xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gtt.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 
10 #include "i915_trace.h"
11 #include "intel_gt.h"
12 #include "intel_gtt.h"
13 
14 void stash_init(struct pagestash *stash)
15 {
16 	pagevec_init(&stash->pvec);
17 	spin_lock_init(&stash->lock);
18 }
19 
20 static struct page *stash_pop_page(struct pagestash *stash)
21 {
22 	struct page *page = NULL;
23 
24 	spin_lock(&stash->lock);
25 	if (likely(stash->pvec.nr))
26 		page = stash->pvec.pages[--stash->pvec.nr];
27 	spin_unlock(&stash->lock);
28 
29 	return page;
30 }
31 
32 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
33 {
34 	unsigned int nr;
35 
36 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
37 
38 	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
39 	memcpy(stash->pvec.pages + stash->pvec.nr,
40 	       pvec->pages + pvec->nr - nr,
41 	       sizeof(pvec->pages[0]) * nr);
42 	stash->pvec.nr += nr;
43 
44 	spin_unlock(&stash->lock);
45 
46 	pvec->nr -= nr;
47 }
48 
49 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
50 {
51 	struct pagevec stack;
52 	struct page *page;
53 
54 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
55 		i915_gem_shrink_all(vm->i915);
56 
57 	page = stash_pop_page(&vm->free_pages);
58 	if (page)
59 		return page;
60 
61 	if (!vm->pt_kmap_wc)
62 		return alloc_page(gfp);
63 
64 	/* Look in our global stash of WC pages... */
65 	page = stash_pop_page(&vm->i915->mm.wc_stash);
66 	if (page)
67 		return page;
68 
69 	/*
70 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
71 	 *
72 	 * We have to be careful as page allocation may trigger the shrinker
73 	 * (via direct reclaim) which will fill up the WC stash underneath us.
74 	 * So we add our WB pages into a temporary pvec on the stack and merge
75 	 * them into the WC stash after all the allocations are complete.
76 	 */
77 	pagevec_init(&stack);
78 	do {
79 		struct page *page;
80 
81 		page = alloc_page(gfp);
82 		if (unlikely(!page))
83 			break;
84 
85 		stack.pages[stack.nr++] = page;
86 	} while (pagevec_space(&stack));
87 
88 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
89 		page = stack.pages[--stack.nr];
90 
91 		/* Merge spare WC pages to the global stash */
92 		if (stack.nr)
93 			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
94 
95 		/* Push any surplus WC pages onto the local VM stash */
96 		if (stack.nr)
97 			stash_push_pagevec(&vm->free_pages, &stack);
98 	}
99 
100 	/* Return unwanted leftovers */
101 	if (unlikely(stack.nr)) {
102 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
103 		__pagevec_release(&stack);
104 	}
105 
106 	return page;
107 }
108 
109 static void vm_free_pages_release(struct i915_address_space *vm,
110 				  bool immediate)
111 {
112 	struct pagevec *pvec = &vm->free_pages.pvec;
113 	struct pagevec stack;
114 
115 	lockdep_assert_held(&vm->free_pages.lock);
116 	GEM_BUG_ON(!pagevec_count(pvec));
117 
118 	if (vm->pt_kmap_wc) {
119 		/*
120 		 * When we use WC, first fill up the global stash and then
121 		 * only if full immediately free the overflow.
122 		 */
123 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
124 
125 		/*
126 		 * As we have made some room in the VM's free_pages,
127 		 * we can wait for it to fill again. Unless we are
128 		 * inside i915_address_space_fini() and must
129 		 * immediately release the pages!
130 		 */
131 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
132 			return;
133 
134 		/*
135 		 * We have to drop the lock to allow ourselves to sleep,
136 		 * so take a copy of the pvec and clear the stash for
137 		 * others to use it as we sleep.
138 		 */
139 		stack = *pvec;
140 		pagevec_reinit(pvec);
141 		spin_unlock(&vm->free_pages.lock);
142 
143 		pvec = &stack;
144 		set_pages_array_wb(pvec->pages, pvec->nr);
145 
146 		spin_lock(&vm->free_pages.lock);
147 	}
148 
149 	__pagevec_release(pvec);
150 }
151 
152 static void vm_free_page(struct i915_address_space *vm, struct page *page)
153 {
154 	/*
155 	 * On !llc, we need to change the pages back to WB. We only do so
156 	 * in bulk, so we rarely need to change the page attributes here,
157 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
158 	 * To make detection of the possible sleep more likely, use an
159 	 * unconditional might_sleep() for everybody.
160 	 */
161 	might_sleep();
162 	spin_lock(&vm->free_pages.lock);
163 	while (!pagevec_space(&vm->free_pages.pvec))
164 		vm_free_pages_release(vm, false);
165 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
166 	pagevec_add(&vm->free_pages.pvec, page);
167 	spin_unlock(&vm->free_pages.lock);
168 }
169 
170 void __i915_vm_close(struct i915_address_space *vm)
171 {
172 	struct i915_vma *vma, *vn;
173 
174 	mutex_lock(&vm->mutex);
175 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
176 		struct drm_i915_gem_object *obj = vma->obj;
177 
178 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
179 		if (!kref_get_unless_zero(&obj->base.refcount))
180 			continue;
181 
182 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
183 		WARN_ON(__i915_vma_unbind(vma));
184 		__i915_vma_put(vma);
185 
186 		i915_gem_object_put(obj);
187 	}
188 	GEM_BUG_ON(!list_empty(&vm->bound_list));
189 	mutex_unlock(&vm->mutex);
190 }
191 
192 void i915_address_space_fini(struct i915_address_space *vm)
193 {
194 	spin_lock(&vm->free_pages.lock);
195 	if (pagevec_count(&vm->free_pages.pvec))
196 		vm_free_pages_release(vm, true);
197 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
198 	spin_unlock(&vm->free_pages.lock);
199 
200 	drm_mm_takedown(&vm->mm);
201 
202 	mutex_destroy(&vm->mutex);
203 }
204 
205 static void __i915_vm_release(struct work_struct *work)
206 {
207 	struct i915_address_space *vm =
208 		container_of(work, struct i915_address_space, rcu.work);
209 
210 	vm->cleanup(vm);
211 	i915_address_space_fini(vm);
212 
213 	kfree(vm);
214 }
215 
216 void i915_vm_release(struct kref *kref)
217 {
218 	struct i915_address_space *vm =
219 		container_of(kref, struct i915_address_space, ref);
220 
221 	GEM_BUG_ON(i915_is_ggtt(vm));
222 	trace_i915_ppgtt_release(vm);
223 
224 	queue_rcu_work(vm->i915->wq, &vm->rcu);
225 }
226 
227 void i915_address_space_init(struct i915_address_space *vm, int subclass)
228 {
229 	kref_init(&vm->ref);
230 	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
231 	atomic_set(&vm->open, 1);
232 
233 	/*
234 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
235 	 * Do a dummy acquire now under fs_reclaim so that any allocation
236 	 * attempt holding the lock is immediately reported by lockdep.
237 	 */
238 	mutex_init(&vm->mutex);
239 	lockdep_set_subclass(&vm->mutex, subclass);
240 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
241 
242 	GEM_BUG_ON(!vm->total);
243 	drm_mm_init(&vm->mm, 0, vm->total);
244 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
245 
246 	stash_init(&vm->free_pages);
247 
248 	INIT_LIST_HEAD(&vm->bound_list);
249 }
250 
251 void clear_pages(struct i915_vma *vma)
252 {
253 	GEM_BUG_ON(!vma->pages);
254 
255 	if (vma->pages != vma->obj->mm.pages) {
256 		sg_free_table(vma->pages);
257 		kfree(vma->pages);
258 	}
259 	vma->pages = NULL;
260 
261 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
262 }
263 
264 static int __setup_page_dma(struct i915_address_space *vm,
265 			    struct i915_page_dma *p,
266 			    gfp_t gfp)
267 {
268 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
269 	if (unlikely(!p->page))
270 		return -ENOMEM;
271 
272 	p->daddr = dma_map_page_attrs(vm->dma,
273 				      p->page, 0, PAGE_SIZE,
274 				      PCI_DMA_BIDIRECTIONAL,
275 				      DMA_ATTR_SKIP_CPU_SYNC |
276 				      DMA_ATTR_NO_WARN);
277 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
278 		vm_free_page(vm, p->page);
279 		return -ENOMEM;
280 	}
281 
282 	return 0;
283 }
284 
285 int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
286 {
287 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
288 }
289 
290 void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
291 {
292 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
293 	vm_free_page(vm, p->page);
294 }
295 
296 void
297 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
298 {
299 	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
300 }
301 
302 static void poison_scratch_page(struct page *page, unsigned long size)
303 {
304 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
305 		return;
306 
307 	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
308 
309 	do {
310 		void *vaddr;
311 
312 		vaddr = kmap(page);
313 		memset(vaddr, POISON_FREE, PAGE_SIZE);
314 		kunmap(page);
315 
316 		page = pfn_to_page(page_to_pfn(page) + 1);
317 		size -= PAGE_SIZE;
318 	} while (size);
319 }
320 
321 int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
322 {
323 	unsigned long size;
324 
325 	/*
326 	 * In order to utilize 64K pages for an object with a size < 2M, we will
327 	 * need to support a 64K scratch page, given that every 16th entry for a
328 	 * page-table operating in 64K mode must point to a properly aligned 64K
329 	 * region, including any PTEs which happen to point to scratch.
330 	 *
331 	 * This is only relevant for the 48b PPGTT where we support
332 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
333 	 * scratch (read-only) between all vm, we create one 64k scratch page
334 	 * for all.
335 	 */
336 	size = I915_GTT_PAGE_SIZE_4K;
337 	if (i915_vm_is_4lvl(vm) &&
338 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
339 		size = I915_GTT_PAGE_SIZE_64K;
340 		gfp |= __GFP_NOWARN;
341 	}
342 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
343 
344 	do {
345 		unsigned int order = get_order(size);
346 		struct page *page;
347 		dma_addr_t addr;
348 
349 		page = alloc_pages(gfp, order);
350 		if (unlikely(!page))
351 			goto skip;
352 
353 		/*
354 		 * Use a non-zero scratch page for debugging.
355 		 *
356 		 * We want a value that should be reasonably obvious
357 		 * to spot in the error state, while also causing a GPU hang
358 		 * if executed. We prefer using a clear page in production, so
359 		 * should it ever be accidentally used, the effect should be
360 		 * fairly benign.
361 		 */
362 		poison_scratch_page(page, size);
363 
364 		addr = dma_map_page_attrs(vm->dma,
365 					  page, 0, size,
366 					  PCI_DMA_BIDIRECTIONAL,
367 					  DMA_ATTR_SKIP_CPU_SYNC |
368 					  DMA_ATTR_NO_WARN);
369 		if (unlikely(dma_mapping_error(vm->dma, addr)))
370 			goto free_page;
371 
372 		if (unlikely(!IS_ALIGNED(addr, size)))
373 			goto unmap_page;
374 
375 		vm->scratch[0].base.page = page;
376 		vm->scratch[0].base.daddr = addr;
377 		vm->scratch_order = order;
378 		return 0;
379 
380 unmap_page:
381 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
382 free_page:
383 		__free_pages(page, order);
384 skip:
385 		if (size == I915_GTT_PAGE_SIZE_4K)
386 			return -ENOMEM;
387 
388 		size = I915_GTT_PAGE_SIZE_4K;
389 		gfp &= ~__GFP_NOWARN;
390 	} while (1);
391 }
392 
393 void cleanup_scratch_page(struct i915_address_space *vm)
394 {
395 	struct i915_page_dma *p = px_base(&vm->scratch[0]);
396 	unsigned int order = vm->scratch_order;
397 
398 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
399 		       PCI_DMA_BIDIRECTIONAL);
400 	__free_pages(p->page, order);
401 }
402 
403 void free_scratch(struct i915_address_space *vm)
404 {
405 	int i;
406 
407 	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
408 		return;
409 
410 	for (i = 1; i <= vm->top; i++) {
411 		if (!px_dma(&vm->scratch[i]))
412 			break;
413 		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
414 	}
415 
416 	cleanup_scratch_page(vm);
417 }
418 
419 void gtt_write_workarounds(struct intel_gt *gt)
420 {
421 	struct drm_i915_private *i915 = gt->i915;
422 	struct intel_uncore *uncore = gt->uncore;
423 
424 	/*
425 	 * This function is for gtt related workarounds. This function is
426 	 * called on driver load and after a GPU reset, so you can place
427 	 * workarounds here even if they get overwritten by GPU reset.
428 	 */
429 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
430 	if (IS_BROADWELL(i915))
431 		intel_uncore_write(uncore,
432 				   GEN8_L3_LRA_1_GPGPU,
433 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
434 	else if (IS_CHERRYVIEW(i915))
435 		intel_uncore_write(uncore,
436 				   GEN8_L3_LRA_1_GPGPU,
437 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
438 	else if (IS_GEN9_LP(i915))
439 		intel_uncore_write(uncore,
440 				   GEN8_L3_LRA_1_GPGPU,
441 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
442 	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
443 		intel_uncore_write(uncore,
444 				   GEN8_L3_LRA_1_GPGPU,
445 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
446 
447 	/*
448 	 * To support 64K PTEs we need to first enable the use of the
449 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
450 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
451 	 * shouldn't be needed after GEN10.
452 	 *
453 	 * 64K pages were first introduced from BDW+, although technically they
454 	 * only *work* from gen9+. For pre-BDW we instead have the option for
455 	 * 32K pages, but we don't currently have any support for it in our
456 	 * driver.
457 	 */
458 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
459 	    INTEL_GEN(i915) <= 10)
460 		intel_uncore_rmw(uncore,
461 				 GEN8_GAMW_ECO_DEV_RW_IA,
462 				 0,
463 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
464 
465 	if (IS_GEN_RANGE(i915, 8, 11)) {
466 		bool can_use_gtt_cache = true;
467 
468 		/*
469 		 * According to the BSpec if we use 2M/1G pages then we also
470 		 * need to disable the GTT cache. At least on BDW we can see
471 		 * visual corruption when using 2M pages, and not disabling the
472 		 * GTT cache.
473 		 */
474 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
475 			can_use_gtt_cache = false;
476 
477 		/* WaGttCachingOffByDefault */
478 		intel_uncore_write(uncore,
479 				   HSW_GTT_CACHE_EN,
480 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
481 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
482 				 intel_uncore_read(uncore,
483 						   HSW_GTT_CACHE_EN) == 0);
484 	}
485 }
486 
487 u64 gen8_pte_encode(dma_addr_t addr,
488 		    enum i915_cache_level level,
489 		    u32 flags)
490 {
491 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
492 
493 	if (unlikely(flags & PTE_READ_ONLY))
494 		pte &= ~_PAGE_RW;
495 
496 	switch (level) {
497 	case I915_CACHE_NONE:
498 		pte |= PPAT_UNCACHED;
499 		break;
500 	case I915_CACHE_WT:
501 		pte |= PPAT_DISPLAY_ELLC;
502 		break;
503 	default:
504 		pte |= PPAT_CACHED;
505 		break;
506 	}
507 
508 	return pte;
509 }
510 
511 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
512 {
513 	/* TGL doesn't support LLC or AGE settings */
514 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
515 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
516 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
517 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
518 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
519 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
520 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
521 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
522 }
523 
524 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
525 {
526 	intel_uncore_write(uncore,
527 			   GEN10_PAT_INDEX(0),
528 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
529 	intel_uncore_write(uncore,
530 			   GEN10_PAT_INDEX(1),
531 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
532 	intel_uncore_write(uncore,
533 			   GEN10_PAT_INDEX(2),
534 			   GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
535 	intel_uncore_write(uncore,
536 			   GEN10_PAT_INDEX(3),
537 			   GEN8_PPAT_UC);
538 	intel_uncore_write(uncore,
539 			   GEN10_PAT_INDEX(4),
540 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
541 	intel_uncore_write(uncore,
542 			   GEN10_PAT_INDEX(5),
543 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
544 	intel_uncore_write(uncore,
545 			   GEN10_PAT_INDEX(6),
546 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
547 	intel_uncore_write(uncore,
548 			   GEN10_PAT_INDEX(7),
549 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
550 }
551 
552 /*
553  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
554  * bits. When using advanced contexts each context stores its own PAT, but
555  * writing this data shouldn't be harmful even in those cases.
556  */
557 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
558 {
559 	u64 pat;
560 
561 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
562 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
563 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
564 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
565 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
566 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
567 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
568 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
569 
570 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
571 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
572 }
573 
574 static void chv_setup_private_ppat(struct intel_uncore *uncore)
575 {
576 	u64 pat;
577 
578 	/*
579 	 * Map WB on BDW to snooped on CHV.
580 	 *
581 	 * Only the snoop bit has meaning for CHV, the rest is
582 	 * ignored.
583 	 *
584 	 * The hardware will never snoop for certain types of accesses:
585 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
586 	 * - PPGTT page tables
587 	 * - some other special cycles
588 	 *
589 	 * As with BDW, we also need to consider the following for GT accesses:
590 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
591 	 * so RTL will always use the value corresponding to
592 	 * pat_sel = 000".
593 	 * Which means we must set the snoop bit in PAT entry 0
594 	 * in order to keep the global status page working.
595 	 */
596 
597 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
598 	      GEN8_PPAT(1, 0) |
599 	      GEN8_PPAT(2, 0) |
600 	      GEN8_PPAT(3, 0) |
601 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
602 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
603 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
604 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
605 
606 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
607 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
608 }
609 
610 void setup_private_pat(struct intel_uncore *uncore)
611 {
612 	struct drm_i915_private *i915 = uncore->i915;
613 
614 	GEM_BUG_ON(INTEL_GEN(i915) < 8);
615 
616 	if (INTEL_GEN(i915) >= 12)
617 		tgl_setup_private_ppat(uncore);
618 	else if (INTEL_GEN(i915) >= 10)
619 		cnl_setup_private_ppat(uncore);
620 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
621 		chv_setup_private_ppat(uncore);
622 	else
623 		bdw_setup_private_ppat(uncore);
624 }
625 
626 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
627 #include "selftests/mock_gtt.c"
628 #endif
629