1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/slab.h> /* fault-inject.h is not standalone! */ 7 8 #include <linux/fault-inject.h> 9 10 #include "i915_trace.h" 11 #include "intel_gt.h" 12 #include "intel_gtt.h" 13 14 void stash_init(struct pagestash *stash) 15 { 16 pagevec_init(&stash->pvec); 17 spin_lock_init(&stash->lock); 18 } 19 20 static struct page *stash_pop_page(struct pagestash *stash) 21 { 22 struct page *page = NULL; 23 24 spin_lock(&stash->lock); 25 if (likely(stash->pvec.nr)) 26 page = stash->pvec.pages[--stash->pvec.nr]; 27 spin_unlock(&stash->lock); 28 29 return page; 30 } 31 32 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec) 33 { 34 unsigned int nr; 35 36 spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING); 37 38 nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec)); 39 memcpy(stash->pvec.pages + stash->pvec.nr, 40 pvec->pages + pvec->nr - nr, 41 sizeof(pvec->pages[0]) * nr); 42 stash->pvec.nr += nr; 43 44 spin_unlock(&stash->lock); 45 46 pvec->nr -= nr; 47 } 48 49 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) 50 { 51 struct pagevec stack; 52 struct page *page; 53 54 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 55 i915_gem_shrink_all(vm->i915); 56 57 page = stash_pop_page(&vm->free_pages); 58 if (page) 59 return page; 60 61 if (!vm->pt_kmap_wc) 62 return alloc_page(gfp); 63 64 /* Look in our global stash of WC pages... */ 65 page = stash_pop_page(&vm->i915->mm.wc_stash); 66 if (page) 67 return page; 68 69 /* 70 * Otherwise batch allocate pages to amortize cost of set_pages_wc. 71 * 72 * We have to be careful as page allocation may trigger the shrinker 73 * (via direct reclaim) which will fill up the WC stash underneath us. 74 * So we add our WB pages into a temporary pvec on the stack and merge 75 * them into the WC stash after all the allocations are complete. 76 */ 77 pagevec_init(&stack); 78 do { 79 struct page *page; 80 81 page = alloc_page(gfp); 82 if (unlikely(!page)) 83 break; 84 85 stack.pages[stack.nr++] = page; 86 } while (pagevec_space(&stack)); 87 88 if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) { 89 page = stack.pages[--stack.nr]; 90 91 /* Merge spare WC pages to the global stash */ 92 if (stack.nr) 93 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack); 94 95 /* Push any surplus WC pages onto the local VM stash */ 96 if (stack.nr) 97 stash_push_pagevec(&vm->free_pages, &stack); 98 } 99 100 /* Return unwanted leftovers */ 101 if (unlikely(stack.nr)) { 102 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr)); 103 __pagevec_release(&stack); 104 } 105 106 return page; 107 } 108 109 static void vm_free_pages_release(struct i915_address_space *vm, 110 bool immediate) 111 { 112 struct pagevec *pvec = &vm->free_pages.pvec; 113 struct pagevec stack; 114 115 lockdep_assert_held(&vm->free_pages.lock); 116 GEM_BUG_ON(!pagevec_count(pvec)); 117 118 if (vm->pt_kmap_wc) { 119 /* 120 * When we use WC, first fill up the global stash and then 121 * only if full immediately free the overflow. 122 */ 123 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec); 124 125 /* 126 * As we have made some room in the VM's free_pages, 127 * we can wait for it to fill again. Unless we are 128 * inside i915_address_space_fini() and must 129 * immediately release the pages! 130 */ 131 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1)) 132 return; 133 134 /* 135 * We have to drop the lock to allow ourselves to sleep, 136 * so take a copy of the pvec and clear the stash for 137 * others to use it as we sleep. 138 */ 139 stack = *pvec; 140 pagevec_reinit(pvec); 141 spin_unlock(&vm->free_pages.lock); 142 143 pvec = &stack; 144 set_pages_array_wb(pvec->pages, pvec->nr); 145 146 spin_lock(&vm->free_pages.lock); 147 } 148 149 __pagevec_release(pvec); 150 } 151 152 static void vm_free_page(struct i915_address_space *vm, struct page *page) 153 { 154 /* 155 * On !llc, we need to change the pages back to WB. We only do so 156 * in bulk, so we rarely need to change the page attributes here, 157 * but doing so requires a stop_machine() from deep inside arch/x86/mm. 158 * To make detection of the possible sleep more likely, use an 159 * unconditional might_sleep() for everybody. 160 */ 161 might_sleep(); 162 spin_lock(&vm->free_pages.lock); 163 while (!pagevec_space(&vm->free_pages.pvec)) 164 vm_free_pages_release(vm, false); 165 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE); 166 pagevec_add(&vm->free_pages.pvec, page); 167 spin_unlock(&vm->free_pages.lock); 168 } 169 170 void __i915_vm_close(struct i915_address_space *vm) 171 { 172 struct i915_vma *vma, *vn; 173 174 if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex)) 175 return; 176 177 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 178 struct drm_i915_gem_object *obj = vma->obj; 179 180 /* Keep the obj (and hence the vma) alive as _we_ destroy it */ 181 if (!kref_get_unless_zero(&obj->base.refcount)) 182 continue; 183 184 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 185 WARN_ON(__i915_vma_unbind(vma)); 186 __i915_vma_put(vma); 187 188 i915_gem_object_put(obj); 189 } 190 GEM_BUG_ON(!list_empty(&vm->bound_list)); 191 192 mutex_unlock(&vm->mutex); 193 } 194 195 void i915_address_space_fini(struct i915_address_space *vm) 196 { 197 spin_lock(&vm->free_pages.lock); 198 if (pagevec_count(&vm->free_pages.pvec)) 199 vm_free_pages_release(vm, true); 200 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec)); 201 spin_unlock(&vm->free_pages.lock); 202 203 drm_mm_takedown(&vm->mm); 204 205 mutex_destroy(&vm->mutex); 206 } 207 208 static void __i915_vm_release(struct work_struct *work) 209 { 210 struct i915_address_space *vm = 211 container_of(work, struct i915_address_space, rcu.work); 212 213 vm->cleanup(vm); 214 i915_address_space_fini(vm); 215 216 kfree(vm); 217 } 218 219 void i915_vm_release(struct kref *kref) 220 { 221 struct i915_address_space *vm = 222 container_of(kref, struct i915_address_space, ref); 223 224 GEM_BUG_ON(i915_is_ggtt(vm)); 225 trace_i915_ppgtt_release(vm); 226 227 queue_rcu_work(vm->i915->wq, &vm->rcu); 228 } 229 230 void i915_address_space_init(struct i915_address_space *vm, int subclass) 231 { 232 kref_init(&vm->ref); 233 INIT_RCU_WORK(&vm->rcu, __i915_vm_release); 234 atomic_set(&vm->open, 1); 235 236 /* 237 * The vm->mutex must be reclaim safe (for use in the shrinker). 238 * Do a dummy acquire now under fs_reclaim so that any allocation 239 * attempt holding the lock is immediately reported by lockdep. 240 */ 241 mutex_init(&vm->mutex); 242 lockdep_set_subclass(&vm->mutex, subclass); 243 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 244 245 GEM_BUG_ON(!vm->total); 246 drm_mm_init(&vm->mm, 0, vm->total); 247 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 248 249 stash_init(&vm->free_pages); 250 251 INIT_LIST_HEAD(&vm->bound_list); 252 } 253 254 void clear_pages(struct i915_vma *vma) 255 { 256 GEM_BUG_ON(!vma->pages); 257 258 if (vma->pages != vma->obj->mm.pages) { 259 sg_free_table(vma->pages); 260 kfree(vma->pages); 261 } 262 vma->pages = NULL; 263 264 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); 265 } 266 267 static int __setup_page_dma(struct i915_address_space *vm, 268 struct i915_page_dma *p, 269 gfp_t gfp) 270 { 271 p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL); 272 if (unlikely(!p->page)) 273 return -ENOMEM; 274 275 p->daddr = dma_map_page_attrs(vm->dma, 276 p->page, 0, PAGE_SIZE, 277 PCI_DMA_BIDIRECTIONAL, 278 DMA_ATTR_SKIP_CPU_SYNC | 279 DMA_ATTR_NO_WARN); 280 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { 281 vm_free_page(vm, p->page); 282 return -ENOMEM; 283 } 284 285 return 0; 286 } 287 288 int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p) 289 { 290 return __setup_page_dma(vm, p, __GFP_HIGHMEM); 291 } 292 293 void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p) 294 { 295 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 296 vm_free_page(vm, p->page); 297 } 298 299 void 300 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count) 301 { 302 kunmap_atomic(memset64(kmap_atomic(p->page), val, count)); 303 } 304 305 static void poison_scratch_page(struct page *page, unsigned long size) 306 { 307 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 308 return; 309 310 GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE)); 311 312 do { 313 void *vaddr; 314 315 vaddr = kmap(page); 316 memset(vaddr, POISON_FREE, PAGE_SIZE); 317 kunmap(page); 318 319 page = pfn_to_page(page_to_pfn(page) + 1); 320 size -= PAGE_SIZE; 321 } while (size); 322 } 323 324 int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) 325 { 326 unsigned long size; 327 328 /* 329 * In order to utilize 64K pages for an object with a size < 2M, we will 330 * need to support a 64K scratch page, given that every 16th entry for a 331 * page-table operating in 64K mode must point to a properly aligned 64K 332 * region, including any PTEs which happen to point to scratch. 333 * 334 * This is only relevant for the 48b PPGTT where we support 335 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 336 * scratch (read-only) between all vm, we create one 64k scratch page 337 * for all. 338 */ 339 size = I915_GTT_PAGE_SIZE_4K; 340 if (i915_vm_is_4lvl(vm) && 341 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { 342 size = I915_GTT_PAGE_SIZE_64K; 343 gfp |= __GFP_NOWARN; 344 } 345 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; 346 347 do { 348 unsigned int order = get_order(size); 349 struct page *page; 350 dma_addr_t addr; 351 352 page = alloc_pages(gfp, order); 353 if (unlikely(!page)) 354 goto skip; 355 356 /* 357 * Use a non-zero scratch page for debugging. 358 * 359 * We want a value that should be reasonably obvious 360 * to spot in the error state, while also causing a GPU hang 361 * if executed. We prefer using a clear page in production, so 362 * should it ever be accidentally used, the effect should be 363 * fairly benign. 364 */ 365 poison_scratch_page(page, size); 366 367 addr = dma_map_page_attrs(vm->dma, 368 page, 0, size, 369 PCI_DMA_BIDIRECTIONAL, 370 DMA_ATTR_SKIP_CPU_SYNC | 371 DMA_ATTR_NO_WARN); 372 if (unlikely(dma_mapping_error(vm->dma, addr))) 373 goto free_page; 374 375 if (unlikely(!IS_ALIGNED(addr, size))) 376 goto unmap_page; 377 378 vm->scratch[0].base.page = page; 379 vm->scratch[0].base.daddr = addr; 380 vm->scratch_order = order; 381 return 0; 382 383 unmap_page: 384 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); 385 free_page: 386 __free_pages(page, order); 387 skip: 388 if (size == I915_GTT_PAGE_SIZE_4K) 389 return -ENOMEM; 390 391 size = I915_GTT_PAGE_SIZE_4K; 392 gfp &= ~__GFP_NOWARN; 393 } while (1); 394 } 395 396 void cleanup_scratch_page(struct i915_address_space *vm) 397 { 398 struct i915_page_dma *p = px_base(&vm->scratch[0]); 399 unsigned int order = vm->scratch_order; 400 401 dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT, 402 PCI_DMA_BIDIRECTIONAL); 403 __free_pages(p->page, order); 404 } 405 406 void free_scratch(struct i915_address_space *vm) 407 { 408 int i; 409 410 if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */ 411 return; 412 413 for (i = 1; i <= vm->top; i++) { 414 if (!px_dma(&vm->scratch[i])) 415 break; 416 cleanup_page_dma(vm, px_base(&vm->scratch[i])); 417 } 418 419 cleanup_scratch_page(vm); 420 } 421 422 void gtt_write_workarounds(struct intel_gt *gt) 423 { 424 struct drm_i915_private *i915 = gt->i915; 425 struct intel_uncore *uncore = gt->uncore; 426 427 /* 428 * This function is for gtt related workarounds. This function is 429 * called on driver load and after a GPU reset, so you can place 430 * workarounds here even if they get overwritten by GPU reset. 431 */ 432 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 433 if (IS_BROADWELL(i915)) 434 intel_uncore_write(uncore, 435 GEN8_L3_LRA_1_GPGPU, 436 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 437 else if (IS_CHERRYVIEW(i915)) 438 intel_uncore_write(uncore, 439 GEN8_L3_LRA_1_GPGPU, 440 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 441 else if (IS_GEN9_LP(i915)) 442 intel_uncore_write(uncore, 443 GEN8_L3_LRA_1_GPGPU, 444 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 445 else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11) 446 intel_uncore_write(uncore, 447 GEN8_L3_LRA_1_GPGPU, 448 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 449 450 /* 451 * To support 64K PTEs we need to first enable the use of the 452 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 453 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 454 * shouldn't be needed after GEN10. 455 * 456 * 64K pages were first introduced from BDW+, although technically they 457 * only *work* from gen9+. For pre-BDW we instead have the option for 458 * 32K pages, but we don't currently have any support for it in our 459 * driver. 460 */ 461 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && 462 INTEL_GEN(i915) <= 10) 463 intel_uncore_rmw(uncore, 464 GEN8_GAMW_ECO_DEV_RW_IA, 465 0, 466 GAMW_ECO_ENABLE_64K_IPS_FIELD); 467 468 if (IS_GEN_RANGE(i915, 8, 11)) { 469 bool can_use_gtt_cache = true; 470 471 /* 472 * According to the BSpec if we use 2M/1G pages then we also 473 * need to disable the GTT cache. At least on BDW we can see 474 * visual corruption when using 2M pages, and not disabling the 475 * GTT cache. 476 */ 477 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) 478 can_use_gtt_cache = false; 479 480 /* WaGttCachingOffByDefault */ 481 intel_uncore_write(uncore, 482 HSW_GTT_CACHE_EN, 483 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); 484 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && 485 intel_uncore_read(uncore, 486 HSW_GTT_CACHE_EN) == 0); 487 } 488 } 489 490 static void tgl_setup_private_ppat(struct intel_uncore *uncore) 491 { 492 /* TGL doesn't support LLC or AGE settings */ 493 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); 494 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); 495 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); 496 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); 497 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); 498 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); 499 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); 500 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); 501 } 502 503 static void cnl_setup_private_ppat(struct intel_uncore *uncore) 504 { 505 intel_uncore_write(uncore, 506 GEN10_PAT_INDEX(0), 507 GEN8_PPAT_WB | GEN8_PPAT_LLC); 508 intel_uncore_write(uncore, 509 GEN10_PAT_INDEX(1), 510 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 511 intel_uncore_write(uncore, 512 GEN10_PAT_INDEX(2), 513 GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 514 intel_uncore_write(uncore, 515 GEN10_PAT_INDEX(3), 516 GEN8_PPAT_UC); 517 intel_uncore_write(uncore, 518 GEN10_PAT_INDEX(4), 519 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 520 intel_uncore_write(uncore, 521 GEN10_PAT_INDEX(5), 522 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 523 intel_uncore_write(uncore, 524 GEN10_PAT_INDEX(6), 525 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 526 intel_uncore_write(uncore, 527 GEN10_PAT_INDEX(7), 528 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 529 } 530 531 /* 532 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 533 * bits. When using advanced contexts each context stores its own PAT, but 534 * writing this data shouldn't be harmful even in those cases. 535 */ 536 static void bdw_setup_private_ppat(struct intel_uncore *uncore) 537 { 538 u64 pat; 539 540 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 541 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 542 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ 543 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 544 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 545 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 546 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 547 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 548 549 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 550 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 551 } 552 553 static void chv_setup_private_ppat(struct intel_uncore *uncore) 554 { 555 u64 pat; 556 557 /* 558 * Map WB on BDW to snooped on CHV. 559 * 560 * Only the snoop bit has meaning for CHV, the rest is 561 * ignored. 562 * 563 * The hardware will never snoop for certain types of accesses: 564 * - CPU GTT (GMADR->GGTT->no snoop->memory) 565 * - PPGTT page tables 566 * - some other special cycles 567 * 568 * As with BDW, we also need to consider the following for GT accesses: 569 * "For GGTT, there is NO pat_sel[2:0] from the entry, 570 * so RTL will always use the value corresponding to 571 * pat_sel = 000". 572 * Which means we must set the snoop bit in PAT entry 0 573 * in order to keep the global status page working. 574 */ 575 576 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 577 GEN8_PPAT(1, 0) | 578 GEN8_PPAT(2, 0) | 579 GEN8_PPAT(3, 0) | 580 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 581 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 582 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 583 GEN8_PPAT(7, CHV_PPAT_SNOOP); 584 585 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 586 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 587 } 588 589 void setup_private_pat(struct intel_uncore *uncore) 590 { 591 struct drm_i915_private *i915 = uncore->i915; 592 593 GEM_BUG_ON(INTEL_GEN(i915) < 8); 594 595 if (INTEL_GEN(i915) >= 12) 596 tgl_setup_private_ppat(uncore); 597 else if (INTEL_GEN(i915) >= 10) 598 cnl_setup_private_ppat(uncore); 599 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) 600 chv_setup_private_ppat(uncore); 601 else 602 bdw_setup_private_ppat(uncore); 603 } 604 605 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 606 #include "selftests/mock_gtt.c" 607 #endif 608