1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 7 8 #include <linux/fault-inject.h> 9 #include <linux/sched/mm.h> 10 11 #include <drm/drm_cache.h> 12 13 #include "gem/i915_gem_internal.h" 14 #include "gem/i915_gem_lmem.h" 15 #include "i915_trace.h" 16 #include "intel_gt.h" 17 #include "intel_gt_regs.h" 18 #include "intel_gtt.h" 19 20 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz) 21 { 22 struct drm_i915_gem_object *obj; 23 24 /* 25 * To avoid severe over-allocation when dealing with min_page_size 26 * restrictions, we override that behaviour here by allowing an object 27 * size and page layout which can be smaller. In practice this should be 28 * totally fine, since GTT paging structures are not typically inserted 29 * into the GTT. 30 * 31 * Note that we also hit this path for the scratch page, and for this 32 * case it might need to be 64K, but that should work fine here since we 33 * used the passed in size for the page size, which should ensure it 34 * also has the same alignment. 35 */ 36 obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, 37 vm->lmem_pt_obj_flags); 38 /* 39 * Ensure all paging structures for this vm share the same dma-resv 40 * object underneath, with the idea that one object_lock() will lock 41 * them all at once. 42 */ 43 if (!IS_ERR(obj)) { 44 obj->base.resv = i915_vm_resv_get(vm); 45 obj->shares_resv_from = vm; 46 } 47 48 return obj; 49 } 50 51 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) 52 { 53 struct drm_i915_gem_object *obj; 54 55 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 56 i915_gem_shrink_all(vm->i915); 57 58 obj = i915_gem_object_create_internal(vm->i915, sz); 59 /* 60 * Ensure all paging structures for this vm share the same dma-resv 61 * object underneath, with the idea that one object_lock() will lock 62 * them all at once. 63 */ 64 if (!IS_ERR(obj)) { 65 obj->base.resv = i915_vm_resv_get(vm); 66 obj->shares_resv_from = vm; 67 } 68 69 return obj; 70 } 71 72 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 73 { 74 enum i915_map_type type; 75 void *vaddr; 76 77 type = i915_coherent_map_type(vm->i915, obj, true); 78 vaddr = i915_gem_object_pin_map_unlocked(obj, type); 79 if (IS_ERR(vaddr)) 80 return PTR_ERR(vaddr); 81 82 i915_gem_object_make_unshrinkable(obj); 83 return 0; 84 } 85 86 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 87 { 88 enum i915_map_type type; 89 void *vaddr; 90 91 type = i915_coherent_map_type(vm->i915, obj, true); 92 vaddr = i915_gem_object_pin_map(obj, type); 93 if (IS_ERR(vaddr)) 94 return PTR_ERR(vaddr); 95 96 i915_gem_object_make_unshrinkable(obj); 97 return 0; 98 } 99 100 void __i915_vm_close(struct i915_address_space *vm) 101 { 102 struct i915_vma *vma, *vn; 103 104 if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex)) 105 return; 106 107 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 108 struct drm_i915_gem_object *obj = vma->obj; 109 110 if (!kref_get_unless_zero(&obj->base.refcount)) { 111 /* 112 * Unbind the dying vma to ensure the bound_list 113 * is completely drained. We leave the destruction to 114 * the object destructor. 115 */ 116 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 117 WARN_ON(__i915_vma_unbind(vma)); 118 continue; 119 } 120 121 /* Keep the obj (and hence the vma) alive as _we_ destroy it */ 122 i915_vma_destroy_locked(vma); 123 i915_gem_object_put(obj); 124 } 125 GEM_BUG_ON(!list_empty(&vm->bound_list)); 126 127 mutex_unlock(&vm->mutex); 128 } 129 130 /* lock the vm into the current ww, if we lock one, we lock all */ 131 int i915_vm_lock_objects(struct i915_address_space *vm, 132 struct i915_gem_ww_ctx *ww) 133 { 134 if (vm->scratch[0]->base.resv == &vm->_resv) { 135 return i915_gem_object_lock(vm->scratch[0], ww); 136 } else { 137 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 138 139 /* We borrowed the scratch page from ggtt, take the top level object */ 140 return i915_gem_object_lock(ppgtt->pd->pt.base, ww); 141 } 142 } 143 144 void i915_address_space_fini(struct i915_address_space *vm) 145 { 146 drm_mm_takedown(&vm->mm); 147 mutex_destroy(&vm->mutex); 148 } 149 150 /** 151 * i915_vm_resv_release - Final struct i915_address_space destructor 152 * @kref: Pointer to the &i915_address_space.resv_ref member. 153 * 154 * This function is called when the last lock sharer no longer shares the 155 * &i915_address_space._resv lock. 156 */ 157 void i915_vm_resv_release(struct kref *kref) 158 { 159 struct i915_address_space *vm = 160 container_of(kref, typeof(*vm), resv_ref); 161 162 dma_resv_fini(&vm->_resv); 163 kfree(vm); 164 } 165 166 static void __i915_vm_release(struct work_struct *work) 167 { 168 struct i915_address_space *vm = 169 container_of(work, struct i915_address_space, release_work); 170 171 /* Synchronize async unbinds. */ 172 i915_vma_resource_bind_dep_sync_all(vm); 173 174 vm->cleanup(vm); 175 i915_address_space_fini(vm); 176 177 i915_vm_resv_put(vm); 178 } 179 180 void i915_vm_release(struct kref *kref) 181 { 182 struct i915_address_space *vm = 183 container_of(kref, struct i915_address_space, ref); 184 185 GEM_BUG_ON(i915_is_ggtt(vm)); 186 trace_i915_ppgtt_release(vm); 187 188 queue_work(vm->i915->wq, &vm->release_work); 189 } 190 191 void i915_address_space_init(struct i915_address_space *vm, int subclass) 192 { 193 kref_init(&vm->ref); 194 195 /* 196 * Special case for GGTT that has already done an early 197 * kref_init here. 198 */ 199 if (!kref_read(&vm->resv_ref)) 200 kref_init(&vm->resv_ref); 201 202 vm->pending_unbind = RB_ROOT_CACHED; 203 INIT_WORK(&vm->release_work, __i915_vm_release); 204 atomic_set(&vm->open, 1); 205 206 /* 207 * The vm->mutex must be reclaim safe (for use in the shrinker). 208 * Do a dummy acquire now under fs_reclaim so that any allocation 209 * attempt holding the lock is immediately reported by lockdep. 210 */ 211 mutex_init(&vm->mutex); 212 lockdep_set_subclass(&vm->mutex, subclass); 213 214 if (!intel_vm_no_concurrent_access_wa(vm->i915)) { 215 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 216 } else { 217 /* 218 * CHV + BXT VTD workaround use stop_machine(), 219 * which is allowed to allocate memory. This means &vm->mutex 220 * is the outer lock, and in theory we can allocate memory inside 221 * it through stop_machine(). 222 * 223 * Add the annotation for this, we use trylock in shrinker. 224 */ 225 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_); 226 might_alloc(GFP_KERNEL); 227 mutex_release(&vm->mutex.dep_map, _THIS_IP_); 228 } 229 dma_resv_init(&vm->_resv); 230 231 GEM_BUG_ON(!vm->total); 232 drm_mm_init(&vm->mm, 0, vm->total); 233 234 memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT, 235 ARRAY_SIZE(vm->min_alignment)); 236 237 if (HAS_64K_PAGES(vm->i915) && NEEDS_COMPACT_PT(vm->i915) && 238 subclass == VM_CLASS_PPGTT) { 239 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_2M; 240 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_2M; 241 } else if (HAS_64K_PAGES(vm->i915)) { 242 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K; 243 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K; 244 } 245 246 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 247 248 INIT_LIST_HEAD(&vm->bound_list); 249 } 250 251 void *__px_vaddr(struct drm_i915_gem_object *p) 252 { 253 enum i915_map_type type; 254 255 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 256 return page_unpack_bits(p->mm.mapping, &type); 257 } 258 259 dma_addr_t __px_dma(struct drm_i915_gem_object *p) 260 { 261 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 262 return sg_dma_address(p->mm.pages->sgl); 263 } 264 265 struct page *__px_page(struct drm_i915_gem_object *p) 266 { 267 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 268 return sg_page(p->mm.pages->sgl); 269 } 270 271 void 272 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) 273 { 274 void *vaddr = __px_vaddr(p); 275 276 memset64(vaddr, val, count); 277 clflush_cache_range(vaddr, PAGE_SIZE); 278 } 279 280 static void poison_scratch_page(struct drm_i915_gem_object *scratch) 281 { 282 void *vaddr = __px_vaddr(scratch); 283 u8 val; 284 285 val = 0; 286 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 287 val = POISON_FREE; 288 289 memset(vaddr, val, scratch->base.size); 290 drm_clflush_virt_range(vaddr, scratch->base.size); 291 } 292 293 int setup_scratch_page(struct i915_address_space *vm) 294 { 295 unsigned long size; 296 297 /* 298 * In order to utilize 64K pages for an object with a size < 2M, we will 299 * need to support a 64K scratch page, given that every 16th entry for a 300 * page-table operating in 64K mode must point to a properly aligned 64K 301 * region, including any PTEs which happen to point to scratch. 302 * 303 * This is only relevant for the 48b PPGTT where we support 304 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 305 * scratch (read-only) between all vm, we create one 64k scratch page 306 * for all. 307 */ 308 size = I915_GTT_PAGE_SIZE_4K; 309 if (i915_vm_is_4lvl(vm) && 310 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) 311 size = I915_GTT_PAGE_SIZE_64K; 312 313 do { 314 struct drm_i915_gem_object *obj; 315 316 obj = vm->alloc_scratch_dma(vm, size); 317 if (IS_ERR(obj)) 318 goto skip; 319 320 if (map_pt_dma(vm, obj)) 321 goto skip_obj; 322 323 /* We need a single contiguous page for our scratch */ 324 if (obj->mm.page_sizes.sg < size) 325 goto skip_obj; 326 327 /* And it needs to be correspondingly aligned */ 328 if (__px_dma(obj) & (size - 1)) 329 goto skip_obj; 330 331 /* 332 * Use a non-zero scratch page for debugging. 333 * 334 * We want a value that should be reasonably obvious 335 * to spot in the error state, while also causing a GPU hang 336 * if executed. We prefer using a clear page in production, so 337 * should it ever be accidentally used, the effect should be 338 * fairly benign. 339 */ 340 poison_scratch_page(obj); 341 342 vm->scratch[0] = obj; 343 vm->scratch_order = get_order(size); 344 return 0; 345 346 skip_obj: 347 i915_gem_object_put(obj); 348 skip: 349 if (size == I915_GTT_PAGE_SIZE_4K) 350 return -ENOMEM; 351 352 /* 353 * If we need 64K minimum GTT pages for device local-memory, 354 * like on XEHPSDV, then we need to fail the allocation here, 355 * otherwise we can't safely support the insertion of 356 * local-memory pages for this vm, since the HW expects the 357 * correct physical alignment and size when the page-table is 358 * operating in 64K GTT mode, which includes any scratch PTEs, 359 * since userspace can still touch them. 360 */ 361 if (HAS_64K_PAGES(vm->i915)) 362 return -ENOMEM; 363 364 size = I915_GTT_PAGE_SIZE_4K; 365 } while (1); 366 } 367 368 void free_scratch(struct i915_address_space *vm) 369 { 370 int i; 371 372 for (i = 0; i <= vm->top; i++) 373 i915_gem_object_put(vm->scratch[i]); 374 } 375 376 void gtt_write_workarounds(struct intel_gt *gt) 377 { 378 struct drm_i915_private *i915 = gt->i915; 379 struct intel_uncore *uncore = gt->uncore; 380 381 /* 382 * This function is for gtt related workarounds. This function is 383 * called on driver load and after a GPU reset, so you can place 384 * workarounds here even if they get overwritten by GPU reset. 385 */ 386 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 387 if (IS_BROADWELL(i915)) 388 intel_uncore_write(uncore, 389 GEN8_L3_LRA_1_GPGPU, 390 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 391 else if (IS_CHERRYVIEW(i915)) 392 intel_uncore_write(uncore, 393 GEN8_L3_LRA_1_GPGPU, 394 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 395 else if (IS_GEN9_LP(i915)) 396 intel_uncore_write(uncore, 397 GEN8_L3_LRA_1_GPGPU, 398 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 399 else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11) 400 intel_uncore_write(uncore, 401 GEN8_L3_LRA_1_GPGPU, 402 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 403 404 /* 405 * To support 64K PTEs we need to first enable the use of the 406 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 407 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 408 * shouldn't be needed after GEN10. 409 * 410 * 64K pages were first introduced from BDW+, although technically they 411 * only *work* from gen9+. For pre-BDW we instead have the option for 412 * 32K pages, but we don't currently have any support for it in our 413 * driver. 414 */ 415 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && 416 GRAPHICS_VER(i915) <= 10) 417 intel_uncore_rmw(uncore, 418 GEN8_GAMW_ECO_DEV_RW_IA, 419 0, 420 GAMW_ECO_ENABLE_64K_IPS_FIELD); 421 422 if (IS_GRAPHICS_VER(i915, 8, 11)) { 423 bool can_use_gtt_cache = true; 424 425 /* 426 * According to the BSpec if we use 2M/1G pages then we also 427 * need to disable the GTT cache. At least on BDW we can see 428 * visual corruption when using 2M pages, and not disabling the 429 * GTT cache. 430 */ 431 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) 432 can_use_gtt_cache = false; 433 434 /* WaGttCachingOffByDefault */ 435 intel_uncore_write(uncore, 436 HSW_GTT_CACHE_EN, 437 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); 438 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && 439 intel_uncore_read(uncore, 440 HSW_GTT_CACHE_EN) == 0); 441 } 442 } 443 444 static void tgl_setup_private_ppat(struct intel_uncore *uncore) 445 { 446 /* TGL doesn't support LLC or AGE settings */ 447 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); 448 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); 449 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); 450 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); 451 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); 452 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); 453 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); 454 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); 455 } 456 457 static void icl_setup_private_ppat(struct intel_uncore *uncore) 458 { 459 intel_uncore_write(uncore, 460 GEN10_PAT_INDEX(0), 461 GEN8_PPAT_WB | GEN8_PPAT_LLC); 462 intel_uncore_write(uncore, 463 GEN10_PAT_INDEX(1), 464 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 465 intel_uncore_write(uncore, 466 GEN10_PAT_INDEX(2), 467 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 468 intel_uncore_write(uncore, 469 GEN10_PAT_INDEX(3), 470 GEN8_PPAT_UC); 471 intel_uncore_write(uncore, 472 GEN10_PAT_INDEX(4), 473 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 474 intel_uncore_write(uncore, 475 GEN10_PAT_INDEX(5), 476 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 477 intel_uncore_write(uncore, 478 GEN10_PAT_INDEX(6), 479 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 480 intel_uncore_write(uncore, 481 GEN10_PAT_INDEX(7), 482 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 483 } 484 485 /* 486 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 487 * bits. When using advanced contexts each context stores its own PAT, but 488 * writing this data shouldn't be harmful even in those cases. 489 */ 490 static void bdw_setup_private_ppat(struct intel_uncore *uncore) 491 { 492 struct drm_i915_private *i915 = uncore->i915; 493 u64 pat; 494 495 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 496 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 497 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 498 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 499 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 500 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 501 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 502 503 /* for scanout with eLLC */ 504 if (GRAPHICS_VER(i915) >= 9) 505 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 506 else 507 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 508 509 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 510 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 511 } 512 513 static void chv_setup_private_ppat(struct intel_uncore *uncore) 514 { 515 u64 pat; 516 517 /* 518 * Map WB on BDW to snooped on CHV. 519 * 520 * Only the snoop bit has meaning for CHV, the rest is 521 * ignored. 522 * 523 * The hardware will never snoop for certain types of accesses: 524 * - CPU GTT (GMADR->GGTT->no snoop->memory) 525 * - PPGTT page tables 526 * - some other special cycles 527 * 528 * As with BDW, we also need to consider the following for GT accesses: 529 * "For GGTT, there is NO pat_sel[2:0] from the entry, 530 * so RTL will always use the value corresponding to 531 * pat_sel = 000". 532 * Which means we must set the snoop bit in PAT entry 0 533 * in order to keep the global status page working. 534 */ 535 536 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 537 GEN8_PPAT(1, 0) | 538 GEN8_PPAT(2, 0) | 539 GEN8_PPAT(3, 0) | 540 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 541 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 542 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 543 GEN8_PPAT(7, CHV_PPAT_SNOOP); 544 545 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 546 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 547 } 548 549 void setup_private_pat(struct intel_uncore *uncore) 550 { 551 struct drm_i915_private *i915 = uncore->i915; 552 553 GEM_BUG_ON(GRAPHICS_VER(i915) < 8); 554 555 if (GRAPHICS_VER(i915) >= 12) 556 tgl_setup_private_ppat(uncore); 557 else if (GRAPHICS_VER(i915) >= 11) 558 icl_setup_private_ppat(uncore); 559 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) 560 chv_setup_private_ppat(uncore); 561 else 562 bdw_setup_private_ppat(uncore); 563 } 564 565 struct i915_vma * 566 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) 567 { 568 struct drm_i915_gem_object *obj; 569 struct i915_vma *vma; 570 571 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); 572 if (IS_ERR(obj)) 573 return ERR_CAST(obj); 574 575 i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED); 576 577 vma = i915_vma_instance(obj, vm, NULL); 578 if (IS_ERR(vma)) { 579 i915_gem_object_put(obj); 580 return vma; 581 } 582 583 return vma; 584 } 585 586 struct i915_vma * 587 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size) 588 { 589 struct i915_vma *vma; 590 int err; 591 592 vma = __vm_create_scratch_for_read(vm, size); 593 if (IS_ERR(vma)) 594 return vma; 595 596 err = i915_vma_pin(vma, 0, 0, 597 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 598 if (err) { 599 i915_vma_put(vma); 600 return ERR_PTR(err); 601 } 602 603 return vma; 604 } 605 606 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 607 #include "selftests/mock_gtt.c" 608 #endif 609