xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 
10 #include "i915_trace.h"
11 #include "intel_gt.h"
12 #include "intel_gtt.h"
13 
14 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
15 {
16 	struct drm_i915_gem_object *obj;
17 
18 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
19 		i915_gem_shrink_all(vm->i915);
20 
21 	obj = i915_gem_object_create_internal(vm->i915, sz);
22 	/* ensure all dma objects have the same reservation class */
23 	if (!IS_ERR(obj))
24 		obj->base.resv = &vm->resv;
25 	return obj;
26 }
27 
28 int pin_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
29 {
30 	int err;
31 
32 	i915_gem_object_lock(obj, NULL);
33 	err = i915_gem_object_pin_pages(obj);
34 	i915_gem_object_unlock(obj);
35 	if (err)
36 		return err;
37 
38 	i915_gem_object_make_unshrinkable(obj);
39 	return 0;
40 }
41 
42 int pin_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
43 {
44 	int err;
45 
46 	err = i915_gem_object_pin_pages(obj);
47 	if (err)
48 		return err;
49 
50 	i915_gem_object_make_unshrinkable(obj);
51 	return 0;
52 }
53 
54 void __i915_vm_close(struct i915_address_space *vm)
55 {
56 	struct i915_vma *vma, *vn;
57 
58 	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
59 		return;
60 
61 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
62 		struct drm_i915_gem_object *obj = vma->obj;
63 
64 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
65 		if (!kref_get_unless_zero(&obj->base.refcount))
66 			continue;
67 
68 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
69 		WARN_ON(__i915_vma_unbind(vma));
70 		__i915_vma_put(vma);
71 
72 		i915_gem_object_put(obj);
73 	}
74 	GEM_BUG_ON(!list_empty(&vm->bound_list));
75 
76 	mutex_unlock(&vm->mutex);
77 }
78 
79 /* lock the vm into the current ww, if we lock one, we lock all */
80 int i915_vm_lock_objects(struct i915_address_space *vm,
81 			 struct i915_gem_ww_ctx *ww)
82 {
83 	if (vm->scratch[0]->base.resv == &vm->resv) {
84 		return i915_gem_object_lock(vm->scratch[0], ww);
85 	} else {
86 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
87 
88 		/* We borrowed the scratch page from ggtt, take the top level object */
89 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
90 	}
91 }
92 
93 void i915_address_space_fini(struct i915_address_space *vm)
94 {
95 	drm_mm_takedown(&vm->mm);
96 	mutex_destroy(&vm->mutex);
97 }
98 
99 static void __i915_vm_release(struct work_struct *work)
100 {
101 	struct i915_address_space *vm =
102 		container_of(work, struct i915_address_space, rcu.work);
103 
104 	vm->cleanup(vm);
105 	i915_address_space_fini(vm);
106 	dma_resv_fini(&vm->resv);
107 
108 	kfree(vm);
109 }
110 
111 void i915_vm_release(struct kref *kref)
112 {
113 	struct i915_address_space *vm =
114 		container_of(kref, struct i915_address_space, ref);
115 
116 	GEM_BUG_ON(i915_is_ggtt(vm));
117 	trace_i915_ppgtt_release(vm);
118 
119 	queue_rcu_work(vm->i915->wq, &vm->rcu);
120 }
121 
122 void i915_address_space_init(struct i915_address_space *vm, int subclass)
123 {
124 	kref_init(&vm->ref);
125 	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
126 	atomic_set(&vm->open, 1);
127 
128 	/*
129 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
130 	 * Do a dummy acquire now under fs_reclaim so that any allocation
131 	 * attempt holding the lock is immediately reported by lockdep.
132 	 */
133 	mutex_init(&vm->mutex);
134 	lockdep_set_subclass(&vm->mutex, subclass);
135 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
136 	dma_resv_init(&vm->resv);
137 
138 	GEM_BUG_ON(!vm->total);
139 	drm_mm_init(&vm->mm, 0, vm->total);
140 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
141 
142 	INIT_LIST_HEAD(&vm->bound_list);
143 }
144 
145 void clear_pages(struct i915_vma *vma)
146 {
147 	GEM_BUG_ON(!vma->pages);
148 
149 	if (vma->pages != vma->obj->mm.pages) {
150 		sg_free_table(vma->pages);
151 		kfree(vma->pages);
152 	}
153 	vma->pages = NULL;
154 
155 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
156 }
157 
158 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
159 {
160 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
161 	return sg_dma_address(p->mm.pages->sgl);
162 }
163 
164 struct page *__px_page(struct drm_i915_gem_object *p)
165 {
166 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
167 	return sg_page(p->mm.pages->sgl);
168 }
169 
170 void
171 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
172 {
173 	struct page *page = __px_page(p);
174 	void *vaddr;
175 
176 	vaddr = kmap(page);
177 	memset64(vaddr, val, count);
178 	clflush_cache_range(vaddr, PAGE_SIZE);
179 	kunmap(page);
180 }
181 
182 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
183 {
184 	struct sgt_iter sgt;
185 	struct page *page;
186 	u8 val;
187 
188 	val = 0;
189 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
190 		val = POISON_FREE;
191 
192 	for_each_sgt_page(page, sgt, scratch->mm.pages) {
193 		void *vaddr;
194 
195 		vaddr = kmap(page);
196 		memset(vaddr, val, PAGE_SIZE);
197 		kunmap(page);
198 	}
199 }
200 
201 int setup_scratch_page(struct i915_address_space *vm)
202 {
203 	unsigned long size;
204 
205 	/*
206 	 * In order to utilize 64K pages for an object with a size < 2M, we will
207 	 * need to support a 64K scratch page, given that every 16th entry for a
208 	 * page-table operating in 64K mode must point to a properly aligned 64K
209 	 * region, including any PTEs which happen to point to scratch.
210 	 *
211 	 * This is only relevant for the 48b PPGTT where we support
212 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
213 	 * scratch (read-only) between all vm, we create one 64k scratch page
214 	 * for all.
215 	 */
216 	size = I915_GTT_PAGE_SIZE_4K;
217 	if (i915_vm_is_4lvl(vm) &&
218 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
219 		size = I915_GTT_PAGE_SIZE_64K;
220 
221 	do {
222 		struct drm_i915_gem_object *obj;
223 
224 		obj = vm->alloc_pt_dma(vm, size);
225 		if (IS_ERR(obj))
226 			goto skip;
227 
228 		if (pin_pt_dma(vm, obj))
229 			goto skip_obj;
230 
231 		/* We need a single contiguous page for our scratch */
232 		if (obj->mm.page_sizes.sg < size)
233 			goto skip_obj;
234 
235 		/* And it needs to be correspondingly aligned */
236 		if (__px_dma(obj) & (size - 1))
237 			goto skip_obj;
238 
239 		/*
240 		 * Use a non-zero scratch page for debugging.
241 		 *
242 		 * We want a value that should be reasonably obvious
243 		 * to spot in the error state, while also causing a GPU hang
244 		 * if executed. We prefer using a clear page in production, so
245 		 * should it ever be accidentally used, the effect should be
246 		 * fairly benign.
247 		 */
248 		poison_scratch_page(obj);
249 
250 		vm->scratch[0] = obj;
251 		vm->scratch_order = get_order(size);
252 		return 0;
253 
254 skip_obj:
255 		i915_gem_object_put(obj);
256 skip:
257 		if (size == I915_GTT_PAGE_SIZE_4K)
258 			return -ENOMEM;
259 
260 		size = I915_GTT_PAGE_SIZE_4K;
261 	} while (1);
262 }
263 
264 void free_scratch(struct i915_address_space *vm)
265 {
266 	int i;
267 
268 	for (i = 0; i <= vm->top; i++)
269 		i915_gem_object_put(vm->scratch[i]);
270 }
271 
272 void gtt_write_workarounds(struct intel_gt *gt)
273 {
274 	struct drm_i915_private *i915 = gt->i915;
275 	struct intel_uncore *uncore = gt->uncore;
276 
277 	/*
278 	 * This function is for gtt related workarounds. This function is
279 	 * called on driver load and after a GPU reset, so you can place
280 	 * workarounds here even if they get overwritten by GPU reset.
281 	 */
282 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
283 	if (IS_BROADWELL(i915))
284 		intel_uncore_write(uncore,
285 				   GEN8_L3_LRA_1_GPGPU,
286 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
287 	else if (IS_CHERRYVIEW(i915))
288 		intel_uncore_write(uncore,
289 				   GEN8_L3_LRA_1_GPGPU,
290 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
291 	else if (IS_GEN9_LP(i915))
292 		intel_uncore_write(uncore,
293 				   GEN8_L3_LRA_1_GPGPU,
294 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
295 	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
296 		intel_uncore_write(uncore,
297 				   GEN8_L3_LRA_1_GPGPU,
298 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
299 
300 	/*
301 	 * To support 64K PTEs we need to first enable the use of the
302 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
303 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
304 	 * shouldn't be needed after GEN10.
305 	 *
306 	 * 64K pages were first introduced from BDW+, although technically they
307 	 * only *work* from gen9+. For pre-BDW we instead have the option for
308 	 * 32K pages, but we don't currently have any support for it in our
309 	 * driver.
310 	 */
311 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
312 	    INTEL_GEN(i915) <= 10)
313 		intel_uncore_rmw(uncore,
314 				 GEN8_GAMW_ECO_DEV_RW_IA,
315 				 0,
316 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
317 
318 	if (IS_GEN_RANGE(i915, 8, 11)) {
319 		bool can_use_gtt_cache = true;
320 
321 		/*
322 		 * According to the BSpec if we use 2M/1G pages then we also
323 		 * need to disable the GTT cache. At least on BDW we can see
324 		 * visual corruption when using 2M pages, and not disabling the
325 		 * GTT cache.
326 		 */
327 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
328 			can_use_gtt_cache = false;
329 
330 		/* WaGttCachingOffByDefault */
331 		intel_uncore_write(uncore,
332 				   HSW_GTT_CACHE_EN,
333 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
334 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
335 				 intel_uncore_read(uncore,
336 						   HSW_GTT_CACHE_EN) == 0);
337 	}
338 }
339 
340 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
341 {
342 	/* TGL doesn't support LLC or AGE settings */
343 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
344 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
345 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
346 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
347 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
348 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
349 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
350 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
351 }
352 
353 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
354 {
355 	intel_uncore_write(uncore,
356 			   GEN10_PAT_INDEX(0),
357 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
358 	intel_uncore_write(uncore,
359 			   GEN10_PAT_INDEX(1),
360 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
361 	intel_uncore_write(uncore,
362 			   GEN10_PAT_INDEX(2),
363 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
364 	intel_uncore_write(uncore,
365 			   GEN10_PAT_INDEX(3),
366 			   GEN8_PPAT_UC);
367 	intel_uncore_write(uncore,
368 			   GEN10_PAT_INDEX(4),
369 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
370 	intel_uncore_write(uncore,
371 			   GEN10_PAT_INDEX(5),
372 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
373 	intel_uncore_write(uncore,
374 			   GEN10_PAT_INDEX(6),
375 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
376 	intel_uncore_write(uncore,
377 			   GEN10_PAT_INDEX(7),
378 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
379 }
380 
381 /*
382  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
383  * bits. When using advanced contexts each context stores its own PAT, but
384  * writing this data shouldn't be harmful even in those cases.
385  */
386 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
387 {
388 	struct drm_i915_private *i915 = uncore->i915;
389 	u64 pat;
390 
391 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
392 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
393 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
394 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
395 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
396 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
397 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
398 
399 	/* for scanout with eLLC */
400 	if (INTEL_GEN(i915) >= 9)
401 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
402 	else
403 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
404 
405 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
406 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
407 }
408 
409 static void chv_setup_private_ppat(struct intel_uncore *uncore)
410 {
411 	u64 pat;
412 
413 	/*
414 	 * Map WB on BDW to snooped on CHV.
415 	 *
416 	 * Only the snoop bit has meaning for CHV, the rest is
417 	 * ignored.
418 	 *
419 	 * The hardware will never snoop for certain types of accesses:
420 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
421 	 * - PPGTT page tables
422 	 * - some other special cycles
423 	 *
424 	 * As with BDW, we also need to consider the following for GT accesses:
425 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
426 	 * so RTL will always use the value corresponding to
427 	 * pat_sel = 000".
428 	 * Which means we must set the snoop bit in PAT entry 0
429 	 * in order to keep the global status page working.
430 	 */
431 
432 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
433 	      GEN8_PPAT(1, 0) |
434 	      GEN8_PPAT(2, 0) |
435 	      GEN8_PPAT(3, 0) |
436 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
437 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
438 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
439 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
440 
441 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
442 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
443 }
444 
445 void setup_private_pat(struct intel_uncore *uncore)
446 {
447 	struct drm_i915_private *i915 = uncore->i915;
448 
449 	GEM_BUG_ON(INTEL_GEN(i915) < 8);
450 
451 	if (INTEL_GEN(i915) >= 12)
452 		tgl_setup_private_ppat(uncore);
453 	else if (INTEL_GEN(i915) >= 10)
454 		cnl_setup_private_ppat(uncore);
455 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
456 		chv_setup_private_ppat(uncore);
457 	else
458 		bdw_setup_private_ppat(uncore);
459 }
460 
461 struct i915_vma *
462 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
463 {
464 	struct drm_i915_gem_object *obj;
465 	struct i915_vma *vma;
466 
467 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
468 	if (IS_ERR(obj))
469 		return ERR_CAST(obj);
470 
471 	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
472 
473 	vma = i915_vma_instance(obj, vm, NULL);
474 	if (IS_ERR(vma)) {
475 		i915_gem_object_put(obj);
476 		return vma;
477 	}
478 
479 	return vma;
480 }
481 
482 struct i915_vma *
483 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
484 {
485 	struct i915_vma *vma;
486 	int err;
487 
488 	vma = __vm_create_scratch_for_read(vm, size);
489 	if (IS_ERR(vma))
490 		return vma;
491 
492 	err = i915_vma_pin(vma, 0, 0,
493 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
494 	if (err) {
495 		i915_vma_put(vma);
496 		return ERR_PTR(err);
497 	}
498 
499 	return vma;
500 }
501 
502 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
503 #include "selftests/mock_gtt.c"
504 #endif
505