xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision 501f94d0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_internal.h"
14 #include "gem/i915_gem_lmem.h"
15 #include "i915_trace.h"
16 #include "i915_utils.h"
17 #include "intel_gt.h"
18 #include "intel_gt_regs.h"
19 #include "intel_gtt.h"
20 
21 
22 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
23 {
24 	return IS_BROXTON(i915) && i915_vtd_active(i915);
25 }
26 
27 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
28 {
29 	return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
30 }
31 
32 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
33 {
34 	struct drm_i915_gem_object *obj;
35 
36 	/*
37 	 * To avoid severe over-allocation when dealing with min_page_size
38 	 * restrictions, we override that behaviour here by allowing an object
39 	 * size and page layout which can be smaller. In practice this should be
40 	 * totally fine, since GTT paging structures are not typically inserted
41 	 * into the GTT.
42 	 *
43 	 * Note that we also hit this path for the scratch page, and for this
44 	 * case it might need to be 64K, but that should work fine here since we
45 	 * used the passed in size for the page size, which should ensure it
46 	 * also has the same alignment.
47 	 */
48 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
49 						    vm->lmem_pt_obj_flags);
50 	/*
51 	 * Ensure all paging structures for this vm share the same dma-resv
52 	 * object underneath, with the idea that one object_lock() will lock
53 	 * them all at once.
54 	 */
55 	if (!IS_ERR(obj)) {
56 		obj->base.resv = i915_vm_resv_get(vm);
57 		obj->shares_resv_from = vm;
58 	}
59 
60 	return obj;
61 }
62 
63 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
64 {
65 	struct drm_i915_gem_object *obj;
66 
67 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
68 		i915_gem_shrink_all(vm->i915);
69 
70 	obj = i915_gem_object_create_internal(vm->i915, sz);
71 	/*
72 	 * Ensure all paging structures for this vm share the same dma-resv
73 	 * object underneath, with the idea that one object_lock() will lock
74 	 * them all at once.
75 	 */
76 	if (!IS_ERR(obj)) {
77 		obj->base.resv = i915_vm_resv_get(vm);
78 		obj->shares_resv_from = vm;
79 	}
80 
81 	return obj;
82 }
83 
84 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
85 {
86 	enum i915_map_type type;
87 	void *vaddr;
88 
89 	type = i915_coherent_map_type(vm->i915, obj, true);
90 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
91 	if (IS_ERR(vaddr))
92 		return PTR_ERR(vaddr);
93 
94 	i915_gem_object_make_unshrinkable(obj);
95 	return 0;
96 }
97 
98 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
99 {
100 	enum i915_map_type type;
101 	void *vaddr;
102 
103 	type = i915_coherent_map_type(vm->i915, obj, true);
104 	vaddr = i915_gem_object_pin_map(obj, type);
105 	if (IS_ERR(vaddr))
106 		return PTR_ERR(vaddr);
107 
108 	i915_gem_object_make_unshrinkable(obj);
109 	return 0;
110 }
111 
112 void __i915_vm_close(struct i915_address_space *vm)
113 {
114 	struct i915_vma *vma, *vn;
115 
116 	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
117 		return;
118 
119 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
120 		struct drm_i915_gem_object *obj = vma->obj;
121 
122 		if (!kref_get_unless_zero(&obj->base.refcount)) {
123 			/*
124 			 * Unbind the dying vma to ensure the bound_list
125 			 * is completely drained. We leave the destruction to
126 			 * the object destructor.
127 			 */
128 			atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
129 			WARN_ON(__i915_vma_unbind(vma));
130 			continue;
131 		}
132 
133 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
134 		i915_vma_destroy_locked(vma);
135 		i915_gem_object_put(obj);
136 	}
137 	GEM_BUG_ON(!list_empty(&vm->bound_list));
138 
139 	mutex_unlock(&vm->mutex);
140 }
141 
142 /* lock the vm into the current ww, if we lock one, we lock all */
143 int i915_vm_lock_objects(struct i915_address_space *vm,
144 			 struct i915_gem_ww_ctx *ww)
145 {
146 	if (vm->scratch[0]->base.resv == &vm->_resv) {
147 		return i915_gem_object_lock(vm->scratch[0], ww);
148 	} else {
149 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
150 
151 		/* We borrowed the scratch page from ggtt, take the top level object */
152 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
153 	}
154 }
155 
156 void i915_address_space_fini(struct i915_address_space *vm)
157 {
158 	drm_mm_takedown(&vm->mm);
159 	mutex_destroy(&vm->mutex);
160 }
161 
162 /**
163  * i915_vm_resv_release - Final struct i915_address_space destructor
164  * @kref: Pointer to the &i915_address_space.resv_ref member.
165  *
166  * This function is called when the last lock sharer no longer shares the
167  * &i915_address_space._resv lock.
168  */
169 void i915_vm_resv_release(struct kref *kref)
170 {
171 	struct i915_address_space *vm =
172 		container_of(kref, typeof(*vm), resv_ref);
173 
174 	dma_resv_fini(&vm->_resv);
175 	kfree(vm);
176 }
177 
178 static void __i915_vm_release(struct work_struct *work)
179 {
180 	struct i915_address_space *vm =
181 		container_of(work, struct i915_address_space, release_work);
182 
183 	/* Synchronize async unbinds. */
184 	i915_vma_resource_bind_dep_sync_all(vm);
185 
186 	vm->cleanup(vm);
187 	i915_address_space_fini(vm);
188 
189 	i915_vm_resv_put(vm);
190 }
191 
192 void i915_vm_release(struct kref *kref)
193 {
194 	struct i915_address_space *vm =
195 		container_of(kref, struct i915_address_space, ref);
196 
197 	GEM_BUG_ON(i915_is_ggtt(vm));
198 	trace_i915_ppgtt_release(vm);
199 
200 	queue_work(vm->i915->wq, &vm->release_work);
201 }
202 
203 void i915_address_space_init(struct i915_address_space *vm, int subclass)
204 {
205 	kref_init(&vm->ref);
206 
207 	/*
208 	 * Special case for GGTT that has already done an early
209 	 * kref_init here.
210 	 */
211 	if (!kref_read(&vm->resv_ref))
212 		kref_init(&vm->resv_ref);
213 
214 	vm->pending_unbind = RB_ROOT_CACHED;
215 	INIT_WORK(&vm->release_work, __i915_vm_release);
216 	atomic_set(&vm->open, 1);
217 
218 	/*
219 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
220 	 * Do a dummy acquire now under fs_reclaim so that any allocation
221 	 * attempt holding the lock is immediately reported by lockdep.
222 	 */
223 	mutex_init(&vm->mutex);
224 	lockdep_set_subclass(&vm->mutex, subclass);
225 
226 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
227 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
228 	} else {
229 		/*
230 		 * CHV + BXT VTD workaround use stop_machine(),
231 		 * which is allowed to allocate memory. This means &vm->mutex
232 		 * is the outer lock, and in theory we can allocate memory inside
233 		 * it through stop_machine().
234 		 *
235 		 * Add the annotation for this, we use trylock in shrinker.
236 		 */
237 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
238 		might_alloc(GFP_KERNEL);
239 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
240 	}
241 	dma_resv_init(&vm->_resv);
242 
243 	GEM_BUG_ON(!vm->total);
244 	drm_mm_init(&vm->mm, 0, vm->total);
245 
246 	memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
247 		 ARRAY_SIZE(vm->min_alignment));
248 
249 	if (HAS_64K_PAGES(vm->i915) && NEEDS_COMPACT_PT(vm->i915) &&
250 	    subclass == VM_CLASS_PPGTT) {
251 		vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_2M;
252 		vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_2M;
253 	} else if (HAS_64K_PAGES(vm->i915)) {
254 		vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
255 		vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
256 	}
257 
258 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
259 
260 	INIT_LIST_HEAD(&vm->bound_list);
261 }
262 
263 void *__px_vaddr(struct drm_i915_gem_object *p)
264 {
265 	enum i915_map_type type;
266 
267 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
268 	return page_unpack_bits(p->mm.mapping, &type);
269 }
270 
271 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
272 {
273 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
274 	return sg_dma_address(p->mm.pages->sgl);
275 }
276 
277 struct page *__px_page(struct drm_i915_gem_object *p)
278 {
279 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
280 	return sg_page(p->mm.pages->sgl);
281 }
282 
283 void
284 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
285 {
286 	void *vaddr = __px_vaddr(p);
287 
288 	memset64(vaddr, val, count);
289 	clflush_cache_range(vaddr, PAGE_SIZE);
290 }
291 
292 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
293 {
294 	void *vaddr = __px_vaddr(scratch);
295 	u8 val;
296 
297 	val = 0;
298 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
299 		val = POISON_FREE;
300 
301 	memset(vaddr, val, scratch->base.size);
302 	drm_clflush_virt_range(vaddr, scratch->base.size);
303 }
304 
305 int setup_scratch_page(struct i915_address_space *vm)
306 {
307 	unsigned long size;
308 
309 	/*
310 	 * In order to utilize 64K pages for an object with a size < 2M, we will
311 	 * need to support a 64K scratch page, given that every 16th entry for a
312 	 * page-table operating in 64K mode must point to a properly aligned 64K
313 	 * region, including any PTEs which happen to point to scratch.
314 	 *
315 	 * This is only relevant for the 48b PPGTT where we support
316 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
317 	 * scratch (read-only) between all vm, we create one 64k scratch page
318 	 * for all.
319 	 */
320 	size = I915_GTT_PAGE_SIZE_4K;
321 	if (i915_vm_is_4lvl(vm) &&
322 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
323 		size = I915_GTT_PAGE_SIZE_64K;
324 
325 	do {
326 		struct drm_i915_gem_object *obj;
327 
328 		obj = vm->alloc_scratch_dma(vm, size);
329 		if (IS_ERR(obj))
330 			goto skip;
331 
332 		if (map_pt_dma(vm, obj))
333 			goto skip_obj;
334 
335 		/* We need a single contiguous page for our scratch */
336 		if (obj->mm.page_sizes.sg < size)
337 			goto skip_obj;
338 
339 		/* And it needs to be correspondingly aligned */
340 		if (__px_dma(obj) & (size - 1))
341 			goto skip_obj;
342 
343 		/*
344 		 * Use a non-zero scratch page for debugging.
345 		 *
346 		 * We want a value that should be reasonably obvious
347 		 * to spot in the error state, while also causing a GPU hang
348 		 * if executed. We prefer using a clear page in production, so
349 		 * should it ever be accidentally used, the effect should be
350 		 * fairly benign.
351 		 */
352 		poison_scratch_page(obj);
353 
354 		vm->scratch[0] = obj;
355 		vm->scratch_order = get_order(size);
356 		return 0;
357 
358 skip_obj:
359 		i915_gem_object_put(obj);
360 skip:
361 		if (size == I915_GTT_PAGE_SIZE_4K)
362 			return -ENOMEM;
363 
364 		/*
365 		 * If we need 64K minimum GTT pages for device local-memory,
366 		 * like on XEHPSDV, then we need to fail the allocation here,
367 		 * otherwise we can't safely support the insertion of
368 		 * local-memory pages for this vm, since the HW expects the
369 		 * correct physical alignment and size when the page-table is
370 		 * operating in 64K GTT mode, which includes any scratch PTEs,
371 		 * since userspace can still touch them.
372 		 */
373 		if (HAS_64K_PAGES(vm->i915))
374 			return -ENOMEM;
375 
376 		size = I915_GTT_PAGE_SIZE_4K;
377 	} while (1);
378 }
379 
380 void free_scratch(struct i915_address_space *vm)
381 {
382 	int i;
383 
384 	for (i = 0; i <= vm->top; i++)
385 		i915_gem_object_put(vm->scratch[i]);
386 }
387 
388 void gtt_write_workarounds(struct intel_gt *gt)
389 {
390 	struct drm_i915_private *i915 = gt->i915;
391 	struct intel_uncore *uncore = gt->uncore;
392 
393 	/*
394 	 * This function is for gtt related workarounds. This function is
395 	 * called on driver load and after a GPU reset, so you can place
396 	 * workarounds here even if they get overwritten by GPU reset.
397 	 */
398 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
399 	if (IS_BROADWELL(i915))
400 		intel_uncore_write(uncore,
401 				   GEN8_L3_LRA_1_GPGPU,
402 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
403 	else if (IS_CHERRYVIEW(i915))
404 		intel_uncore_write(uncore,
405 				   GEN8_L3_LRA_1_GPGPU,
406 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
407 	else if (IS_GEN9_LP(i915))
408 		intel_uncore_write(uncore,
409 				   GEN8_L3_LRA_1_GPGPU,
410 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
411 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
412 		intel_uncore_write(uncore,
413 				   GEN8_L3_LRA_1_GPGPU,
414 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
415 
416 	/*
417 	 * To support 64K PTEs we need to first enable the use of the
418 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
419 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
420 	 * shouldn't be needed after GEN10.
421 	 *
422 	 * 64K pages were first introduced from BDW+, although technically they
423 	 * only *work* from gen9+. For pre-BDW we instead have the option for
424 	 * 32K pages, but we don't currently have any support for it in our
425 	 * driver.
426 	 */
427 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
428 	    GRAPHICS_VER(i915) <= 10)
429 		intel_uncore_rmw(uncore,
430 				 GEN8_GAMW_ECO_DEV_RW_IA,
431 				 0,
432 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
433 
434 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
435 		bool can_use_gtt_cache = true;
436 
437 		/*
438 		 * According to the BSpec if we use 2M/1G pages then we also
439 		 * need to disable the GTT cache. At least on BDW we can see
440 		 * visual corruption when using 2M pages, and not disabling the
441 		 * GTT cache.
442 		 */
443 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
444 			can_use_gtt_cache = false;
445 
446 		/* WaGttCachingOffByDefault */
447 		intel_uncore_write(uncore,
448 				   HSW_GTT_CACHE_EN,
449 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
450 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
451 				 intel_uncore_read(uncore,
452 						   HSW_GTT_CACHE_EN) == 0);
453 	}
454 }
455 
456 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
457 {
458 	/* TGL doesn't support LLC or AGE settings */
459 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
460 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
461 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
462 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
463 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
464 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
465 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
466 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
467 }
468 
469 static void icl_setup_private_ppat(struct intel_uncore *uncore)
470 {
471 	intel_uncore_write(uncore,
472 			   GEN10_PAT_INDEX(0),
473 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
474 	intel_uncore_write(uncore,
475 			   GEN10_PAT_INDEX(1),
476 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
477 	intel_uncore_write(uncore,
478 			   GEN10_PAT_INDEX(2),
479 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
480 	intel_uncore_write(uncore,
481 			   GEN10_PAT_INDEX(3),
482 			   GEN8_PPAT_UC);
483 	intel_uncore_write(uncore,
484 			   GEN10_PAT_INDEX(4),
485 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
486 	intel_uncore_write(uncore,
487 			   GEN10_PAT_INDEX(5),
488 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
489 	intel_uncore_write(uncore,
490 			   GEN10_PAT_INDEX(6),
491 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
492 	intel_uncore_write(uncore,
493 			   GEN10_PAT_INDEX(7),
494 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
495 }
496 
497 /*
498  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
499  * bits. When using advanced contexts each context stores its own PAT, but
500  * writing this data shouldn't be harmful even in those cases.
501  */
502 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
503 {
504 	struct drm_i915_private *i915 = uncore->i915;
505 	u64 pat;
506 
507 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
508 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
509 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
510 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
511 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
512 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
513 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
514 
515 	/* for scanout with eLLC */
516 	if (GRAPHICS_VER(i915) >= 9)
517 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
518 	else
519 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
520 
521 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
522 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
523 }
524 
525 static void chv_setup_private_ppat(struct intel_uncore *uncore)
526 {
527 	u64 pat;
528 
529 	/*
530 	 * Map WB on BDW to snooped on CHV.
531 	 *
532 	 * Only the snoop bit has meaning for CHV, the rest is
533 	 * ignored.
534 	 *
535 	 * The hardware will never snoop for certain types of accesses:
536 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
537 	 * - PPGTT page tables
538 	 * - some other special cycles
539 	 *
540 	 * As with BDW, we also need to consider the following for GT accesses:
541 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
542 	 * so RTL will always use the value corresponding to
543 	 * pat_sel = 000".
544 	 * Which means we must set the snoop bit in PAT entry 0
545 	 * in order to keep the global status page working.
546 	 */
547 
548 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
549 	      GEN8_PPAT(1, 0) |
550 	      GEN8_PPAT(2, 0) |
551 	      GEN8_PPAT(3, 0) |
552 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
553 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
554 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
555 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
556 
557 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
558 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
559 }
560 
561 void setup_private_pat(struct intel_uncore *uncore)
562 {
563 	struct drm_i915_private *i915 = uncore->i915;
564 
565 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
566 
567 	if (GRAPHICS_VER(i915) >= 12)
568 		tgl_setup_private_ppat(uncore);
569 	else if (GRAPHICS_VER(i915) >= 11)
570 		icl_setup_private_ppat(uncore);
571 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
572 		chv_setup_private_ppat(uncore);
573 	else
574 		bdw_setup_private_ppat(uncore);
575 }
576 
577 struct i915_vma *
578 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
579 {
580 	struct drm_i915_gem_object *obj;
581 	struct i915_vma *vma;
582 
583 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
584 	if (IS_ERR(obj))
585 		return ERR_CAST(obj);
586 
587 	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
588 
589 	vma = i915_vma_instance(obj, vm, NULL);
590 	if (IS_ERR(vma)) {
591 		i915_gem_object_put(obj);
592 		return vma;
593 	}
594 
595 	return vma;
596 }
597 
598 struct i915_vma *
599 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
600 {
601 	struct i915_vma *vma;
602 	int err;
603 
604 	vma = __vm_create_scratch_for_read(vm, size);
605 	if (IS_ERR(vma))
606 		return vma;
607 
608 	err = i915_vma_pin(vma, 0, 0,
609 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
610 	if (err) {
611 		i915_vma_put(vma);
612 		return ERR_PTR(err);
613 	}
614 
615 	return vma;
616 }
617 
618 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
619 #include "selftests/mock_gtt.c"
620 #endif
621