1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 7 8 #include <linux/fault-inject.h> 9 10 #include "gem/i915_gem_lmem.h" 11 #include "i915_trace.h" 12 #include "intel_gt.h" 13 #include "intel_gtt.h" 14 15 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz) 16 { 17 struct drm_i915_gem_object *obj; 18 19 /* 20 * To avoid severe over-allocation when dealing with min_page_size 21 * restrictions, we override that behaviour here by allowing an object 22 * size and page layout which can be smaller. In practice this should be 23 * totally fine, since GTT paging structures are not typically inserted 24 * into the GTT. 25 * 26 * Note that we also hit this path for the scratch page, and for this 27 * case it might need to be 64K, but that should work fine here since we 28 * used the passed in size for the page size, which should ensure it 29 * also has the same alignment. 30 */ 31 obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, 0); 32 /* 33 * Ensure all paging structures for this vm share the same dma-resv 34 * object underneath, with the idea that one object_lock() will lock 35 * them all at once. 36 */ 37 if (!IS_ERR(obj)) { 38 obj->base.resv = i915_vm_resv_get(vm); 39 obj->shares_resv_from = vm; 40 } 41 42 return obj; 43 } 44 45 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) 46 { 47 struct drm_i915_gem_object *obj; 48 49 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 50 i915_gem_shrink_all(vm->i915); 51 52 obj = i915_gem_object_create_internal(vm->i915, sz); 53 /* 54 * Ensure all paging structures for this vm share the same dma-resv 55 * object underneath, with the idea that one object_lock() will lock 56 * them all at once. 57 */ 58 if (!IS_ERR(obj)) { 59 obj->base.resv = i915_vm_resv_get(vm); 60 obj->shares_resv_from = vm; 61 } 62 63 return obj; 64 } 65 66 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 67 { 68 enum i915_map_type type; 69 void *vaddr; 70 71 type = i915_coherent_map_type(vm->i915, obj, true); 72 vaddr = i915_gem_object_pin_map_unlocked(obj, type); 73 if (IS_ERR(vaddr)) 74 return PTR_ERR(vaddr); 75 76 i915_gem_object_make_unshrinkable(obj); 77 return 0; 78 } 79 80 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 81 { 82 enum i915_map_type type; 83 void *vaddr; 84 85 type = i915_coherent_map_type(vm->i915, obj, true); 86 vaddr = i915_gem_object_pin_map(obj, type); 87 if (IS_ERR(vaddr)) 88 return PTR_ERR(vaddr); 89 90 i915_gem_object_make_unshrinkable(obj); 91 return 0; 92 } 93 94 void __i915_vm_close(struct i915_address_space *vm) 95 { 96 struct i915_vma *vma, *vn; 97 98 if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex)) 99 return; 100 101 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 102 struct drm_i915_gem_object *obj = vma->obj; 103 104 /* Keep the obj (and hence the vma) alive as _we_ destroy it */ 105 if (!kref_get_unless_zero(&obj->base.refcount)) 106 continue; 107 108 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 109 WARN_ON(__i915_vma_unbind(vma)); 110 __i915_vma_put(vma); 111 112 i915_gem_object_put(obj); 113 } 114 GEM_BUG_ON(!list_empty(&vm->bound_list)); 115 116 mutex_unlock(&vm->mutex); 117 } 118 119 /* lock the vm into the current ww, if we lock one, we lock all */ 120 int i915_vm_lock_objects(struct i915_address_space *vm, 121 struct i915_gem_ww_ctx *ww) 122 { 123 if (vm->scratch[0]->base.resv == &vm->_resv) { 124 return i915_gem_object_lock(vm->scratch[0], ww); 125 } else { 126 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 127 128 /* We borrowed the scratch page from ggtt, take the top level object */ 129 return i915_gem_object_lock(ppgtt->pd->pt.base, ww); 130 } 131 } 132 133 void i915_address_space_fini(struct i915_address_space *vm) 134 { 135 drm_mm_takedown(&vm->mm); 136 mutex_destroy(&vm->mutex); 137 } 138 139 /** 140 * i915_vm_resv_release - Final struct i915_address_space destructor 141 * @kref: Pointer to the &i915_address_space.resv_ref member. 142 * 143 * This function is called when the last lock sharer no longer shares the 144 * &i915_address_space._resv lock. 145 */ 146 void i915_vm_resv_release(struct kref *kref) 147 { 148 struct i915_address_space *vm = 149 container_of(kref, typeof(*vm), resv_ref); 150 151 dma_resv_fini(&vm->_resv); 152 kfree(vm); 153 } 154 155 static void __i915_vm_release(struct work_struct *work) 156 { 157 struct i915_address_space *vm = 158 container_of(work, struct i915_address_space, rcu.work); 159 160 vm->cleanup(vm); 161 i915_address_space_fini(vm); 162 163 i915_vm_resv_put(vm); 164 } 165 166 void i915_vm_release(struct kref *kref) 167 { 168 struct i915_address_space *vm = 169 container_of(kref, struct i915_address_space, ref); 170 171 GEM_BUG_ON(i915_is_ggtt(vm)); 172 trace_i915_ppgtt_release(vm); 173 174 queue_rcu_work(vm->i915->wq, &vm->rcu); 175 } 176 177 void i915_address_space_init(struct i915_address_space *vm, int subclass) 178 { 179 kref_init(&vm->ref); 180 181 /* 182 * Special case for GGTT that has already done an early 183 * kref_init here. 184 */ 185 if (!kref_read(&vm->resv_ref)) 186 kref_init(&vm->resv_ref); 187 188 INIT_RCU_WORK(&vm->rcu, __i915_vm_release); 189 atomic_set(&vm->open, 1); 190 191 /* 192 * The vm->mutex must be reclaim safe (for use in the shrinker). 193 * Do a dummy acquire now under fs_reclaim so that any allocation 194 * attempt holding the lock is immediately reported by lockdep. 195 */ 196 mutex_init(&vm->mutex); 197 lockdep_set_subclass(&vm->mutex, subclass); 198 199 if (!intel_vm_no_concurrent_access_wa(vm->i915)) { 200 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 201 } else { 202 /* 203 * CHV + BXT VTD workaround use stop_machine(), 204 * which is allowed to allocate memory. This means &vm->mutex 205 * is the outer lock, and in theory we can allocate memory inside 206 * it through stop_machine(). 207 * 208 * Add the annotation for this, we use trylock in shrinker. 209 */ 210 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_); 211 might_alloc(GFP_KERNEL); 212 mutex_release(&vm->mutex.dep_map, _THIS_IP_); 213 } 214 dma_resv_init(&vm->_resv); 215 216 GEM_BUG_ON(!vm->total); 217 drm_mm_init(&vm->mm, 0, vm->total); 218 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 219 220 INIT_LIST_HEAD(&vm->bound_list); 221 } 222 223 void clear_pages(struct i915_vma *vma) 224 { 225 GEM_BUG_ON(!vma->pages); 226 227 if (vma->pages != vma->obj->mm.pages) { 228 sg_free_table(vma->pages); 229 kfree(vma->pages); 230 } 231 vma->pages = NULL; 232 233 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); 234 } 235 236 void *__px_vaddr(struct drm_i915_gem_object *p) 237 { 238 enum i915_map_type type; 239 240 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 241 return page_unpack_bits(p->mm.mapping, &type); 242 } 243 244 dma_addr_t __px_dma(struct drm_i915_gem_object *p) 245 { 246 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 247 return sg_dma_address(p->mm.pages->sgl); 248 } 249 250 struct page *__px_page(struct drm_i915_gem_object *p) 251 { 252 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 253 return sg_page(p->mm.pages->sgl); 254 } 255 256 void 257 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) 258 { 259 void *vaddr = __px_vaddr(p); 260 261 memset64(vaddr, val, count); 262 clflush_cache_range(vaddr, PAGE_SIZE); 263 } 264 265 static void poison_scratch_page(struct drm_i915_gem_object *scratch) 266 { 267 void *vaddr = __px_vaddr(scratch); 268 u8 val; 269 270 val = 0; 271 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 272 val = POISON_FREE; 273 274 memset(vaddr, val, scratch->base.size); 275 } 276 277 int setup_scratch_page(struct i915_address_space *vm) 278 { 279 unsigned long size; 280 281 /* 282 * In order to utilize 64K pages for an object with a size < 2M, we will 283 * need to support a 64K scratch page, given that every 16th entry for a 284 * page-table operating in 64K mode must point to a properly aligned 64K 285 * region, including any PTEs which happen to point to scratch. 286 * 287 * This is only relevant for the 48b PPGTT where we support 288 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 289 * scratch (read-only) between all vm, we create one 64k scratch page 290 * for all. 291 */ 292 size = I915_GTT_PAGE_SIZE_4K; 293 if (i915_vm_is_4lvl(vm) && 294 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) 295 size = I915_GTT_PAGE_SIZE_64K; 296 297 do { 298 struct drm_i915_gem_object *obj; 299 300 obj = vm->alloc_pt_dma(vm, size); 301 if (IS_ERR(obj)) 302 goto skip; 303 304 if (map_pt_dma(vm, obj)) 305 goto skip_obj; 306 307 /* We need a single contiguous page for our scratch */ 308 if (obj->mm.page_sizes.sg < size) 309 goto skip_obj; 310 311 /* And it needs to be correspondingly aligned */ 312 if (__px_dma(obj) & (size - 1)) 313 goto skip_obj; 314 315 /* 316 * Use a non-zero scratch page for debugging. 317 * 318 * We want a value that should be reasonably obvious 319 * to spot in the error state, while also causing a GPU hang 320 * if executed. We prefer using a clear page in production, so 321 * should it ever be accidentally used, the effect should be 322 * fairly benign. 323 */ 324 poison_scratch_page(obj); 325 326 vm->scratch[0] = obj; 327 vm->scratch_order = get_order(size); 328 return 0; 329 330 skip_obj: 331 i915_gem_object_put(obj); 332 skip: 333 if (size == I915_GTT_PAGE_SIZE_4K) 334 return -ENOMEM; 335 336 size = I915_GTT_PAGE_SIZE_4K; 337 } while (1); 338 } 339 340 void free_scratch(struct i915_address_space *vm) 341 { 342 int i; 343 344 for (i = 0; i <= vm->top; i++) 345 i915_gem_object_put(vm->scratch[i]); 346 } 347 348 void gtt_write_workarounds(struct intel_gt *gt) 349 { 350 struct drm_i915_private *i915 = gt->i915; 351 struct intel_uncore *uncore = gt->uncore; 352 353 /* 354 * This function is for gtt related workarounds. This function is 355 * called on driver load and after a GPU reset, so you can place 356 * workarounds here even if they get overwritten by GPU reset. 357 */ 358 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 359 if (IS_BROADWELL(i915)) 360 intel_uncore_write(uncore, 361 GEN8_L3_LRA_1_GPGPU, 362 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 363 else if (IS_CHERRYVIEW(i915)) 364 intel_uncore_write(uncore, 365 GEN8_L3_LRA_1_GPGPU, 366 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 367 else if (IS_GEN9_LP(i915)) 368 intel_uncore_write(uncore, 369 GEN8_L3_LRA_1_GPGPU, 370 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 371 else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11) 372 intel_uncore_write(uncore, 373 GEN8_L3_LRA_1_GPGPU, 374 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 375 376 /* 377 * To support 64K PTEs we need to first enable the use of the 378 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 379 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 380 * shouldn't be needed after GEN10. 381 * 382 * 64K pages were first introduced from BDW+, although technically they 383 * only *work* from gen9+. For pre-BDW we instead have the option for 384 * 32K pages, but we don't currently have any support for it in our 385 * driver. 386 */ 387 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && 388 GRAPHICS_VER(i915) <= 10) 389 intel_uncore_rmw(uncore, 390 GEN8_GAMW_ECO_DEV_RW_IA, 391 0, 392 GAMW_ECO_ENABLE_64K_IPS_FIELD); 393 394 if (IS_GRAPHICS_VER(i915, 8, 11)) { 395 bool can_use_gtt_cache = true; 396 397 /* 398 * According to the BSpec if we use 2M/1G pages then we also 399 * need to disable the GTT cache. At least on BDW we can see 400 * visual corruption when using 2M pages, and not disabling the 401 * GTT cache. 402 */ 403 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) 404 can_use_gtt_cache = false; 405 406 /* WaGttCachingOffByDefault */ 407 intel_uncore_write(uncore, 408 HSW_GTT_CACHE_EN, 409 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); 410 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && 411 intel_uncore_read(uncore, 412 HSW_GTT_CACHE_EN) == 0); 413 } 414 } 415 416 static void tgl_setup_private_ppat(struct intel_uncore *uncore) 417 { 418 /* TGL doesn't support LLC or AGE settings */ 419 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); 420 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); 421 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); 422 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); 423 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); 424 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); 425 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); 426 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); 427 } 428 429 static void icl_setup_private_ppat(struct intel_uncore *uncore) 430 { 431 intel_uncore_write(uncore, 432 GEN10_PAT_INDEX(0), 433 GEN8_PPAT_WB | GEN8_PPAT_LLC); 434 intel_uncore_write(uncore, 435 GEN10_PAT_INDEX(1), 436 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 437 intel_uncore_write(uncore, 438 GEN10_PAT_INDEX(2), 439 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 440 intel_uncore_write(uncore, 441 GEN10_PAT_INDEX(3), 442 GEN8_PPAT_UC); 443 intel_uncore_write(uncore, 444 GEN10_PAT_INDEX(4), 445 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 446 intel_uncore_write(uncore, 447 GEN10_PAT_INDEX(5), 448 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 449 intel_uncore_write(uncore, 450 GEN10_PAT_INDEX(6), 451 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 452 intel_uncore_write(uncore, 453 GEN10_PAT_INDEX(7), 454 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 455 } 456 457 /* 458 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 459 * bits. When using advanced contexts each context stores its own PAT, but 460 * writing this data shouldn't be harmful even in those cases. 461 */ 462 static void bdw_setup_private_ppat(struct intel_uncore *uncore) 463 { 464 struct drm_i915_private *i915 = uncore->i915; 465 u64 pat; 466 467 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 468 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 469 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 470 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 471 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 472 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 473 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 474 475 /* for scanout with eLLC */ 476 if (GRAPHICS_VER(i915) >= 9) 477 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 478 else 479 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 480 481 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 482 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 483 } 484 485 static void chv_setup_private_ppat(struct intel_uncore *uncore) 486 { 487 u64 pat; 488 489 /* 490 * Map WB on BDW to snooped on CHV. 491 * 492 * Only the snoop bit has meaning for CHV, the rest is 493 * ignored. 494 * 495 * The hardware will never snoop for certain types of accesses: 496 * - CPU GTT (GMADR->GGTT->no snoop->memory) 497 * - PPGTT page tables 498 * - some other special cycles 499 * 500 * As with BDW, we also need to consider the following for GT accesses: 501 * "For GGTT, there is NO pat_sel[2:0] from the entry, 502 * so RTL will always use the value corresponding to 503 * pat_sel = 000". 504 * Which means we must set the snoop bit in PAT entry 0 505 * in order to keep the global status page working. 506 */ 507 508 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 509 GEN8_PPAT(1, 0) | 510 GEN8_PPAT(2, 0) | 511 GEN8_PPAT(3, 0) | 512 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 513 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 514 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 515 GEN8_PPAT(7, CHV_PPAT_SNOOP); 516 517 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 518 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 519 } 520 521 void setup_private_pat(struct intel_uncore *uncore) 522 { 523 struct drm_i915_private *i915 = uncore->i915; 524 525 GEM_BUG_ON(GRAPHICS_VER(i915) < 8); 526 527 if (GRAPHICS_VER(i915) >= 12) 528 tgl_setup_private_ppat(uncore); 529 else if (GRAPHICS_VER(i915) >= 11) 530 icl_setup_private_ppat(uncore); 531 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) 532 chv_setup_private_ppat(uncore); 533 else 534 bdw_setup_private_ppat(uncore); 535 } 536 537 struct i915_vma * 538 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) 539 { 540 struct drm_i915_gem_object *obj; 541 struct i915_vma *vma; 542 543 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); 544 if (IS_ERR(obj)) 545 return ERR_CAST(obj); 546 547 i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED); 548 549 vma = i915_vma_instance(obj, vm, NULL); 550 if (IS_ERR(vma)) { 551 i915_gem_object_put(obj); 552 return vma; 553 } 554 555 return vma; 556 } 557 558 struct i915_vma * 559 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size) 560 { 561 struct i915_vma *vma; 562 int err; 563 564 vma = __vm_create_scratch_for_read(vm, size); 565 if (IS_ERR(vma)) 566 return vma; 567 568 err = i915_vma_pin(vma, 0, 0, 569 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 570 if (err) { 571 i915_vma_put(vma); 572 return ERR_PTR(err); 573 } 574 575 return vma; 576 } 577 578 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 579 #include "selftests/mock_gtt.c" 580 #endif 581