xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision 3a9a6f3d)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_internal.h"
14 #include "gem/i915_gem_lmem.h"
15 #include "i915_trace.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_gtt.h"
19 
20 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
21 {
22 	struct drm_i915_gem_object *obj;
23 
24 	/*
25 	 * To avoid severe over-allocation when dealing with min_page_size
26 	 * restrictions, we override that behaviour here by allowing an object
27 	 * size and page layout which can be smaller. In practice this should be
28 	 * totally fine, since GTT paging structures are not typically inserted
29 	 * into the GTT.
30 	 *
31 	 * Note that we also hit this path for the scratch page, and for this
32 	 * case it might need to be 64K, but that should work fine here since we
33 	 * used the passed in size for the page size, which should ensure it
34 	 * also has the same alignment.
35 	 */
36 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
37 						    vm->lmem_pt_obj_flags);
38 	/*
39 	 * Ensure all paging structures for this vm share the same dma-resv
40 	 * object underneath, with the idea that one object_lock() will lock
41 	 * them all at once.
42 	 */
43 	if (!IS_ERR(obj)) {
44 		obj->base.resv = i915_vm_resv_get(vm);
45 		obj->shares_resv_from = vm;
46 	}
47 
48 	return obj;
49 }
50 
51 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
52 {
53 	struct drm_i915_gem_object *obj;
54 
55 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
56 		i915_gem_shrink_all(vm->i915);
57 
58 	obj = i915_gem_object_create_internal(vm->i915, sz);
59 	/*
60 	 * Ensure all paging structures for this vm share the same dma-resv
61 	 * object underneath, with the idea that one object_lock() will lock
62 	 * them all at once.
63 	 */
64 	if (!IS_ERR(obj)) {
65 		obj->base.resv = i915_vm_resv_get(vm);
66 		obj->shares_resv_from = vm;
67 	}
68 
69 	return obj;
70 }
71 
72 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
73 {
74 	enum i915_map_type type;
75 	void *vaddr;
76 
77 	type = i915_coherent_map_type(vm->i915, obj, true);
78 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
79 	if (IS_ERR(vaddr))
80 		return PTR_ERR(vaddr);
81 
82 	i915_gem_object_make_unshrinkable(obj);
83 	return 0;
84 }
85 
86 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
87 {
88 	enum i915_map_type type;
89 	void *vaddr;
90 
91 	type = i915_coherent_map_type(vm->i915, obj, true);
92 	vaddr = i915_gem_object_pin_map(obj, type);
93 	if (IS_ERR(vaddr))
94 		return PTR_ERR(vaddr);
95 
96 	i915_gem_object_make_unshrinkable(obj);
97 	return 0;
98 }
99 
100 void __i915_vm_close(struct i915_address_space *vm)
101 {
102 	struct i915_vma *vma, *vn;
103 
104 	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
105 		return;
106 
107 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
108 		struct drm_i915_gem_object *obj = vma->obj;
109 
110 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
111 		if (!kref_get_unless_zero(&obj->base.refcount))
112 			continue;
113 
114 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
115 		WARN_ON(__i915_vma_unbind(vma));
116 		__i915_vma_put(vma);
117 
118 		i915_gem_object_put(obj);
119 	}
120 	GEM_BUG_ON(!list_empty(&vm->bound_list));
121 
122 	mutex_unlock(&vm->mutex);
123 }
124 
125 /* lock the vm into the current ww, if we lock one, we lock all */
126 int i915_vm_lock_objects(struct i915_address_space *vm,
127 			 struct i915_gem_ww_ctx *ww)
128 {
129 	if (vm->scratch[0]->base.resv == &vm->_resv) {
130 		return i915_gem_object_lock(vm->scratch[0], ww);
131 	} else {
132 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
133 
134 		/* We borrowed the scratch page from ggtt, take the top level object */
135 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
136 	}
137 }
138 
139 void i915_address_space_fini(struct i915_address_space *vm)
140 {
141 	drm_mm_takedown(&vm->mm);
142 	mutex_destroy(&vm->mutex);
143 }
144 
145 /**
146  * i915_vm_resv_release - Final struct i915_address_space destructor
147  * @kref: Pointer to the &i915_address_space.resv_ref member.
148  *
149  * This function is called when the last lock sharer no longer shares the
150  * &i915_address_space._resv lock.
151  */
152 void i915_vm_resv_release(struct kref *kref)
153 {
154 	struct i915_address_space *vm =
155 		container_of(kref, typeof(*vm), resv_ref);
156 
157 	dma_resv_fini(&vm->_resv);
158 	kfree(vm);
159 }
160 
161 static void __i915_vm_release(struct work_struct *work)
162 {
163 	struct i915_address_space *vm =
164 		container_of(work, struct i915_address_space, release_work);
165 
166 	/* Synchronize async unbinds. */
167 	i915_vma_resource_bind_dep_sync_all(vm);
168 
169 	vm->cleanup(vm);
170 	i915_address_space_fini(vm);
171 
172 	i915_vm_resv_put(vm);
173 }
174 
175 void i915_vm_release(struct kref *kref)
176 {
177 	struct i915_address_space *vm =
178 		container_of(kref, struct i915_address_space, ref);
179 
180 	GEM_BUG_ON(i915_is_ggtt(vm));
181 	trace_i915_ppgtt_release(vm);
182 
183 	queue_work(vm->i915->wq, &vm->release_work);
184 }
185 
186 void i915_address_space_init(struct i915_address_space *vm, int subclass)
187 {
188 	kref_init(&vm->ref);
189 
190 	/*
191 	 * Special case for GGTT that has already done an early
192 	 * kref_init here.
193 	 */
194 	if (!kref_read(&vm->resv_ref))
195 		kref_init(&vm->resv_ref);
196 
197 	vm->pending_unbind = RB_ROOT_CACHED;
198 	INIT_WORK(&vm->release_work, __i915_vm_release);
199 	atomic_set(&vm->open, 1);
200 
201 	/*
202 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
203 	 * Do a dummy acquire now under fs_reclaim so that any allocation
204 	 * attempt holding the lock is immediately reported by lockdep.
205 	 */
206 	mutex_init(&vm->mutex);
207 	lockdep_set_subclass(&vm->mutex, subclass);
208 
209 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
210 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
211 	} else {
212 		/*
213 		 * CHV + BXT VTD workaround use stop_machine(),
214 		 * which is allowed to allocate memory. This means &vm->mutex
215 		 * is the outer lock, and in theory we can allocate memory inside
216 		 * it through stop_machine().
217 		 *
218 		 * Add the annotation for this, we use trylock in shrinker.
219 		 */
220 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
221 		might_alloc(GFP_KERNEL);
222 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
223 	}
224 	dma_resv_init(&vm->_resv);
225 
226 	GEM_BUG_ON(!vm->total);
227 	drm_mm_init(&vm->mm, 0, vm->total);
228 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
229 
230 	INIT_LIST_HEAD(&vm->bound_list);
231 }
232 
233 void *__px_vaddr(struct drm_i915_gem_object *p)
234 {
235 	enum i915_map_type type;
236 
237 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
238 	return page_unpack_bits(p->mm.mapping, &type);
239 }
240 
241 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
242 {
243 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
244 	return sg_dma_address(p->mm.pages->sgl);
245 }
246 
247 struct page *__px_page(struct drm_i915_gem_object *p)
248 {
249 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
250 	return sg_page(p->mm.pages->sgl);
251 }
252 
253 void
254 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
255 {
256 	void *vaddr = __px_vaddr(p);
257 
258 	memset64(vaddr, val, count);
259 	clflush_cache_range(vaddr, PAGE_SIZE);
260 }
261 
262 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
263 {
264 	void *vaddr = __px_vaddr(scratch);
265 	u8 val;
266 
267 	val = 0;
268 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
269 		val = POISON_FREE;
270 
271 	memset(vaddr, val, scratch->base.size);
272 	drm_clflush_virt_range(vaddr, scratch->base.size);
273 }
274 
275 int setup_scratch_page(struct i915_address_space *vm)
276 {
277 	unsigned long size;
278 
279 	/*
280 	 * In order to utilize 64K pages for an object with a size < 2M, we will
281 	 * need to support a 64K scratch page, given that every 16th entry for a
282 	 * page-table operating in 64K mode must point to a properly aligned 64K
283 	 * region, including any PTEs which happen to point to scratch.
284 	 *
285 	 * This is only relevant for the 48b PPGTT where we support
286 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
287 	 * scratch (read-only) between all vm, we create one 64k scratch page
288 	 * for all.
289 	 */
290 	size = I915_GTT_PAGE_SIZE_4K;
291 	if (i915_vm_is_4lvl(vm) &&
292 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
293 		size = I915_GTT_PAGE_SIZE_64K;
294 
295 	do {
296 		struct drm_i915_gem_object *obj;
297 
298 		obj = vm->alloc_scratch_dma(vm, size);
299 		if (IS_ERR(obj))
300 			goto skip;
301 
302 		if (map_pt_dma(vm, obj))
303 			goto skip_obj;
304 
305 		/* We need a single contiguous page for our scratch */
306 		if (obj->mm.page_sizes.sg < size)
307 			goto skip_obj;
308 
309 		/* And it needs to be correspondingly aligned */
310 		if (__px_dma(obj) & (size - 1))
311 			goto skip_obj;
312 
313 		/*
314 		 * Use a non-zero scratch page for debugging.
315 		 *
316 		 * We want a value that should be reasonably obvious
317 		 * to spot in the error state, while also causing a GPU hang
318 		 * if executed. We prefer using a clear page in production, so
319 		 * should it ever be accidentally used, the effect should be
320 		 * fairly benign.
321 		 */
322 		poison_scratch_page(obj);
323 
324 		vm->scratch[0] = obj;
325 		vm->scratch_order = get_order(size);
326 		return 0;
327 
328 skip_obj:
329 		i915_gem_object_put(obj);
330 skip:
331 		if (size == I915_GTT_PAGE_SIZE_4K)
332 			return -ENOMEM;
333 
334 		/*
335 		 * If we need 64K minimum GTT pages for device local-memory,
336 		 * like on XEHPSDV, then we need to fail the allocation here,
337 		 * otherwise we can't safely support the insertion of
338 		 * local-memory pages for this vm, since the HW expects the
339 		 * correct physical alignment and size when the page-table is
340 		 * operating in 64K GTT mode, which includes any scratch PTEs,
341 		 * since userspace can still touch them.
342 		 */
343 		if (HAS_64K_PAGES(vm->i915))
344 			return -ENOMEM;
345 
346 		size = I915_GTT_PAGE_SIZE_4K;
347 	} while (1);
348 }
349 
350 void free_scratch(struct i915_address_space *vm)
351 {
352 	int i;
353 
354 	for (i = 0; i <= vm->top; i++)
355 		i915_gem_object_put(vm->scratch[i]);
356 }
357 
358 void gtt_write_workarounds(struct intel_gt *gt)
359 {
360 	struct drm_i915_private *i915 = gt->i915;
361 	struct intel_uncore *uncore = gt->uncore;
362 
363 	/*
364 	 * This function is for gtt related workarounds. This function is
365 	 * called on driver load and after a GPU reset, so you can place
366 	 * workarounds here even if they get overwritten by GPU reset.
367 	 */
368 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
369 	if (IS_BROADWELL(i915))
370 		intel_uncore_write(uncore,
371 				   GEN8_L3_LRA_1_GPGPU,
372 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
373 	else if (IS_CHERRYVIEW(i915))
374 		intel_uncore_write(uncore,
375 				   GEN8_L3_LRA_1_GPGPU,
376 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
377 	else if (IS_GEN9_LP(i915))
378 		intel_uncore_write(uncore,
379 				   GEN8_L3_LRA_1_GPGPU,
380 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
381 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
382 		intel_uncore_write(uncore,
383 				   GEN8_L3_LRA_1_GPGPU,
384 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
385 
386 	/*
387 	 * To support 64K PTEs we need to first enable the use of the
388 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
389 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
390 	 * shouldn't be needed after GEN10.
391 	 *
392 	 * 64K pages were first introduced from BDW+, although technically they
393 	 * only *work* from gen9+. For pre-BDW we instead have the option for
394 	 * 32K pages, but we don't currently have any support for it in our
395 	 * driver.
396 	 */
397 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
398 	    GRAPHICS_VER(i915) <= 10)
399 		intel_uncore_rmw(uncore,
400 				 GEN8_GAMW_ECO_DEV_RW_IA,
401 				 0,
402 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
403 
404 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
405 		bool can_use_gtt_cache = true;
406 
407 		/*
408 		 * According to the BSpec if we use 2M/1G pages then we also
409 		 * need to disable the GTT cache. At least on BDW we can see
410 		 * visual corruption when using 2M pages, and not disabling the
411 		 * GTT cache.
412 		 */
413 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
414 			can_use_gtt_cache = false;
415 
416 		/* WaGttCachingOffByDefault */
417 		intel_uncore_write(uncore,
418 				   HSW_GTT_CACHE_EN,
419 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
420 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
421 				 intel_uncore_read(uncore,
422 						   HSW_GTT_CACHE_EN) == 0);
423 	}
424 }
425 
426 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
427 {
428 	/* TGL doesn't support LLC or AGE settings */
429 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
430 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
431 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
432 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
433 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
434 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
435 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
436 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
437 }
438 
439 static void icl_setup_private_ppat(struct intel_uncore *uncore)
440 {
441 	intel_uncore_write(uncore,
442 			   GEN10_PAT_INDEX(0),
443 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
444 	intel_uncore_write(uncore,
445 			   GEN10_PAT_INDEX(1),
446 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
447 	intel_uncore_write(uncore,
448 			   GEN10_PAT_INDEX(2),
449 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
450 	intel_uncore_write(uncore,
451 			   GEN10_PAT_INDEX(3),
452 			   GEN8_PPAT_UC);
453 	intel_uncore_write(uncore,
454 			   GEN10_PAT_INDEX(4),
455 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
456 	intel_uncore_write(uncore,
457 			   GEN10_PAT_INDEX(5),
458 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
459 	intel_uncore_write(uncore,
460 			   GEN10_PAT_INDEX(6),
461 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
462 	intel_uncore_write(uncore,
463 			   GEN10_PAT_INDEX(7),
464 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
465 }
466 
467 /*
468  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
469  * bits. When using advanced contexts each context stores its own PAT, but
470  * writing this data shouldn't be harmful even in those cases.
471  */
472 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
473 {
474 	struct drm_i915_private *i915 = uncore->i915;
475 	u64 pat;
476 
477 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
478 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
479 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
480 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
481 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
482 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
483 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
484 
485 	/* for scanout with eLLC */
486 	if (GRAPHICS_VER(i915) >= 9)
487 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
488 	else
489 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
490 
491 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
492 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
493 }
494 
495 static void chv_setup_private_ppat(struct intel_uncore *uncore)
496 {
497 	u64 pat;
498 
499 	/*
500 	 * Map WB on BDW to snooped on CHV.
501 	 *
502 	 * Only the snoop bit has meaning for CHV, the rest is
503 	 * ignored.
504 	 *
505 	 * The hardware will never snoop for certain types of accesses:
506 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
507 	 * - PPGTT page tables
508 	 * - some other special cycles
509 	 *
510 	 * As with BDW, we also need to consider the following for GT accesses:
511 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
512 	 * so RTL will always use the value corresponding to
513 	 * pat_sel = 000".
514 	 * Which means we must set the snoop bit in PAT entry 0
515 	 * in order to keep the global status page working.
516 	 */
517 
518 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
519 	      GEN8_PPAT(1, 0) |
520 	      GEN8_PPAT(2, 0) |
521 	      GEN8_PPAT(3, 0) |
522 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
523 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
524 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
525 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
526 
527 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
528 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
529 }
530 
531 void setup_private_pat(struct intel_uncore *uncore)
532 {
533 	struct drm_i915_private *i915 = uncore->i915;
534 
535 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
536 
537 	if (GRAPHICS_VER(i915) >= 12)
538 		tgl_setup_private_ppat(uncore);
539 	else if (GRAPHICS_VER(i915) >= 11)
540 		icl_setup_private_ppat(uncore);
541 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
542 		chv_setup_private_ppat(uncore);
543 	else
544 		bdw_setup_private_ppat(uncore);
545 }
546 
547 struct i915_vma *
548 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
549 {
550 	struct drm_i915_gem_object *obj;
551 	struct i915_vma *vma;
552 
553 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
554 	if (IS_ERR(obj))
555 		return ERR_CAST(obj);
556 
557 	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
558 
559 	vma = i915_vma_instance(obj, vm, NULL);
560 	if (IS_ERR(vma)) {
561 		i915_gem_object_put(obj);
562 		return vma;
563 	}
564 
565 	return vma;
566 }
567 
568 struct i915_vma *
569 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
570 {
571 	struct i915_vma *vma;
572 	int err;
573 
574 	vma = __vm_create_scratch_for_read(vm, size);
575 	if (IS_ERR(vma))
576 		return vma;
577 
578 	err = i915_vma_pin(vma, 0, 0,
579 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
580 	if (err) {
581 		i915_vma_put(vma);
582 		return ERR_PTR(err);
583 	}
584 
585 	return vma;
586 }
587 
588 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
589 #include "selftests/mock_gtt.c"
590 #endif
591