xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision 6407cf53)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_internal.h"
14 #include "gem/i915_gem_lmem.h"
15 #include "i915_trace.h"
16 #include "i915_utils.h"
17 #include "intel_gt.h"
18 #include "intel_gt_mcr.h"
19 #include "intel_gt_regs.h"
20 #include "intel_gtt.h"
21 
22 
23 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
24 {
25 	return IS_BROXTON(i915) && i915_vtd_active(i915);
26 }
27 
28 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
29 {
30 	return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
31 }
32 
33 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
34 {
35 	struct drm_i915_gem_object *obj;
36 
37 	/*
38 	 * To avoid severe over-allocation when dealing with min_page_size
39 	 * restrictions, we override that behaviour here by allowing an object
40 	 * size and page layout which can be smaller. In practice this should be
41 	 * totally fine, since GTT paging structures are not typically inserted
42 	 * into the GTT.
43 	 *
44 	 * Note that we also hit this path for the scratch page, and for this
45 	 * case it might need to be 64K, but that should work fine here since we
46 	 * used the passed in size for the page size, which should ensure it
47 	 * also has the same alignment.
48 	 */
49 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
50 						    vm->lmem_pt_obj_flags);
51 	/*
52 	 * Ensure all paging structures for this vm share the same dma-resv
53 	 * object underneath, with the idea that one object_lock() will lock
54 	 * them all at once.
55 	 */
56 	if (!IS_ERR(obj)) {
57 		obj->base.resv = i915_vm_resv_get(vm);
58 		obj->shares_resv_from = vm;
59 	}
60 
61 	return obj;
62 }
63 
64 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
65 {
66 	struct drm_i915_gem_object *obj;
67 
68 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
69 		i915_gem_shrink_all(vm->i915);
70 
71 	obj = i915_gem_object_create_internal(vm->i915, sz);
72 	/*
73 	 * Ensure all paging structures for this vm share the same dma-resv
74 	 * object underneath, with the idea that one object_lock() will lock
75 	 * them all at once.
76 	 */
77 	if (!IS_ERR(obj)) {
78 		obj->base.resv = i915_vm_resv_get(vm);
79 		obj->shares_resv_from = vm;
80 	}
81 
82 	return obj;
83 }
84 
85 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
86 {
87 	enum i915_map_type type;
88 	void *vaddr;
89 
90 	type = i915_coherent_map_type(vm->i915, obj, true);
91 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
92 	if (IS_ERR(vaddr))
93 		return PTR_ERR(vaddr);
94 
95 	i915_gem_object_make_unshrinkable(obj);
96 	return 0;
97 }
98 
99 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
100 {
101 	enum i915_map_type type;
102 	void *vaddr;
103 
104 	type = i915_coherent_map_type(vm->i915, obj, true);
105 	vaddr = i915_gem_object_pin_map(obj, type);
106 	if (IS_ERR(vaddr))
107 		return PTR_ERR(vaddr);
108 
109 	i915_gem_object_make_unshrinkable(obj);
110 	return 0;
111 }
112 
113 static void clear_vm_list(struct list_head *list)
114 {
115 	struct i915_vma *vma, *vn;
116 
117 	list_for_each_entry_safe(vma, vn, list, vm_link) {
118 		struct drm_i915_gem_object *obj = vma->obj;
119 
120 		if (!i915_gem_object_get_rcu(obj)) {
121 			/*
122 			 * Object is dying, but has not yet cleared its
123 			 * vma list.
124 			 * Unbind the dying vma to ensure our list
125 			 * is completely drained. We leave the destruction to
126 			 * the object destructor to avoid the vma
127 			 * disappearing under it.
128 			 */
129 			atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
130 			WARN_ON(__i915_vma_unbind(vma));
131 
132 			/* Remove from the unbound list */
133 			list_del_init(&vma->vm_link);
134 
135 			/*
136 			 * Delay the vm and vm mutex freeing until the
137 			 * object is done with destruction.
138 			 */
139 			i915_vm_resv_get(vma->vm);
140 			vma->vm_ddestroy = true;
141 		} else {
142 			i915_vma_destroy_locked(vma);
143 			i915_gem_object_put(obj);
144 		}
145 
146 	}
147 }
148 
149 static void __i915_vm_close(struct i915_address_space *vm)
150 {
151 	mutex_lock(&vm->mutex);
152 
153 	clear_vm_list(&vm->bound_list);
154 	clear_vm_list(&vm->unbound_list);
155 
156 	/* Check for must-fix unanticipated side-effects */
157 	GEM_BUG_ON(!list_empty(&vm->bound_list));
158 	GEM_BUG_ON(!list_empty(&vm->unbound_list));
159 
160 	mutex_unlock(&vm->mutex);
161 }
162 
163 /* lock the vm into the current ww, if we lock one, we lock all */
164 int i915_vm_lock_objects(struct i915_address_space *vm,
165 			 struct i915_gem_ww_ctx *ww)
166 {
167 	if (vm->scratch[0]->base.resv == &vm->_resv) {
168 		return i915_gem_object_lock(vm->scratch[0], ww);
169 	} else {
170 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
171 
172 		/* We borrowed the scratch page from ggtt, take the top level object */
173 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
174 	}
175 }
176 
177 void i915_address_space_fini(struct i915_address_space *vm)
178 {
179 	drm_mm_takedown(&vm->mm);
180 }
181 
182 /**
183  * i915_vm_resv_release - Final struct i915_address_space destructor
184  * @kref: Pointer to the &i915_address_space.resv_ref member.
185  *
186  * This function is called when the last lock sharer no longer shares the
187  * &i915_address_space._resv lock, and also if we raced when
188  * destroying a vma by the vma destruction
189  */
190 void i915_vm_resv_release(struct kref *kref)
191 {
192 	struct i915_address_space *vm =
193 		container_of(kref, typeof(*vm), resv_ref);
194 
195 	dma_resv_fini(&vm->_resv);
196 	mutex_destroy(&vm->mutex);
197 
198 	kfree(vm);
199 }
200 
201 static void __i915_vm_release(struct work_struct *work)
202 {
203 	struct i915_address_space *vm =
204 		container_of(work, struct i915_address_space, release_work);
205 
206 	__i915_vm_close(vm);
207 
208 	/* Synchronize async unbinds. */
209 	i915_vma_resource_bind_dep_sync_all(vm);
210 
211 	vm->cleanup(vm);
212 	i915_address_space_fini(vm);
213 
214 	i915_vm_resv_put(vm);
215 }
216 
217 void i915_vm_release(struct kref *kref)
218 {
219 	struct i915_address_space *vm =
220 		container_of(kref, struct i915_address_space, ref);
221 
222 	GEM_BUG_ON(i915_is_ggtt(vm));
223 	trace_i915_ppgtt_release(vm);
224 
225 	queue_work(vm->i915->wq, &vm->release_work);
226 }
227 
228 void i915_address_space_init(struct i915_address_space *vm, int subclass)
229 {
230 	kref_init(&vm->ref);
231 
232 	/*
233 	 * Special case for GGTT that has already done an early
234 	 * kref_init here.
235 	 */
236 	if (!kref_read(&vm->resv_ref))
237 		kref_init(&vm->resv_ref);
238 
239 	vm->pending_unbind = RB_ROOT_CACHED;
240 	INIT_WORK(&vm->release_work, __i915_vm_release);
241 
242 	/*
243 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
244 	 * Do a dummy acquire now under fs_reclaim so that any allocation
245 	 * attempt holding the lock is immediately reported by lockdep.
246 	 */
247 	mutex_init(&vm->mutex);
248 	lockdep_set_subclass(&vm->mutex, subclass);
249 
250 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
251 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
252 	} else {
253 		/*
254 		 * CHV + BXT VTD workaround use stop_machine(),
255 		 * which is allowed to allocate memory. This means &vm->mutex
256 		 * is the outer lock, and in theory we can allocate memory inside
257 		 * it through stop_machine().
258 		 *
259 		 * Add the annotation for this, we use trylock in shrinker.
260 		 */
261 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
262 		might_alloc(GFP_KERNEL);
263 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
264 	}
265 	dma_resv_init(&vm->_resv);
266 
267 	GEM_BUG_ON(!vm->total);
268 	drm_mm_init(&vm->mm, 0, vm->total);
269 
270 	memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
271 		 ARRAY_SIZE(vm->min_alignment));
272 
273 	if (HAS_64K_PAGES(vm->i915)) {
274 		vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
275 		vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
276 	}
277 
278 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
279 
280 	INIT_LIST_HEAD(&vm->bound_list);
281 	INIT_LIST_HEAD(&vm->unbound_list);
282 }
283 
284 void *__px_vaddr(struct drm_i915_gem_object *p)
285 {
286 	enum i915_map_type type;
287 
288 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
289 	return page_unpack_bits(p->mm.mapping, &type);
290 }
291 
292 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
293 {
294 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
295 	return sg_dma_address(p->mm.pages->sgl);
296 }
297 
298 struct page *__px_page(struct drm_i915_gem_object *p)
299 {
300 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
301 	return sg_page(p->mm.pages->sgl);
302 }
303 
304 void
305 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
306 {
307 	void *vaddr = __px_vaddr(p);
308 
309 	memset64(vaddr, val, count);
310 	drm_clflush_virt_range(vaddr, PAGE_SIZE);
311 }
312 
313 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
314 {
315 	void *vaddr = __px_vaddr(scratch);
316 	u8 val;
317 
318 	val = 0;
319 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
320 		val = POISON_FREE;
321 
322 	memset(vaddr, val, scratch->base.size);
323 	drm_clflush_virt_range(vaddr, scratch->base.size);
324 }
325 
326 int setup_scratch_page(struct i915_address_space *vm)
327 {
328 	unsigned long size;
329 
330 	/*
331 	 * In order to utilize 64K pages for an object with a size < 2M, we will
332 	 * need to support a 64K scratch page, given that every 16th entry for a
333 	 * page-table operating in 64K mode must point to a properly aligned 64K
334 	 * region, including any PTEs which happen to point to scratch.
335 	 *
336 	 * This is only relevant for the 48b PPGTT where we support
337 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
338 	 * scratch (read-only) between all vm, we create one 64k scratch page
339 	 * for all.
340 	 */
341 	size = I915_GTT_PAGE_SIZE_4K;
342 	if (i915_vm_is_4lvl(vm) &&
343 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) &&
344 	    !HAS_64K_PAGES(vm->i915))
345 		size = I915_GTT_PAGE_SIZE_64K;
346 
347 	do {
348 		struct drm_i915_gem_object *obj;
349 
350 		obj = vm->alloc_scratch_dma(vm, size);
351 		if (IS_ERR(obj))
352 			goto skip;
353 
354 		if (map_pt_dma(vm, obj))
355 			goto skip_obj;
356 
357 		/* We need a single contiguous page for our scratch */
358 		if (obj->mm.page_sizes.sg < size)
359 			goto skip_obj;
360 
361 		/* And it needs to be correspondingly aligned */
362 		if (__px_dma(obj) & (size - 1))
363 			goto skip_obj;
364 
365 		/*
366 		 * Use a non-zero scratch page for debugging.
367 		 *
368 		 * We want a value that should be reasonably obvious
369 		 * to spot in the error state, while also causing a GPU hang
370 		 * if executed. We prefer using a clear page in production, so
371 		 * should it ever be accidentally used, the effect should be
372 		 * fairly benign.
373 		 */
374 		poison_scratch_page(obj);
375 
376 		vm->scratch[0] = obj;
377 		vm->scratch_order = get_order(size);
378 		return 0;
379 
380 skip_obj:
381 		i915_gem_object_put(obj);
382 skip:
383 		if (size == I915_GTT_PAGE_SIZE_4K)
384 			return -ENOMEM;
385 
386 		size = I915_GTT_PAGE_SIZE_4K;
387 	} while (1);
388 }
389 
390 void free_scratch(struct i915_address_space *vm)
391 {
392 	int i;
393 
394 	if (!vm->scratch[0])
395 		return;
396 
397 	for (i = 0; i <= vm->top; i++)
398 		i915_gem_object_put(vm->scratch[i]);
399 }
400 
401 void gtt_write_workarounds(struct intel_gt *gt)
402 {
403 	struct drm_i915_private *i915 = gt->i915;
404 	struct intel_uncore *uncore = gt->uncore;
405 
406 	/*
407 	 * This function is for gtt related workarounds. This function is
408 	 * called on driver load and after a GPU reset, so you can place
409 	 * workarounds here even if they get overwritten by GPU reset.
410 	 */
411 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
412 	if (IS_BROADWELL(i915))
413 		intel_uncore_write(uncore,
414 				   GEN8_L3_LRA_1_GPGPU,
415 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
416 	else if (IS_CHERRYVIEW(i915))
417 		intel_uncore_write(uncore,
418 				   GEN8_L3_LRA_1_GPGPU,
419 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
420 	else if (IS_GEN9_LP(i915))
421 		intel_uncore_write(uncore,
422 				   GEN8_L3_LRA_1_GPGPU,
423 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
424 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
425 		intel_uncore_write(uncore,
426 				   GEN8_L3_LRA_1_GPGPU,
427 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
428 
429 	/*
430 	 * To support 64K PTEs we need to first enable the use of the
431 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
432 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
433 	 * shouldn't be needed after GEN10.
434 	 *
435 	 * 64K pages were first introduced from BDW+, although technically they
436 	 * only *work* from gen9+. For pre-BDW we instead have the option for
437 	 * 32K pages, but we don't currently have any support for it in our
438 	 * driver.
439 	 */
440 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
441 	    GRAPHICS_VER(i915) <= 10)
442 		intel_uncore_rmw(uncore,
443 				 GEN8_GAMW_ECO_DEV_RW_IA,
444 				 0,
445 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
446 
447 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
448 		bool can_use_gtt_cache = true;
449 
450 		/*
451 		 * According to the BSpec if we use 2M/1G pages then we also
452 		 * need to disable the GTT cache. At least on BDW we can see
453 		 * visual corruption when using 2M pages, and not disabling the
454 		 * GTT cache.
455 		 */
456 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
457 			can_use_gtt_cache = false;
458 
459 		/* WaGttCachingOffByDefault */
460 		intel_uncore_write(uncore,
461 				   HSW_GTT_CACHE_EN,
462 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
463 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
464 				 intel_uncore_read(uncore,
465 						   HSW_GTT_CACHE_EN) == 0);
466 	}
467 }
468 
469 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
470 {
471 	/* TGL doesn't support LLC or AGE settings */
472 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
473 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
474 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
475 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
476 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
477 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
478 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
479 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
480 }
481 
482 static void xehp_setup_private_ppat(struct intel_gt *gt)
483 {
484 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB);
485 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC);
486 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT);
487 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC);
488 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB);
489 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB);
490 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB);
491 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB);
492 }
493 
494 static void icl_setup_private_ppat(struct intel_uncore *uncore)
495 {
496 	intel_uncore_write(uncore,
497 			   GEN10_PAT_INDEX(0),
498 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
499 	intel_uncore_write(uncore,
500 			   GEN10_PAT_INDEX(1),
501 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
502 	intel_uncore_write(uncore,
503 			   GEN10_PAT_INDEX(2),
504 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
505 	intel_uncore_write(uncore,
506 			   GEN10_PAT_INDEX(3),
507 			   GEN8_PPAT_UC);
508 	intel_uncore_write(uncore,
509 			   GEN10_PAT_INDEX(4),
510 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
511 	intel_uncore_write(uncore,
512 			   GEN10_PAT_INDEX(5),
513 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
514 	intel_uncore_write(uncore,
515 			   GEN10_PAT_INDEX(6),
516 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
517 	intel_uncore_write(uncore,
518 			   GEN10_PAT_INDEX(7),
519 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
520 }
521 
522 /*
523  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
524  * bits. When using advanced contexts each context stores its own PAT, but
525  * writing this data shouldn't be harmful even in those cases.
526  */
527 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
528 {
529 	struct drm_i915_private *i915 = uncore->i915;
530 	u64 pat;
531 
532 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
533 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
534 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
535 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
536 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
537 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
538 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
539 
540 	/* for scanout with eLLC */
541 	if (GRAPHICS_VER(i915) >= 9)
542 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
543 	else
544 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
545 
546 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
547 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
548 }
549 
550 static void chv_setup_private_ppat(struct intel_uncore *uncore)
551 {
552 	u64 pat;
553 
554 	/*
555 	 * Map WB on BDW to snooped on CHV.
556 	 *
557 	 * Only the snoop bit has meaning for CHV, the rest is
558 	 * ignored.
559 	 *
560 	 * The hardware will never snoop for certain types of accesses:
561 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
562 	 * - PPGTT page tables
563 	 * - some other special cycles
564 	 *
565 	 * As with BDW, we also need to consider the following for GT accesses:
566 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
567 	 * so RTL will always use the value corresponding to
568 	 * pat_sel = 000".
569 	 * Which means we must set the snoop bit in PAT entry 0
570 	 * in order to keep the global status page working.
571 	 */
572 
573 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
574 	      GEN8_PPAT(1, 0) |
575 	      GEN8_PPAT(2, 0) |
576 	      GEN8_PPAT(3, 0) |
577 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
578 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
579 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
580 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
581 
582 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
583 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
584 }
585 
586 void setup_private_pat(struct intel_gt *gt)
587 {
588 	struct intel_uncore *uncore = gt->uncore;
589 	struct drm_i915_private *i915 = gt->i915;
590 
591 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
592 
593 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
594 		xehp_setup_private_ppat(gt);
595 	else if (GRAPHICS_VER(i915) >= 12)
596 		tgl_setup_private_ppat(uncore);
597 	else if (GRAPHICS_VER(i915) >= 11)
598 		icl_setup_private_ppat(uncore);
599 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
600 		chv_setup_private_ppat(uncore);
601 	else
602 		bdw_setup_private_ppat(uncore);
603 }
604 
605 struct i915_vma *
606 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
607 {
608 	struct drm_i915_gem_object *obj;
609 	struct i915_vma *vma;
610 
611 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
612 	if (IS_ERR(obj))
613 		return ERR_CAST(obj);
614 
615 	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
616 
617 	vma = i915_vma_instance(obj, vm, NULL);
618 	if (IS_ERR(vma)) {
619 		i915_gem_object_put(obj);
620 		return vma;
621 	}
622 
623 	return vma;
624 }
625 
626 struct i915_vma *
627 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
628 {
629 	struct i915_vma *vma;
630 	int err;
631 
632 	vma = __vm_create_scratch_for_read(vm, size);
633 	if (IS_ERR(vma))
634 		return vma;
635 
636 	err = i915_vma_pin(vma, 0, 0,
637 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
638 	if (err) {
639 		i915_vma_put(vma);
640 		return ERR_PTR(err);
641 	}
642 
643 	return vma;
644 }
645 
646 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
647 #include "selftests/mock_gtt.c"
648 #endif
649