 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1707 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1708 	}
1709 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1710 
1711 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1712 	__i915_gem_object_release_map(wa_ctx->vma->obj);
1713 
1714 	/* Verify that we can handle failure to setup the wa_ctx */
1715 	if (!err)
1716 		err = i915_inject_probe_error(engine->i915, -ENODEV);
1717 
1718 err_unpin:
1719 	if (err)
1720 		i915_vma_unpin(wa_ctx->vma);
1721 err:
1722 	if (err == -EDEADLK) {
1723 		err = i915_gem_ww_ctx_backoff(&ww);
1724 		if (!err)
1725 			goto retry;
1726 	}
1727 	i915_gem_ww_ctx_fini(&ww);
1728 
1729 	if (err) {
1730 		i915_vma_put(engine->wa_ctx.vma);
1731 
1732 		/* Clear all flags to prevent further use */
1733 		memset(wa_ctx, 0, sizeof(*wa_ctx));
1734 	}
1735 }
1736 
1737 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt)
1738 {
1739 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1740 	stats->runtime.num_underflow++;
1741 	stats->runtime.max_underflow =
1742 		max_t(u32, stats->runtime.max_underflow, -dt);
1743 #endif
1744 }
1745 
1746 static u32 lrc_get_runtime(const struct intel_context *ce)
1747 {
1748 	/*
1749 	 * We can use either ppHWSP[16] which is recorded before the context
1750 	 * switch (and so excludes the cost of context switches) or use the
1751 	 * value from the context image itself, which is saved/restored earlier
1752 	 * and so includes the cost of the save.
1753 	 */
1754 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1755 }
1756 
1757 void lrc_update_runtime(struct intel_context *ce)
1758 {
1759 	struct intel_context_stats *stats = &ce->stats;
1760 	u32 old;
1761 	s32 dt;
1762 
1763 	old = stats->runtime.last;
1764 	stats->runtime.last = lrc_get_runtime(ce);
1765 	dt = stats->runtime.last - old;
1766 	if (!dt)
1767 		return;
1768 
1769 	if (unlikely(dt < 0)) {
1770 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1771 			 old, stats->runtime.last, dt);
1772 		st_runtime_underflow(stats, dt);
1773 		return;
1774 	}
1775 
1776 	ewma_runtime_add(&stats->runtime.avg, dt);
1777 	stats->runtime.total += dt;
1778 }
1779 
1780 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1781 #include "selftest_lrc.c"
1782 #endif
1783