1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #ifndef __INTEL_GT_TYPES__
7 #define __INTEL_GT_TYPES__
8 
9 #include <linux/ktime.h>
10 #include <linux/list.h>
11 #include <linux/llist.h>
12 #include <linux/mutex.h>
13 #include <linux/notifier.h>
14 #include <linux/seqlock.h>
15 #include <linux/spinlock.h>
16 #include <linux/types.h>
17 #include <linux/workqueue.h>
18 
19 #include "uc/intel_uc.h"
20 #include "intel_gsc.h"
21 
22 #include "i915_vma.h"
23 #include "intel_engine_types.h"
24 #include "intel_gt_buffer_pool_types.h"
25 #include "intel_hwconfig.h"
26 #include "intel_llc_types.h"
27 #include "intel_reset_types.h"
28 #include "intel_rc6_types.h"
29 #include "intel_rps_types.h"
30 #include "intel_migrate_types.h"
31 #include "intel_wakeref.h"
32 #include "pxp/intel_pxp_types.h"
33 
34 struct drm_i915_private;
35 struct i915_ggtt;
36 struct intel_engine_cs;
37 struct intel_uncore;
38 
39 struct intel_mmio_range {
40 	u32 start;
41 	u32 end;
42 };
43 
44 /*
45  * The hardware has multiple kinds of multicast register ranges that need
46  * special register steering (and future platforms are expected to add
47  * additional types).
48  *
49  * During driver startup, we initialize the steering control register to
50  * direct reads to a slice/subslice that are valid for the 'subslice' class
51  * of multicast registers.  If another type of steering does not have any
52  * overlap in valid steering targets with 'subslice' style registers, we will
53  * need to explicitly re-steer reads of registers of the other type.
54  *
55  * Only the replication types that may need additional non-default steering
56  * are listed here.
57  */
58 enum intel_steering_type {
59 	L3BANK,
60 	MSLICE,
61 	LNCF,
62 
63 	/*
64 	 * On some platforms there are multiple types of MCR registers that
65 	 * will always return a non-terminated value at instance (0, 0).  We'll
66 	 * lump those all into a single category to keep things simple.
67 	 */
68 	INSTANCE0,
69 
70 	NUM_STEERING_TYPES
71 };
72 
73 enum intel_submission_method {
74 	INTEL_SUBMISSION_RING,
75 	INTEL_SUBMISSION_ELSP,
76 	INTEL_SUBMISSION_GUC,
77 };
78 
79 struct gt_defaults {
80 	u32 min_freq;
81 	u32 max_freq;
82 };
83 
84 struct intel_gt {
85 	struct drm_i915_private *i915;
86 	struct intel_uncore *uncore;
87 	struct i915_ggtt *ggtt;
88 
89 	struct intel_uc uc;
90 	struct intel_gsc gsc;
91 
92 	struct {
93 		/* Serialize global tlb invalidations */
94 		struct mutex invalidate_lock;
95 
96 		/*
97 		 * Batch TLB invalidations
98 		 *
99 		 * After unbinding the PTE, we need to ensure the TLB
100 		 * are invalidated prior to releasing the physical pages.
101 		 * But we only need one such invalidation for all unbinds,
102 		 * so we track how many TLB invalidations have been
103 		 * performed since unbind the PTE and only emit an extra
104 		 * invalidate if no full barrier has been passed.
105 		 */
106 		seqcount_mutex_t seqno;
107 	} tlb;
108 
109 	struct i915_wa_list wa_list;
110 
111 	struct intel_gt_timelines {
112 		spinlock_t lock; /* protects active_list */
113 		struct list_head active_list;
114 	} timelines;
115 
116 	struct intel_gt_requests {
117 		/**
118 		 * We leave the user IRQ off as much as possible,
119 		 * but this means that requests will finish and never
120 		 * be retired once the system goes idle. Set a timer to
121 		 * fire periodically while the ring is running. When it
122 		 * fires, go retire requests.
123 		 */
124 		struct delayed_work retire_work;
125 	} requests;
126 
127 	struct {
128 		struct llist_head list;
129 		struct work_struct work;
130 	} watchdog;
131 
132 	struct intel_wakeref wakeref;
133 	atomic_t user_wakeref;
134 
135 	struct list_head closed_vma;
136 	spinlock_t closed_lock; /* guards the list of closed_vma */
137 
138 	ktime_t last_init_time;
139 	struct intel_reset reset;
140 
141 	/**
142 	 * Is the GPU currently considered idle, or busy executing
143 	 * userspace requests? Whilst idle, we allow runtime power
144 	 * management to power down the hardware and display clocks.
145 	 * In order to reduce the effect on performance, there
146 	 * is a slight delay before we do so.
147 	 */
148 	intel_wakeref_t awake;
149 
150 	u32 clock_frequency;
151 	u32 clock_period_ns;
152 
153 	struct intel_llc llc;
154 	struct intel_rc6 rc6;
155 	struct intel_rps rps;
156 
157 	spinlock_t irq_lock;
158 	u32 gt_imr;
159 	u32 pm_ier;
160 	u32 pm_imr;
161 
162 	u32 pm_guc_events;
163 
164 	struct {
165 		bool active;
166 
167 		/**
168 		 * @lock: Lock protecting the below fields.
169 		 */
170 		seqcount_mutex_t lock;
171 
172 		/**
173 		 * @total: Total time this engine was busy.
174 		 *
175 		 * Accumulated time not counting the most recent block in cases
176 		 * where engine is currently busy (active > 0).
177 		 */
178 		ktime_t total;
179 
180 		/**
181 		 * @start: Timestamp of the last idle to active transition.
182 		 *
183 		 * Idle is defined as active == 0, active is active > 0.
184 		 */
185 		ktime_t start;
186 	} stats;
187 
188 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
189 	struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
190 					    [MAX_ENGINE_INSTANCE + 1];
191 	enum intel_submission_method submission_method;
192 
193 	/*
194 	 * Default address space (either GGTT or ppGTT depending on arch).
195 	 *
196 	 * Reserved for exclusive use by the kernel.
197 	 */
198 	struct i915_address_space *vm;
199 
200 	/*
201 	 * A pool of objects to use as shadow copies of client batch buffers
202 	 * when the command parser is enabled. Prevents the client from
203 	 * modifying the batch contents after software parsing.
204 	 *
205 	 * Buffers older than 1s are periodically reaped from the pool,
206 	 * or may be reclaimed by the shrinker before then.
207 	 */
208 	struct intel_gt_buffer_pool buffer_pool;
209 
210 	struct i915_vma *scratch;
211 
212 	struct intel_migrate migrate;
213 
214 	const struct intel_mmio_range *steering_table[NUM_STEERING_TYPES];
215 
216 	struct {
217 		u8 groupid;
218 		u8 instanceid;
219 	} default_steering;
220 
221 	/*
222 	 * Base of per-tile GTTMMADR where we can derive the MMIO and the GGTT.
223 	 */
224 	phys_addr_t phys_addr;
225 
226 	struct intel_gt_info {
227 		unsigned int id;
228 
229 		intel_engine_mask_t engine_mask;
230 
231 		u32 l3bank_mask;
232 
233 		u8 num_engines;
234 
235 		/* General presence of SFC units */
236 		u8 sfc_mask;
237 
238 		/* Media engine access to SFC per instance */
239 		u8 vdbox_sfc_access;
240 
241 		/* Slice/subslice/EU info */
242 		struct sseu_dev_info sseu;
243 
244 		unsigned long mslice_mask;
245 
246 		/** @hwconfig: hardware configuration data */
247 		struct intel_hwconfig hwconfig;
248 	} info;
249 
250 	struct {
251 		u8 uc_index;
252 		u8 wb_index; /* Only used on HAS_L3_CCS_READ() platforms */
253 	} mocs;
254 
255 	struct intel_pxp pxp;
256 
257 	/* gt/gtN sysfs */
258 	struct kobject sysfs_gt;
259 
260 	/* sysfs defaults per gt */
261 	struct gt_defaults defaults;
262 	struct kobject *sysfs_defaults;
263 };
264 
265 enum intel_gt_scratch_field {
266 	/* 8 bytes */
267 	INTEL_GT_SCRATCH_FIELD_DEFAULT = 0,
268 
269 	/* 8 bytes */
270 	INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH = 128,
271 
272 	/* 8 bytes */
273 	INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA = 256,
274 
275 	/* 6 * 8 bytes */
276 	INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR = 2048,
277 
278 	/* 4 bytes */
279 	INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1 = 2096,
280 };
281 
282 #endif /* __INTEL_GT_TYPES_H__ */
283