xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision 10be98a7)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30 
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135 
136 #include "gem/i915_gem_context.h"
137 
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_engine_pm.h"
142 #include "intel_lrc_reg.h"
143 #include "intel_mocs.h"
144 #include "intel_reset.h"
145 #include "intel_workarounds.h"
146 
147 #define RING_EXECLIST_QFULL		(1 << 0x2)
148 #define RING_EXECLIST1_VALID		(1 << 0x3)
149 #define RING_EXECLIST0_VALID		(1 << 0x4)
150 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
151 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
152 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
153 
154 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
155 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
156 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
157 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
158 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
159 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
160 
161 #define GEN8_CTX_STATUS_COMPLETED_MASK \
162 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
163 
164 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
165 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
166 #define WA_TAIL_DWORDS 2
167 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
168 
169 struct virtual_engine {
170 	struct intel_engine_cs base;
171 	struct intel_context context;
172 
173 	/*
174 	 * We allow only a single request through the virtual engine at a time
175 	 * (each request in the timeline waits for the completion fence of
176 	 * the previous before being submitted). By restricting ourselves to
177 	 * only submitting a single request, each request is placed on to a
178 	 * physical to maximise load spreading (by virtue of the late greedy
179 	 * scheduling -- each real engine takes the next available request
180 	 * upon idling).
181 	 */
182 	struct i915_request *request;
183 
184 	/*
185 	 * We keep a rbtree of available virtual engines inside each physical
186 	 * engine, sorted by priority. Here we preallocate the nodes we need
187 	 * for the virtual engine, indexed by physical_engine->id.
188 	 */
189 	struct ve_node {
190 		struct rb_node rb;
191 		int prio;
192 	} nodes[I915_NUM_ENGINES];
193 
194 	/*
195 	 * Keep track of bonded pairs -- restrictions upon on our selection
196 	 * of physical engines any particular request may be submitted to.
197 	 * If we receive a submit-fence from a master engine, we will only
198 	 * use one of sibling_mask physical engines.
199 	 */
200 	struct ve_bond {
201 		const struct intel_engine_cs *master;
202 		intel_engine_mask_t sibling_mask;
203 	} *bonds;
204 	unsigned int num_bonds;
205 
206 	/* And finally, which physical engines this virtual engine maps onto. */
207 	unsigned int num_siblings;
208 	struct intel_engine_cs *siblings[0];
209 };
210 
211 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
212 {
213 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
214 	return container_of(engine, struct virtual_engine, base);
215 }
216 
217 static int execlists_context_deferred_alloc(struct intel_context *ce,
218 					    struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220 				     struct intel_context *ce,
221 				     struct intel_engine_cs *engine,
222 				     struct intel_ring *ring);
223 
224 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
225 {
226 	return rb_entry(rb, struct i915_priolist, node);
227 }
228 
229 static inline int rq_prio(const struct i915_request *rq)
230 {
231 	return rq->sched.attr.priority;
232 }
233 
234 static int effective_prio(const struct i915_request *rq)
235 {
236 	int prio = rq_prio(rq);
237 
238 	/*
239 	 * On unwinding the active request, we give it a priority bump
240 	 * if it has completed waiting on any semaphore. If we know that
241 	 * the request has already started, we can prevent an unwanted
242 	 * preempt-to-idle cycle by taking that into account now.
243 	 */
244 	if (__i915_request_has_started(rq))
245 		prio |= I915_PRIORITY_NOSEMAPHORE;
246 
247 	/* Restrict mere WAIT boosts from triggering preemption */
248 	return prio | __NO_PREEMPTION;
249 }
250 
251 static int queue_prio(const struct intel_engine_execlists *execlists)
252 {
253 	struct i915_priolist *p;
254 	struct rb_node *rb;
255 
256 	rb = rb_first_cached(&execlists->queue);
257 	if (!rb)
258 		return INT_MIN;
259 
260 	/*
261 	 * As the priolist[] are inverted, with the highest priority in [0],
262 	 * we have to flip the index value to become priority.
263 	 */
264 	p = to_priolist(rb);
265 	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
266 }
267 
268 static inline bool need_preempt(const struct intel_engine_cs *engine,
269 				const struct i915_request *rq,
270 				struct rb_node *rb)
271 {
272 	int last_prio;
273 
274 	if (!engine->preempt_context)
275 		return false;
276 
277 	if (i915_request_completed(rq))
278 		return false;
279 
280 	/*
281 	 * Check if the current priority hint merits a preemption attempt.
282 	 *
283 	 * We record the highest value priority we saw during rescheduling
284 	 * prior to this dequeue, therefore we know that if it is strictly
285 	 * less than the current tail of ESLP[0], we do not need to force
286 	 * a preempt-to-idle cycle.
287 	 *
288 	 * However, the priority hint is a mere hint that we may need to
289 	 * preempt. If that hint is stale or we may be trying to preempt
290 	 * ourselves, ignore the request.
291 	 */
292 	last_prio = effective_prio(rq);
293 	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
294 					 last_prio))
295 		return false;
296 
297 	/*
298 	 * Check against the first request in ELSP[1], it will, thanks to the
299 	 * power of PI, be the highest priority of that context.
300 	 */
301 	if (!list_is_last(&rq->link, &engine->timeline.requests) &&
302 	    rq_prio(list_next_entry(rq, link)) > last_prio)
303 		return true;
304 
305 	if (rb) {
306 		struct virtual_engine *ve =
307 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
308 		bool preempt = false;
309 
310 		if (engine == ve->siblings[0]) { /* only preempt one sibling */
311 			struct i915_request *next;
312 
313 			rcu_read_lock();
314 			next = READ_ONCE(ve->request);
315 			if (next)
316 				preempt = rq_prio(next) > last_prio;
317 			rcu_read_unlock();
318 		}
319 
320 		if (preempt)
321 			return preempt;
322 	}
323 
324 	/*
325 	 * If the inflight context did not trigger the preemption, then maybe
326 	 * it was the set of queued requests? Pick the highest priority in
327 	 * the queue (the first active priolist) and see if it deserves to be
328 	 * running instead of ELSP[0].
329 	 *
330 	 * The highest priority request in the queue can not be either
331 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
332 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
333 	 */
334 	return queue_prio(&engine->execlists) > last_prio;
335 }
336 
337 __maybe_unused static inline bool
338 assert_priority_queue(const struct i915_request *prev,
339 		      const struct i915_request *next)
340 {
341 	const struct intel_engine_execlists *execlists =
342 		&prev->engine->execlists;
343 
344 	/*
345 	 * Without preemption, the prev may refer to the still active element
346 	 * which we refuse to let go.
347 	 *
348 	 * Even with preemption, there are times when we think it is better not
349 	 * to preempt and leave an ostensibly lower priority request in flight.
350 	 */
351 	if (port_request(execlists->port) == prev)
352 		return true;
353 
354 	return rq_prio(prev) >= rq_prio(next);
355 }
356 
357 /*
358  * The context descriptor encodes various attributes of a context,
359  * including its GTT address and some flags. Because it's fairly
360  * expensive to calculate, we'll just do it once and cache the result,
361  * which remains valid until the context is unpinned.
362  *
363  * This is what a descriptor looks like, from LSB to MSB::
364  *
365  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
366  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
367  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
368  *      bits 53-54:    mbz, reserved for use by hardware
369  *      bits 55-63:    group ID, currently unused and set to 0
370  *
371  * Starting from Gen11, the upper dword of the descriptor has a new format:
372  *
373  *      bits 32-36:    reserved
374  *      bits 37-47:    SW context ID
375  *      bits 48:53:    engine instance
376  *      bit 54:        mbz, reserved for use by hardware
377  *      bits 55-60:    SW counter
378  *      bits 61-63:    engine class
379  *
380  * engine info, SW context ID and SW counter need to form a unique number
381  * (Context ID) per lrc.
382  */
383 static u64
384 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
385 {
386 	struct i915_gem_context *ctx = ce->gem_context;
387 	u64 desc;
388 
389 	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
390 	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
391 
392 	desc = ctx->desc_template;				/* bits  0-11 */
393 	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
394 
395 	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
396 								/* bits 12-31 */
397 	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
398 
399 	/*
400 	 * The following 32bits are copied into the OA reports (dword 2).
401 	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
402 	 * anything below.
403 	 */
404 	if (INTEL_GEN(engine->i915) >= 11) {
405 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
406 		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
407 								/* bits 37-47 */
408 
409 		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
410 								/* bits 48-53 */
411 
412 		/* TODO: decide what to do with SW counter (bits 55-60) */
413 
414 		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
415 								/* bits 61-63 */
416 	} else {
417 		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
418 		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
419 	}
420 
421 	return desc;
422 }
423 
424 static void unwind_wa_tail(struct i915_request *rq)
425 {
426 	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
427 	assert_ring_tail_valid(rq->ring, rq->tail);
428 }
429 
430 static struct i915_request *
431 __unwind_incomplete_requests(struct intel_engine_cs *engine)
432 {
433 	struct i915_request *rq, *rn, *active = NULL;
434 	struct list_head *uninitialized_var(pl);
435 	int prio = I915_PRIORITY_INVALID;
436 
437 	lockdep_assert_held(&engine->timeline.lock);
438 
439 	list_for_each_entry_safe_reverse(rq, rn,
440 					 &engine->timeline.requests,
441 					 link) {
442 		struct intel_engine_cs *owner;
443 
444 		if (i915_request_completed(rq))
445 			break;
446 
447 		__i915_request_unsubmit(rq);
448 		unwind_wa_tail(rq);
449 
450 		GEM_BUG_ON(rq->hw_context->active);
451 
452 		/*
453 		 * Push the request back into the queue for later resubmission.
454 		 * If this request is not native to this physical engine (i.e.
455 		 * it came from a virtual source), push it back onto the virtual
456 		 * engine so that it can be moved across onto another physical
457 		 * engine as load dictates.
458 		 */
459 		owner = rq->hw_context->engine;
460 		if (likely(owner == engine)) {
461 			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
462 			if (rq_prio(rq) != prio) {
463 				prio = rq_prio(rq);
464 				pl = i915_sched_lookup_priolist(engine, prio);
465 			}
466 			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
467 
468 			list_add(&rq->sched.link, pl);
469 			active = rq;
470 		} else {
471 			rq->engine = owner;
472 			owner->submit_request(rq);
473 			active = NULL;
474 		}
475 	}
476 
477 	return active;
478 }
479 
480 struct i915_request *
481 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
482 {
483 	struct intel_engine_cs *engine =
484 		container_of(execlists, typeof(*engine), execlists);
485 
486 	return __unwind_incomplete_requests(engine);
487 }
488 
489 static inline void
490 execlists_context_status_change(struct i915_request *rq, unsigned long status)
491 {
492 	/*
493 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
494 	 * The compiler should eliminate this function as dead-code.
495 	 */
496 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
497 		return;
498 
499 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
500 				   status, rq);
501 }
502 
503 inline void
504 execlists_user_begin(struct intel_engine_execlists *execlists,
505 		     const struct execlist_port *port)
506 {
507 	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
508 }
509 
510 inline void
511 execlists_user_end(struct intel_engine_execlists *execlists)
512 {
513 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
514 }
515 
516 static inline void
517 execlists_context_schedule_in(struct i915_request *rq)
518 {
519 	GEM_BUG_ON(rq->hw_context->active);
520 
521 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522 	intel_engine_context_in(rq->engine);
523 	rq->hw_context->active = rq->engine;
524 }
525 
526 static void kick_siblings(struct i915_request *rq)
527 {
528 	struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
529 	struct i915_request *next = READ_ONCE(ve->request);
530 
531 	if (next && next->execution_mask & ~rq->execution_mask)
532 		tasklet_schedule(&ve->base.execlists.tasklet);
533 }
534 
535 static inline void
536 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
537 {
538 	rq->hw_context->active = NULL;
539 	intel_engine_context_out(rq->engine);
540 	execlists_context_status_change(rq, status);
541 	trace_i915_request_out(rq);
542 
543 	/*
544 	 * If this is part of a virtual engine, its next request may have
545 	 * been blocked waiting for access to the active context. We have
546 	 * to kick all the siblings again in case we need to switch (e.g.
547 	 * the next request is not runnable on this engine). Hopefully,
548 	 * we will already have submitted the next request before the
549 	 * tasklet runs and do not need to rebuild each virtual tree
550 	 * and kick everyone again.
551 	 */
552 	if (rq->engine != rq->hw_context->engine)
553 		kick_siblings(rq);
554 }
555 
556 static u64 execlists_update_context(struct i915_request *rq)
557 {
558 	struct intel_context *ce = rq->hw_context;
559 
560 	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
561 		intel_ring_set_tail(rq->ring, rq->tail);
562 
563 	/*
564 	 * Make sure the context image is complete before we submit it to HW.
565 	 *
566 	 * Ostensibly, writes (including the WCB) should be flushed prior to
567 	 * an uncached write such as our mmio register access, the empirical
568 	 * evidence (esp. on Braswell) suggests that the WC write into memory
569 	 * may not be visible to the HW prior to the completion of the UC
570 	 * register write and that we may begin execution from the context
571 	 * before its image is complete leading to invalid PD chasing.
572 	 *
573 	 * Furthermore, Braswell, at least, wants a full mb to be sure that
574 	 * the writes are coherent in memory (visible to the GPU) prior to
575 	 * execution, and not just visible to other CPUs (as is the result of
576 	 * wmb).
577 	 */
578 	mb();
579 	return ce->lrc_desc;
580 }
581 
582 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
583 {
584 	if (execlists->ctrl_reg) {
585 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
586 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
587 	} else {
588 		writel(upper_32_bits(desc), execlists->submit_reg);
589 		writel(lower_32_bits(desc), execlists->submit_reg);
590 	}
591 }
592 
593 static void execlists_submit_ports(struct intel_engine_cs *engine)
594 {
595 	struct intel_engine_execlists *execlists = &engine->execlists;
596 	struct execlist_port *port = execlists->port;
597 	unsigned int n;
598 
599 	/*
600 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
601 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
602 	 * not be relinquished until the device is idle (see
603 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
604 	 * that all ELSP are drained i.e. we have processed the CSB,
605 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
606 	 */
607 	GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
608 
609 	/*
610 	 * ELSQ note: the submit queue is not cleared after being submitted
611 	 * to the HW so we need to make sure we always clean it up. This is
612 	 * currently ensured by the fact that we always write the same number
613 	 * of elsq entries, keep this in mind before changing the loop below.
614 	 */
615 	for (n = execlists_num_ports(execlists); n--; ) {
616 		struct i915_request *rq;
617 		unsigned int count;
618 		u64 desc;
619 
620 		rq = port_unpack(&port[n], &count);
621 		if (rq) {
622 			GEM_BUG_ON(count > !n);
623 			if (!count++)
624 				execlists_context_schedule_in(rq);
625 			port_set(&port[n], port_pack(rq, count));
626 			desc = execlists_update_context(rq);
627 			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
628 
629 			GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
630 				  engine->name, n,
631 				  port[n].context_id, count,
632 				  rq->fence.context, rq->fence.seqno,
633 				  hwsp_seqno(rq),
634 				  rq_prio(rq));
635 		} else {
636 			GEM_BUG_ON(!n);
637 			desc = 0;
638 		}
639 
640 		write_desc(execlists, desc, n);
641 	}
642 
643 	/* we need to manually load the submit queue */
644 	if (execlists->ctrl_reg)
645 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
646 
647 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
648 }
649 
650 static bool ctx_single_port_submission(const struct intel_context *ce)
651 {
652 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
653 		i915_gem_context_force_single_submission(ce->gem_context));
654 }
655 
656 static bool can_merge_ctx(const struct intel_context *prev,
657 			  const struct intel_context *next)
658 {
659 	if (prev != next)
660 		return false;
661 
662 	if (ctx_single_port_submission(prev))
663 		return false;
664 
665 	return true;
666 }
667 
668 static bool can_merge_rq(const struct i915_request *prev,
669 			 const struct i915_request *next)
670 {
671 	GEM_BUG_ON(!assert_priority_queue(prev, next));
672 
673 	if (!can_merge_ctx(prev->hw_context, next->hw_context))
674 		return false;
675 
676 	return true;
677 }
678 
679 static void port_assign(struct execlist_port *port, struct i915_request *rq)
680 {
681 	GEM_BUG_ON(rq == port_request(port));
682 
683 	if (port_isset(port))
684 		i915_request_put(port_request(port));
685 
686 	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
687 }
688 
689 static void inject_preempt_context(struct intel_engine_cs *engine)
690 {
691 	struct intel_engine_execlists *execlists = &engine->execlists;
692 	struct intel_context *ce = engine->preempt_context;
693 	unsigned int n;
694 
695 	GEM_BUG_ON(execlists->preempt_complete_status !=
696 		   upper_32_bits(ce->lrc_desc));
697 
698 	/*
699 	 * Switch to our empty preempt context so
700 	 * the state of the GPU is known (idle).
701 	 */
702 	GEM_TRACE("%s\n", engine->name);
703 	for (n = execlists_num_ports(execlists); --n; )
704 		write_desc(execlists, 0, n);
705 
706 	write_desc(execlists, ce->lrc_desc, n);
707 
708 	/* we need to manually load the submit queue */
709 	if (execlists->ctrl_reg)
710 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
711 
712 	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
713 	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
714 
715 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
716 }
717 
718 static void complete_preempt_context(struct intel_engine_execlists *execlists)
719 {
720 	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
721 
722 	if (inject_preempt_hang(execlists))
723 		return;
724 
725 	execlists_cancel_port_requests(execlists);
726 	__unwind_incomplete_requests(container_of(execlists,
727 						  struct intel_engine_cs,
728 						  execlists));
729 }
730 
731 static void virtual_update_register_offsets(u32 *regs,
732 					    struct intel_engine_cs *engine)
733 {
734 	u32 base = engine->mmio_base;
735 
736 	/* Must match execlists_init_reg_state()! */
737 
738 	regs[CTX_CONTEXT_CONTROL] =
739 		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
740 	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
741 	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
742 	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
743 	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
744 
745 	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
746 	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
747 	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
748 	regs[CTX_SECOND_BB_HEAD_U] =
749 		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
750 	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
751 	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
752 
753 	regs[CTX_CTX_TIMESTAMP] =
754 		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
755 	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
756 	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
757 	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
758 	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
759 	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
760 	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
761 	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
762 	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
763 
764 	if (engine->class == RENDER_CLASS) {
765 		regs[CTX_RCS_INDIRECT_CTX] =
766 			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
767 		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
768 			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
769 		regs[CTX_BB_PER_CTX_PTR] =
770 			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
771 
772 		regs[CTX_R_PWR_CLK_STATE] =
773 			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
774 	}
775 }
776 
777 static bool virtual_matches(const struct virtual_engine *ve,
778 			    const struct i915_request *rq,
779 			    const struct intel_engine_cs *engine)
780 {
781 	const struct intel_engine_cs *active;
782 
783 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
784 		return false;
785 
786 	/*
787 	 * We track when the HW has completed saving the context image
788 	 * (i.e. when we have seen the final CS event switching out of
789 	 * the context) and must not overwrite the context image before
790 	 * then. This restricts us to only using the active engine
791 	 * while the previous virtualized request is inflight (so
792 	 * we reuse the register offsets). This is a very small
793 	 * hystersis on the greedy seelction algorithm.
794 	 */
795 	active = READ_ONCE(ve->context.active);
796 	if (active && active != engine)
797 		return false;
798 
799 	return true;
800 }
801 
802 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
803 				     struct intel_engine_cs *engine)
804 {
805 	struct intel_engine_cs *old = ve->siblings[0];
806 
807 	/* All unattached (rq->engine == old) must already be completed */
808 
809 	spin_lock(&old->breadcrumbs.irq_lock);
810 	if (!list_empty(&ve->context.signal_link)) {
811 		list_move_tail(&ve->context.signal_link,
812 			       &engine->breadcrumbs.signalers);
813 		intel_engine_queue_breadcrumbs(engine);
814 	}
815 	spin_unlock(&old->breadcrumbs.irq_lock);
816 }
817 
818 static void execlists_dequeue(struct intel_engine_cs *engine)
819 {
820 	struct intel_engine_execlists * const execlists = &engine->execlists;
821 	struct execlist_port *port = execlists->port;
822 	const struct execlist_port * const last_port =
823 		&execlists->port[execlists->port_mask];
824 	struct i915_request *last = port_request(port);
825 	struct rb_node *rb;
826 	bool submit = false;
827 
828 	/*
829 	 * Hardware submission is through 2 ports. Conceptually each port
830 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
831 	 * static for a context, and unique to each, so we only execute
832 	 * requests belonging to a single context from each ring. RING_HEAD
833 	 * is maintained by the CS in the context image, it marks the place
834 	 * where it got up to last time, and through RING_TAIL we tell the CS
835 	 * where we want to execute up to this time.
836 	 *
837 	 * In this list the requests are in order of execution. Consecutive
838 	 * requests from the same context are adjacent in the ringbuffer. We
839 	 * can combine these requests into a single RING_TAIL update:
840 	 *
841 	 *              RING_HEAD...req1...req2
842 	 *                                    ^- RING_TAIL
843 	 * since to execute req2 the CS must first execute req1.
844 	 *
845 	 * Our goal then is to point each port to the end of a consecutive
846 	 * sequence of requests as being the most optimal (fewest wake ups
847 	 * and context switches) submission.
848 	 */
849 
850 	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
851 		struct virtual_engine *ve =
852 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
853 		struct i915_request *rq = READ_ONCE(ve->request);
854 
855 		if (!rq) { /* lazily cleanup after another engine handled rq */
856 			rb_erase_cached(rb, &execlists->virtual);
857 			RB_CLEAR_NODE(rb);
858 			rb = rb_first_cached(&execlists->virtual);
859 			continue;
860 		}
861 
862 		if (!virtual_matches(ve, rq, engine)) {
863 			rb = rb_next(rb);
864 			continue;
865 		}
866 
867 		break;
868 	}
869 
870 	if (last) {
871 		/*
872 		 * Don't resubmit or switch until all outstanding
873 		 * preemptions (lite-restore) are seen. Then we
874 		 * know the next preemption status we see corresponds
875 		 * to this ELSP update.
876 		 */
877 		GEM_BUG_ON(!execlists_is_active(execlists,
878 						EXECLISTS_ACTIVE_USER));
879 		GEM_BUG_ON(!port_count(&port[0]));
880 
881 		/*
882 		 * If we write to ELSP a second time before the HW has had
883 		 * a chance to respond to the previous write, we can confuse
884 		 * the HW and hit "undefined behaviour". After writing to ELSP,
885 		 * we must then wait until we see a context-switch event from
886 		 * the HW to indicate that it has had a chance to respond.
887 		 */
888 		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
889 			return;
890 
891 		if (need_preempt(engine, last, rb)) {
892 			inject_preempt_context(engine);
893 			return;
894 		}
895 
896 		/*
897 		 * In theory, we could coalesce more requests onto
898 		 * the second port (the first port is active, with
899 		 * no preemptions pending). However, that means we
900 		 * then have to deal with the possible lite-restore
901 		 * of the second port (as we submit the ELSP, there
902 		 * may be a context-switch) but also we may complete
903 		 * the resubmission before the context-switch. Ergo,
904 		 * coalescing onto the second port will cause a
905 		 * preemption event, but we cannot predict whether
906 		 * that will affect port[0] or port[1].
907 		 *
908 		 * If the second port is already active, we can wait
909 		 * until the next context-switch before contemplating
910 		 * new requests. The GPU will be busy and we should be
911 		 * able to resubmit the new ELSP before it idles,
912 		 * avoiding pipeline bubbles (momentary pauses where
913 		 * the driver is unable to keep up the supply of new
914 		 * work). However, we have to double check that the
915 		 * priorities of the ports haven't been switch.
916 		 */
917 		if (port_count(&port[1]))
918 			return;
919 
920 		/*
921 		 * WaIdleLiteRestore:bdw,skl
922 		 * Apply the wa NOOPs to prevent
923 		 * ring:HEAD == rq:TAIL as we resubmit the
924 		 * request. See gen8_emit_fini_breadcrumb() for
925 		 * where we prepare the padding after the
926 		 * end of the request.
927 		 */
928 		last->tail = last->wa_tail;
929 	}
930 
931 	while (rb) { /* XXX virtual is always taking precedence */
932 		struct virtual_engine *ve =
933 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
934 		struct i915_request *rq;
935 
936 		spin_lock(&ve->base.timeline.lock);
937 
938 		rq = ve->request;
939 		if (unlikely(!rq)) { /* lost the race to a sibling */
940 			spin_unlock(&ve->base.timeline.lock);
941 			rb_erase_cached(rb, &execlists->virtual);
942 			RB_CLEAR_NODE(rb);
943 			rb = rb_first_cached(&execlists->virtual);
944 			continue;
945 		}
946 
947 		GEM_BUG_ON(rq != ve->request);
948 		GEM_BUG_ON(rq->engine != &ve->base);
949 		GEM_BUG_ON(rq->hw_context != &ve->context);
950 
951 		if (rq_prio(rq) >= queue_prio(execlists)) {
952 			if (!virtual_matches(ve, rq, engine)) {
953 				spin_unlock(&ve->base.timeline.lock);
954 				rb = rb_next(rb);
955 				continue;
956 			}
957 
958 			if (last && !can_merge_rq(last, rq)) {
959 				spin_unlock(&ve->base.timeline.lock);
960 				return; /* leave this rq for another engine */
961 			}
962 
963 			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
964 				  engine->name,
965 				  rq->fence.context,
966 				  rq->fence.seqno,
967 				  i915_request_completed(rq) ? "!" :
968 				  i915_request_started(rq) ? "*" :
969 				  "",
970 				  yesno(engine != ve->siblings[0]));
971 
972 			ve->request = NULL;
973 			ve->base.execlists.queue_priority_hint = INT_MIN;
974 			rb_erase_cached(rb, &execlists->virtual);
975 			RB_CLEAR_NODE(rb);
976 
977 			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
978 			rq->engine = engine;
979 
980 			if (engine != ve->siblings[0]) {
981 				u32 *regs = ve->context.lrc_reg_state;
982 				unsigned int n;
983 
984 				GEM_BUG_ON(READ_ONCE(ve->context.active));
985 				virtual_update_register_offsets(regs, engine);
986 
987 				if (!list_empty(&ve->context.signals))
988 					virtual_xfer_breadcrumbs(ve, engine);
989 
990 				/*
991 				 * Move the bound engine to the top of the list
992 				 * for future execution. We then kick this
993 				 * tasklet first before checking others, so that
994 				 * we preferentially reuse this set of bound
995 				 * registers.
996 				 */
997 				for (n = 1; n < ve->num_siblings; n++) {
998 					if (ve->siblings[n] == engine) {
999 						swap(ve->siblings[n],
1000 						     ve->siblings[0]);
1001 						break;
1002 					}
1003 				}
1004 
1005 				GEM_BUG_ON(ve->siblings[0] != engine);
1006 			}
1007 
1008 			__i915_request_submit(rq);
1009 			trace_i915_request_in(rq, port_index(port, execlists));
1010 			submit = true;
1011 			last = rq;
1012 		}
1013 
1014 		spin_unlock(&ve->base.timeline.lock);
1015 		break;
1016 	}
1017 
1018 	while ((rb = rb_first_cached(&execlists->queue))) {
1019 		struct i915_priolist *p = to_priolist(rb);
1020 		struct i915_request *rq, *rn;
1021 		int i;
1022 
1023 		priolist_for_each_request_consume(rq, rn, p, i) {
1024 			/*
1025 			 * Can we combine this request with the current port?
1026 			 * It has to be the same context/ringbuffer and not
1027 			 * have any exceptions (e.g. GVT saying never to
1028 			 * combine contexts).
1029 			 *
1030 			 * If we can combine the requests, we can execute both
1031 			 * by updating the RING_TAIL to point to the end of the
1032 			 * second request, and so we never need to tell the
1033 			 * hardware about the first.
1034 			 */
1035 			if (last && !can_merge_rq(last, rq)) {
1036 				/*
1037 				 * If we are on the second port and cannot
1038 				 * combine this request with the last, then we
1039 				 * are done.
1040 				 */
1041 				if (port == last_port)
1042 					goto done;
1043 
1044 				/*
1045 				 * We must not populate both ELSP[] with the
1046 				 * same LRCA, i.e. we must submit 2 different
1047 				 * contexts if we submit 2 ELSP.
1048 				 */
1049 				if (last->hw_context == rq->hw_context)
1050 					goto done;
1051 
1052 				/*
1053 				 * If GVT overrides us we only ever submit
1054 				 * port[0], leaving port[1] empty. Note that we
1055 				 * also have to be careful that we don't queue
1056 				 * the same context (even though a different
1057 				 * request) to the second port.
1058 				 */
1059 				if (ctx_single_port_submission(last->hw_context) ||
1060 				    ctx_single_port_submission(rq->hw_context))
1061 					goto done;
1062 
1063 
1064 				if (submit)
1065 					port_assign(port, last);
1066 				port++;
1067 
1068 				GEM_BUG_ON(port_isset(port));
1069 			}
1070 
1071 			list_del_init(&rq->sched.link);
1072 
1073 			__i915_request_submit(rq);
1074 			trace_i915_request_in(rq, port_index(port, execlists));
1075 
1076 			last = rq;
1077 			submit = true;
1078 		}
1079 
1080 		rb_erase_cached(&p->node, &execlists->queue);
1081 		i915_priolist_free(p);
1082 	}
1083 
1084 done:
1085 	/*
1086 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1087 	 *
1088 	 * We choose the priority hint such that if we add a request of greater
1089 	 * priority than this, we kick the submission tasklet to decide on
1090 	 * the right order of submitting the requests to hardware. We must
1091 	 * also be prepared to reorder requests as they are in-flight on the
1092 	 * HW. We derive the priority hint then as the first "hole" in
1093 	 * the HW submission ports and if there are no available slots,
1094 	 * the priority of the lowest executing request, i.e. last.
1095 	 *
1096 	 * When we do receive a higher priority request ready to run from the
1097 	 * user, see queue_request(), the priority hint is bumped to that
1098 	 * request triggering preemption on the next dequeue (or subsequent
1099 	 * interrupt for secondary ports).
1100 	 */
1101 	execlists->queue_priority_hint = queue_prio(execlists);
1102 
1103 	if (submit) {
1104 		port_assign(port, last);
1105 		execlists_submit_ports(engine);
1106 	}
1107 
1108 	/* We must always keep the beast fed if we have work piled up */
1109 	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
1110 		   !port_isset(execlists->port));
1111 
1112 	/* Re-evaluate the executing context setup after each preemptive kick */
1113 	if (last)
1114 		execlists_user_begin(execlists, execlists->port);
1115 
1116 	/* If the engine is now idle, so should be the flag; and vice versa. */
1117 	GEM_BUG_ON(execlists_is_active(&engine->execlists,
1118 				       EXECLISTS_ACTIVE_USER) ==
1119 		   !port_isset(engine->execlists.port));
1120 }
1121 
1122 void
1123 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1124 {
1125 	struct execlist_port *port = execlists->port;
1126 	unsigned int num_ports = execlists_num_ports(execlists);
1127 
1128 	while (num_ports-- && port_isset(port)) {
1129 		struct i915_request *rq = port_request(port);
1130 
1131 		GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1132 			  rq->engine->name,
1133 			  (unsigned int)(port - execlists->port),
1134 			  rq->fence.context, rq->fence.seqno,
1135 			  hwsp_seqno(rq));
1136 
1137 		GEM_BUG_ON(!execlists->active);
1138 		execlists_context_schedule_out(rq,
1139 					       i915_request_completed(rq) ?
1140 					       INTEL_CONTEXT_SCHEDULE_OUT :
1141 					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1142 
1143 		i915_request_put(rq);
1144 
1145 		memset(port, 0, sizeof(*port));
1146 		port++;
1147 	}
1148 
1149 	execlists_clear_all_active(execlists);
1150 }
1151 
1152 static inline void
1153 invalidate_csb_entries(const u32 *first, const u32 *last)
1154 {
1155 	clflush((void *)first);
1156 	clflush((void *)last);
1157 }
1158 
1159 static inline bool
1160 reset_in_progress(const struct intel_engine_execlists *execlists)
1161 {
1162 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1163 }
1164 
1165 static void process_csb(struct intel_engine_cs *engine)
1166 {
1167 	struct intel_engine_execlists * const execlists = &engine->execlists;
1168 	struct execlist_port *port = execlists->port;
1169 	const u32 * const buf = execlists->csb_status;
1170 	const u8 num_entries = execlists->csb_size;
1171 	u8 head, tail;
1172 
1173 	lockdep_assert_held(&engine->timeline.lock);
1174 
1175 	/*
1176 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1177 	 * When reading from the csb_write mmio register, we have to be
1178 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1179 	 * the low 4bits. As it happens we know the next 4bits are always
1180 	 * zero and so we can simply masked off the low u8 of the register
1181 	 * and treat it identically to reading from the HWSP (without having
1182 	 * to use explicit shifting and masking, and probably bifurcating
1183 	 * the code to handle the legacy mmio read).
1184 	 */
1185 	head = execlists->csb_head;
1186 	tail = READ_ONCE(*execlists->csb_write);
1187 	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1188 	if (unlikely(head == tail))
1189 		return;
1190 
1191 	/*
1192 	 * Hopefully paired with a wmb() in HW!
1193 	 *
1194 	 * We must complete the read of the write pointer before any reads
1195 	 * from the CSB, so that we do not see stale values. Without an rmb
1196 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1197 	 * we perform the READ_ONCE(*csb_write).
1198 	 */
1199 	rmb();
1200 
1201 	do {
1202 		struct i915_request *rq;
1203 		unsigned int status;
1204 		unsigned int count;
1205 
1206 		if (++head == num_entries)
1207 			head = 0;
1208 
1209 		/*
1210 		 * We are flying near dragons again.
1211 		 *
1212 		 * We hold a reference to the request in execlist_port[]
1213 		 * but no more than that. We are operating in softirq
1214 		 * context and so cannot hold any mutex or sleep. That
1215 		 * prevents us stopping the requests we are processing
1216 		 * in port[] from being retired simultaneously (the
1217 		 * breadcrumb will be complete before we see the
1218 		 * context-switch). As we only hold the reference to the
1219 		 * request, any pointer chasing underneath the request
1220 		 * is subject to a potential use-after-free. Thus we
1221 		 * store all of the bookkeeping within port[] as
1222 		 * required, and avoid using unguarded pointers beneath
1223 		 * request itself. The same applies to the atomic
1224 		 * status notifier.
1225 		 */
1226 
1227 		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1228 			  engine->name, head,
1229 			  buf[2 * head + 0], buf[2 * head + 1],
1230 			  execlists->active);
1231 
1232 		status = buf[2 * head];
1233 		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1234 			      GEN8_CTX_STATUS_PREEMPTED))
1235 			execlists_set_active(execlists,
1236 					     EXECLISTS_ACTIVE_HWACK);
1237 		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1238 			execlists_clear_active(execlists,
1239 					       EXECLISTS_ACTIVE_HWACK);
1240 
1241 		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1242 			continue;
1243 
1244 		/* We should never get a COMPLETED | IDLE_ACTIVE! */
1245 		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1246 
1247 		if (status & GEN8_CTX_STATUS_COMPLETE &&
1248 		    buf[2*head + 1] == execlists->preempt_complete_status) {
1249 			GEM_TRACE("%s preempt-idle\n", engine->name);
1250 			complete_preempt_context(execlists);
1251 			continue;
1252 		}
1253 
1254 		if (status & GEN8_CTX_STATUS_PREEMPTED &&
1255 		    execlists_is_active(execlists,
1256 					EXECLISTS_ACTIVE_PREEMPT))
1257 			continue;
1258 
1259 		GEM_BUG_ON(!execlists_is_active(execlists,
1260 						EXECLISTS_ACTIVE_USER));
1261 
1262 		rq = port_unpack(port, &count);
1263 		GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1264 			  engine->name,
1265 			  port->context_id, count,
1266 			  rq ? rq->fence.context : 0,
1267 			  rq ? rq->fence.seqno : 0,
1268 			  rq ? hwsp_seqno(rq) : 0,
1269 			  rq ? rq_prio(rq) : 0);
1270 
1271 		/* Check the context/desc id for this event matches */
1272 		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1273 
1274 		GEM_BUG_ON(count == 0);
1275 		if (--count == 0) {
1276 			/*
1277 			 * On the final event corresponding to the
1278 			 * submission of this context, we expect either
1279 			 * an element-switch event or a completion
1280 			 * event (and on completion, the active-idle
1281 			 * marker). No more preemptions, lite-restore
1282 			 * or otherwise.
1283 			 */
1284 			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1285 			GEM_BUG_ON(port_isset(&port[1]) &&
1286 				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1287 			GEM_BUG_ON(!port_isset(&port[1]) &&
1288 				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1289 
1290 			/*
1291 			 * We rely on the hardware being strongly
1292 			 * ordered, that the breadcrumb write is
1293 			 * coherent (visible from the CPU) before the
1294 			 * user interrupt and CSB is processed.
1295 			 */
1296 			GEM_BUG_ON(!i915_request_completed(rq));
1297 
1298 			execlists_context_schedule_out(rq,
1299 						       INTEL_CONTEXT_SCHEDULE_OUT);
1300 			i915_request_put(rq);
1301 
1302 			GEM_TRACE("%s completed ctx=%d\n",
1303 				  engine->name, port->context_id);
1304 
1305 			port = execlists_port_complete(execlists, port);
1306 			if (port_isset(port))
1307 				execlists_user_begin(execlists, port);
1308 			else
1309 				execlists_user_end(execlists);
1310 		} else {
1311 			port_set(port, port_pack(rq, count));
1312 		}
1313 	} while (head != tail);
1314 
1315 	execlists->csb_head = head;
1316 
1317 	/*
1318 	 * Gen11 has proven to fail wrt global observation point between
1319 	 * entry and tail update, failing on the ordering and thus
1320 	 * we see an old entry in the context status buffer.
1321 	 *
1322 	 * Forcibly evict out entries for the next gpu csb update,
1323 	 * to increase the odds that we get a fresh entries with non
1324 	 * working hardware. The cost for doing so comes out mostly with
1325 	 * the wash as hardware, working or not, will need to do the
1326 	 * invalidation before.
1327 	 */
1328 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1329 }
1330 
1331 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1332 {
1333 	lockdep_assert_held(&engine->timeline.lock);
1334 
1335 	process_csb(engine);
1336 	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1337 		execlists_dequeue(engine);
1338 }
1339 
1340 /*
1341  * Check the unread Context Status Buffers and manage the submission of new
1342  * contexts to the ELSP accordingly.
1343  */
1344 static void execlists_submission_tasklet(unsigned long data)
1345 {
1346 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1347 	unsigned long flags;
1348 
1349 	GEM_TRACE("%s awake?=%d, active=%x\n",
1350 		  engine->name,
1351 		  !!intel_wakeref_active(&engine->wakeref),
1352 		  engine->execlists.active);
1353 
1354 	spin_lock_irqsave(&engine->timeline.lock, flags);
1355 	__execlists_submission_tasklet(engine);
1356 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1357 }
1358 
1359 static void queue_request(struct intel_engine_cs *engine,
1360 			  struct i915_sched_node *node,
1361 			  int prio)
1362 {
1363 	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1364 }
1365 
1366 static void __submit_queue_imm(struct intel_engine_cs *engine)
1367 {
1368 	struct intel_engine_execlists * const execlists = &engine->execlists;
1369 
1370 	if (reset_in_progress(execlists))
1371 		return; /* defer until we restart the engine following reset */
1372 
1373 	if (execlists->tasklet.func == execlists_submission_tasklet)
1374 		__execlists_submission_tasklet(engine);
1375 	else
1376 		tasklet_hi_schedule(&execlists->tasklet);
1377 }
1378 
1379 static void submit_queue(struct intel_engine_cs *engine, int prio)
1380 {
1381 	if (prio > engine->execlists.queue_priority_hint) {
1382 		engine->execlists.queue_priority_hint = prio;
1383 		__submit_queue_imm(engine);
1384 	}
1385 }
1386 
1387 static void execlists_submit_request(struct i915_request *request)
1388 {
1389 	struct intel_engine_cs *engine = request->engine;
1390 	unsigned long flags;
1391 
1392 	/* Will be called from irq-context when using foreign fences. */
1393 	spin_lock_irqsave(&engine->timeline.lock, flags);
1394 
1395 	queue_request(engine, &request->sched, rq_prio(request));
1396 
1397 	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1398 	GEM_BUG_ON(list_empty(&request->sched.link));
1399 
1400 	submit_queue(engine, rq_prio(request));
1401 
1402 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1403 }
1404 
1405 static void __execlists_context_fini(struct intel_context *ce)
1406 {
1407 	intel_ring_put(ce->ring);
1408 
1409 	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1410 	i915_gem_object_put(ce->state->obj);
1411 }
1412 
1413 static void execlists_context_destroy(struct kref *kref)
1414 {
1415 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1416 
1417 	GEM_BUG_ON(intel_context_is_pinned(ce));
1418 
1419 	if (ce->state)
1420 		__execlists_context_fini(ce);
1421 
1422 	intel_context_free(ce);
1423 }
1424 
1425 static int __context_pin(struct i915_vma *vma)
1426 {
1427 	unsigned int flags;
1428 	int err;
1429 
1430 	flags = PIN_GLOBAL | PIN_HIGH;
1431 	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1432 
1433 	err = i915_vma_pin(vma, 0, 0, flags);
1434 	if (err)
1435 		return err;
1436 
1437 	vma->obj->pin_global++;
1438 	vma->obj->mm.dirty = true;
1439 
1440 	return 0;
1441 }
1442 
1443 static void __context_unpin(struct i915_vma *vma)
1444 {
1445 	vma->obj->pin_global--;
1446 	__i915_vma_unpin(vma);
1447 }
1448 
1449 static void execlists_context_unpin(struct intel_context *ce)
1450 {
1451 	struct intel_engine_cs *engine;
1452 
1453 	/*
1454 	 * The tasklet may still be using a pointer to our state, via an
1455 	 * old request. However, since we know we only unpin the context
1456 	 * on retirement of the following request, we know that the last
1457 	 * request referencing us will have had a completion CS interrupt.
1458 	 * If we see that it is still active, it means that the tasklet hasn't
1459 	 * had the chance to run yet; let it run before we teardown the
1460 	 * reference it may use.
1461 	 */
1462 	engine = READ_ONCE(ce->active);
1463 	if (unlikely(engine)) {
1464 		unsigned long flags;
1465 
1466 		spin_lock_irqsave(&engine->timeline.lock, flags);
1467 		process_csb(engine);
1468 		spin_unlock_irqrestore(&engine->timeline.lock, flags);
1469 
1470 		GEM_BUG_ON(READ_ONCE(ce->active));
1471 	}
1472 
1473 	i915_gem_context_unpin_hw_id(ce->gem_context);
1474 
1475 	intel_ring_unpin(ce->ring);
1476 
1477 	i915_gem_object_unpin_map(ce->state->obj);
1478 	__context_unpin(ce->state);
1479 }
1480 
1481 static void
1482 __execlists_update_reg_state(struct intel_context *ce,
1483 			     struct intel_engine_cs *engine)
1484 {
1485 	struct intel_ring *ring = ce->ring;
1486 	u32 *regs = ce->lrc_reg_state;
1487 
1488 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1489 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1490 
1491 	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1492 	regs[CTX_RING_HEAD + 1] = ring->head;
1493 	regs[CTX_RING_TAIL + 1] = ring->tail;
1494 
1495 	/* RPCS */
1496 	if (engine->class == RENDER_CLASS)
1497 		regs[CTX_R_PWR_CLK_STATE + 1] =
1498 			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1499 }
1500 
1501 static int
1502 __execlists_context_pin(struct intel_context *ce,
1503 			struct intel_engine_cs *engine)
1504 {
1505 	void *vaddr;
1506 	int ret;
1507 
1508 	GEM_BUG_ON(!ce->gem_context->ppgtt);
1509 
1510 	ret = execlists_context_deferred_alloc(ce, engine);
1511 	if (ret)
1512 		goto err;
1513 	GEM_BUG_ON(!ce->state);
1514 
1515 	ret = __context_pin(ce->state);
1516 	if (ret)
1517 		goto err;
1518 
1519 	vaddr = i915_gem_object_pin_map(ce->state->obj,
1520 					i915_coherent_map_type(engine->i915) |
1521 					I915_MAP_OVERRIDE);
1522 	if (IS_ERR(vaddr)) {
1523 		ret = PTR_ERR(vaddr);
1524 		goto unpin_vma;
1525 	}
1526 
1527 	ret = intel_ring_pin(ce->ring);
1528 	if (ret)
1529 		goto unpin_map;
1530 
1531 	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1532 	if (ret)
1533 		goto unpin_ring;
1534 
1535 	ce->lrc_desc = lrc_descriptor(ce, engine);
1536 	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1537 	__execlists_update_reg_state(ce, engine);
1538 
1539 	return 0;
1540 
1541 unpin_ring:
1542 	intel_ring_unpin(ce->ring);
1543 unpin_map:
1544 	i915_gem_object_unpin_map(ce->state->obj);
1545 unpin_vma:
1546 	__context_unpin(ce->state);
1547 err:
1548 	return ret;
1549 }
1550 
1551 static int execlists_context_pin(struct intel_context *ce)
1552 {
1553 	return __execlists_context_pin(ce, ce->engine);
1554 }
1555 
1556 static void execlists_context_reset(struct intel_context *ce)
1557 {
1558 	/*
1559 	 * Because we emit WA_TAIL_DWORDS there may be a disparity
1560 	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
1561 	 * that stored in context. As we only write new commands from
1562 	 * ce->ring->tail onwards, everything before that is junk. If the GPU
1563 	 * starts reading from its RING_HEAD from the context, it may try to
1564 	 * execute that junk and die.
1565 	 *
1566 	 * The contexts that are stilled pinned on resume belong to the
1567 	 * kernel, and are local to each engine. All other contexts will
1568 	 * have their head/tail sanitized upon pinning before use, so they
1569 	 * will never see garbage,
1570 	 *
1571 	 * So to avoid that we reset the context images upon resume. For
1572 	 * simplicity, we just zero everything out.
1573 	 */
1574 	intel_ring_reset(ce->ring, 0);
1575 	__execlists_update_reg_state(ce, ce->engine);
1576 }
1577 
1578 static const struct intel_context_ops execlists_context_ops = {
1579 	.pin = execlists_context_pin,
1580 	.unpin = execlists_context_unpin,
1581 
1582 	.enter = intel_context_enter_engine,
1583 	.exit = intel_context_exit_engine,
1584 
1585 	.reset = execlists_context_reset,
1586 	.destroy = execlists_context_destroy,
1587 };
1588 
1589 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1590 {
1591 	u32 *cs;
1592 
1593 	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1594 
1595 	cs = intel_ring_begin(rq, 6);
1596 	if (IS_ERR(cs))
1597 		return PTR_ERR(cs);
1598 
1599 	/*
1600 	 * Check if we have been preempted before we even get started.
1601 	 *
1602 	 * After this point i915_request_started() reports true, even if
1603 	 * we get preempted and so are no longer running.
1604 	 */
1605 	*cs++ = MI_ARB_CHECK;
1606 	*cs++ = MI_NOOP;
1607 
1608 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1609 	*cs++ = rq->timeline->hwsp_offset;
1610 	*cs++ = 0;
1611 	*cs++ = rq->fence.seqno - 1;
1612 
1613 	intel_ring_advance(rq, cs);
1614 
1615 	/* Record the updated position of the request's payload */
1616 	rq->infix = intel_ring_offset(rq, cs);
1617 
1618 	return 0;
1619 }
1620 
1621 static int emit_pdps(struct i915_request *rq)
1622 {
1623 	const struct intel_engine_cs * const engine = rq->engine;
1624 	struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
1625 	int err, i;
1626 	u32 *cs;
1627 
1628 	GEM_BUG_ON(intel_vgpu_active(rq->i915));
1629 
1630 	/*
1631 	 * Beware ye of the dragons, this sequence is magic!
1632 	 *
1633 	 * Small changes to this sequence can cause anything from
1634 	 * GPU hangs to forcewake errors and machine lockups!
1635 	 */
1636 
1637 	/* Flush any residual operations from the context load */
1638 	err = engine->emit_flush(rq, EMIT_FLUSH);
1639 	if (err)
1640 		return err;
1641 
1642 	/* Magic required to prevent forcewake errors! */
1643 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
1644 	if (err)
1645 		return err;
1646 
1647 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1648 	if (IS_ERR(cs))
1649 		return PTR_ERR(cs);
1650 
1651 	/* Ensure the LRI have landed before we invalidate & continue */
1652 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1653 	for (i = GEN8_3LVL_PDPES; i--; ) {
1654 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1655 		u32 base = engine->mmio_base;
1656 
1657 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1658 		*cs++ = upper_32_bits(pd_daddr);
1659 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1660 		*cs++ = lower_32_bits(pd_daddr);
1661 	}
1662 	*cs++ = MI_NOOP;
1663 
1664 	intel_ring_advance(rq, cs);
1665 
1666 	/* Be doubly sure the LRI have landed before proceeding */
1667 	err = engine->emit_flush(rq, EMIT_FLUSH);
1668 	if (err)
1669 		return err;
1670 
1671 	/* Re-invalidate the TLB for luck */
1672 	return engine->emit_flush(rq, EMIT_INVALIDATE);
1673 }
1674 
1675 static int execlists_request_alloc(struct i915_request *request)
1676 {
1677 	int ret;
1678 
1679 	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1680 
1681 	/*
1682 	 * Flush enough space to reduce the likelihood of waiting after
1683 	 * we start building the request - in which case we will just
1684 	 * have to repeat work.
1685 	 */
1686 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1687 
1688 	/*
1689 	 * Note that after this point, we have committed to using
1690 	 * this request as it is being used to both track the
1691 	 * state of engine initialisation and liveness of the
1692 	 * golden renderstate above. Think twice before you try
1693 	 * to cancel/unwind this request now.
1694 	 */
1695 
1696 	/* Unconditionally invalidate GPU caches and TLBs. */
1697 	if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm))
1698 		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1699 	else
1700 		ret = emit_pdps(request);
1701 	if (ret)
1702 		return ret;
1703 
1704 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1705 	return 0;
1706 }
1707 
1708 /*
1709  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1710  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1711  * but there is a slight complication as this is applied in WA batch where the
1712  * values are only initialized once so we cannot take register value at the
1713  * beginning and reuse it further; hence we save its value to memory, upload a
1714  * constant value with bit21 set and then we restore it back with the saved value.
1715  * To simplify the WA, a constant value is formed by using the default value
1716  * of this register. This shouldn't be a problem because we are only modifying
1717  * it for a short period and this batch in non-premptible. We can ofcourse
1718  * use additional instructions that read the actual value of the register
1719  * at that time and set our bit of interest but it makes the WA complicated.
1720  *
1721  * This WA is also required for Gen9 so extracting as a function avoids
1722  * code duplication.
1723  */
1724 static u32 *
1725 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1726 {
1727 	/* NB no one else is allowed to scribble over scratch + 256! */
1728 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1729 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1730 	*batch++ = i915_scratch_offset(engine->i915) + 256;
1731 	*batch++ = 0;
1732 
1733 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1734 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1735 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1736 
1737 	batch = gen8_emit_pipe_control(batch,
1738 				       PIPE_CONTROL_CS_STALL |
1739 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1740 				       0);
1741 
1742 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1743 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1744 	*batch++ = i915_scratch_offset(engine->i915) + 256;
1745 	*batch++ = 0;
1746 
1747 	return batch;
1748 }
1749 
1750 /*
1751  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1752  * initialized at the beginning and shared across all contexts but this field
1753  * helps us to have multiple batches at different offsets and select them based
1754  * on a criteria. At the moment this batch always start at the beginning of the page
1755  * and at this point we don't have multiple wa_ctx batch buffers.
1756  *
1757  * The number of WA applied are not known at the beginning; we use this field
1758  * to return the no of DWORDS written.
1759  *
1760  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1761  * so it adds NOOPs as padding to make it cacheline aligned.
1762  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1763  * makes a complete batch buffer.
1764  */
1765 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1766 {
1767 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1768 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1769 
1770 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1771 	if (IS_BROADWELL(engine->i915))
1772 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1773 
1774 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1775 	/* Actual scratch location is at 128 bytes offset */
1776 	batch = gen8_emit_pipe_control(batch,
1777 				       PIPE_CONTROL_FLUSH_L3 |
1778 				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1779 				       PIPE_CONTROL_CS_STALL |
1780 				       PIPE_CONTROL_QW_WRITE,
1781 				       i915_scratch_offset(engine->i915) +
1782 				       2 * CACHELINE_BYTES);
1783 
1784 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1785 
1786 	/* Pad to end of cacheline */
1787 	while ((unsigned long)batch % CACHELINE_BYTES)
1788 		*batch++ = MI_NOOP;
1789 
1790 	/*
1791 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1792 	 * execution depends on the length specified in terms of cache lines
1793 	 * in the register CTX_RCS_INDIRECT_CTX
1794 	 */
1795 
1796 	return batch;
1797 }
1798 
1799 struct lri {
1800 	i915_reg_t reg;
1801 	u32 value;
1802 };
1803 
1804 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1805 {
1806 	GEM_BUG_ON(!count || count > 63);
1807 
1808 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1809 	do {
1810 		*batch++ = i915_mmio_reg_offset(lri->reg);
1811 		*batch++ = lri->value;
1812 	} while (lri++, --count);
1813 	*batch++ = MI_NOOP;
1814 
1815 	return batch;
1816 }
1817 
1818 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1819 {
1820 	static const struct lri lri[] = {
1821 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1822 		{
1823 			COMMON_SLICE_CHICKEN2,
1824 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1825 				       0),
1826 		},
1827 
1828 		/* BSpec: 11391 */
1829 		{
1830 			FF_SLICE_CHICKEN,
1831 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1832 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1833 		},
1834 
1835 		/* BSpec: 11299 */
1836 		{
1837 			_3D_CHICKEN3,
1838 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1839 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1840 		}
1841 	};
1842 
1843 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1844 
1845 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1846 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1847 
1848 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1849 
1850 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1851 	if (HAS_POOLED_EU(engine->i915)) {
1852 		/*
1853 		 * EU pool configuration is setup along with golden context
1854 		 * during context initialization. This value depends on
1855 		 * device type (2x6 or 3x6) and needs to be updated based
1856 		 * on which subslice is disabled especially for 2x6
1857 		 * devices, however it is safe to load default
1858 		 * configuration of 3x6 device instead of masking off
1859 		 * corresponding bits because HW ignores bits of a disabled
1860 		 * subslice and drops down to appropriate config. Please
1861 		 * see render_state_setup() in i915_gem_render_state.c for
1862 		 * possible configurations, to avoid duplication they are
1863 		 * not shown here again.
1864 		 */
1865 		*batch++ = GEN9_MEDIA_POOL_STATE;
1866 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1867 		*batch++ = 0x00777000;
1868 		*batch++ = 0;
1869 		*batch++ = 0;
1870 		*batch++ = 0;
1871 	}
1872 
1873 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1874 
1875 	/* Pad to end of cacheline */
1876 	while ((unsigned long)batch % CACHELINE_BYTES)
1877 		*batch++ = MI_NOOP;
1878 
1879 	return batch;
1880 }
1881 
1882 static u32 *
1883 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1884 {
1885 	int i;
1886 
1887 	/*
1888 	 * WaPipeControlBefore3DStateSamplePattern: cnl
1889 	 *
1890 	 * Ensure the engine is idle prior to programming a
1891 	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1892 	 */
1893 	batch = gen8_emit_pipe_control(batch,
1894 				       PIPE_CONTROL_CS_STALL,
1895 				       0);
1896 	/*
1897 	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1898 	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1899 	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1900 	 * confusing. Since gen8_emit_pipe_control() already advances the
1901 	 * batch by 6 dwords, we advance the other 10 here, completing a
1902 	 * cacheline. It's not clear if the workaround requires this padding
1903 	 * before other commands, or if it's just the regular padding we would
1904 	 * already have for the workaround bb, so leave it here for now.
1905 	 */
1906 	for (i = 0; i < 10; i++)
1907 		*batch++ = MI_NOOP;
1908 
1909 	/* Pad to end of cacheline */
1910 	while ((unsigned long)batch % CACHELINE_BYTES)
1911 		*batch++ = MI_NOOP;
1912 
1913 	return batch;
1914 }
1915 
1916 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1917 
1918 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1919 {
1920 	struct drm_i915_gem_object *obj;
1921 	struct i915_vma *vma;
1922 	int err;
1923 
1924 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1925 	if (IS_ERR(obj))
1926 		return PTR_ERR(obj);
1927 
1928 	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1929 	if (IS_ERR(vma)) {
1930 		err = PTR_ERR(vma);
1931 		goto err;
1932 	}
1933 
1934 	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1935 	if (err)
1936 		goto err;
1937 
1938 	engine->wa_ctx.vma = vma;
1939 	return 0;
1940 
1941 err:
1942 	i915_gem_object_put(obj);
1943 	return err;
1944 }
1945 
1946 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1947 {
1948 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1949 }
1950 
1951 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1952 
1953 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1954 {
1955 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1956 	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1957 					    &wa_ctx->per_ctx };
1958 	wa_bb_func_t wa_bb_fn[2];
1959 	struct page *page;
1960 	void *batch, *batch_ptr;
1961 	unsigned int i;
1962 	int ret;
1963 
1964 	if (engine->class != RENDER_CLASS)
1965 		return 0;
1966 
1967 	switch (INTEL_GEN(engine->i915)) {
1968 	case 11:
1969 		return 0;
1970 	case 10:
1971 		wa_bb_fn[0] = gen10_init_indirectctx_bb;
1972 		wa_bb_fn[1] = NULL;
1973 		break;
1974 	case 9:
1975 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1976 		wa_bb_fn[1] = NULL;
1977 		break;
1978 	case 8:
1979 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1980 		wa_bb_fn[1] = NULL;
1981 		break;
1982 	default:
1983 		MISSING_CASE(INTEL_GEN(engine->i915));
1984 		return 0;
1985 	}
1986 
1987 	ret = lrc_setup_wa_ctx(engine);
1988 	if (ret) {
1989 		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1990 		return ret;
1991 	}
1992 
1993 	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1994 	batch = batch_ptr = kmap_atomic(page);
1995 
1996 	/*
1997 	 * Emit the two workaround batch buffers, recording the offset from the
1998 	 * start of the workaround batch buffer object for each and their
1999 	 * respective sizes.
2000 	 */
2001 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
2002 		wa_bb[i]->offset = batch_ptr - batch;
2003 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
2004 						  CACHELINE_BYTES))) {
2005 			ret = -EINVAL;
2006 			break;
2007 		}
2008 		if (wa_bb_fn[i])
2009 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2010 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2011 	}
2012 
2013 	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
2014 
2015 	kunmap_atomic(batch);
2016 	if (ret)
2017 		lrc_destroy_wa_ctx(engine);
2018 
2019 	return ret;
2020 }
2021 
2022 static void enable_execlists(struct intel_engine_cs *engine)
2023 {
2024 	struct drm_i915_private *dev_priv = engine->i915;
2025 
2026 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2027 
2028 	if (INTEL_GEN(dev_priv) >= 11)
2029 		I915_WRITE(RING_MODE_GEN7(engine),
2030 			   _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
2031 	else
2032 		I915_WRITE(RING_MODE_GEN7(engine),
2033 			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
2034 
2035 	I915_WRITE(RING_MI_MODE(engine->mmio_base),
2036 		   _MASKED_BIT_DISABLE(STOP_RING));
2037 
2038 	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2039 		   i915_ggtt_offset(engine->status_page.vma));
2040 	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2041 }
2042 
2043 static bool unexpected_starting_state(struct intel_engine_cs *engine)
2044 {
2045 	struct drm_i915_private *dev_priv = engine->i915;
2046 	bool unexpected = false;
2047 
2048 	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
2049 		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2050 		unexpected = true;
2051 	}
2052 
2053 	return unexpected;
2054 }
2055 
2056 static int execlists_resume(struct intel_engine_cs *engine)
2057 {
2058 	intel_engine_apply_workarounds(engine);
2059 	intel_engine_apply_whitelist(engine);
2060 
2061 	intel_mocs_init_engine(engine);
2062 
2063 	intel_engine_reset_breadcrumbs(engine);
2064 
2065 	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2066 		struct drm_printer p = drm_debug_printer(__func__);
2067 
2068 		intel_engine_dump(engine, &p, NULL);
2069 	}
2070 
2071 	enable_execlists(engine);
2072 
2073 	return 0;
2074 }
2075 
2076 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2077 {
2078 	struct intel_engine_execlists * const execlists = &engine->execlists;
2079 	unsigned long flags;
2080 
2081 	GEM_TRACE("%s: depth<-%d\n", engine->name,
2082 		  atomic_read(&execlists->tasklet.count));
2083 
2084 	/*
2085 	 * Prevent request submission to the hardware until we have
2086 	 * completed the reset in i915_gem_reset_finish(). If a request
2087 	 * is completed by one engine, it may then queue a request
2088 	 * to a second via its execlists->tasklet *just* as we are
2089 	 * calling engine->resume() and also writing the ELSP.
2090 	 * Turning off the execlists->tasklet until the reset is over
2091 	 * prevents the race.
2092 	 */
2093 	__tasklet_disable_sync_once(&execlists->tasklet);
2094 	GEM_BUG_ON(!reset_in_progress(execlists));
2095 
2096 	intel_engine_stop_cs(engine);
2097 
2098 	/* And flush any current direct submission. */
2099 	spin_lock_irqsave(&engine->timeline.lock, flags);
2100 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2101 }
2102 
2103 static bool lrc_regs_ok(const struct i915_request *rq)
2104 {
2105 	const struct intel_ring *ring = rq->ring;
2106 	const u32 *regs = rq->hw_context->lrc_reg_state;
2107 
2108 	/* Quick spot check for the common signs of context corruption */
2109 
2110 	if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
2111 	    (RING_CTL_SIZE(ring->size) | RING_VALID))
2112 		return false;
2113 
2114 	if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
2115 		return false;
2116 
2117 	return true;
2118 }
2119 
2120 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
2121 {
2122 	const unsigned int reset_value = execlists->csb_size - 1;
2123 
2124 	/*
2125 	 * After a reset, the HW starts writing into CSB entry [0]. We
2126 	 * therefore have to set our HEAD pointer back one entry so that
2127 	 * the *first* entry we check is entry 0. To complicate this further,
2128 	 * as we don't wait for the first interrupt after reset, we have to
2129 	 * fake the HW write to point back to the last entry so that our
2130 	 * inline comparison of our cached head position against the last HW
2131 	 * write works even before the first interrupt.
2132 	 */
2133 	execlists->csb_head = reset_value;
2134 	WRITE_ONCE(*execlists->csb_write, reset_value);
2135 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2136 
2137 	invalidate_csb_entries(&execlists->csb_status[0],
2138 			       &execlists->csb_status[reset_value]);
2139 }
2140 
2141 static struct i915_request *active_request(struct i915_request *rq)
2142 {
2143 	const struct list_head * const list = &rq->engine->timeline.requests;
2144 	const struct intel_context * const context = rq->hw_context;
2145 	struct i915_request *active = NULL;
2146 
2147 	list_for_each_entry_from_reverse(rq, list, link) {
2148 		if (i915_request_completed(rq))
2149 			break;
2150 
2151 		if (rq->hw_context != context)
2152 			break;
2153 
2154 		active = rq;
2155 	}
2156 
2157 	return active;
2158 }
2159 
2160 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2161 {
2162 	struct intel_engine_execlists * const execlists = &engine->execlists;
2163 	struct intel_context *ce;
2164 	struct i915_request *rq;
2165 	u32 *regs;
2166 
2167 	process_csb(engine); /* drain preemption events */
2168 
2169 	/* Following the reset, we need to reload the CSB read/write pointers */
2170 	reset_csb_pointers(&engine->execlists);
2171 
2172 	/*
2173 	 * Save the currently executing context, even if we completed
2174 	 * its request, it was still running at the time of the
2175 	 * reset and will have been clobbered.
2176 	 */
2177 	if (!port_isset(execlists->port))
2178 		goto out_clear;
2179 
2180 	rq = port_request(execlists->port);
2181 	ce = rq->hw_context;
2182 
2183 	/*
2184 	 * Catch up with any missed context-switch interrupts.
2185 	 *
2186 	 * Ideally we would just read the remaining CSB entries now that we
2187 	 * know the gpu is idle. However, the CSB registers are sometimes^W
2188 	 * often trashed across a GPU reset! Instead we have to rely on
2189 	 * guessing the missed context-switch events by looking at what
2190 	 * requests were completed.
2191 	 */
2192 	execlists_cancel_port_requests(execlists);
2193 
2194 	rq = active_request(rq);
2195 	if (!rq)
2196 		goto out_replay;
2197 
2198 	/*
2199 	 * If this request hasn't started yet, e.g. it is waiting on a
2200 	 * semaphore, we need to avoid skipping the request or else we
2201 	 * break the signaling chain. However, if the context is corrupt
2202 	 * the request will not restart and we will be stuck with a wedged
2203 	 * device. It is quite often the case that if we issue a reset
2204 	 * while the GPU is loading the context image, that the context
2205 	 * image becomes corrupt.
2206 	 *
2207 	 * Otherwise, if we have not started yet, the request should replay
2208 	 * perfectly and we do not need to flag the result as being erroneous.
2209 	 */
2210 	if (!i915_request_started(rq) && lrc_regs_ok(rq))
2211 		goto out_replay;
2212 
2213 	/*
2214 	 * If the request was innocent, we leave the request in the ELSP
2215 	 * and will try to replay it on restarting. The context image may
2216 	 * have been corrupted by the reset, in which case we may have
2217 	 * to service a new GPU hang, but more likely we can continue on
2218 	 * without impact.
2219 	 *
2220 	 * If the request was guilty, we presume the context is corrupt
2221 	 * and have to at least restore the RING register in the context
2222 	 * image back to the expected values to skip over the guilty request.
2223 	 */
2224 	i915_reset_request(rq, stalled);
2225 	if (!stalled && lrc_regs_ok(rq))
2226 		goto out_replay;
2227 
2228 	/*
2229 	 * We want a simple context + ring to execute the breadcrumb update.
2230 	 * We cannot rely on the context being intact across the GPU hang,
2231 	 * so clear it and rebuild just what we need for the breadcrumb.
2232 	 * All pending requests for this context will be zapped, and any
2233 	 * future request will be after userspace has had the opportunity
2234 	 * to recreate its own state.
2235 	 */
2236 	regs = ce->lrc_reg_state;
2237 	if (engine->pinned_default_state) {
2238 		memcpy(regs, /* skip restoring the vanilla PPHWSP */
2239 		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2240 		       engine->context_size - PAGE_SIZE);
2241 	}
2242 	execlists_init_reg_state(regs, ce, engine, ce->ring);
2243 
2244 out_replay:
2245 	/* Rerun the request; its payload has been neutered (if guilty). */
2246 	ce->ring->head =
2247 		rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
2248 	intel_ring_update_space(ce->ring);
2249 	__execlists_update_reg_state(ce, engine);
2250 
2251 	/* Push back any incomplete requests for replay after the reset. */
2252 	__unwind_incomplete_requests(engine);
2253 
2254 out_clear:
2255 	execlists_clear_all_active(execlists);
2256 }
2257 
2258 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2259 {
2260 	unsigned long flags;
2261 
2262 	GEM_TRACE("%s\n", engine->name);
2263 
2264 	spin_lock_irqsave(&engine->timeline.lock, flags);
2265 
2266 	__execlists_reset(engine, stalled);
2267 
2268 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2269 }
2270 
2271 static void nop_submission_tasklet(unsigned long data)
2272 {
2273 	/* The driver is wedged; don't process any more events. */
2274 }
2275 
2276 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2277 {
2278 	struct intel_engine_execlists * const execlists = &engine->execlists;
2279 	struct i915_request *rq, *rn;
2280 	struct rb_node *rb;
2281 	unsigned long flags;
2282 
2283 	GEM_TRACE("%s\n", engine->name);
2284 
2285 	/*
2286 	 * Before we call engine->cancel_requests(), we should have exclusive
2287 	 * access to the submission state. This is arranged for us by the
2288 	 * caller disabling the interrupt generation, the tasklet and other
2289 	 * threads that may then access the same state, giving us a free hand
2290 	 * to reset state. However, we still need to let lockdep be aware that
2291 	 * we know this state may be accessed in hardirq context, so we
2292 	 * disable the irq around this manipulation and we want to keep
2293 	 * the spinlock focused on its duties and not accidentally conflate
2294 	 * coverage to the submission's irq state. (Similarly, although we
2295 	 * shouldn't need to disable irq around the manipulation of the
2296 	 * submission's irq state, we also wish to remind ourselves that
2297 	 * it is irq state.)
2298 	 */
2299 	spin_lock_irqsave(&engine->timeline.lock, flags);
2300 
2301 	__execlists_reset(engine, true);
2302 
2303 	/* Mark all executing requests as skipped. */
2304 	list_for_each_entry(rq, &engine->timeline.requests, link) {
2305 		if (!i915_request_signaled(rq))
2306 			dma_fence_set_error(&rq->fence, -EIO);
2307 
2308 		i915_request_mark_complete(rq);
2309 	}
2310 
2311 	/* Flush the queued requests to the timeline list (for retiring). */
2312 	while ((rb = rb_first_cached(&execlists->queue))) {
2313 		struct i915_priolist *p = to_priolist(rb);
2314 		int i;
2315 
2316 		priolist_for_each_request_consume(rq, rn, p, i) {
2317 			list_del_init(&rq->sched.link);
2318 			__i915_request_submit(rq);
2319 			dma_fence_set_error(&rq->fence, -EIO);
2320 			i915_request_mark_complete(rq);
2321 		}
2322 
2323 		rb_erase_cached(&p->node, &execlists->queue);
2324 		i915_priolist_free(p);
2325 	}
2326 
2327 	/* Cancel all attached virtual engines */
2328 	while ((rb = rb_first_cached(&execlists->virtual))) {
2329 		struct virtual_engine *ve =
2330 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2331 
2332 		rb_erase_cached(rb, &execlists->virtual);
2333 		RB_CLEAR_NODE(rb);
2334 
2335 		spin_lock(&ve->base.timeline.lock);
2336 		if (ve->request) {
2337 			ve->request->engine = engine;
2338 			__i915_request_submit(ve->request);
2339 			dma_fence_set_error(&ve->request->fence, -EIO);
2340 			i915_request_mark_complete(ve->request);
2341 			ve->base.execlists.queue_priority_hint = INT_MIN;
2342 			ve->request = NULL;
2343 		}
2344 		spin_unlock(&ve->base.timeline.lock);
2345 	}
2346 
2347 	/* Remaining _unready_ requests will be nop'ed when submitted */
2348 
2349 	execlists->queue_priority_hint = INT_MIN;
2350 	execlists->queue = RB_ROOT_CACHED;
2351 	GEM_BUG_ON(port_isset(execlists->port));
2352 
2353 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2354 	execlists->tasklet.func = nop_submission_tasklet;
2355 
2356 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2357 }
2358 
2359 static void execlists_reset_finish(struct intel_engine_cs *engine)
2360 {
2361 	struct intel_engine_execlists * const execlists = &engine->execlists;
2362 
2363 	/*
2364 	 * After a GPU reset, we may have requests to replay. Do so now while
2365 	 * we still have the forcewake to be sure that the GPU is not allowed
2366 	 * to sleep before we restart and reload a context.
2367 	 */
2368 	GEM_BUG_ON(!reset_in_progress(execlists));
2369 	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2370 		execlists->tasklet.func(execlists->tasklet.data);
2371 
2372 	if (__tasklet_enable(&execlists->tasklet))
2373 		/* And kick in case we missed a new request submission. */
2374 		tasklet_hi_schedule(&execlists->tasklet);
2375 	GEM_TRACE("%s: depth->%d\n", engine->name,
2376 		  atomic_read(&execlists->tasklet.count));
2377 }
2378 
2379 static int gen8_emit_bb_start(struct i915_request *rq,
2380 			      u64 offset, u32 len,
2381 			      const unsigned int flags)
2382 {
2383 	u32 *cs;
2384 
2385 	cs = intel_ring_begin(rq, 4);
2386 	if (IS_ERR(cs))
2387 		return PTR_ERR(cs);
2388 
2389 	/*
2390 	 * WaDisableCtxRestoreArbitration:bdw,chv
2391 	 *
2392 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
2393 	 * particular all the gen that do not need the w/a at all!), if we
2394 	 * took care to make sure that on every switch into this context
2395 	 * (both ordinary and for preemption) that arbitrartion was enabled
2396 	 * we would be fine.  However, for gen8 there is another w/a that
2397 	 * requires us to not preempt inside GPGPU execution, so we keep
2398 	 * arbitration disabled for gen8 batches. Arbitration will be
2399 	 * re-enabled before we close the request
2400 	 * (engine->emit_fini_breadcrumb).
2401 	 */
2402 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2403 
2404 	/* FIXME(BDW+): Address space and security selectors. */
2405 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2406 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2407 	*cs++ = lower_32_bits(offset);
2408 	*cs++ = upper_32_bits(offset);
2409 
2410 	intel_ring_advance(rq, cs);
2411 
2412 	return 0;
2413 }
2414 
2415 static int gen9_emit_bb_start(struct i915_request *rq,
2416 			      u64 offset, u32 len,
2417 			      const unsigned int flags)
2418 {
2419 	u32 *cs;
2420 
2421 	cs = intel_ring_begin(rq, 6);
2422 	if (IS_ERR(cs))
2423 		return PTR_ERR(cs);
2424 
2425 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2426 
2427 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2428 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2429 	*cs++ = lower_32_bits(offset);
2430 	*cs++ = upper_32_bits(offset);
2431 
2432 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2433 	*cs++ = MI_NOOP;
2434 
2435 	intel_ring_advance(rq, cs);
2436 
2437 	return 0;
2438 }
2439 
2440 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2441 {
2442 	ENGINE_WRITE(engine, RING_IMR,
2443 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
2444 	ENGINE_POSTING_READ(engine, RING_IMR);
2445 }
2446 
2447 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2448 {
2449 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2450 }
2451 
2452 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2453 {
2454 	u32 cmd, *cs;
2455 
2456 	cs = intel_ring_begin(request, 4);
2457 	if (IS_ERR(cs))
2458 		return PTR_ERR(cs);
2459 
2460 	cmd = MI_FLUSH_DW + 1;
2461 
2462 	/* We always require a command barrier so that subsequent
2463 	 * commands, such as breadcrumb interrupts, are strictly ordered
2464 	 * wrt the contents of the write cache being flushed to memory
2465 	 * (and thus being coherent from the CPU).
2466 	 */
2467 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2468 
2469 	if (mode & EMIT_INVALIDATE) {
2470 		cmd |= MI_INVALIDATE_TLB;
2471 		if (request->engine->class == VIDEO_DECODE_CLASS)
2472 			cmd |= MI_INVALIDATE_BSD;
2473 	}
2474 
2475 	*cs++ = cmd;
2476 	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2477 	*cs++ = 0; /* upper addr */
2478 	*cs++ = 0; /* value */
2479 	intel_ring_advance(request, cs);
2480 
2481 	return 0;
2482 }
2483 
2484 static int gen8_emit_flush_render(struct i915_request *request,
2485 				  u32 mode)
2486 {
2487 	struct intel_engine_cs *engine = request->engine;
2488 	u32 scratch_addr =
2489 		i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2490 	bool vf_flush_wa = false, dc_flush_wa = false;
2491 	u32 *cs, flags = 0;
2492 	int len;
2493 
2494 	flags |= PIPE_CONTROL_CS_STALL;
2495 
2496 	if (mode & EMIT_FLUSH) {
2497 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2498 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2499 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2500 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2501 	}
2502 
2503 	if (mode & EMIT_INVALIDATE) {
2504 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2505 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2506 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2507 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2508 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2509 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2510 		flags |= PIPE_CONTROL_QW_WRITE;
2511 		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2512 
2513 		/*
2514 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2515 		 * pipe control.
2516 		 */
2517 		if (IS_GEN(request->i915, 9))
2518 			vf_flush_wa = true;
2519 
2520 		/* WaForGAMHang:kbl */
2521 		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2522 			dc_flush_wa = true;
2523 	}
2524 
2525 	len = 6;
2526 
2527 	if (vf_flush_wa)
2528 		len += 6;
2529 
2530 	if (dc_flush_wa)
2531 		len += 12;
2532 
2533 	cs = intel_ring_begin(request, len);
2534 	if (IS_ERR(cs))
2535 		return PTR_ERR(cs);
2536 
2537 	if (vf_flush_wa)
2538 		cs = gen8_emit_pipe_control(cs, 0, 0);
2539 
2540 	if (dc_flush_wa)
2541 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2542 					    0);
2543 
2544 	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2545 
2546 	if (dc_flush_wa)
2547 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2548 
2549 	intel_ring_advance(request, cs);
2550 
2551 	return 0;
2552 }
2553 
2554 /*
2555  * Reserve space for 2 NOOPs at the end of each request to be
2556  * used as a workaround for not being allowed to do lite
2557  * restore with HEAD==TAIL (WaIdleLiteRestore).
2558  */
2559 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2560 {
2561 	/* Ensure there's always at least one preemption point per-request. */
2562 	*cs++ = MI_ARB_CHECK;
2563 	*cs++ = MI_NOOP;
2564 	request->wa_tail = intel_ring_offset(request, cs);
2565 
2566 	return cs;
2567 }
2568 
2569 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2570 {
2571 	cs = gen8_emit_ggtt_write(cs,
2572 				  request->fence.seqno,
2573 				  request->timeline->hwsp_offset,
2574 				  0);
2575 
2576 	*cs++ = MI_USER_INTERRUPT;
2577 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2578 
2579 	request->tail = intel_ring_offset(request, cs);
2580 	assert_ring_tail_valid(request->ring, request->tail);
2581 
2582 	return gen8_emit_wa_tail(request, cs);
2583 }
2584 
2585 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2586 {
2587 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2588 	cs = gen8_emit_ggtt_write_rcs(cs,
2589 				      request->fence.seqno,
2590 				      request->timeline->hwsp_offset,
2591 				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2592 				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2593 				      PIPE_CONTROL_DC_FLUSH_ENABLE);
2594 	cs = gen8_emit_pipe_control(cs,
2595 				    PIPE_CONTROL_FLUSH_ENABLE |
2596 				    PIPE_CONTROL_CS_STALL,
2597 				    0);
2598 
2599 	*cs++ = MI_USER_INTERRUPT;
2600 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2601 
2602 	request->tail = intel_ring_offset(request, cs);
2603 	assert_ring_tail_valid(request->ring, request->tail);
2604 
2605 	return gen8_emit_wa_tail(request, cs);
2606 }
2607 
2608 static int gen8_init_rcs_context(struct i915_request *rq)
2609 {
2610 	int ret;
2611 
2612 	ret = intel_engine_emit_ctx_wa(rq);
2613 	if (ret)
2614 		return ret;
2615 
2616 	ret = intel_rcs_context_init_mocs(rq);
2617 	/*
2618 	 * Failing to program the MOCS is non-fatal.The system will not
2619 	 * run at peak performance. So generate an error and carry on.
2620 	 */
2621 	if (ret)
2622 		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2623 
2624 	return i915_gem_render_state_emit(rq);
2625 }
2626 
2627 static void execlists_park(struct intel_engine_cs *engine)
2628 {
2629 	intel_engine_park(engine);
2630 }
2631 
2632 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2633 {
2634 	engine->submit_request = execlists_submit_request;
2635 	engine->cancel_requests = execlists_cancel_requests;
2636 	engine->schedule = i915_schedule;
2637 	engine->execlists.tasklet.func = execlists_submission_tasklet;
2638 
2639 	engine->reset.prepare = execlists_reset_prepare;
2640 	engine->reset.reset = execlists_reset;
2641 	engine->reset.finish = execlists_reset_finish;
2642 
2643 	engine->park = execlists_park;
2644 	engine->unpark = NULL;
2645 
2646 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2647 	if (!intel_vgpu_active(engine->i915))
2648 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2649 	if (engine->preempt_context &&
2650 	    HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2651 		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2652 }
2653 
2654 static void execlists_destroy(struct intel_engine_cs *engine)
2655 {
2656 	intel_engine_cleanup_common(engine);
2657 	lrc_destroy_wa_ctx(engine);
2658 	kfree(engine);
2659 }
2660 
2661 static void
2662 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2663 {
2664 	/* Default vfuncs which can be overriden by each engine. */
2665 
2666 	engine->destroy = execlists_destroy;
2667 	engine->resume = execlists_resume;
2668 
2669 	engine->reset.prepare = execlists_reset_prepare;
2670 	engine->reset.reset = execlists_reset;
2671 	engine->reset.finish = execlists_reset_finish;
2672 
2673 	engine->cops = &execlists_context_ops;
2674 	engine->request_alloc = execlists_request_alloc;
2675 
2676 	engine->emit_flush = gen8_emit_flush;
2677 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2678 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2679 
2680 	engine->set_default_submission = intel_execlists_set_default_submission;
2681 
2682 	if (INTEL_GEN(engine->i915) < 11) {
2683 		engine->irq_enable = gen8_logical_ring_enable_irq;
2684 		engine->irq_disable = gen8_logical_ring_disable_irq;
2685 	} else {
2686 		/*
2687 		 * TODO: On Gen11 interrupt masks need to be clear
2688 		 * to allow C6 entry. Keep interrupts enabled at
2689 		 * and take the hit of generating extra interrupts
2690 		 * until a more refined solution exists.
2691 		 */
2692 	}
2693 	if (IS_GEN(engine->i915, 8))
2694 		engine->emit_bb_start = gen8_emit_bb_start;
2695 	else
2696 		engine->emit_bb_start = gen9_emit_bb_start;
2697 }
2698 
2699 static inline void
2700 logical_ring_default_irqs(struct intel_engine_cs *engine)
2701 {
2702 	unsigned int shift = 0;
2703 
2704 	if (INTEL_GEN(engine->i915) < 11) {
2705 		const u8 irq_shifts[] = {
2706 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
2707 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
2708 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2709 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2710 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2711 		};
2712 
2713 		shift = irq_shifts[engine->id];
2714 	}
2715 
2716 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2717 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2718 }
2719 
2720 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2721 {
2722 	/* Intentionally left blank. */
2723 	engine->buffer = NULL;
2724 
2725 	tasklet_init(&engine->execlists.tasklet,
2726 		     execlists_submission_tasklet, (unsigned long)engine);
2727 
2728 	logical_ring_default_vfuncs(engine);
2729 	logical_ring_default_irqs(engine);
2730 
2731 	if (engine->class == RENDER_CLASS) {
2732 		engine->init_context = gen8_init_rcs_context;
2733 		engine->emit_flush = gen8_emit_flush_render;
2734 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2735 	}
2736 
2737 	return 0;
2738 }
2739 
2740 int intel_execlists_submission_init(struct intel_engine_cs *engine)
2741 {
2742 	struct drm_i915_private *i915 = engine->i915;
2743 	struct intel_engine_execlists * const execlists = &engine->execlists;
2744 	u32 base = engine->mmio_base;
2745 	int ret;
2746 
2747 	ret = intel_engine_init_common(engine);
2748 	if (ret)
2749 		return ret;
2750 
2751 	intel_engine_init_workarounds(engine);
2752 	intel_engine_init_whitelist(engine);
2753 
2754 	if (intel_init_workaround_bb(engine))
2755 		/*
2756 		 * We continue even if we fail to initialize WA batch
2757 		 * because we only expect rare glitches but nothing
2758 		 * critical to prevent us from using GPU
2759 		 */
2760 		DRM_ERROR("WA batch buffer initialization failed\n");
2761 
2762 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2763 		execlists->submit_reg = i915->uncore.regs +
2764 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2765 		execlists->ctrl_reg = i915->uncore.regs +
2766 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2767 	} else {
2768 		execlists->submit_reg = i915->uncore.regs +
2769 			i915_mmio_reg_offset(RING_ELSP(base));
2770 	}
2771 
2772 	execlists->preempt_complete_status = ~0u;
2773 	if (engine->preempt_context)
2774 		execlists->preempt_complete_status =
2775 			upper_32_bits(engine->preempt_context->lrc_desc);
2776 
2777 	execlists->csb_status =
2778 		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2779 
2780 	execlists->csb_write =
2781 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2782 
2783 	if (INTEL_GEN(engine->i915) < 11)
2784 		execlists->csb_size = GEN8_CSB_ENTRIES;
2785 	else
2786 		execlists->csb_size = GEN11_CSB_ENTRIES;
2787 
2788 	reset_csb_pointers(execlists);
2789 
2790 	return 0;
2791 }
2792 
2793 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2794 {
2795 	u32 indirect_ctx_offset;
2796 
2797 	switch (INTEL_GEN(engine->i915)) {
2798 	default:
2799 		MISSING_CASE(INTEL_GEN(engine->i915));
2800 		/* fall through */
2801 	case 11:
2802 		indirect_ctx_offset =
2803 			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2804 		break;
2805 	case 10:
2806 		indirect_ctx_offset =
2807 			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2808 		break;
2809 	case 9:
2810 		indirect_ctx_offset =
2811 			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2812 		break;
2813 	case 8:
2814 		indirect_ctx_offset =
2815 			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2816 		break;
2817 	}
2818 
2819 	return indirect_ctx_offset;
2820 }
2821 
2822 static void execlists_init_reg_state(u32 *regs,
2823 				     struct intel_context *ce,
2824 				     struct intel_engine_cs *engine,
2825 				     struct intel_ring *ring)
2826 {
2827 	struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt;
2828 	bool rcs = engine->class == RENDER_CLASS;
2829 	u32 base = engine->mmio_base;
2830 
2831 	/*
2832 	 * A context is actually a big batch buffer with several
2833 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2834 	 * values we are setting here are only for the first context restore:
2835 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
2836 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2837 	 * we are not initializing here).
2838 	 *
2839 	 * Must keep consistent with virtual_update_register_offsets().
2840 	 */
2841 	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2842 				 MI_LRI_FORCE_POSTED;
2843 
2844 	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2845 		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2846 		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2847 	if (INTEL_GEN(engine->i915) < 11) {
2848 		regs[CTX_CONTEXT_CONTROL + 1] |=
2849 			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2850 					    CTX_CTRL_RS_CTX_ENABLE);
2851 	}
2852 	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2853 	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2854 	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2855 	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2856 		RING_CTL_SIZE(ring->size) | RING_VALID);
2857 	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2858 	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2859 	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2860 	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2861 	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2862 	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2863 	if (rcs) {
2864 		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2865 
2866 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2867 		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2868 			RING_INDIRECT_CTX_OFFSET(base), 0);
2869 		if (wa_ctx->indirect_ctx.size) {
2870 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2871 
2872 			regs[CTX_RCS_INDIRECT_CTX + 1] =
2873 				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
2874 				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2875 
2876 			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2877 				intel_lr_indirect_ctx_offset(engine) << 6;
2878 		}
2879 
2880 		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2881 		if (wa_ctx->per_ctx.size) {
2882 			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2883 
2884 			regs[CTX_BB_PER_CTX_PTR + 1] =
2885 				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2886 		}
2887 	}
2888 
2889 	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2890 
2891 	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2892 	/* PDP values well be assigned later if needed */
2893 	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2894 	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2895 	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2896 	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2897 	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2898 	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2899 	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2900 	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2901 
2902 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2903 		/* 64b PPGTT (48bit canonical)
2904 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2905 		 * other PDP Descriptors are ignored.
2906 		 */
2907 		ASSIGN_CTX_PML4(ppgtt, regs);
2908 	} else {
2909 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
2910 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
2911 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
2912 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2913 	}
2914 
2915 	if (rcs) {
2916 		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2917 		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2918 
2919 		i915_oa_init_reg_state(engine, ce, regs);
2920 	}
2921 
2922 	regs[CTX_END] = MI_BATCH_BUFFER_END;
2923 	if (INTEL_GEN(engine->i915) >= 10)
2924 		regs[CTX_END] |= BIT(0);
2925 }
2926 
2927 static int
2928 populate_lr_context(struct intel_context *ce,
2929 		    struct drm_i915_gem_object *ctx_obj,
2930 		    struct intel_engine_cs *engine,
2931 		    struct intel_ring *ring)
2932 {
2933 	void *vaddr;
2934 	u32 *regs;
2935 	int ret;
2936 
2937 	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2938 	if (IS_ERR(vaddr)) {
2939 		ret = PTR_ERR(vaddr);
2940 		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2941 		return ret;
2942 	}
2943 
2944 	if (engine->default_state) {
2945 		/*
2946 		 * We only want to copy over the template context state;
2947 		 * skipping over the headers reserved for GuC communication,
2948 		 * leaving those as zero.
2949 		 */
2950 		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2951 		void *defaults;
2952 
2953 		defaults = i915_gem_object_pin_map(engine->default_state,
2954 						   I915_MAP_WB);
2955 		if (IS_ERR(defaults)) {
2956 			ret = PTR_ERR(defaults);
2957 			goto err_unpin_ctx;
2958 		}
2959 
2960 		memcpy(vaddr + start, defaults + start, engine->context_size);
2961 		i915_gem_object_unpin_map(engine->default_state);
2962 	}
2963 
2964 	/* The second page of the context object contains some fields which must
2965 	 * be set up prior to the first execution. */
2966 	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2967 	execlists_init_reg_state(regs, ce, engine, ring);
2968 	if (!engine->default_state)
2969 		regs[CTX_CONTEXT_CONTROL + 1] |=
2970 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2971 	if (ce->gem_context == engine->i915->preempt_context &&
2972 	    INTEL_GEN(engine->i915) < 11)
2973 		regs[CTX_CONTEXT_CONTROL + 1] |=
2974 			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2975 					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2976 
2977 	ret = 0;
2978 err_unpin_ctx:
2979 	__i915_gem_object_flush_map(ctx_obj,
2980 				    LRC_HEADER_PAGES * PAGE_SIZE,
2981 				    engine->context_size);
2982 	i915_gem_object_unpin_map(ctx_obj);
2983 	return ret;
2984 }
2985 
2986 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
2987 {
2988 	if (ctx->timeline)
2989 		return i915_timeline_get(ctx->timeline);
2990 	else
2991 		return i915_timeline_create(ctx->i915, NULL);
2992 }
2993 
2994 static int execlists_context_deferred_alloc(struct intel_context *ce,
2995 					    struct intel_engine_cs *engine)
2996 {
2997 	struct drm_i915_gem_object *ctx_obj;
2998 	struct i915_vma *vma;
2999 	u32 context_size;
3000 	struct intel_ring *ring;
3001 	struct i915_timeline *timeline;
3002 	int ret;
3003 
3004 	if (ce->state)
3005 		return 0;
3006 
3007 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3008 
3009 	/*
3010 	 * Before the actual start of the context image, we insert a few pages
3011 	 * for our own use and for sharing with the GuC.
3012 	 */
3013 	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3014 
3015 	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3016 	if (IS_ERR(ctx_obj))
3017 		return PTR_ERR(ctx_obj);
3018 
3019 	vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
3020 	if (IS_ERR(vma)) {
3021 		ret = PTR_ERR(vma);
3022 		goto error_deref_obj;
3023 	}
3024 
3025 	timeline = get_timeline(ce->gem_context);
3026 	if (IS_ERR(timeline)) {
3027 		ret = PTR_ERR(timeline);
3028 		goto error_deref_obj;
3029 	}
3030 
3031 	ring = intel_engine_create_ring(engine,
3032 					timeline,
3033 					ce->gem_context->ring_size);
3034 	i915_timeline_put(timeline);
3035 	if (IS_ERR(ring)) {
3036 		ret = PTR_ERR(ring);
3037 		goto error_deref_obj;
3038 	}
3039 
3040 	ret = populate_lr_context(ce, ctx_obj, engine, ring);
3041 	if (ret) {
3042 		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3043 		goto error_ring_free;
3044 	}
3045 
3046 	ce->ring = ring;
3047 	ce->state = vma;
3048 
3049 	return 0;
3050 
3051 error_ring_free:
3052 	intel_ring_put(ring);
3053 error_deref_obj:
3054 	i915_gem_object_put(ctx_obj);
3055 	return ret;
3056 }
3057 
3058 static void virtual_context_destroy(struct kref *kref)
3059 {
3060 	struct virtual_engine *ve =
3061 		container_of(kref, typeof(*ve), context.ref);
3062 	unsigned int n;
3063 
3064 	GEM_BUG_ON(ve->request);
3065 	GEM_BUG_ON(ve->context.active);
3066 
3067 	for (n = 0; n < ve->num_siblings; n++) {
3068 		struct intel_engine_cs *sibling = ve->siblings[n];
3069 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3070 
3071 		if (RB_EMPTY_NODE(node))
3072 			continue;
3073 
3074 		spin_lock_irq(&sibling->timeline.lock);
3075 
3076 		/* Detachment is lazily performed in the execlists tasklet */
3077 		if (!RB_EMPTY_NODE(node))
3078 			rb_erase_cached(node, &sibling->execlists.virtual);
3079 
3080 		spin_unlock_irq(&sibling->timeline.lock);
3081 	}
3082 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3083 
3084 	if (ve->context.state)
3085 		__execlists_context_fini(&ve->context);
3086 
3087 	kfree(ve->bonds);
3088 
3089 	i915_timeline_fini(&ve->base.timeline);
3090 	kfree(ve);
3091 }
3092 
3093 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3094 {
3095 	int swp;
3096 
3097 	/*
3098 	 * Pick a random sibling on starting to help spread the load around.
3099 	 *
3100 	 * New contexts are typically created with exactly the same order
3101 	 * of siblings, and often started in batches. Due to the way we iterate
3102 	 * the array of sibling when submitting requests, sibling[0] is
3103 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3104 	 * randomised across the system, we also help spread the load by the
3105 	 * first engine we inspect being different each time.
3106 	 *
3107 	 * NB This does not force us to execute on this engine, it will just
3108 	 * typically be the first we inspect for submission.
3109 	 */
3110 	swp = prandom_u32_max(ve->num_siblings);
3111 	if (!swp)
3112 		return;
3113 
3114 	swap(ve->siblings[swp], ve->siblings[0]);
3115 	virtual_update_register_offsets(ve->context.lrc_reg_state,
3116 					ve->siblings[0]);
3117 }
3118 
3119 static int virtual_context_pin(struct intel_context *ce)
3120 {
3121 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3122 	int err;
3123 
3124 	/* Note: we must use a real engine class for setting up reg state */
3125 	err = __execlists_context_pin(ce, ve->siblings[0]);
3126 	if (err)
3127 		return err;
3128 
3129 	virtual_engine_initial_hint(ve);
3130 	return 0;
3131 }
3132 
3133 static void virtual_context_enter(struct intel_context *ce)
3134 {
3135 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3136 	unsigned int n;
3137 
3138 	for (n = 0; n < ve->num_siblings; n++)
3139 		intel_engine_pm_get(ve->siblings[n]);
3140 }
3141 
3142 static void virtual_context_exit(struct intel_context *ce)
3143 {
3144 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3145 	unsigned int n;
3146 
3147 	ce->saturated = 0;
3148 	for (n = 0; n < ve->num_siblings; n++)
3149 		intel_engine_pm_put(ve->siblings[n]);
3150 }
3151 
3152 static const struct intel_context_ops virtual_context_ops = {
3153 	.pin = virtual_context_pin,
3154 	.unpin = execlists_context_unpin,
3155 
3156 	.enter = virtual_context_enter,
3157 	.exit = virtual_context_exit,
3158 
3159 	.destroy = virtual_context_destroy,
3160 };
3161 
3162 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3163 {
3164 	struct i915_request *rq;
3165 	intel_engine_mask_t mask;
3166 
3167 	rq = READ_ONCE(ve->request);
3168 	if (!rq)
3169 		return 0;
3170 
3171 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3172 	mask = rq->execution_mask;
3173 	if (unlikely(!mask)) {
3174 		/* Invalid selection, submit to a random engine in error */
3175 		i915_request_skip(rq, -ENODEV);
3176 		mask = ve->siblings[0]->mask;
3177 	}
3178 
3179 	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3180 		  ve->base.name,
3181 		  rq->fence.context, rq->fence.seqno,
3182 		  mask, ve->base.execlists.queue_priority_hint);
3183 
3184 	return mask;
3185 }
3186 
3187 static void virtual_submission_tasklet(unsigned long data)
3188 {
3189 	struct virtual_engine * const ve = (struct virtual_engine *)data;
3190 	const int prio = ve->base.execlists.queue_priority_hint;
3191 	intel_engine_mask_t mask;
3192 	unsigned int n;
3193 
3194 	rcu_read_lock();
3195 	mask = virtual_submission_mask(ve);
3196 	rcu_read_unlock();
3197 	if (unlikely(!mask))
3198 		return;
3199 
3200 	local_irq_disable();
3201 	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3202 		struct intel_engine_cs *sibling = ve->siblings[n];
3203 		struct ve_node * const node = &ve->nodes[sibling->id];
3204 		struct rb_node **parent, *rb;
3205 		bool first;
3206 
3207 		if (unlikely(!(mask & sibling->mask))) {
3208 			if (!RB_EMPTY_NODE(&node->rb)) {
3209 				spin_lock(&sibling->timeline.lock);
3210 				rb_erase_cached(&node->rb,
3211 						&sibling->execlists.virtual);
3212 				RB_CLEAR_NODE(&node->rb);
3213 				spin_unlock(&sibling->timeline.lock);
3214 			}
3215 			continue;
3216 		}
3217 
3218 		spin_lock(&sibling->timeline.lock);
3219 
3220 		if (!RB_EMPTY_NODE(&node->rb)) {
3221 			/*
3222 			 * Cheat and avoid rebalancing the tree if we can
3223 			 * reuse this node in situ.
3224 			 */
3225 			first = rb_first_cached(&sibling->execlists.virtual) ==
3226 				&node->rb;
3227 			if (prio == node->prio || (prio > node->prio && first))
3228 				goto submit_engine;
3229 
3230 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3231 		}
3232 
3233 		rb = NULL;
3234 		first = true;
3235 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3236 		while (*parent) {
3237 			struct ve_node *other;
3238 
3239 			rb = *parent;
3240 			other = rb_entry(rb, typeof(*other), rb);
3241 			if (prio > other->prio) {
3242 				parent = &rb->rb_left;
3243 			} else {
3244 				parent = &rb->rb_right;
3245 				first = false;
3246 			}
3247 		}
3248 
3249 		rb_link_node(&node->rb, rb, parent);
3250 		rb_insert_color_cached(&node->rb,
3251 				       &sibling->execlists.virtual,
3252 				       first);
3253 
3254 submit_engine:
3255 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3256 		node->prio = prio;
3257 		if (first && prio > sibling->execlists.queue_priority_hint) {
3258 			sibling->execlists.queue_priority_hint = prio;
3259 			tasklet_hi_schedule(&sibling->execlists.tasklet);
3260 		}
3261 
3262 		spin_unlock(&sibling->timeline.lock);
3263 	}
3264 	local_irq_enable();
3265 }
3266 
3267 static void virtual_submit_request(struct i915_request *rq)
3268 {
3269 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3270 
3271 	GEM_TRACE("%s: rq=%llx:%lld\n",
3272 		  ve->base.name,
3273 		  rq->fence.context,
3274 		  rq->fence.seqno);
3275 
3276 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3277 
3278 	GEM_BUG_ON(ve->request);
3279 	ve->base.execlists.queue_priority_hint = rq_prio(rq);
3280 	WRITE_ONCE(ve->request, rq);
3281 
3282 	tasklet_schedule(&ve->base.execlists.tasklet);
3283 }
3284 
3285 static struct ve_bond *
3286 virtual_find_bond(struct virtual_engine *ve,
3287 		  const struct intel_engine_cs *master)
3288 {
3289 	int i;
3290 
3291 	for (i = 0; i < ve->num_bonds; i++) {
3292 		if (ve->bonds[i].master == master)
3293 			return &ve->bonds[i];
3294 	}
3295 
3296 	return NULL;
3297 }
3298 
3299 static void
3300 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3301 {
3302 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3303 	struct ve_bond *bond;
3304 
3305 	bond = virtual_find_bond(ve, to_request(signal)->engine);
3306 	if (bond) {
3307 		intel_engine_mask_t old, new, cmp;
3308 
3309 		cmp = READ_ONCE(rq->execution_mask);
3310 		do {
3311 			old = cmp;
3312 			new = cmp & bond->sibling_mask;
3313 		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3314 	}
3315 }
3316 
3317 struct intel_context *
3318 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3319 			       struct intel_engine_cs **siblings,
3320 			       unsigned int count)
3321 {
3322 	struct virtual_engine *ve;
3323 	unsigned int n;
3324 	int err;
3325 
3326 	if (count == 0)
3327 		return ERR_PTR(-EINVAL);
3328 
3329 	if (count == 1)
3330 		return intel_context_create(ctx, siblings[0]);
3331 
3332 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3333 	if (!ve)
3334 		return ERR_PTR(-ENOMEM);
3335 
3336 	ve->base.i915 = ctx->i915;
3337 	ve->base.id = -1;
3338 	ve->base.class = OTHER_CLASS;
3339 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3340 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3341 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
3342 
3343 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3344 
3345 	err = i915_timeline_init(ctx->i915, &ve->base.timeline, NULL);
3346 	if (err)
3347 		goto err_put;
3348 	i915_timeline_set_subclass(&ve->base.timeline, TIMELINE_VIRTUAL);
3349 
3350 	intel_engine_init_execlists(&ve->base);
3351 
3352 	ve->base.cops = &virtual_context_ops;
3353 	ve->base.request_alloc = execlists_request_alloc;
3354 
3355 	ve->base.schedule = i915_schedule;
3356 	ve->base.submit_request = virtual_submit_request;
3357 	ve->base.bond_execute = virtual_bond_execute;
3358 
3359 	ve->base.execlists.queue_priority_hint = INT_MIN;
3360 	tasklet_init(&ve->base.execlists.tasklet,
3361 		     virtual_submission_tasklet,
3362 		     (unsigned long)ve);
3363 
3364 	intel_context_init(&ve->context, ctx, &ve->base);
3365 
3366 	for (n = 0; n < count; n++) {
3367 		struct intel_engine_cs *sibling = siblings[n];
3368 
3369 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3370 		if (sibling->mask & ve->base.mask) {
3371 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3372 				  sibling->name);
3373 			err = -EINVAL;
3374 			goto err_put;
3375 		}
3376 
3377 		/*
3378 		 * The virtual engine implementation is tightly coupled to
3379 		 * the execlists backend -- we push out request directly
3380 		 * into a tree inside each physical engine. We could support
3381 		 * layering if we handle cloning of the requests and
3382 		 * submitting a copy into each backend.
3383 		 */
3384 		if (sibling->execlists.tasklet.func !=
3385 		    execlists_submission_tasklet) {
3386 			err = -ENODEV;
3387 			goto err_put;
3388 		}
3389 
3390 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3391 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3392 
3393 		ve->siblings[ve->num_siblings++] = sibling;
3394 		ve->base.mask |= sibling->mask;
3395 
3396 		/*
3397 		 * All physical engines must be compatible for their emission
3398 		 * functions (as we build the instructions during request
3399 		 * construction and do not alter them before submission
3400 		 * on the physical engine). We use the engine class as a guide
3401 		 * here, although that could be refined.
3402 		 */
3403 		if (ve->base.class != OTHER_CLASS) {
3404 			if (ve->base.class != sibling->class) {
3405 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3406 					  sibling->class, ve->base.class);
3407 				err = -EINVAL;
3408 				goto err_put;
3409 			}
3410 			continue;
3411 		}
3412 
3413 		ve->base.class = sibling->class;
3414 		ve->base.uabi_class = sibling->uabi_class;
3415 		snprintf(ve->base.name, sizeof(ve->base.name),
3416 			 "v%dx%d", ve->base.class, count);
3417 		ve->base.context_size = sibling->context_size;
3418 
3419 		ve->base.emit_bb_start = sibling->emit_bb_start;
3420 		ve->base.emit_flush = sibling->emit_flush;
3421 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3422 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3423 		ve->base.emit_fini_breadcrumb_dw =
3424 			sibling->emit_fini_breadcrumb_dw;
3425 	}
3426 
3427 	return &ve->context;
3428 
3429 err_put:
3430 	intel_context_put(&ve->context);
3431 	return ERR_PTR(err);
3432 }
3433 
3434 struct intel_context *
3435 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3436 			      struct intel_engine_cs *src)
3437 {
3438 	struct virtual_engine *se = to_virtual_engine(src);
3439 	struct intel_context *dst;
3440 
3441 	dst = intel_execlists_create_virtual(ctx,
3442 					     se->siblings,
3443 					     se->num_siblings);
3444 	if (IS_ERR(dst))
3445 		return dst;
3446 
3447 	if (se->num_bonds) {
3448 		struct virtual_engine *de = to_virtual_engine(dst->engine);
3449 
3450 		de->bonds = kmemdup(se->bonds,
3451 				    sizeof(*se->bonds) * se->num_bonds,
3452 				    GFP_KERNEL);
3453 		if (!de->bonds) {
3454 			intel_context_put(dst);
3455 			return ERR_PTR(-ENOMEM);
3456 		}
3457 
3458 		de->num_bonds = se->num_bonds;
3459 	}
3460 
3461 	return dst;
3462 }
3463 
3464 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3465 				     const struct intel_engine_cs *master,
3466 				     const struct intel_engine_cs *sibling)
3467 {
3468 	struct virtual_engine *ve = to_virtual_engine(engine);
3469 	struct ve_bond *bond;
3470 	int n;
3471 
3472 	/* Sanity check the sibling is part of the virtual engine */
3473 	for (n = 0; n < ve->num_siblings; n++)
3474 		if (sibling == ve->siblings[n])
3475 			break;
3476 	if (n == ve->num_siblings)
3477 		return -EINVAL;
3478 
3479 	bond = virtual_find_bond(ve, master);
3480 	if (bond) {
3481 		bond->sibling_mask |= sibling->mask;
3482 		return 0;
3483 	}
3484 
3485 	bond = krealloc(ve->bonds,
3486 			sizeof(*bond) * (ve->num_bonds + 1),
3487 			GFP_KERNEL);
3488 	if (!bond)
3489 		return -ENOMEM;
3490 
3491 	bond[ve->num_bonds].master = master;
3492 	bond[ve->num_bonds].sibling_mask = sibling->mask;
3493 
3494 	ve->bonds = bond;
3495 	ve->num_bonds++;
3496 
3497 	return 0;
3498 }
3499 
3500 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3501 				   struct drm_printer *m,
3502 				   void (*show_request)(struct drm_printer *m,
3503 							struct i915_request *rq,
3504 							const char *prefix),
3505 				   unsigned int max)
3506 {
3507 	const struct intel_engine_execlists *execlists = &engine->execlists;
3508 	struct i915_request *rq, *last;
3509 	unsigned long flags;
3510 	unsigned int count;
3511 	struct rb_node *rb;
3512 
3513 	spin_lock_irqsave(&engine->timeline.lock, flags);
3514 
3515 	last = NULL;
3516 	count = 0;
3517 	list_for_each_entry(rq, &engine->timeline.requests, link) {
3518 		if (count++ < max - 1)
3519 			show_request(m, rq, "\t\tE ");
3520 		else
3521 			last = rq;
3522 	}
3523 	if (last) {
3524 		if (count > max) {
3525 			drm_printf(m,
3526 				   "\t\t...skipping %d executing requests...\n",
3527 				   count - max);
3528 		}
3529 		show_request(m, last, "\t\tE ");
3530 	}
3531 
3532 	last = NULL;
3533 	count = 0;
3534 	if (execlists->queue_priority_hint != INT_MIN)
3535 		drm_printf(m, "\t\tQueue priority hint: %d\n",
3536 			   execlists->queue_priority_hint);
3537 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3538 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3539 		int i;
3540 
3541 		priolist_for_each_request(rq, p, i) {
3542 			if (count++ < max - 1)
3543 				show_request(m, rq, "\t\tQ ");
3544 			else
3545 				last = rq;
3546 		}
3547 	}
3548 	if (last) {
3549 		if (count > max) {
3550 			drm_printf(m,
3551 				   "\t\t...skipping %d queued requests...\n",
3552 				   count - max);
3553 		}
3554 		show_request(m, last, "\t\tQ ");
3555 	}
3556 
3557 	last = NULL;
3558 	count = 0;
3559 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3560 		struct virtual_engine *ve =
3561 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3562 		struct i915_request *rq = READ_ONCE(ve->request);
3563 
3564 		if (rq) {
3565 			if (count++ < max - 1)
3566 				show_request(m, rq, "\t\tV ");
3567 			else
3568 				last = rq;
3569 		}
3570 	}
3571 	if (last) {
3572 		if (count > max) {
3573 			drm_printf(m,
3574 				   "\t\t...skipping %d virtual requests...\n",
3575 				   count - max);
3576 		}
3577 		show_request(m, last, "\t\tV ");
3578 	}
3579 
3580 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3581 }
3582 
3583 void intel_lr_context_reset(struct intel_engine_cs *engine,
3584 			    struct intel_context *ce,
3585 			    u32 head,
3586 			    bool scrub)
3587 {
3588 	/*
3589 	 * We want a simple context + ring to execute the breadcrumb update.
3590 	 * We cannot rely on the context being intact across the GPU hang,
3591 	 * so clear it and rebuild just what we need for the breadcrumb.
3592 	 * All pending requests for this context will be zapped, and any
3593 	 * future request will be after userspace has had the opportunity
3594 	 * to recreate its own state.
3595 	 */
3596 	if (scrub) {
3597 		u32 *regs = ce->lrc_reg_state;
3598 
3599 		if (engine->pinned_default_state) {
3600 			memcpy(regs, /* skip restoring the vanilla PPHWSP */
3601 			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3602 			       engine->context_size - PAGE_SIZE);
3603 		}
3604 		execlists_init_reg_state(regs, ce, engine, ce->ring);
3605 	}
3606 
3607 	/* Rerun the request; its payload has been neutered (if guilty). */
3608 	ce->ring->head = head;
3609 	intel_ring_update_space(ce->ring);
3610 
3611 	__execlists_update_reg_state(ce, engine);
3612 }
3613 
3614 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3615 #include "selftest_lrc.c"
3616 #endif
3617