1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright © 2020 Intel Corporation 4 * 5 * Please try to maintain the following order within this file unless it makes 6 * sense to do otherwise. From top to bottom: 7 * 1. typedefs 8 * 2. #defines, and macros 9 * 3. structure definitions 10 * 4. function prototypes 11 * 12 * Within each section, please try to order by generation in ascending order, 13 * from top to bottom (ie. gen6 on the top, gen8 on the bottom). 14 */ 15 16 #ifndef __INTEL_GTT_H__ 17 #define __INTEL_GTT_H__ 18 19 #include <linux/io-mapping.h> 20 #include <linux/kref.h> 21 #include <linux/mm.h> 22 #include <linux/pagevec.h> 23 #include <linux/scatterlist.h> 24 #include <linux/workqueue.h> 25 26 #include <drm/drm_mm.h> 27 28 #include "gt/intel_reset.h" 29 #include "i915_selftest.h" 30 #include "i915_vma_resource.h" 31 #include "i915_vma_types.h" 32 #include "i915_params.h" 33 #include "intel_memory_region.h" 34 35 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 36 37 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT) 38 #define DBG(...) trace_printk(__VA_ARGS__) 39 #else 40 #define DBG(...) 41 #endif 42 43 #define NALLOC 3 /* 1 normal, 1 for concurrent threads, 1 for preallocation */ 44 45 #define I915_GTT_PAGE_SIZE_4K BIT_ULL(12) 46 #define I915_GTT_PAGE_SIZE_64K BIT_ULL(16) 47 #define I915_GTT_PAGE_SIZE_2M BIT_ULL(21) 48 49 #define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K 50 #define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M 51 52 #define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE 53 54 #define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE 55 56 #define I915_FENCE_REG_NONE -1 57 #define I915_MAX_NUM_FENCES 32 58 /* 32 fences + sign bit for FENCE_REG_NONE */ 59 #define I915_MAX_NUM_FENCE_BITS 6 60 61 typedef u32 gen6_pte_t; 62 typedef u64 gen8_pte_t; 63 64 #define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT) 65 66 #define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len))) 67 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1) 68 #define I915_PDES 512 69 #define I915_PDE_MASK (I915_PDES - 1) 70 71 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */ 72 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) 73 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 74 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 75 #define GEN6_PTE_CACHE_LLC (2 << 1) 76 #define GEN6_PTE_UNCACHED (1 << 1) 77 #define GEN6_PTE_VALID REG_BIT(0) 78 79 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t)) 80 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE) 81 #define GEN6_PD_ALIGN (PAGE_SIZE * 16) 82 #define GEN6_PDE_SHIFT 22 83 #define GEN6_PDE_VALID REG_BIT(0) 84 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT)) 85 86 #define GEN7_PTE_CACHE_L3_LLC (3 << 1) 87 88 #define BYT_PTE_SNOOPED_BY_CPU_CACHES REG_BIT(2) 89 #define BYT_PTE_WRITEABLE REG_BIT(1) 90 91 #define GEN12_PPGTT_PTE_LM BIT_ULL(11) 92 93 #define GEN12_GGTT_PTE_LM BIT_ULL(1) 94 95 #define GEN12_PDE_64K BIT(6) 96 #define GEN12_PTE_PS64 BIT(8) 97 98 /* 99 * Cacheability Control is a 4-bit value. The low three bits are stored in bits 100 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. 101 */ 102 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ 103 (((bits) & 0x8) << (11 - 3))) 104 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) 105 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) 106 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) 107 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) 108 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) 109 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) 110 #define HSW_PTE_UNCACHED (0) 111 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) 112 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) 113 114 /* 115 * GEN8 32b style address is defined as a 3 level page table: 116 * 31:30 | 29:21 | 20:12 | 11:0 117 * PDPE | PDE | PTE | offset 118 * The difference as compared to normal x86 3 level page table is the PDPEs are 119 * programmed via register. 120 * 121 * GEN8 48b style address is defined as a 4 level page table: 122 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0 123 * PML4E | PDPE | PDE | PTE | offset 124 */ 125 #define GEN8_3LVL_PDPES 4 126 127 #define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD) 128 #define PPAT_CACHED_PDE 0 /* WB LLC */ 129 #define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */ 130 #define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */ 131 132 #define CHV_PPAT_SNOOP REG_BIT(6) 133 #define GEN8_PPAT_AGE(x) ((x)<<4) 134 #define GEN8_PPAT_LLCeLLC (3<<2) 135 #define GEN8_PPAT_LLCELLC (2<<2) 136 #define GEN8_PPAT_LLC (1<<2) 137 #define GEN8_PPAT_WB (3<<0) 138 #define GEN8_PPAT_WT (2<<0) 139 #define GEN8_PPAT_WC (1<<0) 140 #define GEN8_PPAT_UC (0<<0) 141 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) 142 #define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8)) 143 144 #define GEN8_PAGE_PRESENT BIT_ULL(0) 145 #define GEN8_PAGE_RW BIT_ULL(1) 146 147 #define GEN8_PDE_IPS_64K BIT(11) 148 #define GEN8_PDE_PS_2M BIT(7) 149 150 enum i915_cache_level; 151 152 struct drm_i915_gem_object; 153 struct i915_fence_reg; 154 struct i915_vma; 155 struct intel_gt; 156 157 #define for_each_sgt_daddr(__dp, __iter, __sgt) \ 158 __for_each_sgt_daddr(__dp, __iter, __sgt, I915_GTT_PAGE_SIZE) 159 160 struct i915_page_table { 161 struct drm_i915_gem_object *base; 162 union { 163 atomic_t used; 164 struct i915_page_table *stash; 165 }; 166 bool is_compact; 167 }; 168 169 struct i915_page_directory { 170 struct i915_page_table pt; 171 spinlock_t lock; 172 void **entry; 173 }; 174 175 #define __px_choose_expr(x, type, expr, other) \ 176 __builtin_choose_expr( \ 177 __builtin_types_compatible_p(typeof(x), type) || \ 178 __builtin_types_compatible_p(typeof(x), const type), \ 179 ({ type __x = (type)(x); expr; }), \ 180 other) 181 182 #define px_base(px) \ 183 __px_choose_expr(px, struct drm_i915_gem_object *, __x, \ 184 __px_choose_expr(px, struct i915_page_table *, __x->base, \ 185 __px_choose_expr(px, struct i915_page_directory *, __x->pt.base, \ 186 (void)0))) 187 188 struct page *__px_page(struct drm_i915_gem_object *p); 189 dma_addr_t __px_dma(struct drm_i915_gem_object *p); 190 #define px_dma(px) (__px_dma(px_base(px))) 191 192 void *__px_vaddr(struct drm_i915_gem_object *p); 193 #define px_vaddr(px) (__px_vaddr(px_base(px))) 194 195 #define px_pt(px) \ 196 __px_choose_expr(px, struct i915_page_table *, __x, \ 197 __px_choose_expr(px, struct i915_page_directory *, &__x->pt, \ 198 (void)0)) 199 #define px_used(px) (&px_pt(px)->used) 200 201 struct i915_vm_pt_stash { 202 /* preallocated chains of page tables/directories */ 203 struct i915_page_table *pt[2]; 204 /* 205 * Optionally override the alignment/size of the physical page that 206 * contains each PT. If not set defaults back to the usual 207 * I915_GTT_PAGE_SIZE_4K. This does not influence the other paging 208 * structures. MUST be a power-of-two. ONLY applicable on discrete 209 * platforms. 210 */ 211 int pt_sz; 212 }; 213 214 struct i915_vma_ops { 215 /* Map an object into an address space with the given cache flags. */ 216 void (*bind_vma)(struct i915_address_space *vm, 217 struct i915_vm_pt_stash *stash, 218 struct i915_vma_resource *vma_res, 219 enum i915_cache_level cache_level, 220 u32 flags); 221 /* 222 * Unmap an object from an address space. This usually consists of 223 * setting the valid PTE entries to a reserved scratch page. 224 */ 225 void (*unbind_vma)(struct i915_address_space *vm, 226 struct i915_vma_resource *vma_res); 227 228 }; 229 230 struct i915_address_space { 231 struct kref ref; 232 struct work_struct release_work; 233 234 struct drm_mm mm; 235 struct intel_gt *gt; 236 struct drm_i915_private *i915; 237 struct device *dma; 238 u64 total; /* size addr space maps (ex. 2GB for ggtt) */ 239 u64 reserved; /* size addr space reserved */ 240 u64 min_alignment[INTEL_MEMORY_STOLEN_LOCAL + 1]; 241 242 unsigned int bind_async_flags; 243 244 struct mutex mutex; /* protects vma and our lists */ 245 246 struct kref resv_ref; /* kref to keep the reservation lock alive. */ 247 struct dma_resv _resv; /* reservation lock for all pd objects, and buffer pool */ 248 #define VM_CLASS_GGTT 0 249 #define VM_CLASS_PPGTT 1 250 #define VM_CLASS_DPT 2 251 252 struct drm_i915_gem_object *scratch[4]; 253 /** 254 * List of vma currently bound. 255 */ 256 struct list_head bound_list; 257 258 /** 259 * List of vmas not yet bound or evicted. 260 */ 261 struct list_head unbound_list; 262 263 /* Global GTT */ 264 bool is_ggtt:1; 265 266 /* Display page table */ 267 bool is_dpt:1; 268 269 /* Some systems support read-only mappings for GGTT and/or PPGTT */ 270 bool has_read_only:1; 271 272 /* Skip pte rewrite on unbind for suspend. Protected by @mutex */ 273 bool skip_pte_rewrite:1; 274 275 u8 top; 276 u8 pd_shift; 277 u8 scratch_order; 278 279 /* Flags used when creating page-table objects for this vm */ 280 unsigned long lmem_pt_obj_flags; 281 282 /* Interval tree for pending unbind vma resources */ 283 struct rb_root_cached pending_unbind; 284 285 struct drm_i915_gem_object * 286 (*alloc_pt_dma)(struct i915_address_space *vm, int sz); 287 struct drm_i915_gem_object * 288 (*alloc_scratch_dma)(struct i915_address_space *vm, int sz); 289 290 u64 (*pte_encode)(dma_addr_t addr, 291 enum i915_cache_level level, 292 u32 flags); /* Create a valid PTE */ 293 #define PTE_READ_ONLY BIT(0) 294 #define PTE_LM BIT(1) 295 296 void (*allocate_va_range)(struct i915_address_space *vm, 297 struct i915_vm_pt_stash *stash, 298 u64 start, u64 length); 299 void (*clear_range)(struct i915_address_space *vm, 300 u64 start, u64 length); 301 void (*scratch_range)(struct i915_address_space *vm, 302 u64 start, u64 length); 303 void (*insert_page)(struct i915_address_space *vm, 304 dma_addr_t addr, 305 u64 offset, 306 enum i915_cache_level cache_level, 307 u32 flags); 308 void (*insert_entries)(struct i915_address_space *vm, 309 struct i915_vma_resource *vma_res, 310 enum i915_cache_level cache_level, 311 u32 flags); 312 void (*raw_insert_page)(struct i915_address_space *vm, 313 dma_addr_t addr, 314 u64 offset, 315 enum i915_cache_level cache_level, 316 u32 flags); 317 void (*raw_insert_entries)(struct i915_address_space *vm, 318 struct i915_vma_resource *vma_res, 319 enum i915_cache_level cache_level, 320 u32 flags); 321 void (*cleanup)(struct i915_address_space *vm); 322 323 void (*foreach)(struct i915_address_space *vm, 324 u64 start, u64 length, 325 void (*fn)(struct i915_address_space *vm, 326 struct i915_page_table *pt, 327 void *data), 328 void *data); 329 330 struct i915_vma_ops vma_ops; 331 332 I915_SELFTEST_DECLARE(struct fault_attr fault_attr); 333 I915_SELFTEST_DECLARE(bool scrub_64K); 334 }; 335 336 /* 337 * The Graphics Translation Table is the way in which GEN hardware translates a 338 * Graphics Virtual Address into a Physical Address. In addition to the normal 339 * collateral associated with any va->pa translations GEN hardware also has a 340 * portion of the GTT which can be mapped by the CPU and remain both coherent 341 * and correct (in cases like swizzling). That region is referred to as GMADR in 342 * the spec. 343 */ 344 struct i915_ggtt { 345 struct i915_address_space vm; 346 347 struct io_mapping iomap; /* Mapping to our CPU mappable region */ 348 struct resource gmadr; /* GMADR resource */ 349 resource_size_t mappable_end; /* End offset that we can CPU map */ 350 351 /** "Graphics Stolen Memory" holds the global PTEs */ 352 void __iomem *gsm; 353 void (*invalidate)(struct i915_ggtt *ggtt); 354 355 /** PPGTT used for aliasing the PPGTT with the GTT */ 356 struct i915_ppgtt *alias; 357 358 bool do_idle_maps; 359 360 int mtrr; 361 362 /** Bit 6 swizzling required for X tiling */ 363 u32 bit_6_swizzle_x; 364 /** Bit 6 swizzling required for Y tiling */ 365 u32 bit_6_swizzle_y; 366 367 u32 pin_bias; 368 369 unsigned int num_fences; 370 struct i915_fence_reg *fence_regs; 371 struct list_head fence_list; 372 373 /** 374 * List of all objects in gtt_space, currently mmaped by userspace. 375 * All objects within this list must also be on bound_list. 376 */ 377 struct list_head userfault_list; 378 379 struct mutex error_mutex; 380 struct drm_mm_node error_capture; 381 struct drm_mm_node uc_fw; 382 383 /** List of GTs mapping this GGTT */ 384 struct list_head gt_list; 385 }; 386 387 struct i915_ppgtt { 388 struct i915_address_space vm; 389 390 struct i915_page_directory *pd; 391 }; 392 393 #define i915_is_ggtt(vm) ((vm)->is_ggtt) 394 #define i915_is_dpt(vm) ((vm)->is_dpt) 395 #define i915_is_ggtt_or_dpt(vm) (i915_is_ggtt(vm) || i915_is_dpt(vm)) 396 397 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915); 398 399 int __must_check 400 i915_vm_lock_objects(struct i915_address_space *vm, struct i915_gem_ww_ctx *ww); 401 402 static inline bool 403 i915_vm_is_4lvl(const struct i915_address_space *vm) 404 { 405 return (vm->total - 1) >> 32; 406 } 407 408 static inline bool 409 i915_vm_has_scratch_64K(struct i915_address_space *vm) 410 { 411 return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K); 412 } 413 414 static inline u64 i915_vm_min_alignment(struct i915_address_space *vm, 415 enum intel_memory_type type) 416 { 417 /* avoid INTEL_MEMORY_MOCK overflow */ 418 if ((int)type >= ARRAY_SIZE(vm->min_alignment)) 419 type = INTEL_MEMORY_SYSTEM; 420 421 return vm->min_alignment[type]; 422 } 423 424 static inline u64 i915_vm_obj_min_alignment(struct i915_address_space *vm, 425 struct drm_i915_gem_object *obj) 426 { 427 struct intel_memory_region *mr = READ_ONCE(obj->mm.region); 428 enum intel_memory_type type = mr ? mr->type : INTEL_MEMORY_SYSTEM; 429 430 return i915_vm_min_alignment(vm, type); 431 } 432 433 static inline bool 434 i915_vm_has_cache_coloring(struct i915_address_space *vm) 435 { 436 return i915_is_ggtt(vm) && vm->mm.color_adjust; 437 } 438 439 static inline struct i915_ggtt * 440 i915_vm_to_ggtt(struct i915_address_space *vm) 441 { 442 BUILD_BUG_ON(offsetof(struct i915_ggtt, vm)); 443 GEM_BUG_ON(!i915_is_ggtt(vm)); 444 return container_of(vm, struct i915_ggtt, vm); 445 } 446 447 static inline struct i915_ppgtt * 448 i915_vm_to_ppgtt(struct i915_address_space *vm) 449 { 450 BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm)); 451 GEM_BUG_ON(i915_is_ggtt_or_dpt(vm)); 452 return container_of(vm, struct i915_ppgtt, vm); 453 } 454 455 static inline struct i915_address_space * 456 i915_vm_get(struct i915_address_space *vm) 457 { 458 kref_get(&vm->ref); 459 return vm; 460 } 461 462 static inline struct i915_address_space * 463 i915_vm_tryget(struct i915_address_space *vm) 464 { 465 return kref_get_unless_zero(&vm->ref) ? vm : NULL; 466 } 467 468 static inline void assert_vm_alive(struct i915_address_space *vm) 469 { 470 GEM_BUG_ON(!kref_read(&vm->ref)); 471 } 472 473 /** 474 * i915_vm_resv_get - Obtain a reference on the vm's reservation lock 475 * @vm: The vm whose reservation lock we want to share. 476 * 477 * Return: A pointer to the vm's reservation lock. 478 */ 479 static inline struct dma_resv *i915_vm_resv_get(struct i915_address_space *vm) 480 { 481 kref_get(&vm->resv_ref); 482 return &vm->_resv; 483 } 484 485 void i915_vm_release(struct kref *kref); 486 487 void i915_vm_resv_release(struct kref *kref); 488 489 static inline void i915_vm_put(struct i915_address_space *vm) 490 { 491 kref_put(&vm->ref, i915_vm_release); 492 } 493 494 /** 495 * i915_vm_resv_put - Release a reference on the vm's reservation lock 496 * @resv: Pointer to a reservation lock obtained from i915_vm_resv_get() 497 */ 498 static inline void i915_vm_resv_put(struct i915_address_space *vm) 499 { 500 kref_put(&vm->resv_ref, i915_vm_resv_release); 501 } 502 503 void i915_address_space_init(struct i915_address_space *vm, int subclass); 504 void i915_address_space_fini(struct i915_address_space *vm); 505 506 static inline u32 i915_pte_index(u64 address, unsigned int pde_shift) 507 { 508 const u32 mask = NUM_PTE(pde_shift) - 1; 509 510 return (address >> PAGE_SHIFT) & mask; 511 } 512 513 /* 514 * Helper to counts the number of PTEs within the given length. This count 515 * does not cross a page table boundary, so the max value would be 516 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8. 517 */ 518 static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift) 519 { 520 const u64 mask = ~((1ULL << pde_shift) - 1); 521 u64 end; 522 523 GEM_BUG_ON(length == 0); 524 GEM_BUG_ON(offset_in_page(addr | length)); 525 526 end = addr + length; 527 528 if ((addr & mask) != (end & mask)) 529 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift); 530 531 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift); 532 } 533 534 static inline u32 i915_pde_index(u64 addr, u32 shift) 535 { 536 return (addr >> shift) & I915_PDE_MASK; 537 } 538 539 static inline struct i915_page_table * 540 i915_pt_entry(const struct i915_page_directory * const pd, 541 const unsigned short n) 542 { 543 return pd->entry[n]; 544 } 545 546 static inline struct i915_page_directory * 547 i915_pd_entry(const struct i915_page_directory * const pdp, 548 const unsigned short n) 549 { 550 return pdp->entry[n]; 551 } 552 553 static inline dma_addr_t 554 i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n) 555 { 556 struct i915_page_table *pt = ppgtt->pd->entry[n]; 557 558 return __px_dma(pt ? px_base(pt) : ppgtt->vm.scratch[ppgtt->vm.top]); 559 } 560 561 void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt, 562 unsigned long lmem_pt_obj_flags); 563 void intel_ggtt_bind_vma(struct i915_address_space *vm, 564 struct i915_vm_pt_stash *stash, 565 struct i915_vma_resource *vma_res, 566 enum i915_cache_level cache_level, 567 u32 flags); 568 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 569 struct i915_vma_resource *vma_res); 570 571 int i915_ggtt_probe_hw(struct drm_i915_private *i915); 572 int i915_ggtt_init_hw(struct drm_i915_private *i915); 573 int i915_ggtt_enable_hw(struct drm_i915_private *i915); 574 int i915_init_ggtt(struct drm_i915_private *i915); 575 void i915_ggtt_driver_release(struct drm_i915_private *i915); 576 void i915_ggtt_driver_late_release(struct drm_i915_private *i915); 577 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915); 578 579 static inline bool i915_ggtt_has_aperture(const struct i915_ggtt *ggtt) 580 { 581 return ggtt->mappable_end > 0; 582 } 583 584 int i915_ppgtt_init_hw(struct intel_gt *gt); 585 586 struct i915_ppgtt *i915_ppgtt_create(struct intel_gt *gt, 587 unsigned long lmem_pt_obj_flags); 588 589 void i915_ggtt_suspend_vm(struct i915_address_space *vm); 590 bool i915_ggtt_resume_vm(struct i915_address_space *vm); 591 void i915_ggtt_suspend(struct i915_ggtt *gtt); 592 void i915_ggtt_resume(struct i915_ggtt *ggtt); 593 594 void 595 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count); 596 597 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64)) 598 #define fill32_px(px, v) do { \ 599 u64 v__ = lower_32_bits(v); \ 600 fill_px((px), v__ << 32 | v__); \ 601 } while (0) 602 603 int setup_scratch_page(struct i915_address_space *vm); 604 void free_scratch(struct i915_address_space *vm); 605 606 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz); 607 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz); 608 struct i915_page_table *alloc_pt(struct i915_address_space *vm, int sz); 609 struct i915_page_directory *alloc_pd(struct i915_address_space *vm); 610 struct i915_page_directory *__alloc_pd(int npde); 611 612 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj); 613 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj); 614 615 void free_px(struct i915_address_space *vm, 616 struct i915_page_table *pt, int lvl); 617 #define free_pt(vm, px) free_px(vm, px, 0) 618 #define free_pd(vm, px) free_px(vm, px_pt(px), 1) 619 620 void 621 __set_pd_entry(struct i915_page_directory * const pd, 622 const unsigned short idx, 623 struct i915_page_table *pt, 624 u64 (*encode)(const dma_addr_t, const enum i915_cache_level)); 625 626 #define set_pd_entry(pd, idx, to) \ 627 __set_pd_entry((pd), (idx), px_pt(to), gen8_pde_encode) 628 629 void 630 clear_pd_entry(struct i915_page_directory * const pd, 631 const unsigned short idx, 632 const struct drm_i915_gem_object * const scratch); 633 634 bool 635 release_pd_entry(struct i915_page_directory * const pd, 636 const unsigned short idx, 637 struct i915_page_table * const pt, 638 const struct drm_i915_gem_object * const scratch); 639 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt); 640 641 void ppgtt_bind_vma(struct i915_address_space *vm, 642 struct i915_vm_pt_stash *stash, 643 struct i915_vma_resource *vma_res, 644 enum i915_cache_level cache_level, 645 u32 flags); 646 void ppgtt_unbind_vma(struct i915_address_space *vm, 647 struct i915_vma_resource *vma_res); 648 649 void gtt_write_workarounds(struct intel_gt *gt); 650 651 void setup_private_pat(struct intel_gt *gt); 652 653 int i915_vm_alloc_pt_stash(struct i915_address_space *vm, 654 struct i915_vm_pt_stash *stash, 655 u64 size); 656 int i915_vm_map_pt_stash(struct i915_address_space *vm, 657 struct i915_vm_pt_stash *stash); 658 void i915_vm_free_pt_stash(struct i915_address_space *vm, 659 struct i915_vm_pt_stash *stash); 660 661 struct i915_vma * 662 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size); 663 664 struct i915_vma * 665 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size); 666 667 static inline struct sgt_dma { 668 struct scatterlist *sg; 669 dma_addr_t dma, max; 670 } sgt_dma(struct i915_vma_resource *vma_res) { 671 struct scatterlist *sg = vma_res->bi.pages->sgl; 672 dma_addr_t addr = sg_dma_address(sg); 673 674 return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; 675 } 676 677 #endif 678