xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision 301306a9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_lmem.h"
14 #include "i915_trace.h"
15 #include "intel_gt.h"
16 #include "intel_gt_regs.h"
17 #include "intel_gtt.h"
18 
19 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
20 {
21 	struct drm_i915_gem_object *obj;
22 
23 	/*
24 	 * To avoid severe over-allocation when dealing with min_page_size
25 	 * restrictions, we override that behaviour here by allowing an object
26 	 * size and page layout which can be smaller. In practice this should be
27 	 * totally fine, since GTT paging structures are not typically inserted
28 	 * into the GTT.
29 	 *
30 	 * Note that we also hit this path for the scratch page, and for this
31 	 * case it might need to be 64K, but that should work fine here since we
32 	 * used the passed in size for the page size, which should ensure it
33 	 * also has the same alignment.
34 	 */
35 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
36 						    vm->lmem_pt_obj_flags);
37 	/*
38 	 * Ensure all paging structures for this vm share the same dma-resv
39 	 * object underneath, with the idea that one object_lock() will lock
40 	 * them all at once.
41 	 */
42 	if (!IS_ERR(obj)) {
43 		obj->base.resv = i915_vm_resv_get(vm);
44 		obj->shares_resv_from = vm;
45 	}
46 
47 	return obj;
48 }
49 
50 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
51 {
52 	struct drm_i915_gem_object *obj;
53 
54 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
55 		i915_gem_shrink_all(vm->i915);
56 
57 	obj = i915_gem_object_create_internal(vm->i915, sz);
58 	/*
59 	 * Ensure all paging structures for this vm share the same dma-resv
60 	 * object underneath, with the idea that one object_lock() will lock
61 	 * them all at once.
62 	 */
63 	if (!IS_ERR(obj)) {
64 		obj->base.resv = i915_vm_resv_get(vm);
65 		obj->shares_resv_from = vm;
66 	}
67 
68 	return obj;
69 }
70 
71 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
72 {
73 	enum i915_map_type type;
74 	void *vaddr;
75 
76 	type = i915_coherent_map_type(vm->i915, obj, true);
77 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
78 	if (IS_ERR(vaddr))
79 		return PTR_ERR(vaddr);
80 
81 	i915_gem_object_make_unshrinkable(obj);
82 	return 0;
83 }
84 
85 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
86 {
87 	enum i915_map_type type;
88 	void *vaddr;
89 
90 	type = i915_coherent_map_type(vm->i915, obj, true);
91 	vaddr = i915_gem_object_pin_map(obj, type);
92 	if (IS_ERR(vaddr))
93 		return PTR_ERR(vaddr);
94 
95 	i915_gem_object_make_unshrinkable(obj);
96 	return 0;
97 }
98 
99 void __i915_vm_close(struct i915_address_space *vm)
100 {
101 	struct i915_vma *vma, *vn;
102 
103 	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
104 		return;
105 
106 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
107 		struct drm_i915_gem_object *obj = vma->obj;
108 
109 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
110 		if (!kref_get_unless_zero(&obj->base.refcount))
111 			continue;
112 
113 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
114 		WARN_ON(__i915_vma_unbind(vma));
115 		__i915_vma_put(vma);
116 
117 		i915_gem_object_put(obj);
118 	}
119 	GEM_BUG_ON(!list_empty(&vm->bound_list));
120 
121 	mutex_unlock(&vm->mutex);
122 }
123 
124 /* lock the vm into the current ww, if we lock one, we lock all */
125 int i915_vm_lock_objects(struct i915_address_space *vm,
126 			 struct i915_gem_ww_ctx *ww)
127 {
128 	if (vm->scratch[0]->base.resv == &vm->_resv) {
129 		return i915_gem_object_lock(vm->scratch[0], ww);
130 	} else {
131 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
132 
133 		/* We borrowed the scratch page from ggtt, take the top level object */
134 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
135 	}
136 }
137 
138 void i915_address_space_fini(struct i915_address_space *vm)
139 {
140 	drm_mm_takedown(&vm->mm);
141 	mutex_destroy(&vm->mutex);
142 }
143 
144 /**
145  * i915_vm_resv_release - Final struct i915_address_space destructor
146  * @kref: Pointer to the &i915_address_space.resv_ref member.
147  *
148  * This function is called when the last lock sharer no longer shares the
149  * &i915_address_space._resv lock.
150  */
151 void i915_vm_resv_release(struct kref *kref)
152 {
153 	struct i915_address_space *vm =
154 		container_of(kref, typeof(*vm), resv_ref);
155 
156 	dma_resv_fini(&vm->_resv);
157 	kfree(vm);
158 }
159 
160 static void __i915_vm_release(struct work_struct *work)
161 {
162 	struct i915_address_space *vm =
163 		container_of(work, struct i915_address_space, release_work);
164 
165 	vm->cleanup(vm);
166 	i915_address_space_fini(vm);
167 
168 	i915_vm_resv_put(vm);
169 }
170 
171 void i915_vm_release(struct kref *kref)
172 {
173 	struct i915_address_space *vm =
174 		container_of(kref, struct i915_address_space, ref);
175 
176 	GEM_BUG_ON(i915_is_ggtt(vm));
177 	trace_i915_ppgtt_release(vm);
178 
179 	queue_work(vm->i915->wq, &vm->release_work);
180 }
181 
182 void i915_address_space_init(struct i915_address_space *vm, int subclass)
183 {
184 	kref_init(&vm->ref);
185 
186 	/*
187 	 * Special case for GGTT that has already done an early
188 	 * kref_init here.
189 	 */
190 	if (!kref_read(&vm->resv_ref))
191 		kref_init(&vm->resv_ref);
192 
193 	INIT_WORK(&vm->release_work, __i915_vm_release);
194 	atomic_set(&vm->open, 1);
195 
196 	/*
197 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
198 	 * Do a dummy acquire now under fs_reclaim so that any allocation
199 	 * attempt holding the lock is immediately reported by lockdep.
200 	 */
201 	mutex_init(&vm->mutex);
202 	lockdep_set_subclass(&vm->mutex, subclass);
203 
204 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
205 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
206 	} else {
207 		/*
208 		 * CHV + BXT VTD workaround use stop_machine(),
209 		 * which is allowed to allocate memory. This means &vm->mutex
210 		 * is the outer lock, and in theory we can allocate memory inside
211 		 * it through stop_machine().
212 		 *
213 		 * Add the annotation for this, we use trylock in shrinker.
214 		 */
215 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
216 		might_alloc(GFP_KERNEL);
217 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
218 	}
219 	dma_resv_init(&vm->_resv);
220 
221 	GEM_BUG_ON(!vm->total);
222 	drm_mm_init(&vm->mm, 0, vm->total);
223 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
224 
225 	INIT_LIST_HEAD(&vm->bound_list);
226 }
227 
228 void *__px_vaddr(struct drm_i915_gem_object *p)
229 {
230 	enum i915_map_type type;
231 
232 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
233 	return page_unpack_bits(p->mm.mapping, &type);
234 }
235 
236 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
237 {
238 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
239 	return sg_dma_address(p->mm.pages->sgl);
240 }
241 
242 struct page *__px_page(struct drm_i915_gem_object *p)
243 {
244 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
245 	return sg_page(p->mm.pages->sgl);
246 }
247 
248 void
249 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
250 {
251 	void *vaddr = __px_vaddr(p);
252 
253 	memset64(vaddr, val, count);
254 	clflush_cache_range(vaddr, PAGE_SIZE);
255 }
256 
257 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
258 {
259 	void *vaddr = __px_vaddr(scratch);
260 	u8 val;
261 
262 	val = 0;
263 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
264 		val = POISON_FREE;
265 
266 	memset(vaddr, val, scratch->base.size);
267 	drm_clflush_virt_range(vaddr, scratch->base.size);
268 }
269 
270 int setup_scratch_page(struct i915_address_space *vm)
271 {
272 	unsigned long size;
273 
274 	/*
275 	 * In order to utilize 64K pages for an object with a size < 2M, we will
276 	 * need to support a 64K scratch page, given that every 16th entry for a
277 	 * page-table operating in 64K mode must point to a properly aligned 64K
278 	 * region, including any PTEs which happen to point to scratch.
279 	 *
280 	 * This is only relevant for the 48b PPGTT where we support
281 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
282 	 * scratch (read-only) between all vm, we create one 64k scratch page
283 	 * for all.
284 	 */
285 	size = I915_GTT_PAGE_SIZE_4K;
286 	if (i915_vm_is_4lvl(vm) &&
287 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
288 		size = I915_GTT_PAGE_SIZE_64K;
289 
290 	do {
291 		struct drm_i915_gem_object *obj;
292 
293 		obj = vm->alloc_scratch_dma(vm, size);
294 		if (IS_ERR(obj))
295 			goto skip;
296 
297 		if (map_pt_dma(vm, obj))
298 			goto skip_obj;
299 
300 		/* We need a single contiguous page for our scratch */
301 		if (obj->mm.page_sizes.sg < size)
302 			goto skip_obj;
303 
304 		/* And it needs to be correspondingly aligned */
305 		if (__px_dma(obj) & (size - 1))
306 			goto skip_obj;
307 
308 		/*
309 		 * Use a non-zero scratch page for debugging.
310 		 *
311 		 * We want a value that should be reasonably obvious
312 		 * to spot in the error state, while also causing a GPU hang
313 		 * if executed. We prefer using a clear page in production, so
314 		 * should it ever be accidentally used, the effect should be
315 		 * fairly benign.
316 		 */
317 		poison_scratch_page(obj);
318 
319 		vm->scratch[0] = obj;
320 		vm->scratch_order = get_order(size);
321 		return 0;
322 
323 skip_obj:
324 		i915_gem_object_put(obj);
325 skip:
326 		if (size == I915_GTT_PAGE_SIZE_4K)
327 			return -ENOMEM;
328 
329 		/*
330 		 * If we need 64K minimum GTT pages for device local-memory,
331 		 * like on XEHPSDV, then we need to fail the allocation here,
332 		 * otherwise we can't safely support the insertion of
333 		 * local-memory pages for this vm, since the HW expects the
334 		 * correct physical alignment and size when the page-table is
335 		 * operating in 64K GTT mode, which includes any scratch PTEs,
336 		 * since userspace can still touch them.
337 		 */
338 		if (HAS_64K_PAGES(vm->i915))
339 			return -ENOMEM;
340 
341 		size = I915_GTT_PAGE_SIZE_4K;
342 	} while (1);
343 }
344 
345 void free_scratch(struct i915_address_space *vm)
346 {
347 	int i;
348 
349 	for (i = 0; i <= vm->top; i++)
350 		i915_gem_object_put(vm->scratch[i]);
351 }
352 
353 void gtt_write_workarounds(struct intel_gt *gt)
354 {
355 	struct drm_i915_private *i915 = gt->i915;
356 	struct intel_uncore *uncore = gt->uncore;
357 
358 	/*
359 	 * This function is for gtt related workarounds. This function is
360 	 * called on driver load and after a GPU reset, so you can place
361 	 * workarounds here even if they get overwritten by GPU reset.
362 	 */
363 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
364 	if (IS_BROADWELL(i915))
365 		intel_uncore_write(uncore,
366 				   GEN8_L3_LRA_1_GPGPU,
367 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
368 	else if (IS_CHERRYVIEW(i915))
369 		intel_uncore_write(uncore,
370 				   GEN8_L3_LRA_1_GPGPU,
371 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
372 	else if (IS_GEN9_LP(i915))
373 		intel_uncore_write(uncore,
374 				   GEN8_L3_LRA_1_GPGPU,
375 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
376 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
377 		intel_uncore_write(uncore,
378 				   GEN8_L3_LRA_1_GPGPU,
379 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
380 
381 	/*
382 	 * To support 64K PTEs we need to first enable the use of the
383 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
384 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
385 	 * shouldn't be needed after GEN10.
386 	 *
387 	 * 64K pages were first introduced from BDW+, although technically they
388 	 * only *work* from gen9+. For pre-BDW we instead have the option for
389 	 * 32K pages, but we don't currently have any support for it in our
390 	 * driver.
391 	 */
392 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
393 	    GRAPHICS_VER(i915) <= 10)
394 		intel_uncore_rmw(uncore,
395 				 GEN8_GAMW_ECO_DEV_RW_IA,
396 				 0,
397 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
398 
399 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
400 		bool can_use_gtt_cache = true;
401 
402 		/*
403 		 * According to the BSpec if we use 2M/1G pages then we also
404 		 * need to disable the GTT cache. At least on BDW we can see
405 		 * visual corruption when using 2M pages, and not disabling the
406 		 * GTT cache.
407 		 */
408 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
409 			can_use_gtt_cache = false;
410 
411 		/* WaGttCachingOffByDefault */
412 		intel_uncore_write(uncore,
413 				   HSW_GTT_CACHE_EN,
414 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
415 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
416 				 intel_uncore_read(uncore,
417 						   HSW_GTT_CACHE_EN) == 0);
418 	}
419 }
420 
421 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
422 {
423 	/* TGL doesn't support LLC or AGE settings */
424 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
425 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
426 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
427 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
428 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
429 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
430 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
431 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
432 }
433 
434 static void icl_setup_private_ppat(struct intel_uncore *uncore)
435 {
436 	intel_uncore_write(uncore,
437 			   GEN10_PAT_INDEX(0),
438 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
439 	intel_uncore_write(uncore,
440 			   GEN10_PAT_INDEX(1),
441 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
442 	intel_uncore_write(uncore,
443 			   GEN10_PAT_INDEX(2),
444 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
445 	intel_uncore_write(uncore,
446 			   GEN10_PAT_INDEX(3),
447 			   GEN8_PPAT_UC);
448 	intel_uncore_write(uncore,
449 			   GEN10_PAT_INDEX(4),
450 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
451 	intel_uncore_write(uncore,
452 			   GEN10_PAT_INDEX(5),
453 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
454 	intel_uncore_write(uncore,
455 			   GEN10_PAT_INDEX(6),
456 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
457 	intel_uncore_write(uncore,
458 			   GEN10_PAT_INDEX(7),
459 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
460 }
461 
462 /*
463  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
464  * bits. When using advanced contexts each context stores its own PAT, but
465  * writing this data shouldn't be harmful even in those cases.
466  */
467 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
468 {
469 	struct drm_i915_private *i915 = uncore->i915;
470 	u64 pat;
471 
472 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
473 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
474 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
475 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
476 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
477 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
478 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
479 
480 	/* for scanout with eLLC */
481 	if (GRAPHICS_VER(i915) >= 9)
482 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
483 	else
484 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
485 
486 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
487 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
488 }
489 
490 static void chv_setup_private_ppat(struct intel_uncore *uncore)
491 {
492 	u64 pat;
493 
494 	/*
495 	 * Map WB on BDW to snooped on CHV.
496 	 *
497 	 * Only the snoop bit has meaning for CHV, the rest is
498 	 * ignored.
499 	 *
500 	 * The hardware will never snoop for certain types of accesses:
501 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
502 	 * - PPGTT page tables
503 	 * - some other special cycles
504 	 *
505 	 * As with BDW, we also need to consider the following for GT accesses:
506 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
507 	 * so RTL will always use the value corresponding to
508 	 * pat_sel = 000".
509 	 * Which means we must set the snoop bit in PAT entry 0
510 	 * in order to keep the global status page working.
511 	 */
512 
513 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
514 	      GEN8_PPAT(1, 0) |
515 	      GEN8_PPAT(2, 0) |
516 	      GEN8_PPAT(3, 0) |
517 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
518 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
519 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
520 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
521 
522 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
523 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
524 }
525 
526 void setup_private_pat(struct intel_uncore *uncore)
527 {
528 	struct drm_i915_private *i915 = uncore->i915;
529 
530 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
531 
532 	if (GRAPHICS_VER(i915) >= 12)
533 		tgl_setup_private_ppat(uncore);
534 	else if (GRAPHICS_VER(i915) >= 11)
535 		icl_setup_private_ppat(uncore);
536 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
537 		chv_setup_private_ppat(uncore);
538 	else
539 		bdw_setup_private_ppat(uncore);
540 }
541 
542 struct i915_vma *
543 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
544 {
545 	struct drm_i915_gem_object *obj;
546 	struct i915_vma *vma;
547 
548 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
549 	if (IS_ERR(obj))
550 		return ERR_CAST(obj);
551 
552 	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
553 
554 	vma = i915_vma_instance(obj, vm, NULL);
555 	if (IS_ERR(vma)) {
556 		i915_gem_object_put(obj);
557 		return vma;
558 	}
559 
560 	return vma;
561 }
562 
563 struct i915_vma *
564 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
565 {
566 	struct i915_vma *vma;
567 	int err;
568 
569 	vma = __vm_create_scratch_for_read(vm, size);
570 	if (IS_ERR(vma))
571 		return vma;
572 
573 	err = i915_vma_pin(vma, 0, 0,
574 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
575 	if (err) {
576 		i915_vma_put(vma);
577 		return ERR_PTR(err);
578 	}
579 
580 	return vma;
581 }
582 
583 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
584 #include "selftests/mock_gtt.c"
585 #endif
586